C8051F000_03 [SILICON]

Mixed-Signal 32KB ISP FLASH MCU Family; 混合信号32KB ISP功能的Flash MCU系列
C8051F000_03
型号: C8051F000_03
厂家: SILICON    SILICON
描述:

Mixed-Signal 32KB ISP FLASH MCU Family
混合信号32KB ISP功能的Flash MCU系列

文件: 总171页 (文件大小:5235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Mixed-Signal 32KB ISP FLASH MCU Family  
a
HIGH SPEED 8051 µC CORE  
-
Pipelined Instruction Architecture; Executes 70% of  
Instruction Set in 1 or 2 System Clocks  
Up to 25MIPS Throughput with 25MHz Clock  
21 Vectored Interrupt Sources  
-
SAR ADC  
12-Bit (C8051F000/1/2, C8051F005/6/7)  
-
-
10-bit (C8051F010/1/2, C8051F015/6/7)  
±1LSB INL; No Missing Codes  
Programmable Throughput up to 100ksps  
Up to 8 External Inputs; Programmable as Single-  
Ended or Differential  
MEMORY  
-
-
-
256 Bytes Internal Data RAM (F000/01/02/10/11/12)  
2304 Bytes Internal Data RAM (F005/06/07/15/16/17)  
32k Bytes FLASH; In-System Programmable in 512 byte  
Sectors  
Programmable Amplifier Gain: 16, 8, 4, 2, 1, 0.5  
Data Dependent Windowed Interrupt Generator  
Built-in Temperature Sensor (± 3°C)  
DIGITAL PERIPHERALS  
-
-
Two 12-bit DACs  
-
-
4 Byte-Wide Port I/O; All are 5V tolerant  
Hardware SMBusTM (I2CTM Compatible), SPITM, and UART  
Serial Ports Available Concurrently  
Programmable 16-bit Counter/Timer Array with Five  
Capture/Compare Modules  
Two Analog Comparators  
Programmable Hysteresis Values  
Configurable to Generate Interrupts or Reset  
-
-
Voltage Reference  
2.4V; 15 ppm/°C  
-
-
-
Four General Purpose 16-bit Counter/Timers  
Dedicated Watch-Dog Timer  
Available on External Pin  
-
Precision VDD Monitor/Brown-out Detector  
Bi-directional Reset  
ON-CHIP JTAG DEBUG & BOUNDARY SCAN  
CLOCK SOURCES  
-
On-Chip Debug Circuitry Facilitates Full Speed, Non-  
Intrusive In-System Debug (No Emulator Required!)  
Provides Breakpoints, Single Stepping, Watchpoints, Stack  
Monitor  
-
-
-
Internal Programmable Oscillator: 2-to-16MHz  
External Oscillator: Crystal, RC,C, or Clock  
Can Switch Between Clock Sources on-the-fly; Useful in  
Power Saving Modes  
-
-
-
Inspect/Modify Memory and Registers  
Superior Performance to Emulation Systems Using ICE-  
Chips, Target Pods, and Sockets  
SUPPLY VOLTAGE ........................2.7V to 3.6V  
-
Typical Operating Current: 12.5mA @ 25MHz  
6-4-PMinulTtipQleFPPow, e4r8S-aPviinngTSlQeeFp Pan,d3S2h-uPtdionwLn QMoFdPes  
Temperature Range: –40°C to +85°C  
-
-
IEEE1149.1 Compliant Boundary Scan  
Low Cost Development Kit  
ANALOG PERIPHERALS  
DIGITAL I/O  
PCA  
TEMP  
SENSOR  
SMBus  
SPI Bus  
UART  
SAR  
ADC  
PGA  
VREF  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
12-Bit  
DAC  
+
-
+
12-Bit  
DAC  
-
VOLTAGE  
COMPARATORS  
HIGH-SPEED CONTROLLER CORE  
8051 CPU  
(25MIPS)  
32KB  
CLOCK  
CIRCUIT  
256/2304 B  
SRAM  
DEBUG  
CIRCUITRY  
SANITY  
JTAG  
21  
ISP FLASH  
INTERRUPTS CONTROL  
Rev. 1.7 11/03  
Copyright © 2003 by Silicon Laboratories  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
TABLE OF CONTENTS  
1. SYSTEM OVERVIEW........................................................................................................8  
Table 1.1. Product Selection Guide...................................................................................................................8  
Figure 1.1. C8051F000/05/10/15 Block Diagram.............................................................................................9  
Figure 1.2. C8051F001/06/11/16 Block Diagram...........................................................................................10  
Figure 1.3. C8051F002/07/12/17 Block Diagram...........................................................................................11  
1.1. CIP-51TM CPU.......................................................................................................................................12  
Figure 1.4. Comparison of Peak MCU Execution Speeds...............................................................................12  
Figure 1.5. On-Board Clock and Reset............................................................................................................13  
1.2. On-Board Memory.................................................................................................................................14  
Figure 1.6. On-Board Memory Map................................................................................................................14  
1.3. JTAG Debug and Boundary Scan..........................................................................................................15  
Figure 1.7. Debug Environment Diagram .......................................................................................................15  
1.4. Programmable Digital I/O and Crossbar ...............................................................................................16  
Figure 1.8. Digital Crossbar Diagram..............................................................................................................16  
1.5. Programmable Counter Array................................................................................................................17  
Figure 1.9. PCA Block Diagram .....................................................................................................................17  
1.6. Serial Ports.............................................................................................................................................17  
1.7. Analog to Digital Converter ..................................................................................................................18  
Figure 1.10. ADC Diagram .............................................................................................................................18  
1.8. Comparators and DACs.........................................................................................................................19  
Figure 1.11. Comparator and DAC Diagram...................................................................................................19  
2. ABSOLUTE MAXIMUM RATINGS*.............................................................................20  
3. GLOBAL DC ELECTRICAL CHARACTERISTICS...................................................20  
4. PINOUT AND PACKAGE DEFINITIONS ....................................................................21  
Table 4.1. Pin Definitions................................................................................................................................21  
Figure 4.1. TQFP-64 Pinout Diagram .............................................................................................................23  
Figure 4.2. TQFP-64 Package Drawing ..........................................................................................................24  
Figure 4.3. TQFP-48 Pinout Diagram .............................................................................................................25  
Figure 4.4. TQFP-48 Package Drawing ..........................................................................................................26  
Figure 4.5. LQFP-32 Pinout Diagram .............................................................................................................27  
Figure 4.6. LQFP-32 Package Drawing ..........................................................................................................28  
5. ADC (12-Bit, C8051F000/1/2/5/6/7 Only).........................................................................29  
Figure 5.1. 12-Bit ADC Functional Block Diagram........................................................................................29  
5.1. Analog Multiplexer and PGA................................................................................................................29  
5.2. ADC Modes of Operation......................................................................................................................30  
Figure 5.2. 12-Bit ADC Track and Conversion Example Timing...................................................................30  
Figure 5.3. Temperature Sensor Transfer Function.........................................................................................31  
Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)............................................................31  
Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)...........................................................32  
Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x).................................................................33  
Figure 5.7. ADC0CN: ADC Control Register (C8051F00x) ..........................................................................34  
Figure 5.8. ADC0H: ADC Data Word MSB Register (C8051F00x).............................................................35  
Figure 5.9. ADC0L: ADC Data Word LSB Register (C8051F00x)...............................................................35  
5.3. ADC Programmable Window Detector.................................................................................................36  
Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x) ..................................36  
Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x) ...................................36  
Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x) .......................................36  
Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x).........................................36  
Figure 5.14. 12-Bit ADC Window Interrupt Examples, Right Justified Data.................................................37  
Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data...................................................37  
Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data...................................................38  
Rev. 1.7  
2
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 5.1. 12-Bit ADC Electrical Characteristics............................................................................................38  
Table 5.1. 12-Bit ADC Electrical Characteristics............................................................................................39  
6. ADC (10-Bit, C8051F010/1/2/5/6/7 Only).........................................................................40  
Figure 6.1. 10-Bit ADC Functional Block Diagram........................................................................................40  
6.1. Analog Multiplexer and PGA................................................................................................................40  
6.2. ADC Modes of Operation......................................................................................................................41  
Figure 6.2. 10-Bit ADC Track and Conversion Example Timing...................................................................41  
Figure 6.3. Temperature Sensor Transfer Function.........................................................................................42  
Figure 6.4. AMX0CF: AMUX Configuration Register (C8051F01x)............................................................42  
Figure 6.5. AMX0SL: AMUX Channel Select Register (C8051F01x)...........................................................43  
Figure 6.6. ADC0CF: ADC Configuration Register (C8051F01x).................................................................44  
Figure 6.7. ADC0CN: ADC Control Register (C8051F01x) ..........................................................................45  
Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x).............................................................46  
Figure 6.9. ADC0L: ADC Data Word LSB Register (C8051F01x)...............................................................46  
6.3. ADC Programmable Window Detector.................................................................................................47  
Figure 6.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F01x) ..................................47  
Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x) ...................................47  
Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x) .......................................47  
Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x).........................................47  
Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data.................................................48  
Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data...................................................48  
Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data...................................................49  
Table 6.1. 10-Bit ADC Electrical Characteristics............................................................................................49  
Table 6.1. 10-Bit ADC Electrical Characteristics............................................................................................50  
7. DACs, 12 BIT VOLTAGE MODE....................................................................................51  
Figure 7.1. DAC Functional Block Diagram....................................................................................................51  
Figure 7.2. DAC0H: DAC0 High Byte Register .............................................................................................52  
Figure 7.3. DAC0L: DAC0 Low Byte Register ..............................................................................................52  
Figure 7.4. DAC0CN: DAC0 Control Register...............................................................................................52  
Figure 7.5. DAC1H: DAC1 High Byte Register .............................................................................................53  
Figure 7.6. DAC1L: DAC1 Low Byte Register ..............................................................................................53  
Figure 7.7. DAC1CN: DAC1 Control Register...............................................................................................53  
Table 7.1. DAC Electrical Characteristics.......................................................................................................54  
8. COMPARATORS ..............................................................................................................55  
Figure 8.1. Comparator Functional Block Diagram ........................................................................................55  
Figure 8.2. Comparator Hysteresis Plot...........................................................................................................56  
Figure 8.3. CPT0CN: Comparator 0 Control Register ....................................................................................57  
Figure 8.4. CPT1CN: Comparator 1 Control Register ....................................................................................58  
Table 8.1. Comparator Electrical Characteristics ............................................................................................59  
9. VOLTAGE REFERENCE ................................................................................................60  
Figure 9.1. Voltage Reference Functional Block Diagram .............................................................................60  
Figure 9.2. REF0CN: Reference Control Register ..........................................................................................61  
Table 9.1. Reference Electrical Characteristics...............................................................................................61  
10. CIP-51 CPU.........................................................................................................................62  
Figure 10.1. CIP-51 Block Diagram................................................................................................................62  
10.1.  
INSTRUCTION SET.........................................................................................................................63  
Table 10.1. CIP-51 Instruction Set Summary..................................................................................................65  
10.2. MEMORY ORGANIZATION..........................................................................................................68  
Figure 10.2. Memory Map...............................................................................................................................69  
10.3.  
SPECIAL FUNCTION REGISTERS................................................................................................70  
Table 10.2. Special Function Register Memory Map......................................................................................70  
Table 10.3. Special Function Registers ...........................................................................................................70  
Figure 10.3. SP: Stack Pointer.........................................................................................................................74  
Figure 10.4. DPL: Data Pointer Low Byte ......................................................................................................74  
3
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.5. DPH: Data Pointer High Byte.....................................................................................................74  
Figure 10.6. PSW: Program Status Word........................................................................................................75  
Figure 10.7. ACC: Accumulator......................................................................................................................76  
Figure 10.8. B: B Register...............................................................................................................................76  
10.4.  
INTERRUPT HANDLER .................................................................................................................77  
Table 10.4. Interrupt Summary........................................................................................................................78  
Figure 10.9. IE: Interrupt Enable.....................................................................................................................79  
Figure 10.10. IP: Interrupt Priority..................................................................................................................80  
Figure 10.11. EIE1: Extended Interrupt Enable 1 ...........................................................................................81  
Figure 10.12. EIE2: Extended Interrupt Enable 2 ...........................................................................................82  
Figure 10.13. EIP1: Extended Interrupt Priority 1 ..........................................................................................83  
Figure 10.14. EIP2: Extended Interrupt Priority 2 ..........................................................................................84  
10.5.  
Power Management Modes ...............................................................................................................85  
Figure 10.15. PCON: Power Control Register ................................................................................................86  
11. FLASH MEMORY.............................................................................................................87  
11.1.  
Programming The Flash Memory......................................................................................................87  
Table 11.1. FLASH Memory Electrical Characteristics..................................................................................87  
11.2.  
11.3.  
Non-volatile Data Storage .................................................................................................................88  
Security Options ................................................................................................................................88  
Figure 11.1. PSCTL: Program Store RW Control...........................................................................................88  
Figure 11.2. Flash Program Memory Security Bytes .......................................................................................89  
Figure 11.3. FLACL: Flash Access Limit (C8051F005/06/07/15/16/17 only) ...............................................90  
Figure 11.4. FLSCL: Flash Memory Timing Prescaler...................................................................................91  
12. EXTERNAL RAM (C8051F005/06/07/15/16/17).............................................................92  
Figure 12.1. EMI0CN: External Memory Interface Control ...........................................................................92  
13. RESET SOURCES.............................................................................................................93  
Figure 13.1. Reset Sources Diagram ...............................................................................................................93  
13.1.  
13.2.  
Power-on Reset..................................................................................................................................94  
Software Forced Reset.......................................................................................................................94  
Figure 13.2. VDD Monitor Timing Diagram ..................................................................................................94  
13.3.  
13.4.  
13.5.  
13.6.  
13.7.  
13.8.  
Power-fail Reset.................................................................................................................................94  
External Reset....................................................................................................................................95  
Missing Clock Detector Reset ...........................................................................................................95  
Comparator 0 Reset ...........................................................................................................................95  
External CNVSTR Pin Reset.............................................................................................................95  
Watchdog Timer Reset ......................................................................................................................95  
Figure 13.3. WDTCN: Watchdog Timer Control Register .............................................................................96  
Figure 13.4. RSTSRC: Reset Source Register.................................................................................................97  
Table 13.1. Reset Electrical Characteristics ....................................................................................................98  
14. OSCILLATOR ...................................................................................................................99  
Figure 14.1. Oscillator Diagram......................................................................................................................99  
Figure 14.2. OSCICN: Internal Oscillator Control Register .........................................................................100  
Table 14.1. Internal Oscillator Electrical Characteristics ..............................................................................100  
Figure 14.3. OSCXCN: External Oscillator Control Register.......................................................................101  
14.1.  
14.2.  
14.3.  
External Crystal Example................................................................................................................102  
External RC Example ......................................................................................................................102  
External Capacitor Example............................................................................................................102  
15. PORT INPUT/OUTPUT..................................................................................................103  
15.1.  
15.2.  
Priority Cross Bar Decoder..............................................................................................................103  
Port I/O Initialization.......................................................................................................................103  
Figure 15.1. Port I/O Functional Block Diagram ..........................................................................................104  
Figure 15.2. Port I/O Cell Block Diagram.....................................................................................................104  
Table 15.1. Crossbar Priority Decode ...........................................................................................................105  
Figure 15.3. XBR0: Port I/O CrossBar Register 0 ........................................................................................106  
Rev. 1.7  
4
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.4. XBR1: Port I/O CrossBar Register 1 ........................................................................................107  
Figure 15.5. XBR2: Port I/O CrossBar Register 2 ........................................................................................108  
15.3.  
15.4.  
General Purpose Port I/O.................................................................................................................109  
Configuring Ports Which are not Pinned Out..................................................................................109  
Figure 15.6. P0: Port0 Register .....................................................................................................................109  
Figure 15.7. PRT0CF: Port0 Configuration Register ....................................................................................109  
Figure 15.8. P1: Port1 Register .....................................................................................................................110  
Figure 15.9. PRT1CF: Port1 Configuration Register ....................................................................................110  
Figure 15.10. PRT1IF: Port1 Interrupt Flag Register....................................................................................110  
Figure 15.11. P2: Port2 Register ...................................................................................................................111  
Figure 15.12. PRT2CF: Port2 Configuration Register ..................................................................................111  
Figure 15.13. P3: Port3 Register ...................................................................................................................112  
Figure 15.14. PRT3CF: Port3 Configuration Register ..................................................................................112  
Table 15.2. Port I/O DC Electrical Characteristics........................................................................................112  
16. SMBus / I2C Bus...............................................................................................................113  
Figure 16.1. SMBus Block Diagram .............................................................................................................113  
Figure 16.2. Typical SMBus Configuration ..................................................................................................114  
16.1.  
16.2.  
Supporting Documents ....................................................................................................................114  
Operation .........................................................................................................................................115  
Figure 16.3. SMBus Transaction...................................................................................................................115  
16.3.  
16.4.  
16.5.  
16.6.  
Arbitration .......................................................................................................................................116  
Clock Low Extension ......................................................................................................................116  
Timeouts ..........................................................................................................................................116  
SMBus Special Function Registers..................................................................................................116  
Figure 16.4. SMB0CN: SMBus Control Register ..........................................................................................118  
Figure 16.5. SMB0CR: SMBus Clock Rate Register....................................................................................119  
Figure 16.6. SMB0DAT: SMBus Data Register ...........................................................................................120  
Figure 16.7. SMB0ADR: SMBus Address Register .....................................................................................120  
Figure 16.8. SMB0STA: SMBus Status Register..........................................................................................121  
Table 16.1. SMBus Status Codes ..................................................................................................................122  
17. SERIAL PERIPHERAL INTERFACE BUS.................................................................123  
Figure 17.1. SPI Block Diagram ...................................................................................................................123  
Figure 17.2. Typical SPI Interconnection......................................................................................................124  
17.1.  
17.2.  
Signal Descriptions..........................................................................................................................124  
Operation .........................................................................................................................................125  
Figure 17.3. Full Duplex Operation...............................................................................................................125  
17.3.  
Serial Clock Timing.........................................................................................................................126  
Figure 17.4. Data/Clock Timing Diagram.....................................................................................................126  
17.4.  
SPI Special Function Registers........................................................................................................127  
Figure 17.5. SPI0CFG: SPI Configuration Register......................................................................................127  
Figure 17.6. SPI0CN: SPI Control Register..................................................................................................128  
Figure 17.7. SPI0CKR: SPI Clock Rate Register..........................................................................................129  
Figure 17.8. SPI0DAT: SPI Data Register....................................................................................................129  
18. UART.................................................................................................................................130  
Figure 18.1. UART Block Diagram ..............................................................................................................130  
18.1.  
UART Operational Modes...............................................................................................................131  
Table 18.1. UART Modes .............................................................................................................................131  
Figure 18.2. UART Mode 0 Interconnect......................................................................................................131  
Figure 18.3. UART Mode 0 Timing Diagram...............................................................................................131  
Figure 18.4. UART Mode 1 Timing Diagram...............................................................................................132  
Figure 18.5. UART Modes 1, 2, and 3 Interconnect Diagram ......................................................................133  
Figure 18.6. UART Modes 2 and 3 Timing Diagram....................................................................................134  
18.2.  
Multiprocessor Communications.....................................................................................................135  
Figure 18.7. UART Multi-Processor Mode Interconnect Diagram...............................................................135  
5
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 18.2. Oscillator Frequencies for Standard Baud Rates........................................................................136  
Figure 18.8. SBUF: Serial (UART) Data Buffer Register.............................................................................136  
Figure 18.9. SCON: Serial Port Control Register..........................................................................................137  
19. TIMERS ............................................................................................................................138  
19.1.  
Timer 0 and Timer 1........................................................................................................................138  
Figure 19.1. T0 Mode 0 Block Diagram........................................................................................................139  
Figure 19.2. T0 Mode 2 Block Diagram........................................................................................................140  
Figure 19.3. T0 Mode 3 Block Diagram........................................................................................................141  
Figure 19.4. TCON: Timer Control Register.................................................................................................142  
Figure 19.5. TMOD: Timer Mode Register...................................................................................................143  
Figure 19.6. CKCON: Clock Control Register..............................................................................................144  
Figure 19.7. TL0: Timer 0 Low Byte ............................................................................................................145  
Figure 19.8. TL1: Timer 1 Low Byte ............................................................................................................145  
Figure 19.9. TH0: Timer 0 High Byte...........................................................................................................145  
Figure 19.10. TH1: Timer 1 High Byte.........................................................................................................145  
19.2.  
Timer 2 ............................................................................................................................................146  
Figure 19.11. T2 Mode 0 Block Diagram......................................................................................................147  
Figure 19.12. T2 Mode 1 Block Diagram......................................................................................................148  
Figure 19.13. T2 Mode 2 Block Diagram......................................................................................................149  
Figure 19.14. T2CON: Timer 2 Control Register..........................................................................................150  
Figure 19.15. RCAP2L: Timer 2 Capture Register Low Byte ......................................................................151  
Figure 19.16. RCAP2H: Timer 2 Capture Register High Byte .....................................................................151  
Figure 19.17. TL2: Timer 2 Low Byte ..........................................................................................................151  
Figure 19.18. TH2: Timer 2 High Byte.........................................................................................................151  
19.3.  
Timer 3 ............................................................................................................................................152  
Figure 19.19. Timer 3 Block Diagram...........................................................................................................152  
Figure 19.20. TMR3CN: Timer 3 Control Register ......................................................................................152  
Figure 19.21. TMR3RLL: Timer 3 Reload Register Low Byte ....................................................................153  
Figure 19.22. TMR3RLH: Timer 3 Reload Register High Byte ...................................................................153  
Figure 19.23. TMR3L: Timer 3 Low Byte....................................................................................................153  
Figure 19.24. TMR3H: Timer 3 High Byte...................................................................................................153  
20. PROGRAMMABLE COUNTER ARRAY....................................................................154  
Figure 20.1. PCA Block Diagram .................................................................................................................154  
20.1.  
Capture/Compare Modules..............................................................................................................155  
Table 20.1. PCA0CPM Register Settings for PCA Capture/Compare Modules ...........................................155  
Figure 20.2. PCA Interrupt Block Diagram...................................................................................................155  
Figure 20.3. PCA Capture Mode Diagram....................................................................................................156  
Figure 20.4. PCA Software Timer Mode Diagram........................................................................................157  
Figure 20.5. PCA High Speed Output Mode Diagram..................................................................................157  
Figure 20.6. PCA PWM Mode Diagram .......................................................................................................158  
20.2.  
PCA Counter/Timer.........................................................................................................................159  
Table 20.2. PCA Timebase Input Options.....................................................................................................159  
Figure 20.7. PCA Counter/Timer Block Diagram.........................................................................................159  
20.3.  
Register Descriptions for PCA ........................................................................................................160  
Figure 20.8. PCA0CN: PCA Control Register ...............................................................................................160  
Figure 20.9. PCA0MD: PCA Mode Register ................................................................................................161  
Figure 20.10. PCA0CPMn: PCA Capture/Compare Registers......................................................................162  
Figure 20.11. PCA0L: PCA Counter/Timer Low Byte .................................................................................163  
Figure 20.12. PCA0H: PCA Counter/Timer High Byte................................................................................163  
Figure 20.13. PCA0CPLn: PCA Capture Module Low Byte........................................................................163  
Figure 20.14. PCA0CPHn: PCA Capture Module High Byte.......................................................................163  
21. JTAG (IEEE 1149.1) ........................................................................................................164  
Figure 21.1. IR: JTAG Instruction Register ..................................................................................................164  
21.1.  
Boundary Scan.................................................................................................................................165  
Rev. 1.7  
6
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 21.1. Boundary Data Register Bit Definitions.....................................................................................165  
Figure 21.2. DEVICEID: JTAG Device ID Register ....................................................................................166  
21.2.  
Flash Programming Commands.......................................................................................................167  
Figure 21.3. FLASHCON: JTAG Flash Control Register.............................................................................168  
Figure 21.4. FLASHADR: JTAG Flash Address Register............................................................................168  
Figure 21.5. FLASHDAT: JTAG Flash Data Register..................................................................................169  
Figure 21.6. FLASHSCL: JTAG Flash Scale Register .................................................................................169  
21.3.  
Debug Support.................................................................................................................................170  
7
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1. SYSTEM OVERVIEW  
The C8051F000 family are fully integrated mixed-signal System on a Chip MCUs with a true 12-bit multi-channel  
ADC (F000/01/02/05/06/07), or a true 10-bit multi-channel ADC (F010/11/12/15/16/17). See the Product Selection  
Guide in Table 1.1 for a quick reference of each MCUs’ feature set. Each has a programmable gain pre-amplifier,  
two 12-bit DACs, two voltage comparators (except for the F002/07/12/17, which have one), a voltage reference,  
and an 8051-compatible microcontroller core with 32kbytes of FLASH memory. There are also I2C/SMBus,  
UART, and SPI serial interfaces implemented in hardware (not “bit-banged” in user software) as well as a  
Programmable Counter/Timer Array (PCA) with five capture/compare modules. There are also 4 general-purpose  
16-bit timers and 4 byte-wide general-purpose digital Port I/O. The C8051F000/01/02/10/11/12 have 256 bytes of  
RAM and execute up to 20MIPS, while the C8051F005/06/07/15/16/17 have 2304 bytes of RAM and execute up to  
25MIPS.  
With an on-board VDD monitor, WDT, and clock oscillator, the MCUs are truly stand-alone System-on-a-Chip  
solutions. Each MCU effectively configures and manages the analog and digital peripherals. The FLASH memory  
can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the  
8051 firmware. Each MCU can also individually shut down any or all of the peripherals to conserve power.  
On-board JTAG debug support allows non-intrusive (uses no on-chip resources), full speed, in-circuit debug using  
the production MCU installed in the final application. This debug system supports inspection and modification of  
memory and registers, setting breakpoints, watchpoints, single stepping, and run and halt commands. All analog  
and digital peripherals are fully functional when using JTAG debug.  
Each MCU is specified for 2.7V-to-3.6V operation over the industrial temperature range (-45C to +85C). The Port  
I/Os, /RST, and JTAG pins are tolerant for input signals up to 5V. The C8051F000/05/10/15 are available in the  
64-pin TQFP (see block diagram in Figure 1.1). The C8051F001/06/11/16 are available in the 48-pin TQFP (see  
block diagram in Figure 1.2). The C8051F002/07/12/17 are available in the 32-pin LQFP (see block diagram in  
Figure 1.3).  
Table 1.1. Product Selection Guide  
C8051F000  
C8051F001  
C8051F002  
C8051F005  
C8051F006  
C8051F007  
C8051F010  
C8051F011  
C8051F012  
C8051F015  
C8051F016  
C8051F017  
20  
20  
20  
25  
25  
25  
20  
20  
20  
25  
25  
25  
32k  
32k  
32k  
32k  
32k  
32k  
32k  
32k  
32k  
32k  
32k  
32k  
256  
256  
256  
2304  
2304  
2304  
256  
256  
256  
2304  
2304  
2304  
4
4
4
4
4
4
4
4
4
4
4
4
32  
16  
8
32  
16  
8
32  
16  
8
32  
16  
8
12  
12  
12  
12  
12  
12  
10  
10  
10  
10  
10  
10  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
8
8
4
8
8
4
8
8
4
8
8
4
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
1
2
2
1
64TQFP  
48TQFP  
32LQFP  
64TQFP  
48TQFP  
32LQFP  
64TQFP  
48TQFP  
32LQFP  
64TQFP  
48TQFP  
32LQFP  
Rev. 1.7  
8
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 1.1. C8051F000/05/10/15 Block Diagram  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P
0
Digital Power  
Analog Power  
C
R
O
S
S
B
A
R
UART  
SMBus  
SPI Bus  
PCA  
D
r
AV+  
AV+  
AGND  
v
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
AGND  
P
1
Timers  
0,1,2  
32kbyte  
FLASH  
TCK  
TMS  
TDI  
TDO  
D
r
Boundary Scan  
Debug HW  
8
0
5
1
JTAG  
Logic  
Timer 3  
v
256 byte  
RAM  
S
W
I
Port 0  
Latch  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
Reset  
P
2
/RST  
2048 byte  
XRAM  
Port 1  
Latch  
VDD  
T
C
H
WDT  
D
r
(F005/15 only)  
Monitor  
Port 2  
Latch  
C
o
r
v
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P
3
System Clock  
SFR Bus  
Port 3  
Latch  
e
Internal  
D
r
Oscillator  
v
VREF  
DAC0  
VREF  
DAC0  
(12-Bit)  
DAC1  
DAC1  
(12-Bit)  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
A
M
U
X
ADC  
100ksps  
Prog  
Gain  
TEMP  
CP0+  
CP0-  
CP0  
CP1  
CP1+  
CP1-  
9
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 1.2. C8051F001/06/11/16 Block Diagram  
VDD  
VDD  
DGND  
DGND  
DGND  
DGND  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P
0
Digital Power  
Analog Power  
C
R
O
S
S
B
A
R
UART  
SMBus  
SPI Bus  
PCA  
D
r
AV+  
AV+  
AGND  
v
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
AGND  
P
1
Timers  
0,1,2  
32kbyte  
FLASH  
TCK  
TMS  
TDI  
TDO  
D
r
Boundary Scan  
Debug HW  
8
0
5
1
JTAG  
Logic  
Timer 3  
256 byte  
RAM  
v
S
W
I
Port 0  
Latch  
Reset  
P
2
/RST  
2048 byte  
XRAM  
Port 1  
Latch  
T
C
H
VDD  
WDT  
(F006/16 only)  
D
r
Monitor  
Port 2  
Latch  
C
o
r
v
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
P
3
SFR Bus  
System Clock  
Port 3  
Latch  
e
Internal  
D
r
Oscillator  
v
VREF  
DAC0  
VREF  
DAC0  
(12-Bit)  
DAC1  
DAC1  
(12-Bit)  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
A
ADC  
100ksps  
Prog  
M
Gain  
U
X
TEMP  
CP0  
CP0+  
CP0-  
CP1+  
CP1-  
CP1  
Rev. 1.7  
10  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 1.3. C8051F002/07/12/17 Block Diagram  
VDD  
VDD  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P
0
Digital Power  
C
R
O
S
S
B
A
R
DGND  
DGND  
UART  
SMBus  
SPI Bus  
PCA  
D
r
AV+  
AV+  
AGND  
v
Analog Power  
AGND  
P
1
Timers  
0,1,2  
32kbyte  
FLASH  
TCK  
TMS  
TDI  
TDO  
D
r
Boundary Scan  
Debug HW  
8
0
5
1
JTAG  
Logic  
Timer 3  
256 byte  
RAM  
v
S
W
I
Port 0  
Latch  
P
2
Reset  
/RST  
2048 byte  
XRAM  
Port 1  
Latch  
T
C
H
(F007/17 only)  
VDD  
WDT  
D
r
Monitor  
Port 2  
Latch  
C
o
r
v
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
P
3
SFR Bus  
System Clock  
Port 3  
Latch  
e
Internal  
D
r
Oscillator  
v
VREF  
DAC0  
VREF  
DAC0  
(12-Bit)  
DAC1  
DAC1  
(12-Bit)  
AIN0  
AIN1  
AIN2  
AIN3  
A
M
U
X
ADC  
100ksps  
Prog  
Gain  
TEMP  
CP0+  
CP0-  
CP0  
CP1  
11  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.1.  
CIP-51TM CPU  
1.1.1. Fully 8051 Compatible  
The C8051F000 family utilizes Silicon Laboratories’ proprietary CIP-51 microcontroller core. The CIP-51 is fully  
compatible with the MCS-51TM instruction set. Standard 803x/805x assemblers and compilers can be used to  
develop software. The core has all the peripherals included with a standard 8052, including four 16-bit  
counter/timers, a full-duplex UART, 256 bytes of internal RAM space, 128 byte Special Function Register (SFR)  
address space, and four byte-wide I/O Ports.  
1.1.2. Improved Throughput  
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051  
architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to  
execute with a maximum system clock of 12-to-24MHz. By contrast, the CIP-51 core executes 70% of its  
instructions in one or two system clock cycles, with only four instructions taking more than four system clock  
cycles.  
The CIP-51 has a total of 109 instructions. The number of instructions versus the system clock cycles to execute  
them is as follows:  
26  
1
50  
2
5
2/3  
14  
3
7
3/4  
3
4
1
4/5  
2
5
1
8
Instructions  
Clocks to Execute  
With the CIP-51’s maximum system clock at 25MHz, it has a peak throughput of 25MIPS. Figure 1.4 shows a  
comparison of peak throughputs of various 8-bit microcontroller cores with their maximum system clocks.  
Figure 1.4. Comparison of Peak MCU Execution Speeds  
25  
20  
15  
10  
5
Silicon Labs Microchip  
Philips  
80C51  
ADuC812  
8051  
CIP-51  
PIC17C75x  
(25MHz clk) (33MHz clk) (33MHz clk) (16MHz clk)  
Rev. 1.7  
12  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.1.3.  
Additional Features  
The C8051F000 MCU family has several key enhancements both inside and outside the CIP-51 core to improve its  
overall performance and ease of use in the end applications.  
The extended interrupt handler provides 21 interrupt sources into the CIP-51 (as opposed to 7 for the standard  
8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt driven system  
requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very  
useful when building multi-tasking, real-time systems.  
There are up to seven reset sources for the MCU: an on-board VDD monitor, a Watchdog Timer, a missing clock  
detector, a voltage level detection from Comparator 0, a forced software reset, the CNVSTR pin, and the /RST pin.  
The /RST pin is bi-directional, accommodating an external reset, or allowing the internally generated POR to be  
output on the /RST pin. Each reset source except for the VDD monitor and Reset Input Pin may be disabled by the  
user in software. The WDT may be permanently enabled in software after a power-on reset during MCU  
initialization.  
The MCU has an internal, stand alone clock generator which is used by default as the system clock after any reset.  
If desired, the clock source may be switched on the fly to the external oscillator, which can use a crystal, ceramic  
resonator, capacitor, RC, or external clock source to generate the system clock. This can be extremely useful in low  
power applications, allowing the MCU to run from a slow (power saving) external crystal source, while periodically  
switching to the fast (up to 16MHz) internal oscillator as needed.  
Figure 1.5. On-Board Clock and Reset  
VDD  
CNVSTR  
(Port  
I/O)  
Crossbar  
Supply  
Monitor  
(CNVSTR  
reset  
Supply  
Reset  
+
enable)  
/RST  
-
(wired-OR)  
Timeout  
Comparator 0  
CP0+  
CP0-  
+
-
(CP0  
reset  
enable)  
Reset  
Funnel  
Missing  
Clock  
Detector  
(one-  
shot)  
WDT  
EN  
PRE  
EN  
Internal  
Clock  
Generator  
System  
Clock  
Software Reset  
System Reset  
CIP-51  
XTAL1  
XTAL2  
OSC  
Microcontroller  
Core  
Clock Select  
Extended Interrupt  
Handler  
13  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.2.  
On-Board Memory  
The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with  
the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and  
direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct  
and indirect addressing. The first 32 bytes are addressable as four banks of general-purpose registers, and the next  
16 bytes can be byte addressable or bit addressable.  
The CIP-51 in the C8051F005/06/07/15/16/17 MCUs additionally has a 2048 byte RAM block in the external data  
memory address space. This 2048 byte block can be addressed over the entire 64k external data memory address  
range (see Figure 1.6).  
The MCU’s program memory consists of 32k + 128 bytes of FLASH. This memory may be reprogrammed in-  
system in 512 byte sectors, and requires no special off-chip programming voltage. The 512 bytes from addresses  
0x7E00 to 0x7FFF are reserved for factory use. There is also a single 128-byte sector at address 0x8000 to 0x807F,  
which may be useful as a small table for software constants or as additional program space. See Figure 1.6 for the  
MCU system memory map.  
Figure 1.6. On-Board Memory Map  
PROGRAM MEMORY  
DATA MEMORY  
INTERNAL DATA ADDRESS SPACE  
0x807F  
0x8000  
0x7FFF  
0x7E00  
0x7DFF  
128 Byte ISP FLASH  
0xFF  
Upper 128 RAM  
(Indirect Addressing  
Only)  
Special Function  
Register's  
RESERVED  
(Direct Addressing Only)  
0x80  
0x7F  
(Direct and Indirect  
Addressing)  
Lower 128 RAM  
(Direct and Indirect  
Addressing)  
FLASH  
0x30  
0x2F  
Bit Addressable  
(In-System  
Programmable in 512  
Byte Sectors)  
0x20  
0x1F  
General Purpose  
Registers  
0x00  
0x0000  
EXTERNAL DATA ADDRESS SPACE  
0xFFFF  
0xF800  
(same 2048 byte RAM block )  
The same 2048 byte RAM  
0x17FF  
0x1000  
0x0FFF  
0x0800  
0x07FF  
(same 2048 byte RAM block )  
(same 2048 byte RAM block )  
block can be addressed on  
2k boundaries throughout  
the 64k External Data  
Memory space.  
RAM - 2048 Bytes  
(accessable using MOVX  
instruction)  
0x0000  
Rev. 1.7  
14  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.3.  
JTAG Debug and Boundary Scan  
The C8051F000 family has on-chip JTAG and debug circuitry that provide non-intrusive, full speed, in-circuit  
debug using the production part installed in the end application using the four-pin JTAG I/F. The JTAG port is  
fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing purposes.  
Silicon Labs’ debug system supports inspection and modification of memory and registers, breakpoints,  
watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, timers, or  
communications channels are required. All the digital and analog peripherals are functional and work correctly  
while debugging. All the peripherals (except for the ADC) are stalled when the MCU is halted, during single  
stepping, or at a breakpoint in order to keep them in sync.  
The C8051F000DK, C8051F005DK, C8051F010DK, and C8051F015DK are development kits with all the  
hardware and software necessary to develop application code and perform in-circuit debug with the C8051F000/1/2,  
F005/6/7, F010/1/2, and F015/6/7 MCUs respectively. The kit includes software with a developer’s studio and  
debugger, an integrated 8051 assembler, and an RS-232 to JTAG protocol translator module referred to as the EC.  
It also has a target application board with the associated MCU installed and a large prototyping area, plus the RS-  
232 and JTAG cables, and wall-mount power supply.  
The Development Kit requires a Windows  
95/98/NT/2000/XP computer with one available RS-232 serial port. As shown in Figure 1.7, the PC is connected  
via RS-232 to the EC. A six-inch ribbon cable connects the EC to the user’s application board, picking up the four  
JTAG pins and VDD and GND. The EC takes its power from the application board. It requires roughly 20mA at  
2.7-3.6V. For applications where there is not sufficient power available from the target board, the provided power  
supply can be connected directly to the EC.  
This is a vastly superior configuration for developing and debugging embedded applications compared to standard  
MCU Emulators, which use on-board “ICE Chips” and target cables and require the MCU in the application board  
to be socketed. Silicon Labs’ debug environment both increases ease of use and preserves the performance of the  
precision analog peripherals.  
Figure 1.7. Debug Environment Diagram  
Silicon Labs Integrated  
Development Environment  
WINDOWS 95/98/NT/2000/XP  
RS-232  
EC  
JTAG (x4), VDD, GND  
TARGET PCB  
VDD GND  
C8051  
F005  
15  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.4.  
Programmable Digital I/O and Crossbar  
The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. All four ports are pinned out on the  
F000/05/10/15. Ports 0 and 1 are pinned out on the F001/06/11/16, and only Port 0 is pinned out on the  
F002/07/12/17. The Ports not pinned out are still available for software use as general purpose registers. The Port  
I/O behave like the standard 8051 with a few enhancements.  
Each Port I/O pin can be configured as either a push-pull or open-drain output. Also, the “weak pull-ups” which are  
normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for low power  
applications.  
Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching network  
that allows mapping of internal digital system resources to Port I/O pins on P0, P1, and P2. (See Figure 1.8.)  
Unlike microcontrollers with standard multiplexed digital I/O, all combinations of functions are supported.  
The on-board counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator outputs, and  
other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar  
Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources  
needed for his particular application.  
Figure 1.8. Digital Crossbar Diagram  
2
XBR0, XBR1,  
PRT0CF, PRT1CF,  
PRT2CF Registers  
Highest  
Priority  
SMBus  
SPI  
XBR2 Registers  
4
2
6
External  
Pins  
UART  
PCA  
Priority  
Decoder  
P0.0  
Highest  
Priority  
P0  
I/O  
8
8
8
2
6
Comptr.  
Outputs  
Cells  
P0.7  
Digital  
Crossbar  
T0, T1,  
T2  
P1.0  
P1.7  
P1  
I/O  
Lowest  
Priority  
SYSCLK  
CNVSTR  
Cells  
8
P2.0  
P2.7  
P2  
I/O  
Lowest  
Priority  
P0  
Cells  
(P0.0-P0.7)  
8
P1  
P2  
P3  
(P1.0-P1.7)  
8
PRT3CF  
Register  
Port  
Latches  
(P2.0-P2.7)  
8
P3.0  
P3.7  
P3  
I/O  
Cells  
(P3.0-P3.7)  
Rev. 1.7  
16  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.5.  
Programmable Counter Array  
The C8051F000 MCU family has an on-board Programmable Counter/Timer Array (PCA) in addition to the four  
16-bit general-purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer timebase with 5  
programmable capture/compare modules. The timebase gets its clock from one of four sources: the system clock  
divided by 12, the system clock divided by 4, Timer 0 overflow, or an External Clock Input (ECI).  
Each capture/compare module can be configured to operate in one of four modes: Edge-Triggered Capture,  
Software Timer, High Speed Output, or Pulse Width Modulator. The PCA Capture/Compare Module I/O and  
External Clock Input are routed to the MCU Port I/O via the Digital Crossbar.  
Figure 1.9. PCA Block Diagram  
/4  
System  
Clock  
/12  
16-Bit Counter/Timer  
T0 Overflow  
Capture/Compare  
Module 0  
Capture/Compare  
Module 1  
Capture/Compare  
Module 2  
Capture/Compare  
Module 3  
Capture/Compare  
Module 4  
Crossbar  
Port I/O  
1.6.  
Serial Ports  
The C8051F000 MCU Family includes a Full-Duplex UART, SPI Bus, and I2C/SMBus. Each of the serial buses is  
fully implemented in hardware and makes extensive use of the CIP-51’s interrupts, thus requiring very little  
intervention by the CPU. The serial buses do not “share” resources such as timers, interrupts, or Port I/O, so any or  
all of the serial buses may be used together.  
17  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.7.  
Analog to Digital Converter  
The C8051F000/1/2/5/6/7 has an on-chip 12-bit SAR ADC with a 9-channel input multiplexer and programmable  
gain amplifier. With a maximum throughput of 100ksps, the ADC offers true 12-bit accuracy with an INL of  
±1LSB. The ADC in the C8051F010/1/2/5/6/7 is similar, but with 10-bit resolution. Each ADC has a maximum  
throughput of 100ksps. Each ADC has an INL of ±1LSB, offering true 12-bit accuracy with the C8051F00x, and  
true 10-bit accuracy with the C8051F01x. There is also an on-board 15ppm voltage reference, or an external  
reference may be used via the VREF pin.  
The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers. One input channel  
is tied to an internal temperature sensor, while the other eight channels are available externally. Each pair of the  
eight external input channels can be configured as either two single-ended inputs or a single differential input. The  
system controller can also put the ADC into shutdown to save power.  
A programmable gain amplifier follows the analog multiplexer. The gain can be set in software from 0.5 to 16 in  
powers of 2. The gain stage can be especially useful when different ADC input channels have widely varied input  
voltage signals, or when it is necessary to “zoom in” on a signal with a large DC offset (in differential mode, a DAC  
could be used to provide the DC offset).  
Conversions can be started in four ways; a software command, an overflow on Timer 2, an overflow on Timer 3, or  
an external signal input. This flexibility allows the start of conversion to be triggered by software events, external  
HW signals, or convert continuously. A completed conversion causes an interrupt, or a status bit can be polled in  
software to determine the end of conversion. The resulting 10 or 12-bit data word is latched into two SFRs upon  
completion of a conversion. The data can be right or left justified in these registers under software control.  
Compare registers for the ADC data can be configured to interrupt the controller when ADC data is within a  
specified window. The ADC can monitor a key voltage continuously in background mode, but not interrupt the  
controller unless the converted data is within the specified window.  
Figure 1.10. ADC Diagram  
VREF  
+
AIN0  
REF  
-
AIN1  
AIN2  
AIN3  
AIN4  
Programmable  
Gain Amp  
+
-
9-to-1  
AMUX  
(SE or  
DIFF)  
100ksps  
SAR  
+
+
X
-
AIN5  
AIN6  
AIN7  
-
+
ADC  
-
(not bonded out on  
F002, F007, F012,  
and F017  
TEMP  
SENSOR  
Control & Data  
SFR's  
SFR Bus  
Rev. 1.7  
18  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
1.8.  
Comparators and DACs  
The C8051F000 MCU Family has two 12-bit DACs and two comparators on chip (the second comparator, CP1, is  
not bonded out on the F002, F007, F012, and F017). The MCU data and control interface to each comparator and  
DAC is via the Special Function Registers. The MCU can place any DAC or comparator in low power shutdown  
mode.  
The comparators have software programmable hysteresis. Each comparator can generate an interrupt on its rising  
edge, falling edge, or both. The comparators’ output state can also be polled in software. These interrupts are  
capable of waking up the MCU from idle mode. The comparator outputs can be programmed to appear on the Port  
I/O pins via the Crossbar.  
The DACs are voltage output mode and use the same voltage reference as the ADC. They are especially useful as  
references for the comparators or offsets for the differential inputs of the ADC.  
Figure 1.11. Comparator and DAC Diagram  
CP0  
(Port I/O)  
CROSSBAR  
CP1  
(Port I/O)  
CP0+  
+
CP0  
-
CP0-  
(not bonded out on  
F002, F007, F012, and  
F017)  
CP0  
CP1  
CP1+  
+
CP1  
SFR's  
-
CP1-  
CIP-51  
and  
(Data  
and  
Interrupt  
Handler  
Cntrl)  
REF  
DAC0  
DAC1  
DAC0  
REF  
DAC1  
19  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
2. ABSOLUTE MAXIMUM RATINGS*  
Ambient temperature under bias................................................................................................................. -55 to 125°C  
Storage Temperature .................................................................................................................................. -65 to 150°C  
Voltage on any Pin (except VDD and Port I/O) with respect to DGND................................... -0.3V to (VDD + 0.3V)  
Voltage on any Port I/O Pin or /RST with respect to DGND....................................................................-0.3V to 5.8V  
Voltage on VDD with respect to DGND...................................................................................................-0.3V to 4.2V  
Maximum Total current through VDD, AV+, DGND and AGND.....................................................................800mA  
Maximum output current sunk by any Port pin...................................................................................................100mA  
Maximum output current sunk by any other I/O pin .............................................................................................25mA  
Maximum output current sourced by any Port pin ..............................................................................................100mA  
Maximum output current sourced by any other I/O pin ........................................................................................25mA  
*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the devices at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
3. GLOBAL DC ELECTRICAL CHARACTERISTICS  
-40°C to +85°C unless otherwise specified.  
PARAMETER  
Analog Supply Voltage  
Analog Supply Current  
CONDITIONS  
MIN  
TYP  
3.0  
1
MAX  
3.6  
UNITS  
V
(Note 1)  
2.7  
Internal REF, ADC, DAC, Comparators  
all active  
2
mA  
Analog Supply Current with  
analog sub-systems inactive  
Analog-to-Digital Supply  
Delta ( | VDD – AV+ | )  
Digital Supply Voltage  
Digital Supply Current with  
CPU active  
Internal REF, ADC, DAC, Comparators  
all disabled, oscillator disabled  
5
20  
0.5  
3.6  
µA  
V
2.7  
3.0  
12.5  
0.5  
10  
V
VDD = 2.7V, Clock=25MHz  
VDD = 2.7V, Clock=1MHz  
VDD = 2.7V, Clock=32kHz  
Oscillator not running  
mA  
mA  
µA  
µA  
Digital Supply Current  
(shutdown)  
Digital Supply RAM Data  
Retention Voltage  
5
1.5  
V
Specified Operating  
Temperature Range  
SYSCLK (System Clock  
Frequency)  
-40  
0
+85  
25  
°C  
C8051F005/6/7, C8051F015/6/7  
(Note 2)  
C8051F000/1/2, C8051F010/1/2  
(Note 2)  
MHz  
MHz  
SYSCLK (System Clock  
Frequency)  
0
20  
Tsysl (SYSCLK Low Time)  
Tsysh (SYSCLK High Time)  
18  
18  
ns  
ns  
Note 1: Analog Supply AV+ must be greater than 1V for VDD monitor to operate.  
Note 2: SYSCLK must be at least 32 kHz to enable debugging.  
Rev. 1.7  
20  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
4. PINOUT AND PACKAGE DEFINITIONS  
Table 4.1. Pin Definitions  
Pin Numbers  
F000  
F005  
F010  
F015  
F001  
F006  
F011  
F016  
F002  
F007  
F012  
F017  
Name  
VDD  
Type  
Description  
Digital Voltage Supply.  
31, 23, 18,  
40,  
62  
32  
20  
DGND  
Digital Ground.  
30, 22, 17,  
41, 33,  
21  
61  
27,  
19  
AV+  
Positive Analog Voltage Supply.  
Analog Ground.  
16, 13,  
9,  
29  
8,  
17  
5,  
43  
44,  
12  
18  
17  
20  
AGND  
15  
22  
21  
28  
30  
14  
13  
15  
TCK  
TMS  
TDI  
D In  
D In  
D In  
JTAG Test Clock with internal pull-up.  
JTAG Test-Mode Select with internal pull-up.  
JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of  
TCK.  
TDO  
D Out  
A In  
JTAG Test Data Output with internal pull-up. Data is shifted out on TDO on  
the falling edge of TCK. TDO output is a tri-state driver.  
Crystal Input. This pin is the return for the internal oscillator circuit for a  
crystal or ceramic resonator. For a precision internal clock, connect a crystal  
or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external  
CMOS clock, this becomes the system clock.  
29  
18  
21  
14  
16  
10  
XTAL1  
XTAL2  
/RST  
A Out  
D I/O  
Crystal Output. This pin is the excitation driver for a crystal or ceramic  
resonator.  
19  
20  
15  
16  
11  
12  
Chip Reset. Open-drain output of internal Voltage Supply monitor. Is driven  
low when VDD is < 2.7V. An external source can force a system reset by  
driving this pin low.  
VREF  
A I/O  
Voltage Reference. When configured as an input, this pin is the voltage  
reference for the MCU. Otherwise, the internal reference drives this pin.  
Comparator 0 Non-Inverting Input.  
6
3
3
CP0+  
CP0-  
CP1+  
CP1-  
DAC0  
A In  
A In  
A In  
A In  
A Out  
4
3
2
1
45  
46  
48  
2
1
Comparator 0 Inverting Input.  
Comparator 1 Non-Inverting Input.  
Comparator 1 Inverting Input.  
2
1
Digital to Analog Converter Output 0. The DAC0 voltage output. (See  
Section 7 DAC Specification for complete description).  
Digital to Analog Converter Output 1. The DAC1 voltage output. (See  
Section 7 DAC Specification for complete description).  
Analog Mux Channel Input 0. (See ADC Specification for complete  
description).  
64  
32  
31  
4
DAC1  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
A Out  
A In  
A In  
A In  
A In  
A In  
A In  
63  
7
47  
4
Analog Mux Channel Input 1. (See ADC Specification for complete  
description).  
8
5
5
Analog Mux Channel Input 2. (See ADC Specification for complete  
description).  
9
6
6
Analog Mux Channel Input 3. (See ADC Specification for complete  
description).  
10  
11  
12  
7
7
Analog Mux Channel Input 4. (See ADC Specification for complete  
description).  
8
Analog Mux Channel Input 5. (See ADC Specification for complete  
description).  
9
21  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Pin Numbers  
F000  
F001  
F006  
F011  
F016  
F002  
Name  
Type  
Description  
F005  
F010  
F015  
F007  
F012  
F017  
AIN6  
AIN7  
A In  
A In  
Analog Mux Channel Input 6. (See ADC Specification for complete  
description).  
13  
10  
Analog Mux Channel Input 7. (See ADC Specification for complete  
description).  
14  
11  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
Port0 Bit0. (See the Port I/O Sub-System section for complete description).  
39  
42  
47  
48  
49  
50  
55  
56  
38  
37  
36  
35  
34  
32  
60  
59  
33  
27  
54  
53  
52  
51  
44  
43  
26  
25  
24  
23  
58  
57  
46  
45  
31  
34  
35  
36  
37  
38  
39  
40  
30  
29  
28  
26  
25  
24  
42  
41  
19  
22  
23  
24  
25  
26  
27  
28  
Port0 Bit1. (See the Port I/O Sub-System section for complete description).  
Port0 Bit2. (See the Port I/O Sub-System section for complete description).  
Port0 Bit3. (See the Port I/O Sub-System section for complete description).  
Port0 Bit4. (See the Port I/O Sub-System section for complete description).  
Port0 Bit5. (See the Port I/O Sub-System section for complete description).  
Port0 Bit6. (See the Port I/O Sub-System section for complete description).  
Port0 Bit7. (See the Port I/O Sub-System section for complete description).  
Port1 Bit0. (See the Port I/O Sub-System section for complete description).  
Port1 Bit1. (See the Port I/O Sub-System section for complete description).  
Port1 Bit2. (See the Port I/O Sub-System section for complete description).  
Port1 Bit3. (See the Port I/O Sub-System section for complete description).  
Port1 Bit4. (See the Port I/O Sub-System section for complete description).  
Port1 Bit5. (See the Port I/O Sub-System section for complete description).  
Port1 Bit6. (See the Port I/O Sub-System section for complete description).  
Port1 Bit7. (See the Port I/O Sub-System section for complete description).  
Port2 Bit0. (See the Port I/O Sub-System section for complete description).  
Port2 Bit1. (See the Port I/O Sub-System section for complete description).  
Port2 Bit2. (See the Port I/O Sub-System section for complete description).  
Port2 Bit3. (See the Port I/O Sub-System section for complete description).  
Port2 Bit4. (See the Port I/O Sub-System section for complete description).  
Port2 Bit5. (See the Port I/O Sub-System section for complete description).  
Port2 Bit6. (See the Port I/O Sub-System section for complete description).  
Port2 Bit7. (See the Port I/O Sub-System section for complete description).  
Port3 Bit0. (See the Port I/O Sub-System section for complete description).  
Port3 Bit1. (See the Port I/O Sub-System section for complete description).  
Port3 Bit2. (See the Port I/O Sub-System section for complete description).  
Port3 Bit3. (See the Port I/O Sub-System section for complete description).  
Port3 Bit4. (See the Port I/O Sub-System section for complete description).  
Port3 Bit5. (See the Port I/O Sub-System section for complete description).  
Port3 Bit6. (See the Port I/O Sub-System section for complete description).  
Port3 Bit7. (See the Port I/O Sub-System section for complete description).  
Rev. 1.7  
22  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 4.1. TQFP-64 Pinout Diagram  
48  
P0.3  
P0.2  
P3.6  
P3.7  
P2.6  
P2.7  
1
2
CP1-  
CP1+  
CP0-  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
3
4
CP0+  
AGND  
VREF  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AGND  
AV+  
5
6
C8051F000  
C8051F005  
C8051F010  
C8051F015  
7
P0.1  
DGND  
8
VDD  
P0.0  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P2.0  
9
10  
11  
12  
37  
36  
35  
34  
33  
13  
14  
15  
16  
23  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 4.2. TQFP-64 Package Drawing  
D
D1  
MIN NOM MAX  
(mm) (mm) (mm)  
A
-
-
-
-
1.20  
0.15  
1.05  
A1 0.05  
A2 0.95  
E1  
E
b
D
0.17 0.22 0.27  
-
-
-
-
-
12.00  
10.00  
0.50  
-
-
-
-
-
64  
D1  
e
PIN 1  
DESIGNATOR  
1
e
A2  
E
12.00  
10.00  
A
E1  
b
A1  
Rev. 1.7  
24  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 4.3. TQFP-48 Pinout Diagram  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CP0-  
CP0+  
VREF  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AGND  
P0.3  
P0.2  
P0.1  
DGND  
VDD  
P0.0  
P1.0  
P1.1  
P1.2  
DGND  
P1.3  
P1.4  
3
4
C8051F001  
C8051F006  
C8051F011  
C8051F016  
5
6
7
8
9
10  
11  
12  
25  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 4.4. TQFP-48 Package Drawing  
D
D1  
MIN NOM MAX  
(mm) (mm) (mm)  
A
-
-
-
1.20  
0.15  
A1 0.05  
E1  
E
A2 0.95 1.00 1.05  
b 0.17 0.22 0.27  
D
D1  
e
-
-
-
-
-
9.00  
7.00  
0.50  
9.00  
7.00  
-
-
-
-
-
48  
PIN 1  
IDENTIFIER  
1
e
A2  
E
A
E1  
A1  
b
Rev. 1.7  
26  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 4.5. LQFP-32 Pinout Diagram  
CP0-  
CP0+  
VREF  
AIN0  
P0.3  
23 P0.2  
P0.1  
21 DGND  
VDD  
19 P0.0  
VDD  
17 DGND  
1
2
3
4
5
6
7
8
24  
22  
C8051F002  
C8051F007  
C8051F012  
C8051F017  
AIN1  
20  
AIN2  
AIN3  
18  
AGND  
27  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 4.6. LQFP-32 Package Drawing  
D
D1  
MIN NOM MAX  
(mm) (mm) (mm)  
A
-
-
-
1.60  
0.15  
A1 0.05  
E1  
A2 1.35 1.40 1.45  
b 0.30 0.37 0.45  
E
D
D1  
e
-
-
-
-
-
9.00  
7.00  
0.80  
9.00  
7.00  
-
-
-
-
-
32  
PIN 1  
IDENTIFIER  
1
A2  
A
E
E1  
A1  
b
e
Rev. 1.7  
28  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
5. ADC (12-Bit, C8051F000/1/2/5/6/7 Only)  
The ADC subsystem for the C8051F000/1/2/5/6/7 consists of a 9-channel, configurable analog multiplexer  
(AMUX), a programmable gain amplifier (PGA), and a 100ksps, 12-bit successive-approximation-register ADC  
with integrated track-and-hold and programmable window detector (see block diagram in Figure 5.1). The AMUX,  
PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special  
Function Register’s shown in Figure 5.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only  
when the ADCEN bit in the ADC Control register (ADC0CN, Figure 5.7) is set to 1. The ADC subsystem is in low  
power shutdown when this bit is 0. The Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be  
set to 1 in order to supply bias to the ADC.  
Figure 5.1. 12-Bit ADC Functional Block Diagram  
ADC0GTH  
ADC0GTL  
ADC0LTH  
ADC0LTL  
24  
12  
COMB  
LOGIC  
AV+  
+
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
ADWINT  
ADCEN  
AV+  
-
+
-
9-to-1  
AMUX  
(SE or  
DIFF)  
12-Bit  
SAR  
ADC  
+
+
12  
X
-
-
+
AGND  
-
TEMP  
SENSOR  
TMR3 OV  
T2 OV  
CNVSTR  
ADBUSY(w)  
AGND  
AMX0CF  
AMX0SL  
ADC0CF  
ADC0CN  
5.1.  
Analog Multiplexer and PGA  
Eight of the AMUX channels are available for external measurements while the ninth channel is internally  
connected to an on-board temperature sensor (temperature transfer function is shown in Figure 5.3). Note that the  
PGA gain is applied to the temperature sensor reading. AMUX input pairs can be programmed to operate in either  
the differential or single-ended mode. This allows the user to select the best measurement technique for each input  
channel, and even accommodates mode changes “on-the-fly”. The AMUX defaults to all single-ended inputs upon  
reset. There are two registers associated with the AMUX: the Channel Selection register AMX0SL (Figure 5.5),  
and the Configuration register AMX0CF (Figure 5.4). The table in Figure 5.5 shows AMUX functionality by  
channel for each possible configuration. The PGA amplifies the AMUX output signal by an amount determined by  
the AMPGN2-0 bits in the ADC Configuration register, ADC0CF (Figure 5.6). The PGA can be software-  
programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to unity gain on reset.  
29  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
5.2.  
ADC Modes of Operation  
The ADC uses VREF to determine its full-scale voltage, thus the reference must be properly configured before  
performing a conversion (see Section 9). The ADC has a maximum conversion speed of 100ksps. The ADC  
conversion clock is derived from the system clock. Conversion clock speed can be reduced by a factor of 2, 4, 8 or  
16 via the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate  
different system clock speeds.  
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC Start of  
Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:  
1. Writing a 1 to the ADBUSY bit of ADC0CN;  
2. A Timer 3 overflow (i.e. timed continuous conversions);  
3. A rising edge detected on the external ADC convert start signal, CNVSTR;  
4. A Timer 2 overflow (i.e. timed continuous conversions).  
Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed “on-demand”.  
During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of  
ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag. Note: When conversions are  
performed “on-demand”, the ADCINT flag, not ADBUSY, should be polled to determine when the  
conversion has completed. Converted data is available in the ADC data word MSB and LSB registers, ADC0H,  
ADC0L. Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in  
Figure 5.9) depending on the programmed state of the ADLJST bit in the ADC0CN register.  
The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is  
continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of four different  
low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):  
1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;  
2. Tracking starts with an overflow of Timer 3 and lasts for 3 SAR clocks;  
3. Tracking is active only when the CNVSTR input is low;  
4. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.  
Modes 1, 2 and 4 (above) are useful when the start of conversion is triggered with a software command or when the  
ADC is operated continuously. Mode 3 is used when the start of conversion is triggered by external hardware. In  
this case, the track-and-hold is in its low power mode at times when the CNVSTR input is high. Tracking can also  
be disabled (shutdown) when the entire chip is in low power standby or sleep modes.  
Figure 5.2. 12-Bit ADC Track and Conversion Example Timing  
A. ADC Timing for External Trigger Source  
CNVSTR  
(ADSTM[1:0]=10)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
ADCTM=1  
ADCTM=0  
Low Power or  
Convert  
Track  
Convert  
Convert  
Low Power Mode  
Track  
Track Or Convert  
B. ADC Timing for Internal Trigger Sources  
Timer2, Timer3 Overflow;  
Write 1 to ADBUSY  
(ADSTM[1:0]=00, 01, 11)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
SAR Clocks  
Low Power or  
Convert  
ADCTM=1  
Track  
Convert  
Low Power Mode  
Track  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
ADCTM=0  
Track or Convert  
Convert  
Rev. 1.7  
30  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.3. Temperature Sensor Transfer Function  
(Volts)  
1.000  
0.900  
0.800  
0.700  
0.600  
0.500  
VTEMP = 0.00286(TEMPC) + 0.776  
for PGA Gain = 1  
(Celsius)  
-50  
0
50  
100  
Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
AIN67IC AIN45IC AIN23IC AIN01IC 00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xBA  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AIN67IC: AIN6, AIN7 Input Pair Configuration Bit  
0: AIN6 and AIN7 are independent singled-ended inputs  
1: AIN6, AIN7 are (respectively) +, - differential input pair  
AIN45IC: AIN4, AIN5 Input Pair Configuration Bit  
0: AIN4 and AIN5 are independent singled-ended inputs  
1: AIN4, AIN5 are (respectively) +, - differential input pair  
AIN23IC: AIN2, AIN3 Input Pair Configuration Bit  
0: AIN2 and AIN3 are independent singled-ended inputs  
1: AIN2, AIN3 are (respectively) +, - differential input pair  
AIN01IC: AIN0, AIN1 Input Pair Configuration Bit  
0: AIN0 and AIN1 are independent singled-ended inputs  
1: AIN0, AIN1 are (respectively) +, - differential input pair  
NOTE: The ADC Data Word is in 2’s complement format for channels configured as differential.  
31  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AMXAD3 AMXAD2 AMXAD1 AMXAD0  
-
-
-
-
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xBB  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bits3-0: AMXAD3-0: AMUX Address Bits  
0000-1111: ADC Inputs selected per chart below  
AMXAD3-0  
0000  
AIN0  
0001  
AIN1  
0010  
AIN2  
0011  
AIN3  
0100  
0101  
AIN5  
0110  
0111  
AIN7  
1xxx  
TEMP  
A
M
X
0
0000  
AIN4  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
AIN2  
AIN3  
AIN4  
AIN4  
AIN4  
AIN5  
AIN5  
AIN5  
AIN7  
AIN7  
AIN7  
AIN7  
AIN7  
AIN7  
AIN7  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
SENSOR  
C
F
+(AIN2)  
-(AIN3)  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
AIN1  
AIN1  
AIN1  
AIN1  
AIN1  
AIN1  
AIN1  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
B
I
SENSOR  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
TEMP  
AIN0  
AIN2  
AIN2  
AIN3  
AIN3  
T
S
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
3
-
+(AIN2)  
-(AIN3)  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
SENSOR  
0
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
TEMP  
AIN0  
AIN2  
AIN2  
AIN3  
AIN3  
AIN4  
AIN4  
AIN4  
AIN4  
AIN5  
AIN5  
AIN5  
AIN5  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN2)  
-(AIN3)  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
TEMP  
AIN0  
AIN2  
AIN2  
AIN3  
AIN3  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
SENSOR  
+(AIN0)  
-(AIN1)  
+(AIN2)  
-(AIN3)  
+(AIN4)  
-(AIN5)  
+(AIN6)  
-(AIN7)  
TEMP  
1111  
SENSOR  
Rev. 1.7  
32  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)  
R/W  
ADCSC2  
Bit7  
R/W  
ADCSC1  
Bit6  
R/W  
ADCSC0  
Bit5  
R/W  
-
Bit4  
R/W  
-
Bit3  
R/W  
AMPGN2  
Bit2  
R/W  
AMPGN1  
Bit1  
R/W  
AMPGN0  
Bit0  
Reset Value  
01100000  
SFR Address:  
0xBC  
Bits7-5: ADCSC2-0: ADC SAR Conversion Clock Period Bits  
000: SAR Conversion Clock = 1 System Clock  
001: SAR Conversion Clock = 2 System Clocks  
010: SAR Conversion Clock = 4 System Clocks  
011: SAR Conversion Clock = 8 System Clocks  
1xx: SAR Conversion Clock = 16 Systems Clocks  
(Note: the SAR Conversion Clock should be 2MHz)  
Bits4-3: UNUSED. Read = 00b; Write = don’t care  
Bits2-0: AMPGN2-0: ADC Internal Amplifier Gain  
000: Gain = 1  
001: Gain = 2  
010: Gain = 4  
011: Gain = 8  
10x: Gain = 16  
11x: Gain = 0.5  
33  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)  
R/W  
ADCEN  
Bit7  
R/W  
ADCTM  
Bit6  
R/W  
ADCINT  
Bit5  
R/W  
ADBUSY  
Bit4  
R/W  
ADSTM1  
Bit3  
R/W  
ADSTM0  
Bit2  
R/W  
ADWINT  
Bit1  
R/W  
Reset Value  
ADLJST  
00000000  
SFR Address:  
Bit0  
(bit addressable)  
0xE8  
Bit7:  
Bit6:  
ADCEN: ADC Enable Bit  
0: ADC Disabled. ADC is in low power shutdown.  
1: ADC Enabled. ADC is active and ready for data conversions.  
ADCTM: ADC Track Mode Bit  
0: When the ADC is enabled, tracking is always done unless a conversion is in process  
1: Tracking Defined by ADSTM1-0 bits  
ADSTM1-0:  
00: Tracking starts with the write of 1 to ADBUSY and lasts for 3 SAR clocks  
01: Tracking started by the overflow of Timer 3 and last for 3 SAR clocks  
10: ADC tracks only when CNVSTR input is logic low  
11: Tracking started by the overflow of Timer 2 and last for 3 SAR clocks  
ADCINT: ADC Conversion Complete Interrupt Flag  
(Must be cleared by software)  
Bit5:  
Bit4:  
0: ADC has not completed a data conversion since the last time this flag was cleared  
1: ADC has completed a data conversion  
ADBUSY: ADC Busy Bit  
Read  
0: ADC Conversion complete or no valid data has been converted since a reset. The falling  
edge of ADBUSY generates an interrupt when enabled.  
1: ADC Busy converting data  
Write  
0: No effect  
1: Starts ADC Conversion if ADSTM1-0 = 00b  
Bits3-2: ADSTM1-0: ADC Start of Conversion Mode Bits  
00: ADC conversion started upon every write of 1 to ADBUSY  
01: ADC conversions taken on every overflow of Timer 3  
10: ADC conversion started upon every rising edge of CNVSTR  
11: ADC conversions taken on every overflow of Timer 2  
Bit1:  
ADWINT: ADC Window Compare Interrupt Flag  
(Must be cleared by software)  
0: ADC Window Comparison Data match has not occurred  
1: ADC Window Comparison Data match occurred  
ADLJST: ADC Left Justify Data Bit  
Bit0:  
0: Data in ADC0H:ADC0L Registers is right justified  
1: Data in ADC0H:ADC0L Registers is left justified  
Rev. 1.7  
34  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.8. ADC0H: ADC Data Word MSB Register (C8051F00x)  
R/W  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xBF  
Bits7-0: ADC Data Word Bits  
For ADLJST = 1: Upper 8-bits of the 12-bit ADC Data Word.  
For ADLJST = 0: Bits7-4 are the sign extension of Bit3. Bits 3-0 are the upper 4-bits of the  
12-bit ADC Data Word.  
Figure 5.9. ADC0L: ADC Data Word LSB Register (C8051F00x)  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xBE  
Bits7-0: ADC Data Word Bits  
For ADLJST = 1: Bits7-4 are the lower 4-bits of the 12-bit ADC Data Word. Bits3-0 will  
always read 0.  
For ADLJST = 0: Bits7-0 are the lower 8-bits of the 12-bit ADC Data Word.  
NOTE: Resulting 12-bit ADC Data Word appears in the ADC Data Word Registers as follows:  
ADC0H[3:0]:ADC0L[7:0], if ADLJST = 0  
(ADC0H[7:4] will be sign extension of ADC0H.3 if a differential reading, otherwise = 0000b)  
ADC0H[7:0]:ADC0L[7:4], if ADLJST = 1  
(ADC0L[3:0] = 0000b)  
EXAMPLE: ADC Data Word Conversion Map, AIN0 Input in Single-Ended Mode  
(AMX0CF=0x00, AMX0SL=0x00)  
ADC0H:ADC0L  
ADC0H:ADC0L  
AIN0 – AGND  
(ADLJST = 0)  
(ADLJST = 1)  
(Volts)  
REF x (4095/4096)  
REF x ½  
REF x (2047/4096)  
0
0x0FFF  
0x0800  
0x07FF  
0x0000  
0xFFF0  
0x8000  
0x7FF0  
0x0000  
EXAMPLE: ADC Data Word Conversion Map, AIN0-AIN1 Differential Input Pair  
(AMX0CF=0x01, AMX0SL=0x00)  
ADC0H:ADC0L  
ADC0H:ADC0L  
AIN0 – AIN1 (Volts)  
(ADLJST = 0)  
(ADLJST = 1)  
REF x (2047/2048)  
0x07FF  
0x0000  
0xFFFF  
0xF800  
0x7FF0  
0x0000  
0xFFF0  
0x8000  
0
-REF x (1/2048)  
-REF  
35  
Rev. 1.7  
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
5.3.  
ADC Programmable Window Detector  
The ADC programmable window detector is very useful in many applications. It continuously compares the ADC  
output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is  
especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster  
system response times. The window detector interrupt flag (ADWINT in ADC0CN) can also be used in polled  
mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than  
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 5.14 and Figure 5.15 show example  
comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside  
or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.  
Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address:  
Bit7  
0xC5  
Bits7-0:  
The high byte of the ADC Greater-Than Data Word.  
Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x)  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address:  
0xC4  
Bits7-0:  
The low byte of the ADC Greater-Than Data Word.  
Definition:  
ADC Greater-Than Data Word = ADC0GTH:ADC0GTL  
Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xC7  
Bits7-0:  
The high byte of the ADC Less-Than Data Word.  
Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xC6  
Bits7-0:  
These bits are the low byte of the ADC Less-Than Data Word.  
Definition:  
ADC Less-Than Data Word = ADC0LTH:ADC0LTL  
Rev. 1.7  
36  
 
 
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.14. 12-Bit ADC Window Interrupt Examples, Right Justified Data  
Input Voltage  
(AD0 - AGND)  
Input Voltage  
(AD0 - AGND)  
ADC Data  
Word  
0x0FFF  
ADC Data  
Word  
0x0FFF  
REF x (4095/4096)  
REF x (4095/4096)  
ADWINT  
ADWINT=1  
not affected  
0x0201  
0x0201  
REF x (512/4096)  
REF x (256/4096)  
0x0200  
0x01FF  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (512/4096)  
REF x (256/4096)  
0x0200  
0x01FF  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0101  
0x0100  
0x0101  
0x0100  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x00FF  
0x00FF  
ADWINT=1  
ADWINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0200,  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0x0100.  
ADC0GTH:ADC0GTL = 0x0200.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x0200 and > 0x0100.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x0100 or > 0x0200.  
ADC Data  
Input Voltage  
ADC Data  
Word  
(AD0 - AD1)  
Word  
REF x (2047/2048)  
0x07FF  
REF x (2047/2048)  
0x07FF  
ADWINT  
ADWINT=1  
not affected  
0x0101  
0x0101  
REF x (256/2048)  
REF x (-1/2048)  
0x0100  
0x00FF  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (256/2048)  
REF x (-1/2048)  
0x0100  
0x00FF  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0000  
0xFFFF  
0x0000  
0xFFFF  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
ADWINT=1  
0xFFFE  
0xFFFE  
ADWINT  
not affected  
0xF800  
0xF800  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0100,  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,  
ADC0LTH:ADC0LTH = 0xFFFF,  
ADC0GTH:ADC0GTL = 0xFFFF.  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0xFFFF or > 0x0100. (Two’s Complement  
math, 0xFFFF = -1.)  
Data Word is  
<
0x0100 and  
>
0xFFFF.  
(Two’s  
Complement math, 0xFFFF = -1.)  
37  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data  
Input Voltage  
Input Voltage  
(AD0 - AGND)  
ADC Data  
Word  
0xFFF0  
ADC Data  
Word  
0xFFF0  
(AD0 - AGND)  
REF x (4095/4096)  
REF x (4095/4096)  
ADWINT  
ADWINT=1  
not affected  
0x2010  
0x2010  
REF x (512/4096)  
REF x (256/4096)  
0x2000  
0x1FF0  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (512/4096)  
REF x (256/4096)  
0x2000  
0x1FF0  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x1010  
0x1000  
0x1010  
0x1000  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x0FF0  
0x0FF0  
ADWINT=1  
ADWINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x2000,  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x1000,  
ADC0GTH:ADC0GTL = 0x1000.  
ADC0GTH:ADC0GTL = 0x2000.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x2000 and > 0x1000.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x1000 or > 0x2000.  
Input Voltage  
ADC Data  
Input Voltage  
ADC Data  
(AD0 - AD1)  
Word  
(AD0 - AD1)  
Word  
REF x (2047/2048)  
0x7FF0  
REF x (2047/2048)  
0x7FF0  
ADWINT  
ADWINT=1  
not affected  
0x1010  
0x1010  
REF x (256/2048)  
REF x (-1/2048)  
0x1000  
0x0FF0  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (256/2048)  
REF x (-1/2048)  
0x1000  
0x0FF0  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0000  
0xFFF0  
0x0000  
0xFFF0  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
ADWINT=1  
0xFFE0  
0xFFE0  
ADWINT  
not affected  
0x8000  
0x8000  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x1000,  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,  
ADC0LTH:ADC0LTH = 0xFFF0,  
ADC0GTH:ADC0GTL = 0xFFF0.  
ADC0GTH:ADC0GTL = 0x1000.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0xFFF0 or > 0x1000. (Two’s Complement  
math.)  
Data Word is  
<
0x1000 and  
>
0xFFF0.  
(Two’s  
Complement math.)  
Rev. 1.7  
38  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 5.1. 12-Bit ADC Electrical Characteristics  
VDD = 3.0V, AV+ = 3.0V, VREF = 2.40V (REFBE=0), PGA Gain = 1, -40°C to +85°C unless otherwise specified.  
PARAMETER  
DC ACCURACY  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
± 1  
± 1  
Guaranteed Monotonic  
Differential mode  
LSB  
LSB  
-3 ± 1  
-7 ± 3  
± 0.25  
Full Scale Error  
Offset Temperature  
Coefficient  
LSB  
ppm/°C  
DYNAMIC PERFORMANCE (10kHz sine-wave input, 0 to –1dB of full scale, 100ksps)  
Signal-to-Noise Plus  
Distortion  
66  
69  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic  
Range  
Up to the 5th harmonic  
-75  
80  
dB  
dB  
CONVERSION RATE  
Conversion Time in SAR  
Clocks  
16  
clocks  
SAR Clock Frequency  
C8051F000, ‘F001, ‘F002  
C8051F005, ‘F006, ‘F007  
2.0  
2.5  
MHz  
MHz  
µs  
Track/Hold Acquisition  
Time  
1.5  
Throughput Rate  
100  
ksps  
V
ANALOG INPUTS  
Voltage Conversion Range  
Single-ended Mode (AINn – AGND)  
Differential Mode |(AINn+) – (AINm-)|  
Any AINn pin  
0
VREF  
- 1LSB  
AV+  
Input Voltage  
AGND  
V
pF  
Input Capacitance  
TEMPERATURE SENSOR  
Linearity  
10  
± 0.20  
± 3  
°C  
°C  
Absolute Accuracy  
Gain  
Gain Error (±1σ)  
Offset  
PGA Gain = 1  
PGA Gain = 1  
PGA Gain = 1, Temp = 0°C  
PGA Gain = 1, Temp = 0°C  
2.86  
mV/°C  
µV/°C  
mV  
± 33.5  
776  
mV  
Offset Error (±1σ)  
POWER SPECIFICATIONS  
± 8.51  
Power Supply Current (AV+ Operating Mode, 100ksps  
supplied to ADC)  
450  
900  
µA  
Power Supply Rejection  
mV/V  
± 0.3  
39  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
6. ADC (10-Bit, C8051F010/1/2/5/6/7 Only)  
The ADC subsystem for the C8051F010/1/2/5/6/7 consists of a 9-channel, configurable analog multiplexer  
(AMUX), a programmable gain amplifier (PGA), and a 100ksps, 10-bit successive-approximation-register ADC  
with integrated track-and-hold and programmable window detector (see block diagram in Figure 6.1). The AMUX,  
PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special  
Function Register’s shown in Figure 6.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only  
when the ADCEN bit in the ADC Control register (ADC0CN, Figure 6.7) is set to 1. The ADC subsystem is in low  
power shutdown when this bit is 0. The Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be  
set to 1 in order to supply bias to the ADC.  
Figure 6.1. 10-Bit ADC Functional Block Diagram  
ADC0GTH  
ADC0GTL  
ADC0LTH  
ADC0LTL  
20  
10  
COMB  
LOGIC  
AV+  
+
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
ADWINT  
ADCEN  
AV+  
-
+
-
9-to-1  
AMUX  
(SE or  
DIFF)  
10-Bit  
SAR  
ADC  
+
+
10  
X
-
-
+
AGND  
-
TEMP  
SENSOR  
TMR3 OV  
T2 OV  
CNVSTR  
ADBUSY(w)  
AGND  
AMX0CF  
AMX0SL  
ADC0CF  
ADC0CN  
6.1.  
Analog Multiplexer and PGA  
Eight of the AMUX channels are available for external measurements while the ninth channel is internally  
connected to an on-board temperature sensor (temperature transfer function is shown in Figure 6.3). Note that the  
PGA gain is applied to the temperature sensor reading. AMUX input pairs can be programmed to operate in either  
the differential or single-ended mode. This allows the user to select the best measurement technique for each input  
channel, and even accommodates mode changes “on-the-fly”. The AMUX defaults to all single-ended inputs upon  
reset. There are two registers associated with the AMUX: the Channel Selection register AMX0SL (Figure 6.5),  
and the Configuration register AMX0CF (Figure 6.4). The table in Figure 6.5 shows AMUX functionality by  
channel for each possible configuration. The PGA amplifies the AMUX output signal by an amount determined by  
the AMPGN2-0 bits in the ADC Configuration register, ADC0CF (Figure 6.6). The PGA can be software-  
programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to unity gain on reset.  
Rev. 1.7  
40  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
6.2.  
ADC Modes of Operation  
The ADC uses VREF to determine its full-scale voltage, thus the reference must be properly configured before  
performing a conversion (see Section 9). The ADC has a maximum conversion speed of 100ksps. The ADC  
conversion clock is derived from the system clock. Conversion clock speed can be reduced by a factor of 2, 4, 8 or  
16 via the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate  
different system clock speeds.  
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC Start of  
Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:  
1. Writing a 1 to the ADBUSY bit of ADC0CN;  
2. A Timer 3 overflow (i.e. timed continuous conversions);  
3. A rising edge detected on the external ADC convert start signal, CNVSTR;  
4. A Timer 2 overflow (i.e. timed continuous conversions).  
Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed “on-demand”.  
During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of  
ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag. Note: When conversions are  
performed “on-demand”, the ADCINT flag, not ADBUSY, should be polled to determine when the  
conversion has completed. Converted data is available in the ADC data word MSB and LSB registers, ADC0H,  
ADC0L. Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in  
Figure 6.9) depending on the programmed state of the ADLJST bit in the ADC0CN register.  
The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is  
continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of four different  
low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):  
1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;  
2. Tracking starts with an overflow of Timer 3 and lasts for 3 SAR clocks;  
3. Tracking is active only when the CNVSTR input is low;  
4. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.  
Modes 1, 2 and 4 (above) are useful when the start of conversion is triggered with a software command or when the  
ADC is operated continuously. Mode 3 is used when the start of conversion is triggered by external hardware. In  
this case, the track-and-hold is in its low power mode at times when the CNVSTR input is high. Tracking can also  
be disabled (shutdown) when the entire chip is in low power standby or sleep modes.  
Figure 6.2. 10-Bit ADC Track and Conversion Example Timing  
A. ADC Timing for External Trigger Source  
CNVSTR  
(ADSTM[1:0]=10)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
ADCTM=1  
ADCTM=0  
Low Power or  
Convert  
Track  
Convert  
Convert  
Low Power Mode  
Track  
Track Or Convert  
B. ADC Timing for Internal Trigger Sources  
Timer2, Timer3 Overflow;  
Write 1 to ADBUSY  
(ADSTM[1:0]=00, 01, 11)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
SAR Clocks  
Low Power or  
Convert  
ADCTM=1  
Track  
Convert  
Low Power Mode  
Track  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SAR Clocks  
ADCTM=0  
Track or Convert  
Convert  
41  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.3. Temperature Sensor Transfer Function  
(Volts)  
1.000  
0.900  
0.800  
VTEMP = 0.00286(TEMPC) + 0.776  
for PGA Gain = 1  
0.700  
0.600  
0.500  
(Celsius)  
-50  
0
50  
100  
Figure 6.4. AMX0CF: AMUX Configuration Register (C8051F01x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
AIN67IC AIN45IC AIN23IC AIN01IC 00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xBA  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AIN67IC: AIN6, AIN7 Input Pair Configuration Bit  
0: AIN6 and AIN7 are independent singled-ended inputs  
1: AIN6, AIN7 are (respectively) +, - differential input pair  
AIN45IC: AIN4, AIN5 Input Pair Configuration Bit  
0: AIN4 and AIN5 are independent singled-ended inputs  
1: AIN4, AIN5 are (respectively) +, - differential input pair  
AIN23IC: AIN2, AIN3 Input Pair Configuration Bit  
0: AIN2 and AIN3 are independent singled-ended inputs  
1: AIN2, AIN3 are (respectively) +, - differential input pair  
AIN01IC: AIN0, AIN1 Input Pair Configuration Bit  
0: AIN0 and AIN1 are independent singled-ended inputs  
1: AIN0, AIN1 are (respectively) +, - differential input pair  
NOTE: The ADC Data Word is in 2’s complement format for channels configured as differential.  
Rev. 1.7  
42  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.5. AMX0SL: AMUX Channel Select Register (C8051F01x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AMXAD3 AMXAD2 AMXAD1 AMXAD0  
-
-
-
-
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xBB  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bits3-0: AMXAD3-0: AMUX Address Bits  
0000-1111: ADC Inputs selected per chart below  
AMXAD3-0  
0000  
AIN0  
0001  
AIN1  
0010  
AIN2  
0011  
AIN3  
0100  
0101  
AIN5  
0110  
0111  
AIN7  
1xxx  
A
M
X
0
TEMP  
AIN4  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
AIN6  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
AIN2  
AIN3  
AIN4  
AIN4  
AIN4  
AIN5  
AIN5  
AIN5  
AIN7  
AIN7  
AIN7  
AIN7  
AIN7  
AIN7  
AIN7  
SENSOR  
C
F
+(AIN2)  
-(AIN3)  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
AIN1  
AIN1  
AIN1  
AIN1  
AIN1  
AIN1  
AIN1  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
B
I
SENSOR  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
TEMP  
AIN0  
AIN2  
AIN2  
AIN3  
AIN3  
T
S
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
3
-
+(AIN2)  
-(AIN3)  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
SENSOR  
0
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
+(AIN6)  
-(AIN7)  
TEMP  
AIN0  
AIN2  
AIN2  
AIN3  
AIN3  
AIN4  
AIN4  
AIN4  
AIN4  
AIN5  
AIN5  
AIN5  
AIN5  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN2)  
-(AIN3)  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
+(AIN4)  
-(AIN5)  
TEMP  
AIN0  
AIN2  
AIN2  
AIN3  
AIN3  
SENSOR  
+(AIN0)  
-(AIN1)  
TEMP  
SENSOR  
+(AIN2)  
-(AIN3)  
TEMP  
AIN0  
SENSOR  
+(AIN0)  
-(AIN1)  
+(AIN2)  
-(AIN3)  
+(AIN4)  
-(AIN5)  
+(AIN6)  
-(AIN7)  
TEMP  
SENSOR  
43  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.6. ADC0CF: ADC Configuration Register (C8051F01x)  
R/W  
ADCSC2  
Bit7  
R/W  
ADCSC1  
Bit6  
R/W  
ADCSC0  
Bit5  
R/W  
-
Bit4  
R/W  
-
Bit3  
R/W  
AMPGN2  
Bit2  
R/W  
AMPGN1  
Bit1  
R/W  
AMPGN0  
Bit0  
Reset Value  
01100000  
SFR Address:  
0xBC  
Bits7-5: ADCSC2-0: ADC SAR Conversion Clock Period Bits  
000: SAR Conversion Clock = 1 System Clock  
001: SAR Conversion Clock = 2 System Clocks  
010: SAR Conversion Clock = 4 System Clocks  
011: SAR Conversion Clock = 8 System Clocks  
1xx: SAR Conversion Clock = 16 Systems Clocks  
(Note: Conversion clock should be 2MHz.)  
Bits4-3: UNUSED. Read = 00b; Write = don’t care  
Bits2-0: AMPGN2-0: ADC Internal Amplifier Gain  
000: Gain = 1  
001: Gain = 2  
010: Gain = 4  
011: Gain = 8  
10x: Gain = 16  
11x: Gain = 0.5  
Rev. 1.7  
44  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.7. ADC0CN: ADC Control Register (C8051F01x)  
R/W  
ADCEN  
Bit7  
R/W  
ADCTM  
Bit6  
R/W  
ADCINT  
Bit5  
R/W  
ADBUSY  
Bit4  
R/W  
ADSTM1  
Bit3  
R/W  
ADSTM0  
Bit2  
R/W  
ADWINT  
Bit1  
R/W  
Reset Value  
ADLJST  
00000000  
SFR Address:  
Bit0  
(bit addressable)  
0xE8  
Bit7:  
Bit6:  
ADCEN: ADC Enable Bit  
0: ADC Disabled. ADC is in low power shutdown.  
1: ADC Enabled. ADC is active and ready for data conversions.  
ADCTM: ADC Track Mode Bit  
0: When the ADC is enabled, tracking is always done unless a conversion is in process  
1: Tracking Defined by ADSTM1-0 bits  
ADSTM1-0:  
00: Tracking starts with the write of 1 to ADBUSY and lasts for 3 SAR clocks  
01: Tracking started by the overflow of Timer 3 and last for 3 SAR clocks  
10: ADC tracks only when CNVSTR input is logic low  
11: Tracking started by the overflow of Timer 2 and last for 3 SAR clocks  
ADCINT: ADC Conversion Complete Interrupt Flag  
(Must be cleared by software)  
Bit5:  
Bit4:  
0: ADC has not completed a data conversion since the last time this flag was cleared  
1: ADC has completed a data conversion  
ADBUSY: ADC Busy Bit  
Read  
0: ADC Conversion complete or no valid data has been converted since a reset. The falling  
edge of ADBUSY generates an interrupt when enabled.  
1: ADC Busy converting data  
Write  
0: No effect  
1: Starts ADC Conversion if ADSTM1-0 = 00b  
Bits3-2: ADSTM1-0: ADC Start of Conversion Mode Bits  
00: ADC conversion started upon every write of 1 to ADBUSY  
01: ADC conversions taken on every overflow of Timer 3  
10: ADC conversion started upon every rising edge of CNVSTR  
11: ADC conversions taken on every overflow of Timer 2  
Bit1:  
ADWINT: ADC Window Compare Interrupt Flag  
(Must be cleared by software)  
0: ADC Window Comparison Data match has not occurred  
1: ADC Window Comparison Data match occurred  
ADLJST: ADC Left Justify Data Bit  
Bit0:  
0: Data in ADC0H:ADC0L Registers is right justified  
1: Data in ADC0H:ADC0L Registers is left justified  
45  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)  
R/W  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xBF  
Bits7-0: ADC Data Word Bits  
For ADLJST = 1: Upper 8-bits of the 10-bit ADC Data Word.  
For ADLJST = 0: Bits7-2 are the sign extension of Bit1. Bits 1-0 are the upper 2-bits of the  
10-bit ADC Data Word.  
Figure 6.9. ADC0L: ADC Data Word LSB Register (C8051F01x)  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xBE  
Bits7-0: ADC Data Word Bits  
For ADLJST = 1: Bits7-6 are the lower 2-bits of the 10-bit ADC Data Word. Bits5-0 will  
always read 0.  
For ADLJST = 0: Bits7-0 are the lower 8-bits of the 10-bit ADC Data Word.  
NOTE: Resulting 10-bit ADC Data Word appears in the ADC Data Word Registers as follows:  
ADC0H[1:0]:ADC0L[7:0], if ADLJST = 0  
(ADC0H[7:2] will be sign extension of ADC0H.1 if a differential reading, otherwise = 000000b)  
ADC0H[7:0]:ADC0L[7:6], if ADLJST = 1  
(ADC0L[5:0] = 000000b)  
EXAMPLE: ADC Data Word Conversion Map, AIN0 Input in Single-Ended Mode  
(AMX0CF=0x00, AMX0SL=0x00)  
ADC0H:ADC0L  
ADC0H:ADC0L  
AIN0 – AGND  
(ADLJST = 0)  
(ADLJST = 1)  
(Volts)  
REF x (1023/1024)  
REF x ½  
REF x (511/1024)  
0
0x03FF  
0x0200  
0x01FF  
0x0000  
0xFFC0  
0x8000  
0x7FC0  
0x0000  
EXAMPLE: ADC Data Word Conversion Map, AIN0-AIN1 Differential Input Pair  
(AMX0CF=0x01, AMX0SL=0x00)  
ADC0H:ADC0L  
ADC0H:ADC0L  
AIN0 – AIN1 (Volts)  
(ADLJST = 0)  
(ADLJST = 1)  
REF x (511/512)  
0x01FF  
0x0000  
0xFFFF  
0xFE00  
0x7FC0  
0x0000  
0xFFC0  
0x8000  
0
-REF x (1/512)  
-REF  
Rev. 1.7  
46  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
6.3.  
ADC Programmable Window Detector  
The ADC programmable window detector is very useful in many applications. It continuously compares the ADC  
output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is  
especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster  
system response times. The window detector interrupt flag (ADWINT in ADC0CN) can also be used in polled  
mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than  
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 6.14 and Figure 6.15 show example  
comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside  
or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.  
Figure 6.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F01x)  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address:  
Bit7  
0xC5  
Bits7-0:  
The high byte of the ADC Greater-Than Data Word.  
Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x)  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address:  
0xC4  
Bits7-0:  
The low byte of the ADC Greater-Than Data Word.  
Definition:  
ADC Greater-Than Data Word = ADC0GTH:ADC0GTL  
Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xC7  
Bits7-0:  
The high byte of the ADC Less-Than Data Word.  
Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xC6  
Bits7-0:  
These bits are the low byte of the ADC Less-Than Data Word.  
Definition:  
ADC Less-Than Data Word = ADC0LTH:ADC0LTL  
47  
Rev. 1.7  
 
 
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data  
Input Voltage  
(AD0 - AGND)  
Input Voltage  
(AD0 - AGND)  
ADC Data  
Word  
0x03FF  
ADC Data  
Word  
0x03FF  
REF x (1023/1024)  
REF x (1023/1024)  
ADWINT  
ADWINT=1  
not affected  
0x0201  
0x0201  
REF x (512/1024)  
REF x (256/1024)  
0x0200  
0x01FF  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (512/1024)  
REF x (256/1024)  
0x0200  
0x01FF  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0101  
0x0100  
0x0101  
0x0100  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
ADWINT=1  
0x00FF  
0x00FF  
ADWINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0200,  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0x0100.  
ADC0GTH:ADC0GTL = 0x0200.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x0200 and > 0x0100.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x0100 or > 0x0200.  
Input Voltage  
ADC Data  
Input Voltage  
ADC Data  
(AD0 - AD1)  
Word  
(AD0 - AD1)  
Word  
REF x (511/512)  
0x01FF  
REF x (511/512)  
0x01FF  
ADWINT  
ADWINT=1  
not affected  
0x0101  
0x0101  
REF x (256/512)  
(-1/512)  
0x0100  
0x00FF  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (256/512)  
REF x (-1/512)  
0x0100  
0x00FF  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0000  
0xFFFF  
0x0000  
0xFFFF  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0xFFFE  
0xFFFE  
ADWINT=1  
ADWINT  
not affected  
0xFE00  
0xFE00  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0100,  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,  
ADC0LTH:ADC0LTH = 0xFFFF,  
ADC0GTH:ADC0GTL = 0xFFFF.  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0xFFFF or > 0x0100. (Two’s Complement  
math, 0xFFFF = -1.)  
Data Word is  
<
0x0100 and  
>
0xFFFF.  
(Two’s  
Complement math, 0xFFFF = -1.)  
Rev. 1.7  
48  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data  
Input Voltage  
(AD0 - AGND)  
Input Voltage  
(AD0 - AGND)  
ADC Data  
Word  
0xFFC0  
ADC Data  
Word  
0xFFC0  
REF x (1023/1024)  
REF x (1023/1024)  
ADWINT  
ADWINT=1  
not affected  
0x8040  
0x8040  
REF x (512/1024)  
REF x (256/1024)  
0x8000  
0x7FC0  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (512/1024)  
REF x (256/1024)  
0x8000  
0x7FC0  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x4040  
0x4000  
0x4040  
0x4000  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x3FC0  
0x3FC0  
ADWINT=1  
ADWINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x8000,  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x4000,  
ADC0GTH:ADC0GTL = 0x4000.  
ADC0GTH:ADC0GTL = 0x8000.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x8000 and > 0x4000.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0x4000 or > 0x8000.  
Input Voltage  
ADC Data  
Input Voltage  
ADC Data  
(AD0 - AD1)  
Word  
(AD0 - AD1)  
Word  
REF x (511/512)  
0x7FC0  
REF x (511/512)  
0x7FC0  
ADWINT  
ADWINT=1  
not affected  
0x2040  
0x2040  
REF x (128/512)  
REF x (-1/512)  
0x2000  
0x1FC0  
ADC0LTH:ADC0LTL  
ADWINT=1  
REF x (128/512)  
REF x (-1/512)  
0x2000  
0x1FC0  
ADC0GTH:ADC0GTL  
ADWINT  
not affected  
0x0000  
0xFFC0  
0x0000  
0xFFC0  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
ADWINT=1  
0xFF80  
0xFF80  
ADWINT  
not affected  
0x8000  
0x8000  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x2000,  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,  
ADC0LTH:ADC0LTH = 0xFFC0,  
ADC0GTH:ADC0GTL = 0xFFC0.  
ADC0GTH:ADC0GTL = 0x2000.  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
An ADC End of Conversion will cause an ADC Window  
Compare Interrupt (ADWINT=1) if the resulting ADC  
Data Word is < 0xFFC0 or > 0x2000. (Two’s Complement  
math.)  
Data Word is  
<
0x2000 and  
>
0xFFC0.  
(Two’s  
Complement math.)  
49  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 6.1. 10-Bit ADC Electrical Characteristics  
VDD = 3.0V, AV+ = 3.0V, VREF = 2.40V (REFBE=0), PGA Gain = 1, -40°C to +85°C unless otherwise specified.  
PARAMETER  
DC ACCURACY  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
± ½  
± ½  
bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
± 1  
± 1  
Guaranteed Monotonic  
Differential mode  
± 0.5  
-1.5 ±  
0.5  
Full Scale Error  
Offset Temperature  
Coefficient  
± 0.25  
ppm/°C  
DYNAMIC PERFORMANCE (10kHz sine-wave input, 0 to –1dB of full scale, 100ksps)  
Signal-to-Noise Plus  
Distortion  
59  
61  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic  
Range  
Up to the 5th harmonic  
-70  
80  
dB  
dB  
CONVERSION RATE  
Conversion Time in SAR  
Clocks  
16  
clocks  
SAR Clock Frequency  
C8051F000, ‘F001, ‘F002  
C8051F005, ‘F006, ‘F007  
2.0  
2.5  
MHz  
MHz  
µs  
Track/Hold Acquisition  
Time  
1.5  
Throughput Rate  
100  
ksps  
V
ANALOG INPUTS  
Voltage Conversion Range  
Single-ended Mode (AINn – AGND)  
Differential Mode |(AINn+) – (AINm-)|  
Any AINn pin  
0
VREF  
- 1LSB  
AV+  
Input Voltage  
AGND  
V
pF  
Input Capacitance  
TEMPERATURE SENSOR  
Linearity  
10  
± 0.20  
± 3  
°C  
°C  
Absolute Accuracy  
Gain  
Gain Error (±1σ)  
Offset  
PGA Gain = 1  
PGA Gain = 1  
PGA Gain = 1, Temp = 0°C  
PGA Gain = 1, Temp = 0°C  
2.86  
mV/°C  
µV/°C  
mV  
± 33.5  
776  
mV  
Offset Error (±1σ)  
POWER SPECIFICATIONS  
± 8.51  
Power Supply Current (AV+ Operating Mode, 100ksps  
supplied to ADC)  
450  
900  
µA  
Power Supply Rejection  
mV/V  
± 0.3  
Rev. 1.7  
50  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
7. DACs, 12 BIT VOLTAGE MODE  
The C8051F000 MCU family has two 12-bit voltage-mode Digital to Analog Converters. Each DAC has an output  
swing of 0V to VREF-1LSB for a corresponding input code range of 0x000 to 0xFFF. Using DAC0 as an example,  
the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers. Data is latched into  
DAC0 after a write to the corresponding DAC0H register, so the write sequence should be DAC0L followed by  
DAC0H if the full 12-bit resolution is required. The DAC can be used in 8-bit mode by initializing DAC0L to the  
desired value (typically 0x00), and writing data to only DAC0H with the data shifted to the left. DAC0 Control  
Register (DAC0CN) provides a means to enable/disable DAC0 and to modify its input data formatting.  
The DAC0 enable/disable function is controlled by the DAC0EN bit (DAC0CN.7). Writing a 1 to DAC0EN  
enables DAC0 while writing a 0 to DAC0EN disables DAC0. While disabled, the output of DAC0 is maintained in  
a high-impedance state, and the DAC0 supply current falls to 1µA or less. Also, the Bias Enable bit (BIASE) in the  
REF0CN register (see Figure 9.2) must be set to 1 in order to supply bias to DAC0. The voltage reference for  
DAC0 must also be set properly (see Section 9).  
In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data within the  
DAC input registers. This action would typically require one or more load and shift operations, adding software  
overhead and slowing DAC throughput. To alleviate this problem, the data-formatting feature provides a means for  
the user to program the orientation of the DAC0 data word within data registers DAC0H and DAC0L. The three  
DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data word orientations as shown in the  
DAC0CN register definition.  
DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and DAC1  
are given in Table 7.1.  
Figure 7.1. DAC Functional Block Diagram  
DAC0EN  
REF  
DAC0DF2  
DAC0DF1  
DAC0DF0  
AV+  
8
+
-
12  
DAC0  
DAC0  
AGND  
8
DAC1EN  
REF  
DAC1DF2  
DAC1DF1  
DAC1DF0  
AV+  
8
+
12  
DAC1  
DAC1  
-
AGND  
8
51  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 7.2. DAC0H: DAC0 High Byte Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0xD3  
Bits7-0: DAC0 Data Word Most Significant Byte.  
Figure 7.3. DAC0L: DAC0 Low Byte Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0xD2  
Bits7-0: DAC0 Data Word Least Significant Byte.  
Figure 7.4. DAC0CN: DAC0 Control Register  
R/W  
DAC0EN  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
DAC0DF2 DAC0DF1 DAC0DF0  
-
-
-
-
00000000  
SFR Address:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xD4  
Bit7:  
DAC0EN: DAC0 Enable Bit  
0: DAC0 Disabled. DAC0 Output pin is disabled; DAC0 is in low power shutdown mode.  
1: DAC0 Enabled. DAC0 Output is pin active; DAC0 is operational.  
Bits6-3: UNUSED. Read = 0000b; Write = don’t care  
Bits2-0: DAC0DF2-0: DAC0 Data Format Bits  
000: The most significant nybble of the DAC0 Data Word is in DAC0H[3:0], while the least significant  
byte is in DAC0L.  
DAC0H  
DAC0L  
MSB  
LSB  
001: The most significant 5-bits of the DAC0 Data Word is in DAC0H[4:0], while the least significant  
7-bits is in DAC0L[7:1].  
DAC0H  
DAC0L  
LSB  
010: The most sigMnSiBficant 6-bits of the DAC0 Data Word is in DAC0H[5:0], while the least significant  
6-bits is in DAC0L[7:2].  
DAC0H  
DAC0L  
011: The mMosSBt significant 7-bits of the DAC0 Data Word is in DAC0H[6:0], while the least significant  
LSB  
5-bits is in DAC0L[7:3].  
DAC0H  
DAC0L  
1xx: The most significant byte of the DAC0 Data Word is in DAC0H, whLiSleB the least significant nybble  
MSB  
is in DAC0L[7:4].  
DAC0H  
DAC0L  
MSB  
LSB  
Rev. 1.7  
52  
 
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 7.5. DAC1H: DAC1 High Byte Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0xD6  
Bits7-0: DAC1 Data Word Most Significant Byte.  
Figure 7.6. DAC1L: DAC1 Low Byte Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0xD5  
Bits7-0: DAC1 Data Word Least Significant Byte.  
Figure 7.7. DAC1CN: DAC1 Control Register  
R/W  
DAC1EN  
Bit7  
R/W  
-
Bit6  
R/W  
-
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
Reset Value  
DAC1DF2 DAC1DF1 DAC1DF0  
00000000  
SFR Address:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xD7  
Bit7:  
DAC1EN: DAC1 Enable Bit  
0: DAC1 Disabled. DAC1 Output pin is disabled; DAC1 is in low power shutdown mode.  
1: DAC1 Enabled. DAC1 Output is pin active; DAC1 is operational.  
Bits6-3: UNUSED. Read = 0000b; Write = don’t care  
Bits2-0: DAC1DF2-0: DAC1 Data Format Bits  
000: The most significant nybble of the DAC1 Data Word is in DAC1H[3:0], while the least  
significant byte is in DAC1L.  
DAC1H  
DAC1L  
MSB  
LSB  
001: The most significant 5-bits of the DAC1 Data Word is in DAC1H[4:0], while the least  
significant 7-bits is in DAC1L[7:1].  
DAC1H  
DAC1L  
MSB  
LSB  
010: The most significant 6-bits of the DAC1 Data Word is in DAC1H[5:0], while the least  
significant 6-bits is in DAC1L[7:2].  
DAC1H  
DAC1L  
MSB  
LSB  
011: The most significant 7-bits of the DAC1 Data Word is in DAC1H[6:0], while the least  
significant 5-bits is in DAC1L[7:3].  
DAC1H  
DAC1L  
MSB  
LSB  
1xx: The most significant byte of the DAC1 Data Word is in DAC1H, while the least  
significant nybble is in DAC1L[7:4].  
DAC1H  
DAC1L  
MSB  
LSB  
53  
Rev. 1.7  
 
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 7.1. DAC Electrical Characteristics  
VDD = 3.0V, AV+ = 3.0V, REF = 2.40V (REFBE=0), No Output Load unless otherwise specified.  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
For Data Word Range 0x014 to 0xFEB  
Guaranteed Monotonic (codes 0x014 to  
0xFEB)  
±2  
±1  
Output Noise  
No Output Filter  
250  
128  
41  
±3  
6
±20  
10  
-60  
µVrms  
100kHz Output Filter  
10kHz Output Filter  
Data Word = 0x014  
Offset Error  
mV  
ppm/°C  
mV  
ppm/°C  
dB  
±30  
±60  
Offset Tempco  
Full-Scale Error  
Full-Scale Error Tempco  
VDD Power-Supply  
Rejection Ratio  
DACnEN=0  
100  
kΩ  
Output Impedance in  
Shutdown Mode  
±300  
µA  
Output Current  
Data Word = 0xFFF  
15  
mA  
Output Short Circuit Current  
DYNAMIC PERFORMANCE  
Voltage Output Slew Rate  
Output Settling Time To ½  
LSB  
Load = 40pF  
0.44  
10  
V/µs  
µs  
Load = 40pF, Output swing from code  
0xFFF to 0x014  
Output Voltage Swing  
0
REF-  
1LSB  
V
µs  
Startup Time  
ANALOG OUTPUTS  
Load Regulation  
DAC Enable asserted  
10  
60  
IL = 0.01mA to 0.3mA at code 0xFFF  
ppm  
µA  
CURRENT CONSUMPTION (each DAC)  
Power Supply Current (AV+ Data Word = 0x7FF  
supplied to DAC)  
110  
400  
Rev. 1.7  
54  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
8. COMPARATORS  
The MCU family has two on-chip analog voltage comparators as shown in Figure 8.1. The inputs of each  
Comparator are available at the package pins. The output of each comparator is optionally available at the package  
pins via the I/O crossbar (see Section 15.1). When assigned to package pins, each comparator output can be  
programmed to operate in open drain or push-pull modes (see section 15.3).  
The hysteresis of each comparator is software-programmable via its respective Comparator control register  
(CPT0CN, CPT1CN). The user can program both the amount of hysteresis voltage (referred to the input voltage)  
and the positive and negative-going symmetry of this hysteresis around the threshold voltage. The output of the  
comparator can be polled in software, or can be used as an interrupt source. Each comparator can be individually  
enabled or disabled (shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the  
Crossbar) defaults to the logic low state, its interrupt capability is suspended and its supply current falls to less than  
1µA. Comparator 0 inputs can be externally driven from -0.25V to (AV+) + 0.25V without damage or upset.  
The Comparator 0 hysteresis is programmed using bits 3-0 in the Comparator 0 Control Register CPT0CN (shown  
in Figure 8.3). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As  
shown in Figure 8.2, settings of 10, 4 or 2mV of negative hysteresis can be programmed, or negative hysteresis can  
be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.  
Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt  
enable and priority control, see Section 10.4). The CP0FIF flag is set upon a Comparator 0 falling-edge interrupt,  
and the CP0RIF flag is set upon the Comparator 0 rising-edge interrupt. Once set, these bits remain set until cleared  
by the CPU. The Output State of Comparator 0 can be obtained at any time by reading the CP0OUT bit. Note the  
comparator output and interrupt should be ignored until the comparator settles after power-up. Comparator 0 is  
enabled by setting the CP0EN bit, and is disabled by clearing this bit. Note there is a 20usec settling time for the  
comparator output to stabilize after setting the CP0EN bit or a power-up. Comparator 0 can also be programmed as  
a reset source. For details, see Section 13.  
The operation of Comparator 1 is identical to that of Comparator 0, except the Comparator 1 is controlled by the  
CPT1CN Register (Figure 8.4). Comparator 1 can not be programmed as a reset source. Also, the input pins for  
Comparator 1 are not pinned out on the F002, F007, F012, or F017 devices. The complete electrical specifications  
for the Comparators are given in Table 8.1.  
Figure 8.1. Comparator Functional Block Diagram  
CP0EN  
CP0OUT  
CP0RIF  
CP0FIF  
AV+  
CP0HYP1  
CP0HYP0  
CP0HYN1  
CP0HYN0  
Reset  
Decision  
Tree  
CP0+  
CP0-  
+
-
SET  
SET  
CLR  
D
Q
Q
D
Q
Q
Crossbar  
CLR  
Interrupt  
Handler  
(SYNCHRONIZER)  
AGND  
CP1EN  
CP1OUT  
CP1RIF  
AV+  
CP1FIF  
CP1HYP1  
CP1HYP0  
CP1HYN1  
CP1HYN0  
CP1+  
CP1-  
+
-
SET  
CLR  
SET  
CLR  
D
Q
Q
D
Q
Q
Crossbar  
Interrupt  
Handler  
not available on F002,  
F007, F012, and F017  
(SYNCHRONIZER)  
AGND  
55  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 8.2. Comparator Hysteresis Plot  
CP0+  
CP0-  
VIN+  
VIN-  
+
CP0  
OUT  
_
CIRCUIT CONFIGURATION  
Positive Hysteresis Voltage  
(Programmed with CP0HYSP Bits)  
VIN-  
Negative Hysteresis Voltage  
INPUTS  
(Programmed by CP0HYSN Bits)  
VIN+  
VOH  
OUTPUT  
VOL  
Negative Hysteresis  
Disabled  
Maximum  
Negative Hysteresis  
Positive Hysteresis  
Disabled  
Maximum  
Positive Hysteresis  
Rev. 1.7  
56  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 8.3. CPT0CN: Comparator 0 Control Register  
R/W  
CP0EN  
Bit7  
R
R/W  
CP0RIF  
Bit5  
R/W  
CP0FIF  
Bit4  
R/W  
CP0HYP1  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
CP0OUT  
CP0HYP0 CP0HYN1 CP0HYN0  
00000000  
SFR Address:  
Bit6  
Bit2  
Bit1  
Bit0  
0x9E  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
CP0EN: Comparator 0 Enable Bit  
0: Comparator 0 Disabled.  
1: Comparator 0 Enabled.  
CP0OUT: Comparator 0 Output State Flag  
0: Voltage on CP0+ < CP0-  
1: Voltage on CP0+ > CP0-  
CP0RIF: Comparator 0 Rising-Edge Interrupt Flag  
0: No Comparator 0 Rising-Edge Interrupt has occurred since this flag was cleared  
1: Comparator 0 Rising-Edge Interrupt has occurred since this flag was cleared  
CP0FIF: Comparator 0 Falling-Edge Interrupt Flag  
0: No Comparator 0 Falling-Edge Interrupt has occurred since this flag was cleared  
1: Comparator 0 Falling-Edge Interrupt has occurred since this flag was cleared  
Bit3-2: CP0HYP1-0: Comparator 0 Positive Hysteresis Control Bits  
00: Positive Hysteresis Disabled  
01: Positive Hysteresis = 2mV  
10: Positive Hysteresis = 4mV  
11: Positive Hysteresis = 10mV  
Bit1-0: CP0HYN1-0: Comparator 0 Negative Hysteresis Control Bits  
00: Negative Hysteresis Disabled  
01: Negative Hysteresis = 2mV  
10: Negative Hysteresis = 4mV  
11: Negative Hysteresis = 10mV  
57  
Rev. 1.7  
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 8.4. CPT1CN: Comparator 1 Control Register  
R/W  
CP1EN  
Bit7  
R
R/W  
CP1RIF  
Bit5  
R/W  
CP1FIF  
Bit4  
R/W  
CP1HYP1  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
CP1OUT  
CP1HYP0 CP1HYN1 CP1HYN0  
00000000  
SFR Address:  
Bit6  
Bit2  
Bit1  
Bit0  
0x9F  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
CP1EN: Comparator 1 Enable Bit  
0: Comparator 1 Disabled.  
1: Comparator 1 Enabled.  
CP1OUT: Comparator 1 Output State Flag  
0: Voltage on CP1+ < CP1-  
1: Voltage on CP1+ > CP1-  
CP1RIF: Comparator 1 Rising-Edge Interrupt Flag  
0: No Comparator 1 Rising-Edge Interrupt has occurred since this flag was cleared  
1: Comparator 1 Rising-Edge Interrupt has occurred since this flag was cleared  
CP1FIF: Comparator 1 Falling-Edge Interrupt Flag  
0: No Comparator 1 Falling-Edge Interrupt has occurred since this flag was cleared  
1: Comparator 1 Falling-Edge Interrupt has occurred since this flag was cleared  
Bit3-2: CP1HYP1-0: Comparator 1 Positive Hysteresis Control Bits  
00: Positive Hysteresis Disabled  
01: Positive Hysteresis = 2mV  
10: Positive Hysteresis = 4mV  
11: Positive Hysteresis = 10mV  
Bit1-0: CP1HYN1-0: Comparator 1 Negative Hysteresis Control Bits  
00: Negative Hysteresis Disabled  
01: Negative Hysteresis = 2mV  
10: Negative Hysteresis = 4mV  
11: Negative Hysteresis = 10mV  
Rev. 1.7  
58  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 8.1. Comparator Electrical Characteristics  
VDD = 3.0V, AV+ = 3.0V, -40°C to +85°C unless otherwise specified.  
PARAMETER  
CONDITIONS  
(CP+) – (CP-) = 100mV (Note 1)  
(CP+) – (CP-) = 10mV (Note 1)  
MIN  
TYP  
4
MAX  
UNITS  
µs  
Response Time1  
Response Time2  
12  
µs  
Common Mode Rejection  
1.5  
4
mV/V  
Ratio  
Positive Hysteresis1  
Positive Hysteresis2  
Positive Hysteresis3  
Positive Hysteresis4  
Negative Hysteresis1  
Negative Hysteresis2  
Negative Hysteresis3  
Negative Hysteresis4  
Inverting or Non-inverting  
Input Voltage Range  
Input Capacitance  
Input Bias Current  
Input Offset Voltage  
POWER SUPPLY  
Power-up Time  
CPnHYP1-0 = 00  
CPnHYP1-0 = 01  
CPnHYP1-0 = 10  
CPnHYP1-0 = 11  
CPnHYN1-0 = 00  
CPnHYN1-0 = 01  
CPnHYN1-0 = 10  
CPnHYN1-0 = 11  
0
4.5  
9
1
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
2
4
10  
13  
17  
0
25  
1
2
4
4.5  
9
7
13  
10  
17  
25  
-0.25  
(AV+)  
+ 0.25  
7
pF  
nA  
mV  
-5  
-10  
0.001  
+5  
+10  
CPnEN from 0 to 1  
20  
0.1  
1.5  
µs  
mV/V  
µA  
Power Supply Rejection  
Supply Current  
1
10  
Operating Mode (each comparator) at DC  
Note 1: CPnHYP1-0 = CPnHYN1-0 = 00.  
59  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
9. VOLTAGE REFERENCE  
The voltage reference circuit consists of a 1.2V, 15ppm/°C (typical) bandgap voltage reference generator and a  
gain-of-two output buffer amplifier. The reference voltage on VREF can be connected to external devices in the  
system, as long as the maximum load seen by the VREF pin is less than 200µA to AGND (see Figure 9.1).  
If a different reference voltage is required, an external reference can be connected to the VREF pin and the internal  
bandgap and buffer amplifier disabled in software. The external reference voltage must still be less than AV+ -  
0.3V. The Reference Control Register, REF0CN (defined in Figure 9.2), provides the means to enable or disable  
the bandgap and buffer amplifier. The BIASE bit in REF0CN enables the bias circuitry for the ADC and DACs  
while the REFBE bit enables the bandgap reference and buffer amplifier which drive the VREF pin. When  
disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1uA (typical) and the  
output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage  
generator, BIASE and REFBE must both be set to 1. If an external reference is used, REFBE must be set to 0 and  
BIASE must be set to 1. If neither the ADC nor the DAC are being used, both of these bits can be set to 0 to  
conserve power. The electrical specifications for the Voltage Reference are given in Table 9.1.  
The temperature sensor connects to the highest order input of the A/D converter’s input multiplexer (see Figure 5.1  
and Figure 5.5 for details). The TEMPE bit within REF0CN enables and disables the temperature sensor. While  
disabled, the temperature sensor defaults to a high impedance state and any A/D measurements performed on the  
sensor while disabled result in meaningless data.  
Figure 9.1. Voltage Reference Functional Block Diagram  
AV+  
External  
Voltage  
EN  
Temp  
(to Analog Mux)  
Sensor  
Reference  
Circuit  
R1  
EN  
(Bias to ADC  
and DAC)  
Bias  
TEMPE  
BIASE  
Generator  
REFBE  
AGND  
AGND  
VREF  
EN  
2.4V  
(to ADC  
Reference  
and DAC)  
External Equivalent  
Load Circuit  
AGND  
RLOAD  
AGND  
Rev. 1.7  
60  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 9.2. REF0CN: Reference Control Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
-
TEMPE  
BIASE  
REFBE  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xD1  
Bits7-3: UNUSED. Read = 00000b; Write = don’t care  
Bit2:  
Bit1:  
Bit0:  
TEMPE: Temperature Sensor Enable Bit  
0: Internal Temperature Sensor Off.  
1: Internal Temperature Sensor On.  
BIASE: Bias Enable Bit for ADC and DAC’s  
0: Internal Bias Off.  
1: Internal Bias On (required for use of ADC or DAC’s).  
REFBE: Internal Voltage Reference Buffer Enable Bit  
0: Internal Reference Buffer Off. System reference can be driven from external source on  
VREF pin.  
1: Internal Reference Buffer On. System reference provided by internal voltage reference.  
Table 9.1. Reference Electrical Characteristics  
VDD = 3.0V, AV+ = 3.0V, -40°C to +85°C unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.43  
50  
MAX  
UNITS  
INTERNAL REFERENCE (REFBE = 1)  
Output Voltage  
2.34  
2.50  
30  
V
mA  
µA  
25°C ambient  
VREF Short Circuit Current  
VREF Power Supply  
Current (supplied by AV+)  
VREF Temperature  
Coefficient  
15  
ppm/°C  
Load Regulation  
0.5  
2
20  
10  
Load = (0-to-200µA) to AGND (Note 1)  
4.7µF tantalum, 0.1µF ceramic bypass  
0.1µF ceramic bypass  
ppm/µA  
ms  
VREF Turn-on Time1  
VREF Turn-on Time2  
VREF Turn-on Time3  
µs  
µs  
no bypass cap  
EXTERNAL REFERENCE (REFBE = 0)  
Input Voltage Range  
1.00  
(AV+)  
– 0.3V  
1
V
Input Current  
0
µA  
Note 1: The reference can only source current. When driving an external load, it is recommended to add a load  
resistor to AGND.  
61  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10. CIP-51 CPU  
The MCUs’ system CPU is the CIP-51. The CIP-51 is fully compatible with the MCS-51TM instruction set.  
Standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of  
all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in Section  
19), a full-duplex UART (see description in Section 18), 256 bytes of internal RAM, 128 byte Special Function  
Register (SFR) address space (see Section 10.3), and four byte-wide I/O Ports (see description in Section 14). The  
CIP-51 also includes on-chip debug hardware (see description in Section 21), and interfaces directly with the  
MCUs’ analog and digital subsystems providing a complete data acquisition or control-system solution in a single  
integrated circuit.  
Features  
The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional  
custom peripherals and functions to extend its capability (see Figure 10.1 for a block diagram). The CIP-51  
includes the following features:  
-
-
-
-
-
Fully Compatible with MCS-51 Instruction Set  
25 MIPS Peak Throughput with 25MHz Clock  
0 to 25MHz Clock Frequency (on ‘F0x5/6/7)  
Four Byte-Wide I/O Ports  
-
-
-
-
Reset Input  
Power Management Modes  
On-chip Debug Circuitry  
Program and Data Memory Security  
Extended Interrupt Handler  
Figure 10.1. CIP-51 Block Diagram  
DATA BUS  
ACCUMULATOR  
B REGISTER  
STACK POINTER  
TMP1  
TMP2  
SRAM  
SRAM  
PSW  
ADDRESS  
REGISTER  
(256 X 8)  
ALU  
DATA BUS  
SFR_ADDRESS  
D8  
BUFFER  
SFR_CONTROL  
SFR_WRITE_DATA  
SFR_READ_DATA  
SFR  
BUS  
D8  
D8  
DATA POINTER  
INTERFACE  
PC INCREMENTER  
D8  
MEM_ADDRESS  
MEM_CONTROL  
PROGRAM COUNTER (PC)  
PRGM. ADDRESS REG.  
PIPELINE  
MEMORY  
A16  
D8  
MEM_WRITE_DATA  
MEM_READ_DATA  
INTERFACE  
CONTROL  
LOGIC  
RESET  
CLOCK  
SYSTEM_IRQs  
INTERRUPT  
INTERFACE  
EMULATION_IRQ  
D8  
STOP  
IDLE  
POWER CONTROL  
REGISTER  
D8  
Rev. 1.7  
62  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Performance  
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051  
architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to  
execute, and usually have a maximum system clock of 12MHz. By contrast, the CIP-51 core executes 70% of its  
instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.  
With the CIP-51’s maximum system clock at 25MHz, it has a peak throughput of 25MIPS. The CIP-51 has a total  
of 109 instructions. The number of instructions versus the system clock cycles required to execute them is as  
follows:  
26  
1
50  
2
5
2/3  
14  
3
7
3/4  
3
4
1
4/5  
2
5
1
8
Instructions  
Clocks to Execute  
Programming and Debugging Support  
A JTAG-based serial interface is provided for in-system programming of the Flash program memory and  
communication with on-chip debug support circuitry. The reprogrammable Flash can also be read and changed a  
single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows  
program memory to be used for non-volatile data storage as well as updating program code under software control.  
The on-chip debug support circuitry facilitates full speed in-circuit debugging, allowing the setting of hardware  
breakpoints and watch points, starting, stopping and single stepping through program execution (including interrupt  
service routines), examination of the program’s call stack, and reading/writing the contents of registers and memory.  
This method of on-chip debugging is completely non-intrusive and non-invasive, requiring no RAM, Stack, timers,  
or other on-chip resources.  
The CIP-51 is supported by development tools from Silicon Laboratories and third party vendors. Silicon Labs  
provides an integrated development environment (IDE) including editor, macro assembler, debugger and  
programmer. The IDE’s debugger and programmer interface to the CIP-51 via its JTAG interface to provide fast  
and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also  
available.  
10.1. INSTRUCTION SET  
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruction set.  
Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the  
binary and functional equivalent of their MCS-51™ counterparts, including opcodes, addressing modes and effect  
on PSW flags. However, instruction timing is different than that of the standard 8051.  
10.1.1. Instruction and CPU Timing  
In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles  
varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle  
timing. All instruction timings are specified in terms of clock cycles.  
Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as  
there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete  
when the branch is not taken as opposed to when the branch is taken. Table 10.1 is the CIP-51 Instruction Set  
Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.  
10.1.2. MOVX Instruction and Program Memory  
The MOVX instruction is typically used to access external data memory. In the CIP-51, the MOVX instruction can  
access the on-chip program memory space implemented as reprogrammable Flash memory using the control bits in  
the PSCTL register (see Figure 11.1). This feature provides a mechanism for the CIP-51 to update program code  
and use the program memory space for non-volatile data storage. For the products with RAM mapped into external  
data memory space (C8051F005/06/07/15/16/17), MOVX is still used to read/write this memory with the PSCTL  
63  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
register configured for accessing the external data memory space. Refer to Section 11 (Flash Memory) for further  
details.  
Rev. 1.7  
64  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 10.1. CIP-51 Instruction Set Summary  
Clock  
Mnemonic  
Description  
Bytes  
Cycles  
ARITHMETIC OPERATIONS  
ADD A,Rn  
ADD A,direct  
ADD A,@Ri  
ADD A,#data  
ADDC A,Rn  
ADDC A,direct  
ADDC A,@Ri  
ADDC A,#data  
SUBB A,Rn  
SUBB A,direct  
SUBB A,@Ri  
SUBB A,#data  
INC A  
Add register to A  
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
1
1
1
2
1
1
1
1
1
1
2
2
2
1
2
2
2
1
2
2
2
1
1
2
2
1
1
2
2
1
4
8
1
Add direct byte to A  
Add indirect RAM to A  
Add immediate to A  
Add register to A with carry  
Add direct byte to A with carry  
Add indirect RAM to A with carry  
Add immediate to A with carry  
Subtract register from A with borrow  
Subtract direct byte from A with borrow  
Subtract indirect RAM from A with borrow  
Subtract immediate from A with borrow  
Increment A  
INC Rn  
Increment register  
INC direct  
INC @Ri  
Increment direct byte  
Increment indirect RAM  
Decrement A  
DEC A  
DEC Rn  
Decrement register  
DEC direct  
DEC @Ri  
Decrement direct byte  
Decrement indirect RAM  
Increment Data Pointer  
Multiply A and B  
INC DPTR  
MUL AB  
DIV AB  
Divide A by B  
Decimal Adjust A  
DA A  
LOGICAL OPERATIONS  
AND Register to A  
ANL A,Rn  
ANL A,direct  
ANL A,@Ri  
ANL A,#data  
ANL direct,A  
ANL direct,#data  
ORL A,Rn  
ORL A,direct  
ORL A,@Ri  
ORL A,#data  
ORL direct,A  
ORL direct,#data  
XRL A,Rn  
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
1
1
1
1
1
2
2
2
2
3
1
2
2
2
2
3
1
2
2
2
2
3
1
1
1
1
1
AND direct byte to A  
AND indirect RAM to A  
AND immediate to A  
AND A to direct byte  
AND immediate to direct byte  
OR Register to A  
OR direct byte to A  
OR indirect RAM to A  
OR immediate to A  
OR A to direct byte  
OR immediate to direct byte  
Exclusive-OR Register to A  
Exclusive-OR direct byte to A  
Exclusive-OR indirect RAM to A  
Exclusive-OR immediate to A  
Exclusive-OR A to direct byte  
Exclusive-OR immediate to direct byte  
Clear A  
XRL A,direct  
XRL A,@Ri  
XRL A,#data  
XRL direct,A  
XRL direct,#data  
CLR A  
CPL A  
Complement A  
Rotate A left  
Rotate A left through carry  
Rotate A right  
RL A  
RLC A  
RR A  
65  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Clock  
Bytes  
Mnemonic  
Description  
Cycles  
RRC A  
Rotate A right through carry  
Swap nibbles of A  
1
1
1
SWAP A  
1
DATA TRANSFER  
MOV A,Rn  
Move register to A  
1
2
1
2
1
2
2
2
2
3
2
3
1
2
2
3
1
1
1
1
1
1
2
2
1
2
1
1
1
2
2
2
1
2
2
2
2
3
2
3
2
2
2
3
3
3
3
3
3
3
2
2
1
2
2
2
MOV A,direct  
MOV A,@Ri  
Move direct byte to A  
Move indirect RAM to A  
Move immediate to A  
MOV A,#data  
MOV Rn,A  
Move A to register  
MOV Rn,direct  
MOV Rn,#data  
MOV direct,A  
MOV direct,Rn  
MOV direct,direct  
MOV direct,@Ri  
MOV direct,#data  
MOV @Ri,A  
Move direct byte to register  
Move immediate to register  
Move A to direct byte  
Move register to direct byte  
Move direct byte to direct  
Move indirect RAM to direct byte  
Move immediate to direct byte  
Move A to indirect RAM  
Move direct byte to indirect RAM  
Move immediate to indirect RAM  
Load data pointer with 16-bit constant  
Move code byte relative DPTR to A  
Move code byte relative PC to A  
Move external data (8-bit address) to A  
Move A to external data (8-bit address)  
Move external data (16-bit address) to A  
Move A to external data (16-bit address)  
Push direct byte onto stack  
Pop direct byte from stack  
Exchange register with A  
Exchange direct byte with A  
Exchange indirect RAM with A  
Exchange low nibble of indirect RAM with A  
BOOLEAN MANIPULATION  
Clear carry  
MOV @Ri,direct  
MOV @Ri,#data  
MOV DPTR,#data16  
MOVC A,@A+DPTR  
MOVC A,@A+PC  
MOVX A,@Ri  
MOVX @Ri,A  
MOVX A,@DPTR  
MOVX @DPTR,A  
PUSH direct  
POP direct  
XCH A,Rn  
XCH A,direct  
XCH A,@Ri  
XCHD A,@Ri  
CLR C  
1
2
1
2
1
2
2
2
2
2
2
2
2
2
3
3
3
1
2
CLR bit  
Clear direct bit  
SETB C  
Set carry  
1
SETB bit  
CPL C  
Set direct bit  
2
Complement carry  
1
CPL bit  
Complement direct bit  
2
ANL C,bit  
ANL C,/bit  
ORL C,bit  
ORL C,/bit  
MOV C,bit  
MOV bit,C  
JC rel  
AND direct bit to carry  
2
AND complement of direct bit to carry  
OR direct bit to carry  
2
2
OR complement of direct bit to carry  
Move direct bit to carry  
2
2
Move carry to direct bit  
2
Jump if carry is set  
2/3  
2/3  
3/4  
3/4  
3/4  
JNC rel  
Jump if carry not set  
JB bit,rel  
JNB bit,rel  
JBC bit,rel  
Jump if direct bit is set  
Jump if direct bit is not set  
Jump if direct bit is set and clear bit  
PROGRAM BRANCHING  
Rev. 1.7  
66  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Clock  
Mnemonic  
Description  
Bytes  
Cycles  
ACALL addr11  
LCALL addr16  
RET  
Absolute subroutine call  
Long subroutine call  
Return from subroutine  
Return from interrupt  
Absolute jump  
2
3
1
1
2
3
4
5
5
3
RETI  
AJMP addr11  
LJMP addr16  
Long jump  
3
2
1
2
2
3
3
4
SJMP rel  
Short jump (relative address)  
Jump indirect relative to DPTR  
Jump if A equals zero  
3
JMP @A+DPTR  
JZ rel  
3
2/3  
2/3  
3/4  
3/4  
JNZ rel  
Jump if A does not equal zero  
Compare direct byte to A and jump if not equal  
Compare immediate to A and jump if not equal  
CJNE A,direct,rel  
CJNE A,#data,rel  
CJNE Rn,#data,rel  
Compare immediate to register and jump if not  
3
3/4  
equal  
CJNE @Ri,#data,rel  
Compare immediate to indirect and jump if not  
equal  
Decrement register and jump if not zero  
Decrement direct byte and jump if not zero  
No operation  
3
4/5  
DJNZ Rn,rel  
DJNZ direct,rel  
NOP  
2
3
1
2/3  
3/4  
1
Notes on Registers, Operands and Addressing Modes:  
Rn - Register R0-R7 of the currently selected register bank.  
@Ri - Data RAM location addressed indirectly through register R0-R1  
rel - 8-bit, signed (two’s compliment) offset relative to the first byte of the following instruction. Used by SJMP  
and all conditional jumps.  
direct - 8-bit internal data location’s address. This could be a direct-access Data RAM location (0x00-0x7F) or an  
SFR (0x80-0xFF).  
#data - 8-bit constant  
#data 16 - 16-bit constant  
bit - Direct-addressed bit in Data RAM or SFR.  
addr 11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-  
byte page of program memory as the first byte of the following instruction.  
addr 16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the  
64K-byte program memory space.  
There is one unused opcode (0xA5) that performs the same function as NOP.  
All mnemonics copyrighted © Intel Corporation 1980.  
67  
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10.2. MEMORY ORGANIZATION  
The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two  
separate memory spaces: program memory and data memory. Program and data memory share the same address  
space but are accessed via different instruction types. There are 256 bytes of internal data memory and 64K bytes of  
internal program memory address space implemented within the CIP-51. The CIP-51 memory organization is  
shown in Figure 10.2.  
10.2.1. Program Memory  
The CIP-51 has a 64K-byte program memory space. The MCU implements 32896 bytes of this program memory  
space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses 0x0000 to  
0x807F. Note: 512 bytes (0x7E00 – 0x7FFF) of this memory are reserved for factory use and are not available for  
user program storage.  
Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by  
setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a  
mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage.  
Refer to Section 11 (Flash Memory) for further details.  
10.2.2. Data Memory  
The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF.  
The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct  
or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are  
addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next  
16 bytes, locations 0x20 through 0x2F, may be addressed as bytes or as 128 bit locations accessible with the direct-  
bit addressing mode.  
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same  
address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The  
addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses  
the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR  
space. Instructions using indirect addressing above 0x7F will access the upper 128 bytes of data memory. Figure  
10.2 illustrates the data memory organization of the CIP-51.  
The C8051F005/06/07/15/16/17 also have 2048 bytes of RAM in the external data memory space of the CIP-51,  
accessible using the MOVX instruction. Refer to Section 12 (External RAM) for details.  
10.2.3. General Purpose Registers  
The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-  
purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these  
banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the  
active register bank (see description of the PSW in Figure 10.6). This allows fast context switching when entering  
subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.  
10.2.4. Bit Addressable Locations  
In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through  
0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0  
of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at  
0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit  
source or destination operands as opposed to a byte source or destination).  
The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.Bwhere XXis the  
byte address and Bis the bit position within the byte. For example, the instruction:  
MOV  
C, 22h.3  
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the user Carry flag.  
Rev. 1.7  
68  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.2. Memory Map  
PROGRAM MEMORY  
DATA MEMORY  
INTERNAL DATA ADDRESS SPACE  
0x807F  
0x8000  
0x7FFF  
0x7E00  
128 Byte ISP FLASH  
0xFF  
Upper 128 RAM  
(Indirect Addressing  
Only)  
Special Function  
Register's  
RESERVED  
(Direct Addressing Only)  
0x80  
0x7F  
0x7DFF  
(Direct and Indirect  
Addressing)  
Lower 128 RAM  
(Direct and Indirect  
Addressing)  
FLASH  
0x30  
0x2F  
Bit Addressable  
(In-System  
Programmable in 512  
Byte Sectors)  
0x20  
0x1F  
General Purpose  
Registers  
0x00  
0x0000  
EXTERNAL DATA ADDRESS SPACE  
0xFFFF  
0xF800  
(same 2048 byte RAM block )  
The same 2048 byte RAM  
0x17FF  
0x1000  
0x0FFF  
0x0800  
0x07FF  
(same 2048 byte RAM block )  
(same 2048 byte RAM block )  
block can be addressed on  
2k boundaries throughout  
the 64k External Data  
Memory space.  
RAM - 2048 Bytes  
(accessable using MOVX  
command)  
0x0000  
10.2.5. Stack  
A programmer’s stack can be located anywhere in the 256-byte data memory. The stack area is designated using  
the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is  
placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the  
first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1.  
Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not  
being used for data storage. The stack depth can extend up to 256 bytes.  
The MCUs also have built-in hardware for a stack record. The stack record is a 32-bit shift register, where each  
Push or increment SP pushes one record bit onto the register, and each Call or interrupt pushes two record bits onto  
the register. (A Pop or decrement SP pops one record bit, and a Return pops two record bits, also.) The stack  
record circuitry can also detect an overflow or underflow on the Stack, and can notify the debug software even with  
the MCU running full-speed debug.  
69  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10.3.  
SPECIAL FUNCTION REGISTERS  
The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The  
SFRs provide control and data exchange with the CIP-51’s resources and peripherals. The CIP-51 duplicates the  
SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access  
the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility  
with the MCS-51™ instruction set. Table 10.3 lists the SFRs implemented in the CIP-51 System Controller.  
The SFR registers are accessed any time the direct addressing mode is used to access memory locations from 0x80  
to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE, etc.) are bit-addressable as well  
as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are  
reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the  
corresponding pages of the datasheet, as indicated in Table 10.3, for a detailed description of each register.  
Table 10.2. Special Function Register Memory Map  
SPI0CN  
B
PCA0H  
PCA0CPH0  
PCA0CPH1  
PCA0CPH2  
PCA0CPH3  
PCA0CPH4  
EIP1  
PCA0CPL4  
EIE1  
PCA0CPM4  
DAC1H  
WDTCN  
EIP2  
RSTSRC  
EIE2  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
B0  
A8  
A0  
98  
ADC0CN  
ACC  
PCA0CN  
PSW  
T2CON  
SMB0CN  
IP  
P3  
IE  
P2  
SCON  
P1  
PCA0L  
XBR0  
PCA0MD  
REF0CN  
PCA0CPL0  
XBR1  
PCA0CPM0  
DAC0L  
RCAP2L  
SMB0DAT  
AMX0CF  
OSCICN  
PCA0CPL1  
XBR2  
PCA0CPM1  
DAC0H  
RCAP2H  
SMB0ADR  
AMX0SL  
PCA0CPL2  
PCA0CPL3  
PCA0CPM2  
DAC0CN  
TL2  
ADC0GTL  
ADC0CF  
PCA0CPM3  
DAC1L  
TH2  
DAC1CN  
SMB0CR  
ADC0LTH  
ADC0H  
FLACL***  
EMI0CN***  
PRT3CF  
SMB0STA  
OSCXCN  
ADC0GTH  
ADC0LTL  
ADC0L  
FLSCL  
PRT1IF  
PRT1CF  
SPI0CKR  
TMR3H  
TH1  
PRT0CF  
PRT2CF  
CPT0CN  
SBUF  
TMR3CN  
TMOD  
SP  
SPI0CFG  
TMR3RLL  
TL0  
SPI0DAT  
TMR3RLH  
TL1  
CPT1CN  
TMR3L  
TH0  
90  
TCON  
P0  
CKCON  
PSCTL  
PCON  
7(F)  
88  
80  
DPL  
DPH  
0(8)  
1(9)  
2(A)  
3(B)  
4(C)  
5(D)  
6(E)  
Bit Addressable  
Table 10.3. Special Function Registers  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
* Refers to a register in the C8051F000/1/2/5/6/7 only.  
** Refers to a register in the C8051F010/1/2/5/6/7 only.  
*** Refers to a register in the C8051F005/06/07/15/16/17 only.  
Description  
Page No.  
Address Register  
0xE0  
0xBC  
0xE8  
0xC5  
0xC4  
0xBF  
0xBE  
ACC  
Accumulator  
ADC Configuration  
ADC Control  
ADC Greater-Than Data Word (High Byte)  
ADC Greater-Than Data Word (Low Byte)  
ADC Data Word (High Byte)  
ADC Data Word (Low Byte)  
76  
ADC0CF  
ADC0CN  
ADC0GTH  
ADC0GTL  
ADC0H  
ADC0L  
33*, 42**  
34*, 45**  
36*, 47**  
36*, 47**  
35*, 46**  
35*, 46**  
Rev. 1.7  
70  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Description  
Page No.  
Address Register  
0xC7  
0xC6  
0xBA  
0xBB  
0xF0  
0x8E  
0x9E  
0x9F  
0xD4  
0xD3  
0xD2  
0xD7  
0xD6  
0xD5  
0x83  
0x82  
0xE6  
0xE7  
0xF6  
0xF7  
0xAF  
0xB7  
0xB6  
0xA8  
0xB8  
0xB2  
0xB1  
0x80  
0x90  
0xA0  
0xB0  
0xD8  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xEA  
0xEB  
0xEC  
0xED  
ADC0LTH  
ADC0LTL  
AMX0CF  
AMX0SL  
B
CKCON  
CPT0CN  
CPT1CN  
DAC0CN  
DAC0H  
DAC0L  
DAC1CN  
DAC1H  
DAC1L  
DPH  
ADC Less-Than Data Word (High Byte)  
ADC Less-Than Data Word (Low Byte)  
ADC MUX Configuration  
ADC MUX Channel Selection  
B Register  
Clock Control  
Comparator 0 Control  
Comparator 1 Control  
DAC 0 Control  
DAC 0 Data Word (High Byte)  
DAC 0 Data Word (Low Byte)  
DAC 1 Control  
DAC 1 Data Word (High Byte)  
DAC 1 Data Word (Low Byte)  
Data Pointer (High Byte)  
36*, 47**  
36*, 47**  
31*, 42**  
32*, 43**  
76  
144  
56  
58  
52  
52  
52  
53  
53  
53  
74  
74  
81  
82  
83  
84  
92***  
90***  
91  
DPL  
EIE1  
EIE2  
EIP1  
Data Pointer (Low Byte)  
Extended Interrupt Enable 1  
Extended Interrupt Enable 2  
External Interrupt Priority 1  
External Interrupt Priority 2  
External Memory Interface Control  
Flash Access Limit  
Flash Memory Timing Prescaler  
Interrupt Enable  
Interrupt Priority Control  
Internal Oscillator Control  
External Oscillator Control  
Port 0 Latch  
Port 1 Latch  
Port 2 Latch  
EIP2  
EMI0CN  
FLACL  
FLSCL  
IE  
79  
80  
IP  
OSCICN  
OSCXCN  
P0  
P1  
P2  
100  
101  
109  
110  
111  
112  
160  
163  
163  
163  
163  
163  
163  
163  
163  
163  
P3  
Port 3 Latch  
PCA0CN  
PCA0CPH0  
PCA0CPH1  
PCA0CPH2  
PCA0CPH3  
PCA0CPH4  
PCA0CPL0  
PCA0CPL1  
PCA0CPL2  
PCA0CPL3  
Programmable Counter Array 0 Control  
PCA Capture Module 0 Data Word (High Byte)  
PCA Capture Module 1 Data Word (High Byte)  
PCA Capture Module 2 Data Word (High Byte)  
PCA Capture Module 3 Data Word (High Byte)  
PCA Capture Module 4 Data Word (High Byte)  
PCA Capture Module 0 Data Word (Low Byte)  
PCA Capture Module 1 Data Word (Low Byte)  
PCA Capture Module 2 Data Word (Low Byte)  
PCA Capture Module 3 Data Word (Low Byte)  
71  
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Description  
Page No.  
Address Register  
0xEE  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xF9  
0xE9  
0xD9  
0x87  
PCA0CPL4  
PCA Capture Module 4 Data Word (Low Byte)  
Programmable Counter Array 0 Capture/Compare 0  
Programmable Counter Array 0 Capture/Compare 1  
Programmable Counter Array 0 Capture/Compare 2  
Programmable Counter Array 0 Capture/Compare 3  
Programmable Counter Array 0 Capture/Compare 4  
PCA Counter/Timer Data Word (High Byte)  
PCA Counter/Timer Data Word (Low Byte)  
Programmable Counter Array 0 Mode  
Power Control  
163  
162  
162  
162  
162  
162  
163  
163  
161  
86  
PCA0CPM0  
PCA0CPM1  
PCA0CPM2  
PCA0CPM3  
PCA0CPM4  
PCA0H  
PCA0L  
PCA0MD  
PCON  
0xA4  
0xA5  
0xAD  
0xA6  
0xA7  
0x8F  
0xD0  
0xCB  
0xCA  
0xD1  
0xEF  
0x99  
PRT0CF  
PRT1CF  
PRT1IF  
PRT2CF  
PRT3CF  
PSCTL  
Port 0 Configuration  
Port 1 Configuration  
Port 1 Interrupt Flags  
Port 2 Configuration  
Port 3 Configuration  
Program Store RW Control  
Program Status Word  
Counter/Timer 2 Capture (High Byte)  
Counter/Timer 2 Capture (Low Byte)  
Voltage Reference Control Register  
Reset Source Register  
Serial Data Buffer (UART)  
Serial Port Control (UART)  
SMBus 0 Address  
SMBus 0 Control  
SMBus 0 Clock Rate  
SMBus 0 Data  
109  
110  
110  
111  
112  
88  
PSW  
75  
RCAP2H  
RCAP2L  
REF0CN  
RSTSRC  
SBUF  
151  
151  
61  
97  
136  
137  
120  
118  
119  
120  
121  
74  
0x98  
SCON  
0xC3  
0xC0  
0xCF  
0xC2  
0xC1  
0x81  
SMB0ADR  
SMB0CN  
SMB0CR  
SMB0DAT  
SMB0STA  
SP  
SMBus 0 Status  
Stack Pointer  
0x9A  
0x9D  
0xF8  
0x9B  
0xC8  
0x88  
0x8C  
0x8D  
0xCD  
0x8A  
0x8B  
0xCC  
SPI0CFG  
SPI0CKR  
SPI0CN  
SPI0DAT  
T2CON  
TCON  
TH0  
TH1  
TH2  
TL0  
Serial Peripheral Interface Configuration  
SPI Clock Rate  
SPI Bus Control  
SPI Port 1Data  
Counter/Timer 2 Control  
127  
129  
128  
129  
150  
142  
145  
145  
151  
145  
145  
151  
Counter/Timer Control  
Counter/Timer 0 Data Word (High Byte)  
Counter/Timer 1 Data Word (High Byte)  
Counter/Timer 2 Data Word (High Byte)  
Counter/Timer 0 Data Word (Low Byte)  
Counter/Timer 1 Data Word (Low Byte)  
Counter/Timer 2 Data Word (Low Byte)  
TL1  
TL2  
Rev. 1.7  
72  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Description  
Page No.  
Address Register  
0x89  
0x91  
0x95  
0x94  
0x93  
0x92  
0xFF  
0xE1  
0xE2  
0xE3  
TMOD  
Counter/Timer Mode  
Timer 3 Control  
Timer 3 High  
Timer 3 Low  
Timer 3 Reload High  
Timer 3 Reload Low  
Watchdog Timer Control  
Port I/O Crossbar Configuration 1  
Port I/O Crossbar Configuration 2  
Port I/O Crossbar Configuration 3  
143  
152  
153  
153  
153  
153  
96  
105  
107  
108  
TMR3CN  
TMR3H  
TMR3L  
TMR3RLH  
TMR3RLL  
WDTCN  
XBR0  
XBR1  
XBR2  
0x84-86, 0x96-97, 0x9C,  
0xA1-A3, 0xA9-AC,  
0xAE, 0xB3-B5, 0xB9,  
0xBD, 0xC9, 0xCE,  
Reserved  
0xDF, 0xE4-E5, 0xF1-F5  
* Refers to a register in the C8051F000/1/2/5/6/7 only.  
** Refers to a register in the C8051F010/1/2/5/6/7 only.  
*** Refers to a register in the C8051F005/06/07/15/16/17 only.  
73  
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10.3.1. Register Descriptions  
Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should  
not be set to logic l. Future product versions may use these bits to implement new features in which case the reset  
value of the bit will be logic 0, selecting the feature’s default state. Detailed descriptions of the remaining SFRs are  
included in the sections of the datasheet associated with their corresponding system function.  
Figure 10.3. SP: Stack Pointer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000111  
SFR Address:  
0x81  
Bits 7-0:SP: Stack Pointer.  
The stack pointer holds the location of the top of the stack. The stack pointer is  
incremented before every PUSH operation. The SP register defaults to 0x07 after reset.  
Figure 10.4. DPL: Data Pointer Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x82  
Bits 7-0:DPL: Data Pointer Low.  
The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly  
addressed RAM and Flash Memory.  
Figure 10.5. DPH: Data Pointer High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x83  
Bits 7-0:DPH: Data Pointer High.  
The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indirectly  
addressed RAM and Flash Memory.  
Rev. 1.7  
74  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.6. PSW: Program Status Word  
R/W  
CY  
R/W  
AC  
R/W  
F0  
R/W  
RS1  
Bit4  
R/W  
RS0  
Bit3  
R/W  
OV  
Bit2  
R/W  
F1  
R/W  
Reset Value  
PARITY  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit1  
Bit0  
(bit addressable)  
0xD0  
Bit7:  
Bit6:  
CY: Carry Flag.  
This bit is set when the last arithmetic operation results in a carry (addition) or a borrow  
(subtraction). It is cleared to 0 by all other arithmetic operations.  
AC: Auxiliary Carry Flag.  
This bit is set when the last arithmetic operation results in a carry into (addition) or a  
borrow from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic  
operations.  
Bit5:  
F0: User Flag 0.  
This is a bit-addressable, general purpose flag for use under software control.  
Bits4-3: RS1-RS0: Register Bank Select.  
These bits select which register bank is used during register accesses.  
RS1  
RS0  
Register Bank  
Address  
0
0
1
1
0
1
0
1
0
1
2
3
0x00-0x07  
0x08-0x0F  
0x10-0x17  
0x18-0x1F  
Note: Any instruction which changes the RS1-RS0 bits must not be immediately followed  
by the “MOV Rn, A” instruction.  
Bit2:  
OV: Overflow Flag.  
This bit is set to 1 under the following circumstances:  
An ADD, ADDC, or SUBB instruction causes a sign-change overflow.  
A MUL instruction results in an overflow (result is greater than 255) .  
A DIV instruction causes a divide-by-zero condition.  
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all  
other cases.  
Bit1:  
Bit0:  
F1: User Flag 1.  
This is a bit-addressable, general purpose flag for use under software control.  
PARITY: Parity Flag.  
(Read only)  
This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the  
sum is even.  
75  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.7. ACC: Accumulator  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
ACC.7  
Bit7  
ACC.6  
Bit6  
ACC.5  
Bit5  
ACC.4  
Bit4  
ACC.3  
Bit3  
ACC.2  
Bit2  
ACC.1  
Bit1  
ACC.0  
00000000  
SFR Address:  
Bit0  
(bit addressable)  
0xE0  
Bits 7-0:ACC: Accumulator  
This register is the accumulator for arithmetic operations.  
Figure 10.8. B: B Register  
R/W  
B.7  
Bit7  
R/W  
B.6  
Bit6  
R/W  
B.5  
Bit5  
R/W  
B.4  
Bit4  
R/W  
B.3  
Bit3  
R/W  
B.2  
Bit2  
R/W  
B.1  
Bit1  
R/W  
B.0  
Reset Value  
00000000  
SFR Address:  
Bit0  
(bit addressable)  
0xF0  
Bits 7-0:B: B Register  
This register serves as a second accumulator for certain arithmetic operations.  
Rev. 1.7  
76  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10.4. INTERRUPT HANDLER  
The CIP-51 includes an extended interrupt system supporting a total of 22 interrupt sources with two priority levels.  
The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the  
specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in  
an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending  
flag is set to logic 1.  
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As  
soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address  
to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which  
returns program execution to the next instruction that would have been executed if the interrupt request had not  
occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution  
continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt’s enable/disable state.)  
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in  
an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before  
the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless  
of the individual interrupt-enable settings.  
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.  
However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If  
an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new  
interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next  
instruction.  
10.4.1. MCU Interrupt Sources and Vectors  
The MCUs allocate 12 interrupt sources to on-chip peripherals. Up to 10 additional external interrupt sources are  
available depending on the I/O pin configuration of the device. Software can simulate an interrupt by setting any  
interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the  
CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated  
vector addresses, priority order and control bits are summarized in Table 10.4. Refer to the datasheet section  
associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral  
and the behavior of its interrupt-pending flag(s).  
10.4.2. External Interrupts  
Two of the external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or active-low  
edge-sensitive inputs depending on the setting of IT0 (TCON.0) and IT1 (TCON.2). IE0 (TCON.1) and IE1  
(TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts, respectively. If an /INT0  
or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically  
cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-  
pending flag follows the state of the external interrupt’s input pin. The external interrupt source must hold the input  
active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the  
ISR completes or another interrupt request will be generated.  
The remaining four external interrupts (External Interrupts 4-7) are active-low, edge-sensitive inputs. The interrupt-  
pending flags for these interrupts are in the Port 1 Interrupt Flag Register shown in Figure 15.10.  
77  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 10.4. Interrupt Summary  
Interrupt  
Vector  
Priority  
Order  
Interrupt Source  
Interrupt-Pending Flag  
Enable  
Reset  
0x0000  
0x0003  
0x000B  
0x0013  
0x001B  
0x0023  
Top  
None  
Always enabled  
EX0 (IE.0)  
ET0 (IE.1)  
EX1 (IE.2)  
ET1 (IE.3)  
ES (IE.4)  
External Interrupt 0 (/INT0)  
Timer 0 Overflow  
0
IE0 (TCON.1)  
1
TF0 (TCON.5)  
External Interrupt 1 (/INT1)  
Timer 1 Overflow  
Serial Port (UART)  
2
IE1 (TCON.3)  
3
TF1 (TCON.7)  
4
RI (SCON.0)  
TI (SCON.1)  
Timer 2 Overflow (or EXF2)  
Serial Peripheral Interface  
0x002B  
0x0033  
5
6
TF2 (T2CON.7)  
SPIF (SPI0CN.7)  
WCOL (SPI0CN.6)  
MODF (SPI0CN.5)  
RXOVRN (SPI0CN.4)  
SI (SMB0CN.3)  
ADWINT (ADC0CN.2)  
CF (PCA0CN.7)  
CCFn (PCA0CN.n)  
CP0FIF (CPT0CN.4)  
CP0RIF (CPT0CN.5)  
CP1FIF (CPT1CN.4)  
CP1RIF (CPT1CN.5)  
TF3 (TMR3CN.7)  
ADCINT (ADC0CN.5)  
IE4 (PRT1IF.4)  
IE5 (PRT1IF.5)  
IE6 (PRT1IF.6)  
IE7 (PRT1IF.7)  
None  
ET2 (IE.5)  
ESPI0 (EIE1.0)  
SMBus Interface  
ADC0 Window Comparison  
Programmable Counter Array 0  
0x003B  
0x0043  
0x004B  
7
8
9
ESMB0 (EIE1.1)  
EWADC0 (EIE1.2)  
EPCA0 (EIE1.3)  
Comparator 0 Falling Edge  
Comparator 0 Rising Edge  
Comparator 1 Falling Edge  
Comparator 1 Rising Edge  
Timer 3 Overflow  
0x0053  
0x005B  
0x0063  
0x006B  
0x0073  
0x007B  
0x0083  
0x008B  
0x0093  
0x009B  
0x00A3  
0x00AB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
ECP0F (EIE1.4)  
ECP0R (EIE1.5)  
ECP1F (EIE1.6)  
ECP1R (EIE1.7)  
ET3 (EIE2.0)  
ADC0 End of Conversion  
External Interrupt 4  
EADC0 (EIE2.1)  
EX4 (EIE2.2)  
External Interrupt 5  
EX5 (EIE2.3)  
External Interrupt 6  
EX6 (EIE2.4)  
External Interrupt 7  
EX7 (EIE2.5)  
Unused Interrupt Location  
External Crystal OSC Ready  
Reserved (EIE2.6)  
EXVLD (EIE2.7)  
XTLVLD (OSCXCN.7)  
10.4.3. Interrupt Priorities  
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority  
interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be  
preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP-EIP2) used to configure its priority  
level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher  
priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate.  
10.4.4. Interrupt Latency  
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled  
and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock  
cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is  
pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending  
interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being  
serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction  
followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle  
to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4  
clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher  
priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following  
instruction.  
Rev. 1.7  
78  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10.4.5. Interrupt Register Descriptions  
The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet  
section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the  
peripheral and the behavior of its interrupt-pending flag(s).  
Figure 10.9. IE: Interrupt Enable  
R/W  
EA  
R/W  
IEGF0  
Bit6  
R/W  
ET2  
Bit5  
R/W  
ES  
R/W  
ET1  
Bit3  
R/W  
EX1  
Bit2  
R/W  
ET0  
Bit1  
R/W  
EX0  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit4  
Bit0  
(bit addressable)  
0xA8  
Bit7:  
EA: Enable All Interrupts.  
This bit globally enables/disables all interrupts. It overrides the individual interrupt mask  
settings.  
0: Disable all interrupt sources.  
1: Enable each interrupt according to its individual mask setting.  
Bit6:  
Bit5:  
IEGF0: General Purpose Flag 0.  
This is a general purpose flag for use under software control.  
ET2: Enable Timer 2 Interrupt.  
This bit sets the masking of the Timer 2 interrupt.  
0: Disable all Timer 2 interrupts.  
1: Enable interrupt requests generated by the TF2 flag (T2CON.7)  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
ES: Enable Serial Port (UART) Interrupt.  
This bit sets the masking of the Serial Port (UART) interrupt.  
0: Disable all UART interrupts.  
1: Enable interrupt requests generated by the R1 flag (SCON.0) or T1 flag (SCON.1).  
ET1: Enable Timer 1 Interrupt.  
This bit sets the masking of the Timer 1 interrupt.  
0: Disable all Timer 1 interrupts.  
1: Enable interrupt requests generated by the TF1 flag (TCON.7).  
EX1: Enable External Interrupt 1.  
This bit sets the masking of external interrupt 1.  
0: Disable external interrupt 1.  
1: Enable interrupt requests generated by the /INT1 pin.  
ET0: Enable Timer 0 Interrupt.  
This bit sets the masking of the Timer 0 interrupt.  
0: Disable all Timer 0 interrupts.  
1: Enable interrupt requests generated by the TF0 flag (TCON.5).  
EX0: Enable External Interrupt 0.  
This bit sets the masking of external interrupt 0.  
0: Disable external interrupt 0.  
1: Enable interrupt requests generated by the /INT0 pin.  
79  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.10. IP: Interrupt Priority  
R/W  
-
R/W  
-
R/W  
PT2  
Bit5  
R/W  
PS  
R/W  
PT1  
Bit3  
R/W  
PX1  
Bit2  
R/W  
PT0  
Bit1  
R/W  
PX0  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit4  
Bit0  
(bit addressable)  
0xB8  
Bits7-6: UNUSED. Read = 11b, Write = don’t care.  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PT2 Timer 2 Interrupt Priority Control.  
This bit sets the priority of the Timer 2 interrupts.  
0: Timer 2 interrupts set to low priority level.  
1: Timer 2 interrupts set to high priority level.  
PS: Serial Port (UART) Interrupt Priority Control.  
This bit sets the priority of the Serial Port (UART) interrupts.  
0: UART interrupts set to low priority level.  
1: UART interrupts set to high priority level.  
PT1: Timer 1 Interrupt Priority Control.  
This bit sets the priority of the Timer 1 interrupts.  
0: Timer 1 interrupts set to low priority level.  
1: Timer 1 interrupts set to high priority level.  
PX1: External Interrupt 1 Priority Control.  
This bit sets the priority of the External Interrupt 1 interrupts.  
0: External Interrupt 1 set to low priority level.  
1: External Interrupt 1 set to high priority level.  
PT0: Timer 0 Interrupt Priority Control.  
This bit sets the priority of the Timer 0 interrupts.  
0: Timer 0 interrupt set to low priority level.  
1: Timer 0 interrupt set to high priority level.  
PX0: External Interrupt 0 Priority Control.  
This bit sets the priority of the External Interrupt 0 interrupts.  
0: External Interrupt 0 set to low priority level.  
1: External Interrupt 0 set to high priority level.  
Rev. 1.7  
80  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.11. EIE1: Extended Interrupt Enable 1  
R/W  
ECP1R  
Bit7  
R/W  
ECP1F  
Bit6  
R/W  
ECP0R  
Bit5  
R/W  
ECP0F  
Bit4  
R/W  
EPCA0  
Bit3  
R/W  
EWADC0  
Bit2  
R/W  
ESMB0  
Bit1  
R/W  
ESPI0  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xE6  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
ECP1R: Enable Comparator 1 (CP1) Rising Edge Interrupt.  
This bit sets the masking of the CP1 interrupt.  
0: Disable CP1 Rising Edge interrupt.  
1: Enable interrupt requests generated by the CP1RIF flag (CPT1CN.5).  
ECP1F: Enable Comparator 1 (CP1) Falling Edge Interrupt.  
This bit sets the masking of the CP1 interrupt.  
0: Disable CP1 Falling Edge interrupt.  
1: Enable interrupt requests generated by the CP1FIF flag (CPT1CN.4).  
ECP0R: Enable Comparator 0 (CP0) Rising Edge Interrupt.  
This bit sets the masking of the CP0 interrupt.  
0: Disable CP0 Rising Edge interrupt.  
1: Enable interrupt requests generated by the CP0RIF flag (CPT0CN.5).  
ECP0F: Enable Comparator 0 (CP0) Falling Edge Interrupt.  
This bit sets the masking of the CP0 interrupt.  
0: Disable CP0 Falling Edge interrupt.  
1: Enable interrupt requests generated by the CP0FIF flag (CPT0CN.4).  
EPCA0: Enable Programmable Counter Array (PCA0) Interrupt.  
This bit sets the masking of the PCA0 interrupts.  
0: Disable all PCA0 interrupts.  
1: Enable interrupt requests generated by PCA0.  
EWADC0: Enable Window Comparison ADC0 Interrupt.  
This bit sets the masking of ADC0 Window Comparison interrupt.  
0: Disable ADC0 Window Comparison Interrupt.  
1: Enable Interrupt requests generated by ADC0 Window Comparisons.  
ESMB0: Enable SMBus 0 Interrupt.  
This bit sets the masking of the SMBus interrupt.  
0: Disable all SMBus interrupts.  
1: Enable interrupt requests generated by the SI flag (SMB0CN.3).  
ESPI0: Enable Serial Peripheral Interface 0 Interrupt.  
This bit sets the masking of SPI0 interrupt.  
0: Disable all SPI0 interrupts.  
1: Enable Interrupt requests generated by SPI0.  
81  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.12. EIE2: Extended Interrupt Enable 2  
R/W  
EXVLD  
Bit7  
R/W  
-
R/W  
EX7  
Bit5  
R/W  
EX6  
Bit4  
R/W  
EX5  
Bit3  
R/W  
EX4  
Bit2  
R/W  
EADC0  
Bit1  
R/W  
ET3  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit6  
0xE7  
Bit7:  
EXVLD: Enable External Clock Source Valid (XTLVLD) Interrupt.  
This bit sets the masking of the XTLVLD interrupt.  
0: Disable all XTLVLD interrupts.  
1: Enable interrupt requests generated by the XTLVLD flag (OSCXCN.7)  
Bit6:  
Bit5:  
Reserved. Must Write 0. Reads 0.  
EX7: Enable External Interrupt 7.  
This bit sets the masking of External Interrupt 7.  
0: Disable External Interrupt 7.  
1: Enable interrupt requests generated by the External Interrupt 7 input pin.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
EX6: Enable External Interrupt 6.  
This bit sets the masking of External Interrupt 6.  
0: Disable External Interrupt 6.  
1: Enable interrupt requests generated by the External Interrupt 6 input pin.  
EX5: Enable External Interrupt 5.  
This bit sets the masking of External Interrupt 5.  
0: Disable External Interrupt 5.  
1: Enable interrupt requests generated by the External Interrupt 5 input pin.  
EX4: Enable External Interrupt 4.  
This bit sets the masking of External Interrupt 4.  
0: Disable External Interrupt 4.  
1: Enable interrupt requests generated by the External Interrupt 4 input pin.  
EADC0: Enable ADC0 End of Conversion Interrupt.  
This bit sets the masking of the ADC0 End of Conversion Interrupt.  
0: Disable ADC0 Conversion Interrupt.  
1: Enable interrupt requests generated by the ADC0 Conversion Interrupt.  
ET3: Enable Timer 3 Interrupt.  
This bit sets the masking of the Timer 3 interrupt.  
0: Disable all Timer 3 interrupts.  
1: Enable interrupt requests generated by the TF3 flag (TMR3CN.7)  
Rev. 1.7  
82  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.13. EIP1: Extended Interrupt Priority 1  
R/W  
PCP1R  
Bit7  
R/W  
PCP1F  
Bit6  
R/W  
PCP0R  
Bit5  
R/W  
PCP0F  
Bit4  
R/W  
PPCA0  
Bit3  
R/W  
PWADC0  
Bit2  
R/W  
PSMB0  
Bit1  
R/W  
PSPI0  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xF6  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PCP1R: Comparator 1 (CP1) Rising Interrupt Priority Control.  
This bit sets the priority of the CP1 interrupt.  
0: CP1 rising interrupt set to low priority level.  
1: CP1 rising interrupt set to high priority level.  
PCP1F: Comparator 1 (CP1) Falling Interrupt Priority Control.  
This bit sets the priority of the CP1 interrupt.  
0: CP1 falling interrupt set to low priority level.  
1: CP1 falling interrupt set to high priority level.  
PCP0R: Comparator 0 (CP0) Rising Interrupt Priority Control.  
This bit sets the priority of the CP0 interrupt.  
0: CP0 rising interrupt set to low priority level.  
1: CP0 rising interrupt set to high priority level.  
PCP0F: Comparator 0 (CP0) Falling Interrupt Priority Control.  
This bit sets the priority of the CP0 interrupt.  
0: CP0 falling interrupt set to low priority level.  
1: CP0 falling interrupt set to high priority level.  
PPCA0: Programmable Counter Array (PCA0) Interrupt Priority Control.  
This bit sets the priority of the PCA0 interrupt.  
0: PCA0 interrupt set to low priority level.  
1: PCA0 interrupt set to high priority level.  
PWADC0: ADC0 Window Comparator Interrupt Priority Control.  
This bit sets the priority of the ADC0 Window interrupt.  
0: ADC0 Window interrupt set to low priority level.  
1: ADC0 Window interrupt set to high priority level.  
PSMB0: SMBus 0 Interrupt Priority Control.  
This bit sets the priority of the SMBus interrupt.  
0: SMBus interrupt set to low priority level.  
1: SMBus interrupt set to high priority level.  
PSPI0: Serial Peripheral Interface 0 Interrupt Priority Control.  
This bit sets the priority of the SPI0 interrupt.  
0: SPI0 interrupt set to low priority level.  
1: SPI0 interrupt set to high priority level.  
83  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 10.14. EIP2: Extended Interrupt Priority 2  
R/W  
PXVLD  
Bit7  
R/W  
-
R/W  
PX7  
Bit5  
R/W  
PX6  
Bit4  
R/W  
PX5  
Bit3  
R/W  
PX4  
Bit2  
R/W  
PADC0  
Bit1  
R/W  
PT3  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit6  
0xF7  
Bit7:  
PXVLD: External Clock Source Valid (XTLVLD) Interrupt Priority Control.  
This bit sets the priority of the XTLVLD interrupt.  
0: XTLVLD interrupt set to low priority level.  
1: XTLVLD interrupt set to high priority level.  
Bit6:  
Bit5:  
Reserved: Must write 0. Reads 0.  
PX7: External Interrupt 7 Priority Control.  
This bit sets the priority of the External Interrupt 7.  
0: External Interrupt 7 set to low priority level.  
1: External Interrupt 7 set to high priority level.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PX6: External Interrupt 6 Priority Control.  
This bit sets the priority of the External Interrupt 6.  
0: External Interrupt 6 set to low priority level.  
1: External Interrupt 6 set to high priority level.  
PX5: External Interrupt 5 Priority Control.  
This bit sets the priority of the External Interrupt 5.  
0: External Interrupt 5 set to low priority level.  
1: External Interrupt 5 set to high priority level.  
PX4: External Interrupt 4 Priority Control.  
This bit sets the priority of the External Interrupt 4.  
0: External Interrupt 4 set to low priority level.  
1: External Interrupt 4 set to high priority level.  
PADC0: ADC End of Conversion Interrupt Priority Control.  
This bit sets the priority of the ADC0 End of Conversion Interrupt.  
0: ADC0 End of Conversion interrupt set to low priority level.  
1: ADC0 End of Conversion interrupt set to high priority level.  
PT3: Timer 3 Interrupt Priority Control.  
This bit sets the priority of the Timer 3 interrupts.  
0: Timer 3 interrupt set to low priority level.  
1: Timer 3 interrupt set to high priority level.  
Rev. 1.7  
84  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
10.5. Power Management Modes  
The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the  
CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is halted, all  
interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is stopped. Since  
clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number  
of peripherals left in active mode before entering Idle. Stop mode consumes the least power. Figure 10.15  
describes the Power Control Register (PCON) used to control the CIP-51’s power management modes.  
Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management  
of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog  
peripheral can be disabled when not in use and put into low power mode. Digital peripherals, such as timers or  
serial buses, draw little power whenever they are not in use. Turning off the oscillator saves even more power, but  
requires a reset to restart the MCU.  
10.5.1. Idle Mode  
Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the  
instruction that sets the bit completes. All internal registers and memory maintain their original data. All analog  
and digital peripherals can remain active during Idle mode.  
Idle mode is terminated when an enabled interrupt or /RST is asserted. The assertion of an enabled interrupt will  
cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU will resume operation. The pending  
interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the  
instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal  
or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.  
Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during  
the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode when a future  
interrupt occurs. Any instructions that set the IDLE bit should be followed by an instruction that has 2 or more op-  
code bytes, for example:  
// in ‘C’:  
PCON |= 0x01;  
// set IDLE bit  
PCON = PCON;  
// ... followed by a 3-cycle dummy instruction  
; in assembly:  
ORL PCON, #01h  
MOV PCON, PCON  
; set IDLE bit  
; ... followed by a 3-cycle dummy instruction  
If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This  
feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the  
PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle  
mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional  
power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake  
up the system. Refer to Section 13.8 Watchdog Timer for more information on the use and configuration of the  
WDT.  
10.5.2. Stop Mode  
Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets  
the bit completes. In Stop mode, the CPU and oscillators are stopped, effectively shutting down all digital  
peripherals. Each analog peripheral must be shut down individually prior to entering Stop Mode. Stop mode can  
only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and  
begins program execution at address 0x0000.  
85  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The  
Missing Clock Detector should be disabled if the CPU is to be put to sleep for longer than the MCD timeout of  
100µsec.  
Figure 10.15. PCON: Power Control Register  
R/W  
SMOD  
Bit7  
R/W  
GF4  
Bit6  
R/W  
GF3  
Bit5  
R/W  
GF2  
Bit4  
R/W  
GF1  
Bit3  
R/W  
GF0  
Bit2  
R/W  
STOP  
Bit1  
R/W  
IDLE  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x87  
Bit7:  
SMOD: Serial Port Baud Rate Doubler Enable.  
0: Serial Port baud rate is that defined by Serial Port Mode in SCON.  
1: Serial Port baud rate is double that defined by Serial Port Mode in SCON.  
Bits6-2: GF4-GF0: General Purpose Flags 4-0.  
These are general purpose flags for use under software control.  
Bit1:  
Bit0:  
STOP: Stop Mode Select.  
Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.  
1: Goes into power down mode. (Turns off internal oscillator).  
IDLE: Idle Mode Select.  
Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0.  
1: Goes into idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial  
Ports, and Analog Peripherals are still active.)  
Rev. 1.7  
86  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
11. FLASH MEMORY  
These devices include 32k + 128 bytes of on-chip, reprogrammable Flash memory for program code and non-  
volatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the JTAG  
interface or by software using the MOVX instruction. Once cleared to 0, a Flash bit must be erased to set it back to  
1. The bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations  
are automatically timed by hardware for proper execution. Data polling to determine the end of the write/erase  
operation is not required. The Flash memory is designed to withstand at least 20,000 write/erase cycles. Refer to  
Table 11.1 for the electrical characteristics of the Flash memory.  
11.1. Programming The Flash Memory  
The simplest means of programming the Flash memory is through the JTAG interface using programming tools  
provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device.  
For details on the JTAG commands to program Flash memory, see Section 21.2.  
The Flash memory can be programmed by software using the MOVX instruction with the address and data byte to  
be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write  
operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1. Writing to  
Flash remains enabled until the PSWE bit is cleared by software.  
Writes to Flash memory can clear bits but cannot set them. Only an erase operation can set bits in Flash. Therefore,  
the byte location to be programmed must be erased before a new value can be written. The 32kbyte Flash memory  
is organized in 512-byte sectors. The erase operation applies to an entire sector (setting all bytes in the sector to  
0xFF). Setting the PSEE Program Store Erase Enable bit (PSCTL.1) and PSWE (PSCTL.0) bit to logic 1 and then  
using the MOVX command to write a data byte to any byte location within the sector will erase an entire 512-byte  
sector. The data byte written can be of any value because it is not actually written to the Flash. Flash erasure  
remains enabled until the PSEE bit is cleared by software. The following sequence illustrates the algorithm for  
programming the Flash memory by software:  
1. Enable Flash Memory write/erase in FLSCL Register using FLASCL bits.  
2. Set PSEE (PSCTL.1) to enable Flash sector erase.  
3. Set PSWE (PSCTL.0) to enable Flash writes.  
4. Use MOVX to write a data byte to any location within the 512-byte sector to be erased.  
5. Clear PSEE to disable Flash sector erase.  
6. Use MOVX to write a data byte to the desired byte location within the erased 512-byte sector. Repeat until  
finished. (Any number of bytes can be written from a single byte to and entire sector.)  
7. Clear the PSWE bit to disable Flash writes.  
Write/Erase timing is automatically controlled by hardware based on the prescaler value held in the Flash Memory  
Timing Prescaler register (FLSCL). The 4-bit prescaler value FLASCL determines the time interval for write/erase  
operations. The FLASCL value required for a given system clock is shown in Figure 11.4, along with the formula  
used to derive the FLASCL values. When FLASCL is set to 1111b, the write/erase operations are disabled. Note  
that code execution in the 8051 is stalled while the Flash is being programmed or erased.  
Table 11.1. FLASH Memory Electrical Characteristics  
VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
20k  
10  
TYP  
100k  
MAX  
UNITS  
Erase/Wr  
ms  
Endurance  
Erase Cycle Time  
Write Cycle Time  
40  
µs  
87  
Rev. 1.7  
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
11.2. Non-volatile Data Storage  
The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as  
calibration coefficients to be calculated and stored at run time. Data is written using the MOVX instruction and  
read using the MOVC instruction.  
The MCU incorporates an additional 128-byte sector of Flash memory located at 0x8000 – 0x807F. This sector can  
be used for program code or data storage. However, its smaller sector size makes it particularly well suited as  
general purpose, non-volatile scratchpad memory. Even though Flash memory can be written a single byte at a  
time, an entire sector must be erased first. In order to change a single byte of a multi-byte data set, the data must be  
moved to temporary storage. Next, the sector is erased, the data set updated and the data set returned to the original  
sector. The 128-byte sector-size facilitates updating data without wasting program memory space by allowing the  
use of internal data RAM for temporary storage. (A normal 512-byte sector is too large to be stored in the 256-byte  
internal data memory.)  
11.3. Security Options  
The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as  
well as prevent the viewing of proprietary program code and constants. The Program Store Write Enable  
(PSCTL.0) and the Program Store Erase Enable (PSCTL.1) bits protect the Flash memory from accidental  
modification by software. These bits must be explicitly set to logic 1 before software can modify the Flash memory.  
Additional security features prevent proprietary program code and data constants from being read or altered across  
the JTAG interface or by software running on the system controller.  
A set of security lock bytes stored at 0x7DFE and 0x7DFF protect the Flash program memory from being read or  
altered across the JTAG interface. Each bit in a security lock-byte protects one 4kbyte block of memory. Clearing  
a bit to logic 0 in a Read lock byte prevents the corresponding block of Flash memory from being read across the  
JTAG interface. Clearing a bit in the Write/Erase lock byte protects the block from JTAG erasures and/or writes.  
The Read lock byte is at location 0x7DFF. The Write/Erase lock byte is located at 0x7DFE. Figure 11.2 shows the  
location and bit definitions of the security bytes. The 512-byte sector containing the lock bytes can be written to,  
but not erased by software. Writing to the reserved area should not be performed.  
Figure 11.1. PSCTL: Program Store RW Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
PSEE  
Bit1  
R/W  
PSWE  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
0x8F  
Bits7-2: UNUSED. Read = 000000b, Write = don’t care.  
Bit1:  
Bit0:  
PSEE: Program Store Erase Enable.  
Setting this bit allows an entire page of the Flash program memory to be erased provided  
the PSWE bit is also set. After setting this bit, a write to Flash memory using the MOVX  
instruction will erase the entire page that contains the location addressed by the MOVX  
instruction. The value of the data byte written does not matter.  
0: Flash program memory erasure disabled.  
1: Flash program memory erasure enabled.  
PSWE: Program Store Write Enable.  
Setting this bit allows writing a byte of data to the Flash program memory using the  
MOVX instruction. The location must be erased before writing data.  
0: Write to Flash program memory disabled.  
1: Write to Flash program memory enabled.  
Rev. 1.7  
88  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 11.2. Flash Program Memory Security Bytes  
(This Block locked only if all  
other blocks are locked)  
0x807F  
0x8000  
0x7FFF  
Reserved  
0x7E00  
0x7DFF  
Read Lock Byte  
0x7DFE  
0x7DFD  
Write/Erase Lock Byte  
Read and Write/Erase Security Bits.  
(Bit 7 is MSB.)  
Program Memory  
Space  
Bit Memory Block  
7
6
5
4
3
2
1
0
0x7000 - 0x7DFD  
0x6000 - 0x6FFF  
0x5000 - 0x5FFF  
0x4000 - 0x4FFF  
0x3000 - 0x3FFF  
0x2000 - 0x2FFF  
0x1000 - 0x1FFF  
0x0000 - 0x0FFF  
Software Read Limit  
0x0000  
FLASH Read Lock Byte  
Bits7-0: Each bit locks a corresponding block of memory. (Bit 7 is MSB.)  
0: Read operations are locked (disabled) for corresponding block across the JTAG interface.  
1: Read operations are unlocked (enabled) for corresponding block across the JTAG interface.  
FLASH Write/Erase Lock Byte  
Bits7-0: Each bit locks a corresponding block of memory.  
0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG interface.  
1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG interface.  
FLASH Access Limit Register (FLACL)  
The content of this register is used as the high byte of the 16-bit software read limit address. The 16-  
bit read limit address value is calculated as 0xNN00 where NN is replaced by the contents of this  
register. Software running at or above this address is prohibited from using the MOVX or MOVC  
instructions to read, write, or erase, locations below this address. Any attempts to read locations  
below this limit will return the value 0x00.  
The lock bits can always be read and cleared to logic 0 regardless of the security setting applied to the block  
containing the security bytes. This allows additional blocks to be protected after the block containing the security  
bytes has been locked. However, the only means of removing a lock once set is to erase the entire program memory  
space by performing a JTAG erase operation (i.e. cannot be done in user firmware). NOTE: Addressing either  
security byte while performing a JTAG erase operation will automatically initiate erasure of the entire  
program memory space (except for the reserved area). This erasure can only be performed via JTAG. If a  
non-security byte in the 0x7C00-0x7DFF page is addressed during erasure, only that page (including the  
security bytes) will be erased.  
The Flash Access Limit security feature (see Figure 11.3) protects proprietary program code and data from being  
read by software running on the C8051F005/06/07/15/16/17 MCUs. This feature provides support for OEMs that  
wish to program the MCU with proprietary value-added firmware before distribution. The value-added firmware  
can be protected while allowing additional code to be programmed in remaining program memory space later.  
89  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
The Software Read Limit (SRL) is a 16-bit address that establishes two logical partitions in the program memory  
space. The first is an upper partition consisting of all the program memory locations at or above the SRL address,  
and the second is a lower partition consisting of all the program memory locations starting at 0x0000 up to (but  
excluding) the SRL address. Software in the upper partition can execute code in the lower partition, but is  
prohibited from reading locations in the lower partition using the MOVC instruction. (Executing a MOVC  
instruction from the upper partition with a source address in the lower partition will always return a data value of  
0x00.) Software running in the lower partition can access locations in both the upper and lower partition without  
restriction.  
The Value-added firmware should be placed in the lower partition. On reset, control is passed to the value-added  
firmware via the reset vector. Once the value-added firmware completes its initial execution, it branches to a  
predetermined location in the upper partition. If entry points are published, software running in the upper partition  
may execute program code in the lower partition, but it cannot read the contents of the lower partition. Parameters  
may be passed to the program code running in the lower partition either through the typical method of placing them  
on the stack or in registers before the call or by placing them in prescribed memory locations in the upper partition.  
The SRL address is specified using the contents of the Flash Access Register. The 16-bit SRL address is calculated  
as 0xNN00, where NN is the contents of the SRL Security Register. Thus, the SRL can be located on 256-byte  
boundaries anywhere in program memory space. However, the 512-byte erase sector size essentially requires that a  
512 boundary be used. The contents of a non-initialized SRL security byte is 0x00, thereby setting the SRL address  
to 0x0000 and allowing read access to all locations in program memory space by default.  
Figure 11.3. FLACL: Flash Access Limit (C8051F005/06/07/15/16/17 only)  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xB7  
Bits 7-0:FLACL: Flash Access Limit.  
This register holds the high byte of the 16-bit program memory read/write/erase limit  
address. The entire 16-bit access limit address value is calculated as 0xNN00 where NN is  
replaced by contents of FLACL. A write to this register sets the Flash Access Limit. This  
register can only be written once after any reset. Any subsequent writes are ignored  
until the next reset.  
Rev. 1.7  
90  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 11.4. FLSCL: Flash Memory Timing Prescaler  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
10001111  
SFR Address:  
0xB6  
FOSE  
FRAE  
-
-
FLASCL  
Bit7  
Bit6  
Bit5  
Bit4  
Bit7:  
Bit6:  
FOSE: Flash One-Shot Timer Enable  
0: Flash One-shot timer disabled.  
1: Flash One-shot timer enabled  
FRAE: Flash Read Always Enable  
0: Flash reads per one-shot timer  
1: Flash always in read mode  
Bits5-4: UNUSED. Read = 00b, Write = don’t care.  
Bits3-0: FLASCL: Flash Memory Timing Prescaler.  
This register specifies the prescaler value for a given system clock required to generate the  
correct timing for Flash write/erase operations. If the prescaler is set to 1111b, Flash  
write/erase operations are disabled.  
0000: System Clock < 50kHz  
0001: 50kHz System Clock < 100kHz  
0010: 100kHz System Clock < 200kHz  
0011: 200kHz System Clock < 400kHz  
0100: 400kHz System Clock < 800kHz  
0101: 800kHz System Clock < 1.6MHz  
0110: 1.6MHz System Clock < 3.2MHz  
0111: 3.2MHz System Clock < 6.4MHz  
1000: 6.4MHz System Clock < 12.8MHz  
1001: 12.8MHz System Clock < 25.6MHz  
1010: 25.6MHz System Clock < 51.2MHz *  
1011, 1100, 1101, 1110: Reserved Values  
1111: Flash Memory Write/Erase Disabled  
The prescaler value is the smallest value satisfying the following equation:  
FLASCL > log2(System Clock / 50kHz)  
* For test purposes. The C8051F000 family is not guaranteed for operation over 25MHz.  
91  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
12. EXTERNAL RAM (C8051F005/06/07/15/16/17)  
The C8051F005/06/07/15/16/17 MCUs include 2048 bytes of RAM mapped into the external data memory space.  
All of these address locations may be accessed using the external move instruction (MOVX) and the data pointer  
(DPTR), or using MOVX indirect addressing mode. If the MOVX instruction is used with an 8-bit address operand  
(such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control  
Register (EMI0CN as shown in Figure 12.1). Note: the MOVX instruction is also used for writes to the Flash  
memory. See Section 11 for details. The MOVX instruction accesses XRAM by default (i.e. PSTCL.0 = 0).  
For any of the addressing modes the upper 5-bits of the 16-bit external data memory address word are “don’t cares”.  
As a result, the 2048-byte RAM is mapped modulo style over the entire 64k external data memory address range.  
For example, the XRAM byte at address 0x0000 is also at address 0x0800, 0x1000, 0x1800, 0x2000, etc. This is a  
useful feature when doing a linear memory fill, as the address pointer doesn’t have to be reset when reaching the  
RAM block boundary.  
Figure 12.1. EMI0CN: External Memory Interface Control  
R
R
R
R
R
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
-
PGSEL2  
PGSEL1  
PGSEL0  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0xAF  
Bits 7-3:Not Used – reads 00000b  
Bits 2-0:PGSEL[2:0]: XRAM Page Select Bits  
The XRAM Page Select Bits provide the high byte of the 16-bit external data memory  
address when using an 8-bit MOVX command, effectively selecting a 256-byte page of  
RAM. The upper 5-bits are “don’t cares”, so the 2k address blocks are repeated modulo  
over the entire 64k external data memory address space.  
000: xxxxx000b  
001: xxxxx001b  
010: xxxxx010b  
011: xxxxx011b  
100: xxxxx100b  
101: xxxxx101b  
110: xxxxx110b  
111: xxxxx111b  
Rev. 1.7  
92  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
13. RESET SOURCES  
The reset circuitry of the MCUs allows the controller to be easily placed in a predefined default condition. On entry  
to this reset state, the CIP-51 halts program execution, forces the external port pins to a known state and initializes  
the SFRs to their defined reset values. Interrupts and timers are disabled. On exit, the program counter (PC) is  
reset, and program execution starts at location 0x0000.  
All of the SFRs are reset to predefined values. The reset values of the SFR bits are defined in the SFR detailed  
descriptions. The contents of internal data memory are not changed during a reset and any previously stored data is  
preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the  
stack are not altered.  
The I/O port latches are reset to 0xFF (all logic ones), activating internal weak pull-ups which take the external I/O  
pins to a high state. The weak pull-ups are enabled during and after the reset. If the source of reset is from the VDD  
Monitor or writing a 1 to PORSF, the /RST pin is driven low until the end of the VDD reset timeout.  
On exit from the reset state, the MCU uses the internal oscillator running at 2MHz as the system clock by default.  
Refer to Section 14 for information on selecting and configuring the system clock source. The Watchdog Timer is  
enabled using its longest timeout interval. (Section 13.8 details the use of the Watchdog Timer.)  
There are seven sources for putting the MCU into the reset state: power-on/power-fail, external /RST pin, external  
CNVSTR signal, software commanded, Comparator 0, Missing Clock Detector, and Watchdog Timer. Each reset  
source is described below:  
Figure 13.1. Reset Sources Diagram  
VDD  
CNVSTR  
(Port  
I/O)  
Crossbar  
Supply  
Monitor  
CNVRSEF  
Supply  
Reset  
+
/RST  
-
(wired-OR)  
Timeout  
Comparator 0  
CP0+  
CP0-  
+
-
C0RSEF  
Reset  
Funnel  
Missing  
Clock  
Detector  
(one-  
shot)  
System  
Clock  
WDT  
EN  
(Software Reset)  
SWRSF  
EN PRE  
System Reset  
CIP-51  
Core  
93  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
13.1. Power-on Reset  
The C8051F000 family incorporates a power supply monitor that holds the MCU in the reset state until VDD rises  
above the VRST level during power-up. (See Figure 13.2 for timing diagram, and refer to Table 13.1 for the  
Electrical Characteristics of the power supply monitor circuit.) The /RST pin is asserted (low) until the end of the  
100ms VDD Monitor timeout in order to allow the VDD supply to become stable.  
On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other reset  
flags in the RSTSRC Register are indeterminate. PORSF is cleared by a reset from any other source. Since all  
resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to  
determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be  
undefined after a power-on reset.  
13.2. Software Forced Reset  
Writing a 1 to the PORSF bit forces a Power-On Reset as described in Section 13.1.  
Figure 13.2. VDD Monitor Timing Diagram  
2.70  
2.40  
VRST  
2.0  
1.0  
t
/RST  
Logic HIGH  
100ms  
100ms  
Logic LOW  
13.3. Power-fail Reset  
When a power-down transition or power irregularity causes VDD to drop below VRST, the power supply monitor  
will drive the /RST pin low and return the CIP-51 to the reset state (see Figure 13.2). When VDD returns to a level  
above VRST, the CIP-51 will leave the reset state in the same manner as that for the power-on reset. Note that even  
though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if VDD  
dropped below the level required for data retention. If the PORSF flag is set, the data may no longer be valid.  
Rev. 1.7  
94  
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
13.4. External Reset  
The external /RST pin provides a means for external circuitry to force the MCU into a reset state. Asserting an  
active-low signal on the /RST pin will cause the MCU to enter the reset state. Although there is a weak internal  
pullup, it may be desirable to provide an external pull-up and/or decoupling of the /RST pin to avoid erroneous  
noise-induced resets. The MCU will remain in reset until at least 12 clock cycles after the active-low /RST signal is  
removed. The PINRSF flag (RSTSRC.0) is set on exit from an external reset. The /RST pin is also 5V tolerant.  
13.5. Missing Clock Detector Reset  
The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If the  
system clock goes away for more than 100µs, the one-shot will time out and generate a reset. After a Missing Clock  
Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MSD as the reset source; otherwise, this  
bit reads 0. The state of the /RST pin is unaffected by this reset. Setting the MSCLKE bit in the OSCICN register  
(see Figure 14.2) enables the Missing Clock Detector.  
13.6. Comparator 0 Reset  
Comparator 0 can be configured as an active-low reset input by writing a 1 to the C0RSEF flag (RSTSRC.5).  
Comparator 0 should be enabled using CPT0CN.7 (see Figure 8.3) at least 20µs prior to writing to C0RSEF to  
prevent any turn-on chatter on the output from generating an unwanted reset. When configured as a reset, if the  
non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the MCU is put into the  
reset state. After a Comparator 0 Reset, the C0RSEF flag (RSTSRC.5) will read 1 signifying Comparator 0 as the  
reset source; otherwise, this bit reads 0. The state of the /RST pin is unaffected by this reset. Also, Comparator 0  
can generate a reset with or without the system clock.  
13.7. External CNVSTR Pin Reset  
The external CNVSTR signal can be configured as an active-low reset input by writing a 1 to the CNVRSEF flag  
(RSTSRC.6). The CNVSTR signal can appear on any of the P0, P1, or P2 I/O pins as described in Section 15.1.  
(Note that the Crossbar must be configured for the CNVSTR signal to be routed to the appropriate Port I/O.) The  
Crossbar should be configured and enabled before the CNVRSEF is set to configure CNVSTR as a reset source.  
When configured as a reset, CNVSTR is active-low and level sensitive. After a CNVSTR reset, the CNVRSEF flag  
(RSTSRC.6) will read 1 signifying CNVSTR as the reset source; otherwise, this bit reads 0. The state of the /RST  
pin is unaffected by this reset.  
13.8. Watchdog Timer Reset  
The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. The WDT will force  
the MCU into the reset state when the watchdog timer overflows. To prevent the reset, the WDT must be restarted  
by application software before the overflow occurs. If the system experiences a software/hardware malfunction  
preventing the software from restarting the WDT, the WDT will overflow and cause a reset. This should prevent  
the system from running out of control.  
The WDT is automatically enabled and started with the default maximum time interval on exit from all resets. If  
desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the  
WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by this reset.  
95  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
13.8.1. Watchdog Usage  
The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the period  
between specific writes to its control register. If this period exceeds the programmed limit, a WDT reset is  
generated. The WDT can be enabled and disabled as needed in software, or can be permanently enabled if desired.  
Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN) shown in Figure 13.3.  
Enable/Reset WDT  
The watchdog timer is both enabled and the countdown restarted by writing 0xA5 to the WDTCN register. The  
user’s application software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog  
timer overflow. The WDT is enabled and restarted as a result of any system reset.  
Disable WDT  
Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment  
illustrates disabling the WDT.  
CLR  
MOV  
MOV  
EA  
; disable all interrupts  
WDTCN,#0DEh ; disable software  
WDTCN,#0ADh ; watchdog timer  
SETB EA  
; re-enable interrupts  
The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is ignored.  
Interrupts should be disabled during this procedure to avoid delay between the two writes.  
Disable WDT Lockout  
Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored until the  
next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always intending to use  
the watchdog should write 0xFF to WDTCN in their initialization code.  
Setting WDT Interval  
WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:  
43+WDTCN[2:0] x TSYSCLK , (where TSYSCLK is the system clock period).  
For a 2MHz system clock, this provides an interval range of 0.032msec to 524msec. WDTCN.7 must be a 0 when  
setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] is 111b after a system  
reset.  
Figure 13.3. WDTCN: Watchdog Timer Control Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
xxxxx111  
SFR Address:  
0xFF  
Bits7-0: WDT Control  
Writing 0xA5 both enables and reloads the WDT.  
Writing 0xDE followed within 4 clocks by 0xAD disables the WDT.  
Writing 0xFF locks out the disable feature.  
Watchdog Status Bit (when Read)  
Bit4:  
Reading the WDTCN.[4] bit indicates the Watchdog Timer Status.  
0: WDT is inactive  
1: WDT is active  
Bits2-0: Watchdog Timeout Interval Bits  
The WDTCN.[2:0] bits set the Watchdog Timeout Interval. When writing these bits,  
WDTCN.7 must be set to 0.  
Rev. 1.7  
96  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 13.4. RSTSRC: Reset Source Register  
R
R/W  
R/W  
C0RSEF  
Bit5  
R/W  
SWRSEF  
Bit4  
R
R
R/W  
PORSF  
Bit1  
R
Reset Value  
JTAGRST CNVRSEF  
WDTRSF  
MCDRSF  
PINRSF  
xxxxxxxx  
SFR Address:  
Bit7  
Bit6  
Bit3  
Bit2  
Bit0  
0xEF  
(Note: Do not use read-modify-write operations on this register.)  
Bit7:  
Bit6:  
JTAGRST. JTAG Reset Flag.  
0: JTAG is not currently in reset state.  
1: JTAG is in reset state.  
CNVRSEF: Convert Start Reset Source Enable and Flag  
Write  
0: CNVSTR is not a reset source  
1: CNVSTR is a reset source (active low)  
Read  
0: Source of prior reset was not from CNVSTR  
1: Source of prior reset was from CNVSTR  
C0RSEF: Comparator 0 Reset Enable and Flag  
Write  
Bit5:  
Bit4:  
0: Comparator 0 is not a reset source  
1: Comparator 0 is a reset source (active low)  
Read  
Note: The value read from C0RSEF is not defined if Comparator 0 has not been enabled as  
a reset source.  
0: Source of prior reset was not from Comparator 0  
1: Source of prior reset was from Comparator 0  
SWRSF: Software Reset Force and Flag  
Write  
0: No Effect  
1: Forces an internal reset. /RST pin is not effected.  
Read  
0: Prior reset source was not from write to the SWRSF bit.  
1: Prior reset source was from write to the SWRSF bit.  
WDTRSF: Watchdog Timer Reset Flag  
0: Source of prior reset was not from WDT timeout.  
1: Source of prior reset was from WDT timeout.  
MCDRSF: Missing Clock Detector Flag  
0: Source of prior reset was not from Missing Clock Detector timeout.  
1: Source of prior reset was from Missing Clock Detector timeout.  
PORSF: Power-On Reset Force and Flag  
Write  
Bit3:  
Bit2:  
Bit1:  
0: No effect  
1: Forces a Power-On Reset. /RST is driven low.  
Read  
0: Source of prior reset was not from POR.  
1: Source of prior reset was from POR.  
PINRSF: HW Pin Reset Flag  
Bit0:  
0: Source of prior reset was not from /RST pin.  
1: Source of prior reset was from /RST pin.  
97  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 13.1. Reset Electrical Characteristics  
-40°C to +85°C unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
/RST Output Low Voltage  
/RST Input High Voltage  
IOL = 8.5mA, VDD = 2.7 to 3.6V  
0.6  
V
V
0.7 x  
VDD  
/RST Input Low Voltage  
0.3 x  
VDD  
V
/RST Input Leakage Current /RST = 0.0V  
VDD for /RST Output Valid  
AV+ for /RST Output Valid  
20  
µA  
V
1.0  
1.0  
2.40  
80  
V
VDD POR Threshold (VRST  
Reset Time Delay  
)
2.55  
100  
2.70  
120  
V
/RST rising edge after crossing reset  
threshold  
Time from last system clock to reset  
generation  
ms  
Missing Clock Detector  
Timeout  
100  
220  
500  
µs  
Rev. 1.7  
98  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
14. OSCILLATOR  
Each MCU includes an internal oscillator and an external oscillator drive circuit, either of which can generate the  
system clock. The MCUs boot from the internal oscillator after any reset. The internal oscillator starts up instantly.  
It can be enabled/disabled and its frequency can be changed using the Internal Oscillator Control Register  
(OSCICN) as shown in Figure 14.2. The internal oscillator’s electrical specifications are given in Table 14.1.  
Both oscillators are disabled when the /RST pin is held low. The MCUs can run from the internal oscillator or  
external oscillator, and switch between the two at will using the CLKSL bit in the OSCICN Register. The external  
oscillator requires an external resonator, parallel-mode crystal, capacitor, or RC network connected to the  
XTAL1/XTAL2 pins (see Figure 14.1). The oscillator circuit must be configured for one of these sources in the  
OSCXCN register. An external CMOS clock can also provide the system clock via overdriving the XTAL1 pin.  
The XTAL1 and XTAL2 pins are 3.6V (not 5V) tolerant. The external oscillator can be left enabled and running  
even when the MCU has switched to using the internal oscillator.  
Figure 14.1. Oscillator Diagram  
OSCICN  
VDD  
EN  
Internal Clock  
Generator  
opt. 2  
AV+  
SYSCLK  
AV+  
opt. 1  
opt. 4  
opt. 3  
XTAL1  
XTAL1  
XTAL1  
XTAL1  
XTAL2  
Input  
Circuit  
OSC  
XTAL2  
AGND  
OSCXCN  
99  
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 14.2. OSCICN: Internal Oscillator Control Register  
R/W  
MSCLKE  
Bit7  
R/W  
-
R/W  
-
R
R/W  
CLKSL  
Bit3  
R/W  
IOSCEN  
Bit2  
R/W  
IFCN1  
Bit1  
R/W  
IFCN0  
Bit0  
Reset Value  
IFRDY  
00000100  
SFR Address:  
Bit6  
Bit5  
Bit4  
0xB2  
Bit7:  
MSCLKE: Missing Clock Enable Bit  
0: Missing Clock Detector Disabled  
1: Missing Clock Detector Enabled; triggers a reset if a missing clock is detected  
Bits6-5: UNUSED. Read = 00b, Write = don’t care  
Bit4:  
Bit3:  
Bit2:  
IFRDY: Internal Oscillator Frequency Ready Flag  
0: Internal Oscillator Frequency not running at speed specified by the IFCN bits.  
1: Internal Oscillator Frequency running at speed specified by the IFCN bits.  
CLKSL: System Clock Source Select Bit  
0: Uses Internal Oscillator as System Clock.  
1: Uses External Oscillator as System Clock.  
IOSCEN: Internal Oscillator Enable Bit  
0: Internal Oscillator Disabled  
1: Internal Oscillator Enabled  
Bits1-0: IFCN1-0: Internal Oscillator Frequency Control Bits  
00: Internal Oscillator typical frequency is 2MHz.  
01: Internal Oscillator typical frequency is 4MHz.  
10: Internal Oscillator typical frequency is 8MHz.  
11: Internal Oscillator typical frequency is 16MHz.  
Table 14.1. Internal Oscillator Electrical Characteristics  
-40°C to +85°C unless otherwise specified.  
PARAMETER  
CONDITIONS  
OSCICN.[1:0] = 00  
MIN  
1.5  
TYP  
2
MAX  
UNITS  
Internal Oscillator  
Frequency  
2.4  
4.8  
MHz  
OSCICN.[1:0] = 01  
3.1  
4
OSCICN.[1:0] = 10  
OSCICN.[1:0] = 11  
OSCICN.2 = 1  
6.2  
8
9.6  
12.3  
16  
200  
19.2  
Internal Oscillator Current  
Consumption (from VDD)  
Internal Oscillator  
µA  
ppm/°C  
%/V  
4
Temperature Stability  
Internal Oscillator Power  
Supply (VDD) Stability  
6.4  
Rev. 1.7  
100  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 14.3. OSCXCN: External Oscillator Control Register  
R
R/W  
XOSCMD2  
Bit6  
R/W  
XOSCMD1  
Bit5  
R/W  
XOSCMD0  
Bit4  
R/W  
-
R/W  
XFCN2  
Bit2  
R/W  
XFCN1  
Bit1  
R/W  
XFCN0  
Bit0  
Reset Value  
XTLVLD  
00110000  
SFR Address:  
Bit7  
Bit3  
0xB1  
Bit7:  
XTLVLD: Crystal Oscillator Valid Flag  
(Valid only when XOSCMD = 1xx.)  
0: Crystal Oscillator is unused or not yet stable  
1: Crystal Oscillator is running and stable (should read 1ms after Crystal Oscillator is  
enabled to avoid transient condition).  
Bits6-4: XOSCMD2-0: External Oscillator Mode Bits  
00x: Off. XTAL1 pin is grounded internally.  
010: System Clock from External CMOS Clock on XTAL1 pin.  
011: System Clock from External CMOS Clock on XTAL1 pin divided by 2.  
10x: RC/C Oscillator Mode with divide by 2 stage.  
110: Crystal Oscillator Mode  
111: Crystal Oscillator Mode with divide by 2 stage.  
Bit3:  
RESERVED. Read = undefined, Write = don’t care  
Bits2-0: XFCN2-0: External Oscillator Frequency Control Bits  
000-111: see table below  
XFCN Crystal (XOSCMD =  
11x)  
RC (XOSCMD = 10x)  
C (XOSCMD = 10x)  
000  
001  
010  
011  
100  
101  
110  
111  
K Factor = 0.44  
K Factor = 1.4  
K Factor = 4.4  
K Factor = 13  
K Factor = 38  
K Factor = 100  
K Factor = 420  
K Factor = 1400  
f 12.5kHz  
f 25kHz  
12.5kHz < f 30.3kHz  
30.35kHz < f 93.8kHz  
93.8kHz < f 267kHz  
267kHz < f 722kHz  
722kHz < f 2.23MHz  
2.23MHz < f 6.74MHz 800kHz < f 1.6MHz  
f > 6.74MHz  
25kHz < f 50kHz  
50kHz < f 100kHz  
100kHz < f 200kHz  
200kHz < f 400kHz  
400kHz < f 800kHz  
1.6MHz < f 3.2MHz  
CRYSTAL MODE (Circuit from Figure 14.1, Option 1; XOSCMD = 11x)  
Choose XFCN value to match the crystal or ceramic resonator frequency.  
RC MODE (Circuit from Figure 14.1, Option 2; XOSCMD = 10x)  
Choose oscillation frequency range where:  
f = 1.23(103) / (R * C), where  
f = frequency of oscillation in MHz  
C = capacitor value in pF  
R = Pull-up resistor value in kΩ  
C MODE (Circuit from Figure 14.1, Option 3; XOSCMD = 10x)  
Choose K Factor (KF) for the oscillation frequency desired:  
f = KF / (C * AV+), where  
f = frequency of oscillation in MHz  
C = capacitor value on XTAL1, XTAL2 pins in pF  
AV+ = Analog Power Supply on MCU in volts  
101  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
14.1. External Crystal Example  
If a crystal or ceramic resonator were used to generate the system clock for the MCU, the circuit would be as shown  
in Figure 14.1, Option 1. For an ECS-110.5-20-4 crystal, the resonate frequency is 11.0592MHz, the intrinsic  
capacitance is 7pF, and the ESR is 60. The compensation capacitors should be 33pF each, and the PWB parasitic  
capacitance is estimated to be 2pF. The appropriate External Oscillator Frequency Control value (XFCN) from the  
Crystal column in the table in Figure 14.3 (OSCXCN Register) should be 111b.  
Because the oscillator detect circuitry needs time to settle after the crystal oscillator is enabled, software should wait  
at least 1ms between enabling the crystal oscillator and polling the XTLVLD bit. The recommend procedure is:  
1. Enable the external oscillator  
2. Wait at least 1 ms  
3. Poll for XTLVLD '0' ==> '1'  
4. Switch to the external oscillator  
Switching to the external oscillator before the crystal oscillator has stabilized could result in unpredictable behavior.  
NOTE: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible  
to the XTAL pins on the device, keeping the traces as short as possible and shielded with ground plane from any  
other traces which could introduce noise or interference.  
14.2. External RC Example  
If an external RC network were used to generate the system clock for the MCU, the circuit would be as shown in  
Figure 14.1, Option 2. The capacitor must be no greater than 100pF, but using a very small capacitor will increase  
the frequency drift due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency  
Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency  
of oscillation. If the frequency desired is 100kHz, let R = 246kand C = 50pF:  
f = 1.23(103)/RC = 1.23(103) / [246 * 50] = 0.1MHz = 100kHz  
XFCN log2(f/25kHz)  
XFCN log2(100kHz/25kHz) = log2(4)  
XFCN 2, or code 010  
14.3. External Capacitor Example  
If an external capacitor were used to generate the system clock for the MCU, the circuit would be as shown in  
Figure 14.1, Option 3. The capacitor must be no greater than 100pF, but using a very small capacitor will increase  
the frequency inaccuracy due to the PWB parasitic capacitance. To determine the required External Oscillator  
Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency  
of oscillation from the equations below. Assume AV+ = 3.0V and C = 50pF:  
f = KF / (C * VDD) = KF / (50 * 3)  
f = KF / 150  
If a frequency of roughly 90kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:  
f = 13 /150 = 0.087MHz, or 87kHz  
Therefore, the XFCN value to use in this example is 011.  
Rev. 1.7  
102  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
15. PORT INPUT/OUTPUT  
The MCUs have a wide array of digital resources, which are available through four digital I/O ports, P0, P1, P2 and  
P3. Each of the pins on Ports 0, 1, and 2 can be defined as either its corresponding port I/O or one of the internal  
digital resources assigned as shown in Figure 15.1. The designer has complete control over which functions are  
assigned, limited only by the number of physical I/O pins available on the selected package (the  
C8051F000/05/10/15 have all four ports pinned out, the F001/06/11/16 have P0 and P1, and the F002/07/12/17  
have P0). This resource assignment flexibility is achieved through the use of a Priority CrossBar Decoder. (Note  
that the state of a Port I/O pin can always be read in the corresponding Port latch regardless of the Crossbar  
settings).  
The CrossBar assigns the selected internal digital resources to the I/O pins based on the Priority Decode Table 15.1.  
The registers XBR0, XBR1, and XBR2, defined in Figure 15.3, Figure 15.4, and Figure 15.5 are used to select an  
internal digital function or let an I/O pin default to being a Port I/O. The crossbar functions identically for each  
MCU, with the caveat that P2 is not pinned out on the F001/06/11/16, and both P1 and P2 are not pinned out on the  
F002/07/12/17. Digital resources assigned to port pins that are not pinned out cannot be accessed.  
All Port I/Os are 5V tolerant (Refer to Figure 15.2 for the port cell circuit.) The Port I/O cells are configured as  
either push-pull or open-drain in the Port Configuration Registers (PRT0CF, PRT1CF, PRT2CF, PRT3CF).  
Complete Electrical Specifications for Port I/O are given in Table 15.2.  
15.1. Priority Cross Bar Decoder  
One of the design goals of this MCU family was to make the entire palette of digital resources available to the  
designer even on reduced pin count packages. The Priority CrossBar Decoder provides an elegant solution to the  
problem of connecting the internal digital resources to the physical I/O pins.  
The Priority CrossBar Decode (Table 15.1) assigns a priority to each I/O function, starting at the top with the  
SMBus. As the table illustrates, when selected, its two signals will be assigned to Pin 0 and 1 of I/O Port 0. The  
decoder always fills I/O bits from LSB to MSB starting with Port 0, then Port 1, finishing if necessary with Port 2.  
If you choose not to use a resource, the next function down on the table will fill the priority slot. In this way it is  
possible to choose only the functions required by the design, making full use of the available I/O pins. Also, any  
extra Port I/O are grouped together for more convenient use in application code.  
Registers XBR0, XBR1 and XBR2 are used to assign the digital I/O resources to the physical I/O Port pins. It is  
important to understand that when the SMBus, SPI Bus, or UART is selected, the crossbar assigns all pins  
associated with the selected bus. It would be impossible for instance to assign the RX pin from the UART function  
without also assigning the TX function. Standard Port I/Os appear contiguously after the prioritized functions have  
been assigned. For example, if you choose functions that take the first 14 Port I/O (P0.[7:0], P1.[5:0]), you would  
have 18 Port I/O left unused by the crossbar (P1.[7:6], P2 and P3).  
15.2. Port I/O Initialization  
Port I/O initialization is straightforward. Registers XBR0, XBR1 and XBR2 must be loaded with the appropriate  
values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to 1 enables the  
CrossBar. Until the Crossbar is enabled, the external pins remain as standard Ports in input mode regardless  
of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the  
Priority Decode Table; as an alternative, the Code Configuration Wizard function of the IDE software will  
determine the Port I/O pin-assignments based on the XBRn Register settings.  
The output driver characteristics of the I/O pins are defined using the Port Configuration Registers PRT0CF,  
PRT1CF, PRT2CF and PRT3CF (see Figure 15.7, Figure 15.9, Figure 15.12, and Figure 15.14). Each Port Output  
driver can be configured as either Open Drain or Push-Pull. This is required even for the digital resources selected  
in the XBRn registers and is not automatic. The only exception to this is the SMBus (SDA, SCL) and UART  
Receive (RX, when in mode 0) pins which are Open-drain regardless of the PRTnCF settings. When the  
WEAKPUD bit in XBR2 is 0, a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does  
103  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an open-drain output that is driving  
a 0 to avoid unnecessary power dissipation.  
The third and final step is to initialize the individual resources selected using the appropriate setup registers.  
Initialization procedures for the various digital resources may be found in the detailed explanation of each available  
function. The reset state of each register is shown in the figures that describe each individual register.  
Figure 15.1. Port I/O Functional Block Diagram  
2
SMBus  
SPI  
XBR0, XBR1,  
PRT0CF, PRT1CF,  
PRT2CF Registers  
Highest  
Priority  
XBR2 Registers  
4
2
6
External  
Pins  
UART  
PCA  
Priority  
Decoder  
2
Comptr.  
Outputs  
P0.0  
Highest  
Priority  
P0  
I/O  
8
8
8
Cells  
P0.7  
T0, T1, T2,  
T2EX,  
Digital  
Crossbar  
/INT0,  
6
/INT1  
P1.0  
P1.7  
P1  
I/O  
Lowest  
Priority  
/SYSCLK  
CNVSTR  
Cells  
8
P2.0  
P2.7  
P2  
I/O  
Lowest  
Priority  
P0  
Cells  
(P0.0-P0.7)  
8
P1  
P2  
P3  
(P1.0-P1.7)  
8
PRT3CF  
Register  
Port  
Latches  
(P2.0-P2.7)  
8
P3.0  
P3.7  
P3  
I/O  
Cells  
(P3.0-P3.7)  
Figure 15.2. Port I/O Cell Block Diagram  
WEAKPUD  
VDD  
VDD  
PUSH-PULL  
/PORT-OUTENABLE  
(WEAK)  
PORT  
PAD  
PORT-OUTPUT  
VDD  
DGND  
PORT-INPUT  
Rev. 1.7  
104  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 15.1. Crossbar Priority Decode  
P0  
P1  
P2  
PIN I/O  
SDA  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCL  
SCK  
MISO  
MOSI  
NSS  
TX  
● ●  
● ●  
● ●  
● ●  
● ● ● ●  
● ● ● ●  
● ● ● ● ●  
● ● ● ● ●  
● ● ● ● ●  
● ● ● ● ●  
● ● ● ● ●  
●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●●●●●  
RX  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
ECI  
CP0  
CP1  
T0  
/INT0  
T1  
/INT1  
T2  
T2EX  
/SYSCLK  
CNVSTR  
●●●●●●●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●●●●●●●  
●●●●●●●●●●●●●●●●●●●●●●●●  
In the Priority Decode Table, a dot () is used to show the external Port I/O pin (column) to which each signal (row)  
can be assigned by the user application code via programming registers XBR2, XBR1, and XBR0.  
105  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.3. XBR0: Port I/O CrossBar Register 0  
R/W  
R/W  
R/W  
Bit5  
R/W  
R/W  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
00000000  
SFR Address:  
0xE1  
CP0OEN  
ECIE  
PCA0ME  
UARTEN SPI0OEN SMB0OEN  
Bit7  
Bit6  
Bit4  
Bit2  
Bit1  
Bit0  
Bit7:  
Bit6:  
CP0OEN: Comparator 0 Output Enable Bit  
0: CP0 unavailable at Port pin.  
1: CP0 routed to Port Pin.  
ECIE: PCA0 Counter Input Enable Bit  
0: ECI unavailable at Port pin.  
1: ECI routed to Port Pin.  
Bits3-5: PCA0ME: PCA Module I/O Enable Bits  
000: All PCA I/O unavailable at Port pins.  
001: CEX0 routed to Port Pin.  
010: CEX0, CEX1 routed to 2 Port Pins.  
011: CEX0, CEX1, CEX2 routed to 3 Port Pins.  
100: CEX0, CEX1, CEX2, CEX3 routed to 4 Port Pins.  
101: CEX0, CEX1, CEX2, CEX3, CEX4 routed to 5 Port Pins.  
110: RESERVED  
111: RESERVED  
Bit2:  
Bit1:  
Bit0:  
UARTEN: UART I/O Enable Bit  
0: UART I/O unavailable at Port pins.  
1: RX, TX routed to 2 Port Pins.  
SPI0OEN: SPI Bus I/O Enable Bit  
0: SPI I/O unavailable at Port pins.  
1: MISO, MOSI, SCK, and NSS routed to 4 Port Pins.  
SMB0OEN: SMBus Bus I/O Enable Bit  
0: SMBus I/O unavailable at P0.0, P0.1.  
1: SDA routed to P0.0, SCL routed to P0.1.  
Rev. 1.7  
106  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.4. XBR1: Port I/O CrossBar Register 1  
R/W  
SYSCKE  
Bit7  
R/W  
T2EXE  
Bit6  
R/W  
T2E  
Bit5  
R/W  
INT1E  
Bit4  
R/W  
T1E  
Bit3  
R/W  
INT0E  
Bit2  
R/W  
T0E  
Bit1  
R/W  
CP1OEN  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xE2  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
SYSCKE: SYSCLK Output Enable Bit  
0: SYSCLK unavailable at Port pin.  
1: SYSCLK output routed to Port Pin.  
T2EXE: T2EX Enable Bit  
0: T2EX unavailable at Port pin.  
1: T2EX routed to Port Pin.  
T2E: T2 Enable Bit  
0: T2 unavailable at Port pin.  
1: T2 routed to Port Pin.  
INT1E: /INT1 Enable Bit  
0: /INT1 unavailable at Port pin.  
1: /INT1 routed to Port Pin.  
T1E: T1 Enable Bit  
0: T1 unavailable at Port pin.  
1: T1 routed to Port Pin.  
INT0E: /INT0 Enable Bit  
0: /INT0 unavailable at Port pin.  
1: /INT0 routed to Port Pin.  
T0E: T0 Enable Bit  
0: T0 unavailable at Port pin.  
1: T0 routed to Port Pin.  
CP1OEN: Comparator 1 Output Enable Bit  
0: CP1 unavailable at Port pin.  
1: CP1 routed to Port Pin.  
107  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.5. XBR2: Port I/O CrossBar Register 2  
R/W  
WEAKPUD  
Bit7  
R/W  
XBARE  
Bit6  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
CNVSTE  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0xE3  
Bit7:  
Bit6:  
WEAKPUD: Port I/O Weak Pull-up Disable Bit  
0: Weak Pull-ups Enabled (except for Ports whose I/O are configured as push-pull)  
1: Weak Pull-ups Disabled  
XBARE: Crossbar Enable Bit  
0: Crossbar Disabled  
1: Crossbar Enabled  
Bits5-1: UNUSED. Read = 00000b, Write = don’t care.  
Bit0:  
CNVSTE: ADC Convert Start Input Enable Bit  
0: CNVSTR unavailable at Port pin.  
1: CNVSTR routed to Port Pin.  
Example Usage of XBR0, XBR1, XBR2:  
When selected, the digital resources fill the Port I/O pins in order (top to bottom as shown in  
Table 15.1) starting with P0.0 through P0.7, and then P1.0 through P1.7, and finally P2.0  
through P2.7. If the digital resources are not mapped to the Port I/O pins, they default to their  
matching internal Port Register bits.  
Example1: If XBR0 = 0x11, XBR1 = 0x00, and XBR2 = 0x40:  
P0.0=SDA, P0.1=SCL, P0.2=CEX0, P0.3=CEX1, P0.4 … P2.7 map to corresponding Port I/O.  
Example2: If XBR0 = 0x80, XBR1 = 0x04, and XBR2 = 0x41:  
P0.0=CP0, P0.1=/INT0, P0.2 = CNVSTR, P0.3 … P2.7 map to corresponding Port I/O.  
Rev. 1.7  
108  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
15.3. General Purpose Port I/O  
Each MCU has four byte-wide, bi-directional parallel ports that can be used general purpose I/O. Each port is  
accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable.  
When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When  
reading, the logic levels of the port’s input pins are returned regardless of the XBRn settings (i.e. even when the pin  
is assigned to another signal by the Crossbar, the Port Register can always still read its corresponding Port I/O pin).  
The exception to this is the execution of the read-modify-write instructions. The read-modify-write instructions  
when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR  
or SET, when the destination is an individual bit in a port SFR. For these instructions, the value of the port register  
(not the pin) is read, modified, and written back to the SFR.  
15.4. Configuring Ports Which are not Pinned Out  
P2 and P3 are not pinned out on the F001/06/11/16. P1, P2, and P3 are not pinned out on the F002/07/12/17. These  
port registers (and corresponding interrupts, where applicable) are still available for software use in these reduced  
pin count MCUs. Whether used or not in software, it is recommended not to let these port drivers go to high  
impedance state. This is prevented after reset by having the weak pull-ups enabled as described in the XBR2  
register. It is recommended that each output driver for ports not pinned out should be configured as push-pull using  
the corresponding PRTnCF register. This will inhibit a high impedance state even if the weak pull-up is disabled.  
Figure 15.6. P0: Port0 Register  
R/W  
P0.7  
Bit7  
R/W  
P0.6  
Bit6  
R/W  
P0.5  
Bit5  
R/W  
P0.4  
Bit4  
R/W  
P0.3  
Bit3  
R/W  
P0.2  
Bit2  
R/W  
P0.1  
Bit1  
R/W  
P0.0  
Reset Value  
11111111  
SFR Address:  
Bit0  
(bit addressable)  
0x80  
Bits7-0: P0.[7:0]  
(Write – Output appears on I/O pins per XBR0, XBR1, and XBR2 Registers)  
0: Logic Low Output.  
1: Logic High Output (high-impedance if corresponding PRT0CF.n bit = 0)  
(Read – Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P0.n pin is logic low.  
1: P0.n pin is logic high.  
Figure 15.7. PRT0CF: Port0 Configuration Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xA4  
Bits7-0: PRT0CF.[7:0]: Output Configuration Bits for P0.7-P0.0 (respectively)  
0: Corresponding P0.n Output mode is Open-Drain.  
1: Corresponding P0.n Output mode is Push-Pull.  
(Note: When SDA, SCL, and RX appear on any of the P0 I/O, each are open-drain  
regardless of the value of PRT0CF).  
109  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.8. P1: Port1 Register  
R/W  
P1.7  
Bit7  
R/W  
P1.6  
Bit6  
R/W  
P1.5  
Bit5  
R/W  
P1.4  
Bit4  
R/W  
P1.3  
Bit3  
R/W  
P1.2  
Bit2  
R/W  
P1.1  
Bit1  
R/W  
P1.0  
Reset Value  
11111111  
SFR Address:  
Bit0  
(bit addressable)  
0x90  
Bits7-0: P1.[7:0]  
(Write – Output appears on I/O pins per XBR0, XBR1, and XBR2 registers)  
0: Logic Low Output.  
1: Logic High Output (high-impedance if corresponding PRT1CF.n bit = 0)  
(Read – Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P1.n pin is logic low.  
1: P1.n pin is logic high.  
Figure 15.9. PRT1CF: Port1 Configuration Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xA5  
Bits7-0: PRT1CF.[7:0]: Output Configuration Bits for P1.7-P1.0 (respectively)  
0: Corresponding P1.n Output mode is Open-Drain.  
1: Corresponding P1.n Output mode is Push-Pull.  
Figure 15.10. PRT1IF: Port1 Interrupt Flag Register  
R/W  
IE7  
Bit7  
R/W  
IE6  
Bit6  
R/W  
IE5  
Bit5  
R/W  
IE4  
Bit4  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Reset Value  
00000000  
SFR Address:  
Bit3  
Bit2  
Bit1  
Bit0  
0xAD  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
IE7: External Interrupt 7 Pending Flag.  
0: No falling edge detected on P1.7.  
1: This flag is set by hardware when a falling edge on P1.7 is detected.  
IE6: External Interrupt 6 Pending Flag.  
0: No falling edge detected on P1.6.  
1: This flag is set by hardware when a falling edge on P1.6 is detected.  
IE5: External Interrupt 5 Pending Flag.  
0: No falling edge detected on P1.5.  
1: This flag is set by hardware when a falling edge on P1.5 is detected.  
IE4: External Interrupt 4 Pending Flag.  
0: No falling edge detected on P1.4.  
1: This flag is set by hardware when a falling edge on P1.4 is detected.  
Bits3-0: UNUSED. Read = 0000b, Write = don’t care.  
Rev. 1.7  
110  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.11. P2: Port2 Register  
R/W  
P2.7  
Bit7  
R/W  
P2.6  
Bit6  
R/W  
P2.5  
Bit  
R/W  
P2.4  
Bit4  
R/W  
P2.3  
Bit3  
R/W  
P2.2  
Bit2  
R/W  
P2.1  
Bit1  
R/W  
P2.0  
Reset Value  
11111111  
SFR Address:  
Bit0  
(bit addressable)  
0xA0  
Bits7-0: P2.[7:0]  
(Write – Output appears on I/O pins per XBR0, XBR1, and XBR2 registers)  
0: Logic Low Output.  
1: Logic High Output (high-impedance if corresponding PRT2CF.n bit = 0)  
(Read – Regardless of XBR0, XBR1, and XBR2 Register settings).  
0: P2.n is logic low.  
1: P2.n is logic high.  
Figure 15.12. PRT2CF: Port2 Configuration Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xA6  
Bits7-0: PRT2CF.[7:0]: Output Configuration Bits for P2.7-P2.0 (respectively)  
0: Corresponding P2.n Output mode is Open-Drain.  
1: Corresponding P2.n Output mode is Push-Pull.  
111  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 15.13. P3: Port3 Register  
R/W  
P3.7  
Bit7  
R/W  
P3.6  
Bit6  
R/W  
P3.5  
Bit5  
R/W  
P3.4  
Bit4  
R/W  
P3.3  
Bit3  
R/W  
P3.2  
Bit2  
R/W  
P3.1  
Bit1  
R/W  
P3.0  
Reset Value  
11111111  
SFR Address:  
Bit0  
(bit addressable)  
0xB0  
Bits7-0: P3.[7:0]  
(Write)  
0: Logic Low Output.  
1: Logic High Output (high-impedance if corresponding PRT3CF.n bit = 0)  
(Read)  
0: P3.n is logic low.  
1: P3.n is logic high.  
Figure 15.14. PRT3CF: Port3 Configuration Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xA7  
Bits7-0: PRT3CF.[7:0]: Output Configuration Bits for P3.7-P3.0 (respectively)  
0: Corresponding P3.n Output mode is Open-Drain.  
1: Corresponding P3.n Output mode is Push-Pull.  
Table 15.2. Port I/O DC Electrical Characteristics  
VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
VDD –  
0.1  
TYP  
MAX  
UNITS  
Output High Voltage  
IOH = -10uA, Port I/O push-pull  
V
IOH = -3mA, Port I/O push-pull  
IOH = -10mA, Port I/O push-pull  
VDD –  
0.7  
VDD –  
0.8  
Output Low Voltage  
IOL = 10uA  
IOL = 8.5mA  
IOL = 25mA  
0.1  
0.6  
V
1.0  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
0.7 x  
VDD  
V
V
0.3 x  
VDD  
DGND < Port Pin < VDD, Pin Tri-state  
Weak Pull-up Off  
µA  
±1  
Weak Pull-up On  
30  
5
Capacitive Loading  
pF  
Rev. 1.7  
112  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16. SMBus / I2C Bus  
The SMBus serial I/O interface is compliant with the System Management Bus Specification, version 1.1. It is a  
two-wire, bi-directional serial bus, which is also compatible with the I2C serial bus. Reads and writes to the  
interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial  
transfer of the data. Data can be transferred at up to 1/8th of the system clock if desired (this can be faster than  
allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low  
duration is used to accommodate devices with different speed capabilities on the same bus.  
Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver, and  
data transfers from an addressed slave transmitter to a master receiver. The master device initiates both types of  
data transfers and provides the serial clock pulses. The SMBus interface may operate as a master or a slave.  
Multiple master devices on the same bus are also supported. If two or more masters attempt to initiate a data  
transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration.  
Figure 16.1. SMBus Block Diagram  
SFR Bus  
SMB0CN  
SMB0STA  
SMB0CR  
B
U
S
Y
E
N
S
M
B
S
T
A
S
T
S
I
A
A
F
T
E
T
O
E
S
T
A
7
S
T
A
6
S
T
A
5
S
T
A
4
S
T
A
3
S
T
A
2
S
T
A
1
S
T
A
0
C
R
7
C
R
6
C
R
5
C
R
4
C
R
3
C
R
2
C
R
1
C
R
0
O
Clock Divide  
Logic  
SYSCLK  
SCL  
FILTER  
SMBUS CONTROL LOGIC  
Arbitration  
SMBUS  
IRQ  
Interrupt  
Request  
SCL Synchronization  
Status Generation  
SCL Generation (Master Mode)  
IRQ Generation  
SCL  
Control  
N
SDA  
Data Path  
Control  
Control  
C
R
O
S
S
B
A
R
Port I/O  
B
A
B
A
0000000b  
7 MSBs  
8
7
SMB0DAT  
7 6 5 4 3 2 1 0  
SDA  
FILTER  
8
8
1
0
S
L
V
6
S
L
V
5
S
L
V
4
S
L
V
3
S
L
V
2
S
L
V
1
S
L
V
0
N
G
C
Read  
SMB0DAT  
Write to  
SMB0ADR  
SMB0DAT  
SFR Bus  
113  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 16.2 shows a typical SMBus configuration. The SMBus interface will work at any voltage between 3.0V  
and 5.0V and different devices on the bus may operate at different voltage levels. The SCL (serial clock) and SDA  
(serial data) lines are bi-directional. They must be connected to a positive power supply voltage through a pull-up  
resistor or similar circuit. When the bus is free, both lines are pulled high. Every device connected to the bus must  
have an open-drain or open-collector output for both the SCL and SDA lines. The maximum number of devices on  
the bus is limited only by the requirement that the rise and fall times on the bus will not exceed 300ns and 1000ns,  
respectively.  
Figure 16.2. Typical SMBus Configuration  
VDD = 5V  
VDD = 3V  
VDD = 5V  
VDD = 3V  
Master  
Device  
Slave  
Slave  
Device 1  
Device 2  
SDA  
SCL  
16.1. Supporting Documents  
It is assumed the reader is familiar with or has access to the following supporting documents:  
1. The I2C-bus and how to use it (including specifications), Philips Semiconductor.  
2. The I2C-Bus Specification -- Version 2.0, Philips Semiconductor.  
3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.  
Rev. 1.7  
114  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16.2. Operation  
A typical SMBus transaction consists of a START condition, followed by an address byte, one or more bytes of  
data, and a STOP condition. The address byte and each of the data bytes are followed by an ACKNOWLEDGE bit  
from the receiver. The address byte consists of a 7-bit address plus a direction bit. The direction bit (R/W)  
occupies the least-significant bit position of the address. The direction bit is set to logic 1 to indicate a “READ”  
operation and cleared to logic 0 to indicate a “WRITE” operation. A general call address (0x00 +R/W) is  
recognized by all slave devices allowing a master to address multiple slave devices simultaneously.  
All transactions are initiated by the master, with one or more addressed slave devices as the target. The master  
generates the START condition and then transmits the address and direction bit. If the transaction is a WRITE  
operation from the master to the slave, the master transmits the data a byte at a time waiting for an  
ACKNOWLEDGE from the slave at the end of each byte. If it is a READ operation, the slave transmits the data  
waiting for an ACKNOWLEDGE from the master at the end of each byte. At the end of the data transfer, the  
master generates a STOP condition to terminate the transaction and free the bus. Figure 16.3 illustrates a typical  
SMBus transaction.  
Figure 16.3. SMBus Transaction  
START  
SLAVE ADDR R/W  
ACK  
DATA  
ACK  
DATA  
NACK  
STOP  
Time  
The SMBus interface may be configured to operate as either a master or a slave. At any particular time, it will be  
operating in one of the following four modes:  
16.2.1. Master Transmitter Mode  
Serial data is transmitted on SDA while the serial clock is output on SCL. The first byte transmitted contains the  
address of the target slave device and the data direction bit. In this case the data direction bit (R/W) will be logic 0  
to indicate a “WRITE” operation. The master then transmits one or more bytes of serial data. After each byte is  
transmitted, an acknowledge bit is generated by the slave. To indicate the beginning and the end of the serial  
transfer, the master device outputs START and STOP conditions.  
16.2.2. Master Receiver Mode  
Serial data is received on SDA while the serial clock is output on SCL. The first byte is transmitted by the master  
and contains the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will  
be logic 1 to indicate a “READ” operation. Serial data is then received from the slave on SDA while the master  
outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, an  
acknowledge bit is transmitted by the master. The master outputs START and STOP conditions to indicate the  
beginning and end of the serial transfer.  
16.2.3. Slave Transmitter Mode  
Serial data is transmitted on SDA while the serial clock is received on SCL. First, a byte is received that contains an  
address and data direction bit. In this case the data direction bit (R/W) will be logic 1 to indicate a “READ”  
operation. If the received address matches the slave’s assigned address (or a general call address is received) one or  
more bytes of serial data are transmitted to the master. After each byte is received, an acknowledge bit is  
transmitted by the master. The master outputs START and STOP conditions to indicate the beginning and end of  
the serial transfer.  
115  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16.2.4. Slave Receiver Mode  
Serial data is received on SDA while the serial clock is received on SCL. First, a byte is received that contains an  
address and data direction bit. In this case the data direction bit (R/W) will be logic 0 to indicate a “WRITE”  
operation. If the received address matches the slave’s assigned address (or a general call address is received) one or  
more bytes of serial data are received from the master. After each byte is received, an acknowledge bit is  
transmitted by the slave. The master outputs START and STOP conditions to indicate the beginning and end of the  
serial transfer.  
16.3. Arbitration  
A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and  
SDA lines remains high for a specified time. Two or more master devices may attempt to generate a START  
condition at the same time. Since the devices that generated the START condition may not be aware that other  
masters are contending for the bus, an arbitration scheme is employed. The master devices continue to transmit  
until one of the masters transmits a HIGH level, while the other(s) master transmits a LOW level on SDA. The first  
master(s) transmitting the HIGH level on SDA looses the arbitration and is required to give up the bus.  
16.4. Clock Low Extension  
SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed  
capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave  
devices to communicate with faster masters. The slave can hold the SCL line LOW to extend the clock low period,  
effectively decreasing the serial clock frequency.  
16.5. Timeouts  
16.5.1. SCL Low Timeout  
If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the  
master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol  
specifies that devices participating in a transfer must detect any clock cycle held low longer than 25ms as a  
“timeout” condition. Devices that have detected the timeout condition must reset the communication no later than  
10ms after detecting the timeout condition.  
One of the MCU’s general-purpose timers, operating in 16-bit auto-reload mode, can be used to monitor the SCL  
line for this timeout condition. Timer 3 is specifically designed for this purpose. (Refer to the Timer 3 Section  
19.3. for detailed information on Timer 3 operation.)  
16.5.2. SCL High (SMBus Free) Timeout  
The SMBus specification stipulates that if a device holds the SCL and SDA lines high for more that 50usec, the bus  
is designated as free. The SMB0CR register is used to detect this condition when the FTE bit in SMB0CN is set.  
16.6. SMBus Special Function Registers  
The SMBus serial interface is accessed and controlled through five SFRs: SMB0CN Control Register, SMB0CR  
Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Status Register. The  
system device may have one or more SMBus serial interfaces implemented. The five special function registers  
related to the operation of the SMBus interface are described in the following section.  
Rev. 1.7  
116  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16.6.1. Control Register  
The SMBus Control register SMB0CN is used to configure and control the SMBus interface. All of the bits in the  
register can be read or written by software. Two of the control bits are also affected by the SMBus hardware. The  
Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid serial interrupt condition occurs.  
It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is cleared to logic 0 by hardware when a  
STOP condition is present on the bus.  
Setting the ENSMB flag to logic 1 enables the SMBus interface. Clearing the ENSMB flag to logic 0 disables the  
SMBus interface and removes it from the bus. Momentarily clearing the ENSMB flag and then resetting it to logic  
1 will reset a SMBus communication. However, ENSMB should not be used to temporarily remove a device from  
the bus since the bus state information will be lost. Instead, the Assert Acknowledge (AA) flag should be used to  
temporarily remove the device from the bus (see description of AA flag below).  
Setting the Start flag (STA, SMB0CN.5) to logic 1 will put the SMBus in a master mode. If the bus is free, the  
SMBus hardware will generate a START condition. If the bus is not free, the SMBus hardware waits for a STOP  
condition to free the bus and then generates a START condition after a 5µs delay per the SMB0CR value. (In  
accordance with the SMBus protocol, the SMBus interface also considers the bus free if the bus is idle for 50µs and  
no STOP condition was recognized.) If STA is set to logic 1 while the SMBus is in master mode and one or more  
bytes have been transferred, a repeated START condition will be generated. To ensure proper operation, the STO  
flag should be explicitly cleared before setting STA to a logic 1.  
When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus interface is in master mode, the hardware  
generates a STOP condition on the SMBus. In a slave mode, the STO flag may be used to recover from an error  
condition. In this case, a STOP condition is not generated on the SMBus, but the SMBus hardware behaves as if a  
STOP condition has been received and enters the “not addressed” slave receiver mode. The SMBus hardware  
automatically clears the STO flag to logic 0 when a STOP condition is detected on the bus.  
The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus interface enters one of 27  
possible states. If interrupts are enabled for the SMBus interface, an interrupt request is generated when the SI flag  
is set. The SI flag must be cleared by software. While SI is set to logic 1, the clock-low period of the serial clock  
will be stretched and the serial transfer is suspended.  
The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowledge  
clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACKNOWLEDGE (low level on SDA) to  
be sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will cause a  
NOT ACKNOWLEDGE (high level on SDA) to be sent during acknowledge cycle. After the transmission of a  
byte in slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave’s own  
address and general call address will be ignored. To resume operation on the bus, the AA flag must be reset to logic  
1 to allow the slave’s address to be recognized.  
Setting the SMBus Free Timer Enable bit (FTE, SMB0CN.1) to logic 1 enables the SMBus Free Timeout feature. If  
SCL and SDA remain high for the SMBus Free Timeout given in the SMBus Clock Rate Register (Figure 16.5), the  
bus will be considered free and a Start will be generated if pending. The bus free period should be greater than  
50µs.  
Setting the SMBus timeout enable bit (TOE, SMB0CN.0) to logic 1 enables Timer 3 to count up when the SCL line  
is low and Timer 3 is enabled. If Timer 3 overflows, a Timer 3 interrupt will be generated, which will alert the CPU  
that a SMBus SCL low timeout has occurred.  
117  
Rev. 1.7  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 16.4. SMB0CN: SMBus Control Register  
R
R/W  
ENSMB  
Bit6  
R/W  
STA  
Bit5  
R/W  
STO  
Bit4  
R/W  
SI  
R/W  
AA  
Bit2  
R/W  
FTE  
Bit1  
R/W  
Reset Value  
BUSY  
TOE  
00000000  
SFR Address:  
Bit7  
Bit3  
Bit0  
(bit addressable)  
0xC0  
Bit7:  
Bit6:  
BUSY: Busy Status Flag.  
0: SMBus is free  
1: SMBus is busy  
ENSMB: SMBus Enable.  
This bit enables/disables the SMBus serial interface.  
0: SMBus disabled.  
1: SMBus enabled.  
Bit5:  
STA: SMBus Start Flag.  
0: No START condition is transmitted.  
1: When operating as a master, a START condition is transmitted if the bus is free. (If the  
bus is not free, the START is transmitted after a STOP is received.) If STA is set after one  
or more bytes have been transmitted or received and before a STOP is received, a repeated  
START condition is transmitted. STO should be explicitly cleared before setting STA to  
logic 1.  
Bit4:  
STO: SMBus Stop Flag.  
0: No STOP condition is transmitted.  
1: Setting STO to logic 1 causes a STOP condition to be transmitted. When a STOP  
condition is received, hardware clears STO to logic 0. If both STA and STO are set, a  
STOP condition is transmitted followed by a START condition. In slave mode, setting the  
STO flag causes SMBus to behave as if a STOP condition was received.  
SI: SMBus Serial Interrupt Flag.  
Bit3:  
Bit2:  
This bit is set by hardware when one of 27 possible SMBus states is entered. (Status code  
0xF8 does not cause SI to be set.) When the SI interrupt is enabled, setting this bit causes  
the CPU to vector to the SMBus interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
AA: SMBus Assert Acknowledge Flag.  
This bit defines the type of acknowledge returned during the acknowledge cycle on the  
SCL line.  
0: A “not acknowledge” (high level on SDA) is returned during the acknowledge cycle.  
1: An “acknowledge” (low level on SDA) is returned during the acknowledge cycle.  
FTE: SMBus Free Timer Enable Bit  
Bit1:  
Bit0:  
0: No timeout when SCL is high  
1: Timeout when SCL high time exceeds limit specified by the SMB0CR value.  
TOE: SMBus Timeout Enable Bit  
0: No timeout when SCL is low.  
1: Timeout when SCL low time exceeds limit specified by Timer 3, if enabled.  
Rev. 1.7  
118  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16.6.2. Clock Rate Register  
Figure 16.5. SMB0CR: SMBus Clock Rate Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xCF  
Bits7-0: SMB0CR.[7:0]: SMBus Clock Rate Preset  
The SMB0CR Clock Rate register controls the frequency of the serial clock SCL in master  
mode. The 8-bit word stored in the SMB0CR Register preloads a dedicated 8-bit timer.  
The timer counts up, and when it rolls over to 0x00, the SCL logic state toggles.  
The SMB0CR setting should be bounded by the following equation, where SMB0CR is the  
unsigned 8-bit value in register SMB0CR, and SYSCLK is the system clock frequency in  
Hz:  
SMB0CR < ((288 - 0.85 * SYSCLK) / 1.125E6)  
The resulting SCL signal high and low times are given by the following equations:  
TLOW = (256 – SMB0CR) / SYSCLK  
THIGH (258 – SMB0CR) / SYSCLK + 625 ns  
Using the same value of SMB0CR from above, the Bus Free Timeout period is given in the  
following equation:  
TBFT 10 * [(256 – SMB0CR) + 1] / SYSCLK  
119  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16.6.3. Data Register  
The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received.  
Data remains stable in the register as long as SI is set to logic 1. Software can safely read or write to the data  
register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is  
enabled and the SI flag is cleared to logic 0 since the hardware may be in the process of shifting a byte of data in or  
out of the register.  
Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is  
located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted  
in. Therefore, SMB0DAT always contains the last data byte present on the bus. Thus, in the event of lost arbitration,  
the transition from master transmitter to slave receiver is made with the correct data in SMB0DAT.  
Figure 16.6. SMB0DAT: SMBus Data Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xC2  
Bits7-0: SMB0DAT: SMBus Data.  
The SMB0DAT register contains a byte of data to be transmitted on the SMBus serial  
interface or a byte that has just been received on the SMBus serial interface. The CPU can  
read from or write to this register whenever the SI serial interrupt flag (SMB0CN.3) is set  
to logic one. The serial data in the register remains stable as long as the SI flag is set.  
When the SI flag is not set, the system may be in the process of shifting data in/out and the  
CPU should not attempt to access this register.  
16.6.4. Address Register  
The SMB0ADR Address register holds the slave address for the SMBus interface. In slave mode, the seven most-  
significant bits hold the 7-bit slave address. The least significant bit, bit 0, is used to enable the recognition of the  
general call address (0x00). If bit 0 is set to logic 1, the general call address will be recognized. Otherwise, the  
general call address is ignored. The contents of this register are ignored when the SMBus hardware is operating in  
master mode.  
Figure 16.7. SMB0ADR: SMBus Address Register  
R/W  
SLV6  
Bit7  
R/W  
SLV5  
Bit6  
R/W  
SLV4  
Bit5  
R/W  
SLV3  
Bit4  
R/W  
SLV2  
Bit3  
R/W  
SLV1  
Bit2  
R/W  
SLV0  
Bit1  
R/W  
GC  
Reset Value  
00000000  
SFR Address:  
Bit0  
0xC3  
Bits7-1: SLV6-SLV0: SMBus Slave Address.  
These bits are loaded with the 7-bit slave address to which the SMBus will respond when  
operating as a slave transmitter or slave receiver. SLV6 is the most significant bit of the  
address and corresponds to the first bit of the address byte received on the SMBus.  
Bit0:  
GC: General Call Address Enable.  
This bit is used to enable general call address (0x00) recognition.  
0: General call address is ignored.  
1: General call address is recognized.  
Rev. 1.7  
120  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
16.6.5. Status Register  
The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus. There are 28  
possible SMBus states, each with a corresponding unique status code. The five most significant bits of the status  
code vary while the three least-significant bits of a valid status code are fixed at zero when SI = 1. Therefore, all  
possible status codes are multiples of eight. This facilitates the use of status codes in software as an index used to  
branch to appropriate service routines (allowing 8 bytes of code to service the state or jump to a more extensive  
service routine).  
For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is logic 1.  
Software should never write to the SMB0STA register. Doing so will yield indeterminate results. The 28 SMBus  
states, along with their corresponding status codes, are given in Table 16.1.  
Figure 16.8. SMB0STA: SMBus Status Register  
R/W  
STA7  
Bit7  
R/W  
STA6  
Bit6  
R/W  
STA5  
Bit5  
R/W  
STA4  
Bit4  
R/W  
STA3  
Bit3  
R/W  
STA2  
Bit2  
R/W  
STA1  
Bit1  
R/W  
STA0  
Bit0  
Reset Value  
11111000  
SFR Address:  
0xC1  
Bits7-3: STA7-STA3: SMBus Status Code.  
These bits contain the SMBus Status Code. There are 28 possible status codes. Each  
status code corresponds to a single SMBus state. A valid status code is present in  
SMB0STA when the SI flag (SMB0CN.3) is set. The content of SMB0STA is not defined  
when the SI flag is logic 0. Writing to the SMB0STA register at any time will yield  
indeterminate results.  
Bits2-0: STA2-STA0: The three least significant bits of SMB0STA are always read as logic 0 when  
the SI flag is logic 1.  
121  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 16.1. SMBus Status Codes  
Status Code  
(SMB0STA)  
Mode  
All  
SMBus State  
0x00  
0x08  
0x10  
0x18  
0x20  
0x28  
0x30  
0x38  
0x40  
0x48  
0x50  
0x58  
0x60  
0x68  
Bus Error (i.e. illegal START, illegal STOP, …)  
Master Transmitter/Receiver START condition transmitted.  
Master Transmitter/Receiver Repeated START condition transmitted.  
Master Transmitter  
Master Transmitter  
Master Transmitter  
Master Transmitter  
Master Transmitter  
Master Receiver  
Master Receiver  
Master Receiver  
Master Receiver  
Slave Receiver  
Slave address + W transmitted. ACK received.  
Slave address + W transmitted. NACK received.  
Data byte transmitted. ACK received.  
Data byte transmitted. NACK received.  
Arbitration lost  
Slave address + R transmitted. ACK received.  
Slave address + R transmitted. NACK received  
Data byte received. ACK transmitted.  
Data byte received. NACK transmitted.  
SMB0’s own slave address + W received. ACK transmitted.  
Arbitration lost in transmitting slave address + R/W as master.  
Own slave address + W received. ACK transmitted.  
General call address (0x00) received. ACK returned.  
Arbitration lost in transmitting slave address + R/W as master.  
General call address received. ACK transmitted.  
SMB0’s own slave address + W received. Data byte received.  
ACK transmitted.  
Slave Receiver  
0x70  
0x78  
Slave Receiver  
Slave Receiver  
0x80  
0x88  
0x90  
0x98  
Slave Receiver  
Slave Receiver  
Slave Receiver  
Slave Receiver  
SMB0’s own slave address + W received. Data byte received.  
NACK transmitted.  
General call address (0x00) received. Data byte received. ACK  
transmitted.  
General call address (0x00) received. Data byte received.  
NACK transmitted.  
0xA0  
0xA8  
0xB0  
Slave Receiver  
Slave Transmitter  
Slave Transmitter  
A STOP or repeated START received while addressed as a slave.  
SMB0’s own slave address + R received. ACK transmitted.  
Arbitration lost in transmitting slave address + R/W as master.  
Own slave address + R received. ACK transmitted.  
Data byte transmitted. ACK received.  
0xB8  
0xC0  
0xC8  
0xD0  
0xF8  
Slave Transmitter  
Slave Transmitter  
Slave Transmitter  
Slave Transmitter/Receiver  
All  
Data byte transmitted. NACK received.  
Last data byte transmitted (AA=0). ACK received.  
SCL Clock High Timer per SMB0CR timed out (FTE=1)  
Idle  
Rev. 1.7  
122  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
17. SERIAL PERIPHERAL INTERFACE BUS  
The Serial Peripheral Interface (SPI) provides access to a four-wire, full-duplex, serial bus. SPI supports the  
connection of multiple slave devices to a master device on the same bus. A separate slave-select signal (NSS) is  
used to select a slave device and enable a data transfer between the master and the selected slave. Multiple masters  
on the same bus are also supported. Collision detection is provided when two or more masters attempt a data  
transfer at the same time. The SPI can operate as either a master or a slave. When the SPI is configured as a  
master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency.  
When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the  
system clock frequency, provided that the master issues SCK, NSS, and the serial input data synchronously with the  
system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer  
rate (bits/sec) must be less that 1/10 the system clock frequency. In the special case where the master only wants to  
transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave  
can receive data at a maximum data transfer rate (bits/sec) of ¼ the system clock frequency. This is provided that  
the master issues SCK, NSS, and the serial input data synchronously with the system clock.  
Figure 17.1. SPI Block Diagram  
SFR Bus  
SPI0CKR  
SPI0CFG  
SPI0CN  
S
C
R
7
S
C
R
6
S
C
R
5
S
C
R
4
S
C
R
3
S
C
R
2
S
C
R
1
S
C
R
0
C
K
P
H
A
C
K
P
O
L
B
C
2
B
C
1
B
C
0
F
R
S
2
F
R
S
1
F
R
S
0
S
P
I
W
C
O
L
M
O
D
F
R
X
O
V
R
N
T
X
B
S
Y
S
L
M
S
T
S
P
I
V
S
E
L
F
E
N
E
N
Clock Divide  
Logic  
Bit Count  
Logic  
SYSCLK  
SPI CONTROL LOGIC  
SPI IRQ  
Data Path  
Control  
SPI Clock  
Pin Control  
Interface  
(Master Mode)  
SCK  
C
R
O
S
S
B
A
R
MOSI  
MISO  
NSS  
Tx Data  
Pin  
SPI0DAT  
Control  
Logic  
Port I/O  
Shift Register  
7 6 5 4 3 2 1 0  
Rx Data  
Receive Data Register  
Read  
Write to  
SPI0DAT  
SPI0DAT  
SFR Bus  
123  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 17.2. Typical SPI Interconnection  
NSS  
NSS  
NSS  
Slave  
Slave  
Slave  
Device  
Device  
Device  
VDD  
MISO  
MOSI  
SCK  
Master  
Device  
17.1. Signal Descriptions  
The four signals used by the SPI (MOSI, MISO, SCK, NSS) are described below.  
17.1.1. Master Out, Slave In  
The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to  
serially transfer data from the master to the slave. Data is transferred most-significant bit first.  
17.1.2. Master In, Slave Out  
The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used  
to serially transfer data from the slave to the master. Data is transferred most-significant bit first. A SPI slave  
places the MISO pin in a high-impedance state when the slave is not selected.  
17.1.3. Serial Clock  
The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to  
synchronize the transfer of data between the master and slave on the MOSI and MISO lines.  
17.1.4. Slave Select  
The slave select (NSS) signal is an input used to select the SPI module when in slave mode by a master, or to  
disable the SPI module when in master mode. When in slave mode, it is pulled low to initiate a data transfer and  
remains low for the duration of the transfer.  
Rev. 1.7  
124  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
17.2. Operation  
Only a SPI master device can initiate a data transfer. The SPI is placed in master mode by setting the Master Enable  
flag (MSTEN, SPI0CN.1). Writing a byte of data to the SPI data register (SPI0DAT) when in Master Mode starts a  
data transfer. The SPI master immediately shifts out the data serially on the MOSI line while providing the serial  
clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an  
interrupt request is generated when the SPIF flag is set. The SPI master can be configured to shift in/out from one  
to eight bits in a transfer operation in order to accommodate slave devices with different word lengths. The SPIFRS  
bits in the SPI Configuration Register (SPI0CFG.[2:0]) are used to select the number of bits to shift in/out in a  
transfer operation.  
While the SPI master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously  
transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. The data  
byte received from the slave replaces the data in the master’s data register. Therefore, the SPIF flag serves as both a  
transmit-complete and receive-data-ready flag. The data transfer in both directions is synchronized with the serial  
clock generated by the master. Figure 17.3 illustrates the full-duplex operation of an SPI master and an addressed  
slave.  
Figure 17.3. Full Duplex Operation  
MASTER DEVICE  
SLAVE DEVICE  
MOSI  
MISO  
NSS  
SCK  
Px.y  
MOSI  
MISO  
NSS  
SPI SHIFT REGISTER  
7 6 5 4 3 2 1 0  
SPI SHIFT REGISTER  
7 6 5 4 3 2 1 0  
VDD  
Receive Buffer  
Receive Buffer  
SCK  
Baud Rate  
Generator  
The SPI data register is double buffered on reads, but not on a write. If a write to SPI0DAT is attempted during a  
data transfer, the WCOL flag (SPI0CN.6) will be set to logic 1 and the write is ignored. The current data transfer  
will continue uninterrupted. A read of the SPI data register by the system controller actually reads the receive  
buffer. If the receive buffer still holds unread data from a previous transfer when the last bit of the current transfer  
is shifted into the SPI shift register, a receive overrun occurs and the RXOVRN flag (SPI0CN.4) is set to logic 1.  
The new data is not transferred to the receive buffer, allowing the previously received data byte to be read. The data  
byte causing the overrun is lost.  
When the SPI is enabled and not configured as a master, it will operate as an SPI slave. Another SPI device acting  
as a master will initiate a transfer by driving the NSS signal low. The master then shifts data out of the shift register  
on the MOSI pin using the its serial clock. The SPIF flag is set to logic 1 at the end of a data transfer (when the  
NSS signal goes high). The slave can load its shift register for the next data transfer by writing to the SPI data  
register. The slave must make the write to the data register at least one SPI serial clock cycle before the master  
starts the next transmission. Otherwise, the byte of data already in the slave’s shift register will be transferred.  
Multiple masters may reside on the same bus. A Mode Fault flag (MODF, SPI0CN.5) is set to logic 1 when the SPI  
is configured as a master (MSTEN = 1) and its slave select signal NSS is pulled low. When the Mode Fault flag is  
set, the MSTEN and SPIEN bits of the SPI control register are cleared by hardware, thereby placing the SPI module  
125  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
in an “off-line” state. In a multiple-master environment, the system controller should check the state of the  
SLVSEL flag (SPI0CN.2) to ensure the bus is free before setting the MSTEN bit and initiating a data transfer.  
17.3. Serial Clock Timing  
As shown in Figure 17.4, four combinations of serial clock phase and polarity can be selected using the clock  
control bits in the SPI Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.7) selects one of two clock  
phases (edge used to latch the data). The CKPOL bit (SPI0CFG.6) selects between an active-high or active-low  
clock. Both master and slave devices must be configured to use the same clock phase and polarity. Note: the SPI  
should be disabled (by clearing the SPIEN bit, SPI0CN.0) while changing the clock phase and polarity.  
The SPI Clock Rate Register (SPI0CKR) as shown in Figure 17.7 controls the master mode serial clock frequency.  
This register is ignored when operating in slave mode.  
Figure 17.4. Data/Clock Timing Diagram  
SCK  
(CKPOL = 0, CKPHA = 0)  
SCK  
(CKPOL = 0, CKPHA = 1)  
SCK  
(CKPOL = 1, CKPHA = 0)  
SCK  
(CKPOL = 1, CKPHA = 1)  
MSB  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
LSB  
MISO/MOSI  
NSS  
Rev. 1.7  
126  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
17.4. SPI Special Function Registers  
The SPI is accessed and controlled through four special function registers in the system controller: SPI0CN Control  
Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four  
special function registers related to the operation of the SPI Bus are described in the following section.  
Figure 17.5. SPI0CFG: SPI Configuration Register  
R/W  
CKPHA  
Bit7  
R/W  
CKPOL  
Bit6  
R
R
R
R/W  
SPIFRS2  
Bit2  
R/W  
SPIFRS1  
Bit1  
R/W  
SPIFRS0  
Bit0  
Reset Value  
BC2  
BC1  
BC0  
00000111  
SFR Address:  
Bit5  
Bit4  
Bit3  
0x9A  
Bit7:  
CKPHA: SPI Clock Phase.  
This bit controls the SPI clock phase.  
0: Data sampled on first edge of SCK period.  
1: Data sampled on second edge of SCK period.  
Bit6:  
CKPOL: SPI Clock Polarity.  
This bit controls the SPI clock polarity.  
0: SCK line low in idle state.  
1: SCK line high in idle state.  
Bits5-3: BC2-BC0: SPI Bit Count.  
Indicates which of the up to 8 bits of the SPI word have been transmitted.  
BC2-BC0  
Bit Transmitted  
Bit 0 (LSB)  
Bit 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7 (MSB)  
Bits2-0: SPIFRS2-SPIFRS0: SPI Frame Size.  
These three bits determine the number of bits to shift in/out of the SPI shift register  
during a data transfer in master mode. They are ignored in slave mode.  
SPIFRS  
Bits Shifted  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
.
127  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 17.6. SPI0CN: SPI Control Register  
R/W  
SPIF  
Bit7  
R/W  
WCOL  
Bit6  
R/W  
MODF  
Bit5  
R/W  
RXOVRN  
Bit4  
R
R
R/W  
MSTEN  
Bit1  
R/W  
Reset Value  
TXBSY  
SLVSEL  
SPIEN  
00000000  
SFR Address:  
Bit3  
Bit2  
Bit0  
(bit addressable)  
0xF8  
Bit7:  
SPIF: SPI Interrupt Flag.  
This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled,  
setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is  
not automatically cleared by hardware. It must be cleared by software.  
Bit6:  
Bit5:  
Bit4:  
WCOL: Write Collision Flag.  
This bit is set to logic 1 by hardware (and generates a SPI interrupt) to indicate a write to  
the SPI data register was attempted while a data transfer was in progress. It is cleared by  
software.  
MODF: Mode Fault Flag.  
This bit is set to logic 1 by hardware (and generates a SPI interrupt) when a master mode  
collision is detected (NSS is low and MSTEN = 1). This bit is not automatically cleared by  
hardware. It must be cleared by software.  
RXOVRN: Receive Overrun Flag.  
This bit is set to logic 1 by hardware (and generates a SPI interrupt) when the receive  
buffer still holds unread data from a previous transfer and the last bit of the current transfer  
is shifted into the SPI shift register. This bit is not automatically cleared by hardware. It  
must be cleared by software.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
TXBSY: Transmit Busy Flag.  
This bit is set to logic 1 by hardware while a master mode transfer is in progress. It is  
cleared by hardware at the end of the transfer.  
SLVSEL: Slave Selected Flag.  
This bit is set to logic 1 whenever the NSS pin is low indicating it is enabled as a slave. It  
is cleared to logic 0 when NSS is high (slave disabled).  
MSTEN: Master Mode Enable.  
0: Disable master mode. Operate in slave mode.  
1: Enable master mode. Operate as a master.  
SPIEN: SPI Enable.  
This bit enables/disables the SPI.  
0: SPI disabled.  
1: SPI enabled.  
Rev. 1.7  
128  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 17.7. SPI0CKR: SPI Clock Rate Register  
R/W  
SCR7  
Bit7  
R/W  
SCR6  
Bit6  
R/W  
SCR5  
Bit5  
R/W  
SCR4  
Bit4  
R/W  
SCR3  
Bit3  
R/W  
SCR2  
Bit2  
R/W  
SCR1  
Bit1  
R/W  
SCR0  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x9D  
Bits7-0: SCR7-SCR0: SPI Clock Rate  
These bits determine the frequency of the SCK output when the SPI module is  
configured for master mode operation. The SCK clock frequency is a divided down  
version of the system clock, and is given in the following equations:  
fSCK = 0.5 * fSYSCLK / (SPI0CKR + 1),  
for 0 SPI0CKR 255,  
Figure 17.8. SPI0DAT: SPI Data Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x9B  
Bits7-0: SPI0DAT: SPI0 Transmit and Receive Data.  
The SPI0DAT register is used to transmit and receive SPI data. Writing data to SPI0DAT  
places the data immediately into the shift register and initiates a transfer when in Master  
Mode. A read of SPI0DAT returns the contents of the receive buffer.  
129  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
18. UART  
The UART is a serial port capable of asynchronous transmission. The UART can function in full duplex mode. In  
all modes, receive data is buffered in a holding register. This allows the UART to start reception of a second  
incoming data byte before software has finished reading the previous data byte.  
The UART has an associated Serial Control Register (SCON) and a Serial Data Buffer (SBUF) in the SFRs. The  
single SBUF location provides access to both transmit and receive registers. Reads access the Receive register and  
writes access the Transmit register automatically.  
The UART is capable of generating interrupts if enabled. The UART has two sources of interrupts: a Transmit  
Interrupt flag, TI (SCON.1) set when transmission of a data byte is complete, and a Receive Interrupt flag, RI  
(SCON.0) set when reception of a data byte is complete. The UART interrupt flags are not cleared by hardware  
when the CPU vectors to the interrupt service routine. They must be cleared manually by software. This allows  
software to determine the cause of the UART interrupt (transmit complete or receive complete).  
Figure 18.1. UART Block Diagram  
SFR Bus  
Write to  
SBUF  
PCON  
SCON  
T2CON  
TB8  
S
M
O
D
S
M
0
S
M
1
S
M
2
R
E
N
T
B
8
R
B
8
T
I
R
I
R
T
C
L
C
L
K
K
SET  
D
Q
SBUF  
TX  
CLR  
Crossbar  
Zero Detector  
Baud Rate Generation Logic  
Shift  
Stop Bit  
Gen.  
Start  
Data  
Timer 1  
1
Overflow  
Tx Control  
Tx IRQ  
0
00  
01  
10  
11  
0
2
16  
Tx Clock  
Send  
1
SMOD  
TI  
Serial  
Port  
TCLK  
SM0, SM1  
{MODE}  
REN  
RB8  
Interrupt  
RI  
0
00  
01  
10  
11  
Rx IRQ  
Enable  
MSB  
16  
Rx Clock  
Start  
Timer 2  
Load  
1
Overflow  
SBUF  
Rx Control  
RCLK  
Shift  
0x1FF  
1
32  
Port I/O  
Bit Detector  
0
64  
Input Shift Register  
(9 bits)  
SYSCLK  
SMOD  
12  
Shift  
Load SBUF  
SBUF  
Read  
SBUF  
SFR Bus  
RX  
Crossbar  
Rev. 1.7  
130  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
18.1. UART Operational Modes  
The UART provides four operating modes (one synchronous and three asynchronous) selected by setting  
configuration bits in the SCON register. These four modes offer different baud rates and communication protocols.  
The four modes are summarized in Table 18.1 below. Detailed descriptions follow.  
Table 18.1. UART Modes  
Mode  
Synchronization  
Synchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Baud Clock  
Data Bits  
Start/Stop Bits  
None  
1 Start, 1 Stop  
1 Start, 1 Stop  
1 Start, 1 Stop  
0
1
2
3
SYSCLK/12  
8
8
9
9
Timer 1 or Timer 2 Overflow  
SYSCLK/32 or SYSCLK/64  
Timer 1 or Timer 2 Overflow  
18.1.1. Mode 0: Synchronous Mode  
Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX pin.  
The TX pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates  
the shift clock for transmission in both directions (see the interconnect diagram in Figure 18.2).  
Eight data bits are transmitted/received, LSB first (see the timing diagram in Figure 18.3). Data transmission begins  
when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the  
end of the eighth bit time. Data reception begins when the REN Receive Enable bit (SCON.4) is set to logic 1 and  
the RI Receive Interrupt Flag (SCON.0) is cleared. One cycle after the eighth bit is shifted in, the RI flag is set and  
reception stops until software clears the RI bit. An interrupt will occur if enabled when either TI or RI is set.  
The Mode 0 baud rate is the system clock frequency divided by twelve. RX is forced to open-drain in mode 0, and  
an external pull-up will typically be required.  
Figure 18.2. UART Mode 0 Interconnect  
CLK  
C8051FxxxTX  
Shift  
Reg.  
RX  
DATA  
8 Extra Outputs  
Figure 18.3. UART Mode 0 Timing Diagram  
MODE 0 TRANSMIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RX (data out)  
TX (clk out)  
MODE 0 RECEIVE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RX (data in)  
131  
Rev. 1.7  
 
 
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Mode 1 provides standard asynchronous, full duplex communication using a total of 10 bits per data byte: one start  
bit, eight data bits (LSB first), and one stop bit (see the timing diagram in Figure 18.4). Data are transmitted from  
the TX pin and received at the RX pin (see the interconnection diagram in Figure 18.5). On receive, the eight data  
bits are stored in SBUF and the stop bit goes into RB8 (SCON.2).  
Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt  
Flag (SCON.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin  
any time after the REN Receive Enable bit (SCON.4) is set to logic 1. After the stop bit is received, the data byte  
will be loaded into the SBUF receive register if the following conditions are met: RI must be logic 0, and if SM2 is  
logic 1, the stop bit must be logic 1.  
If these conditions are met, the eight bits of data are stored in SBUF, the stop bit is stored in RB8, and the RI flag is  
set. If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set. An interrupt  
will occur if enabled when either TI or RI is set.  
Figure 18.4. UART Mode 1 Timing Diagram  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SPACE  
BIT TIMES  
BIT SAMPLING  
The baud rate generated in Mode 1 is a function of timer overflow. The UART can use Timer 1 operating in 8-bit  
Counter/Timer with Auto-Reload Mode, or Timer 2 operating in Baud Rate Generator Mode to generate the baud  
rate (note that the TX and RX clock sources are selected separately). On each timer overflow event (a rollover from  
all ones (0xFF for Timer 1, 0xFFFF for Timer 2) to zero), a clock is sent to the baud rate logic.  
When Timer 1 is selected as a baud rate source, the SMOD bit (PCON.7) selects whether or not to divide the  
Timer 1 overflow rate by two. On reset, the SMOD bit is logic 0, thus selecting the lower speed baud rate by  
default. The SMOD bit affects the baud rate generated by Timer 1 as follows:  
Mode 1 Baud Rate = (1 / 32) * T1_OVERFLOWRATE (when the SMOD bit is set to logic 0).  
Mode 1 Baud Rate = (1 / 16) * T1_OVERFLOWRATE (when the SMOD bit is set to logic 1).  
When Timer 2 is selected as a baud rate source, the baud rate generated by Timer 2 is as follows:  
Mode 1 Baud Rate = (1 / 16) * T2_OVERFLOWRATE.  
The Timer 1 overflow rate is determined by the Timer 1 clock source (T1CLK) and reload value (TH1). The  
frequency of T1CLK can be selected as SYSCLK, SYSCLK/12, or an external clock source. The Timer 1 overflow  
rate can be calculated as follows:  
T1_OVERFLOWRATE = T1CLK / (256 – TH1).  
For example, assume TMOD = 0x20.  
If T1M (CKCON.4) is logic 1, then the above equation becomes:  
T1_OVERFLOWRATE = (SYSCLK) / (256 – TH1).  
If T1M (CKCON.4) is logic 0, then the above equation becomes:  
T1_OVERFLOWRATE = (SYSCLK/12) / (256 – TH1).  
Rev. 1.7  
132  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
The Timer 2 overflow rate, when in Baud Rate Generator Mode and using an internal clock source, is determined  
solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2.  
The Timer 2 overflow rate can be calculated as follows:  
T2_OVERFLOWRATE = (SYSCLK/2) / (65536 – [RCAP2H:RCAP2L]).  
Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK  
(T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically  
disabled and the timer is forced into Baud Rate Generator Mode with SYSCLK/2 as its clock source. If a different  
timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external  
input pin T2. See the Timers section for complete timer configuration details.  
Figure 18.5. UART Modes 1, 2, and 3 Interconnect Diagram  
TX  
RS-232  
RS-232  
LEVEL  
C8051Fxxx  
RX  
XLTR  
OR  
TX  
MCU  
TXC8051Fxxx  
RX  
RX  
133  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
18.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate  
Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start bit, 8  
data bits (LSB first), a programmable ninth data bit, and a stop bit (see timing diagram in Figure 18.6). On transmit,  
the ninth data bit is determined by the value in TB8 (SCON.3). It can be assigned the value of the parity flag P in  
the PSW or used in multiprocessor communications. On receive, the ninth data bit goes into RB8 (SCON.2) and the  
stop bit is ignored.  
Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt  
Flag (SCON.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin  
any time after the REN Receive Enable bit (SCON.4) is set to logic 1. After the stop bit is received, the data byte  
will be loaded into the SBUF receive register if the following conditions are met: RI must be logic 0, and if SM2 is  
logic 1, the 9th bit must be logic 1.  
If these conditions are met, the eight bits of data are stored in SBUF, the ninth bit is stored in RB8 and the RI flag is  
set. If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set. An interrupt  
will occur if enabled when either TI or RI are set.  
The baud rate in Mode 2 is a direct function of the system clock frequency as follows:  
Mode 2 Baud Rate = 2SMOD * (SYSCLK / 64).  
The SMOD bit (PCON.7) selects whether to divide SYSCLK by 32 or 64. In the formula, 2 is raised to the power  
SMOD, resulting in a baud rate of either 1/32 or 1/64 of the system clock frequency. On reset, the SMOD bit is  
logic 0, thus selecting the lower speed baud rate by default.  
Figure 18.6. UART Modes 2 and 3 Timing Diagram  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SPACE  
BIT TIMES  
BIT SAMPLING  
18.1.4. Mode 3: 9-Bit UART, Variable Baud Rate  
Mode 3 is the same as Mode 2 in all respects except the baud rate is variable. The baud rate is determined in the  
same manner as for Mode 1. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable  
ninth data bit, and a stop bit. Timer 1 or Timer 2 overflows generate the baud rate just as with Mode 1. In  
summary, Mode 3 transmits using the same protocol as Mode 2 but with Mode 1 baud rate generation.  
Rev. 1.7  
134  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
18.2. Multiprocessor Communications  
Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors  
by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends  
an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a  
data byte, the ninth bit is always set to logic 0.  
Setting the SM2 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is received, the  
UART will generate an interrupt only if the ninth bit is logic one (RB8 = 1) signifying an address byte has been  
received. In the UART’s interrupt handler, software will compare the received address with the slave’s own  
assigned 8-bit address. If the addresses match, the slave will clear its SM2 bit to enable interrupts on the reception  
of the following data byte(s). Slaves that weren’t addressed leave their SM2 bits set and do not generate interrupts  
on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the  
addressed slave resets its SM2 bit to ignore all transmissions until it receives the next address byte.  
Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves,  
thereby enabling “broadcast” transmissions to more than one slave simultaneously. The master processor can be  
configured to receive all transmissions or a protocol can be implemented such that the master/slave role is  
temporarily reversed to enable half-duplex transmission between the original master and slave(s).  
Figure 18.7. UART Multi-Processor Mode Interconnect Diagram  
Master  
Device  
Slave  
Slave  
Slave  
Device  
Device  
Device  
VDD  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
135  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Table 18.2. Oscillator Frequencies for Standard Baud Rates  
Oscillator Frequency (MHz) Divide Factor Timer 1 Load Value* Resulting Baud Rate**  
24.0  
208  
205  
192  
160  
144  
128  
112  
96  
0xF3  
0xF3  
0xF4  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
0xEC  
0xE5  
0xCA  
0xCB  
0xCC  
0xCD  
0xD0  
0xD8  
0xDC  
0xE0  
0xE4  
0xE8  
0xEC  
0xF0  
0xF4  
0xF8  
0xFC  
115200 (115384)  
115200 (113423)  
115200  
23.592  
22.1184  
18.432  
16.5888  
14.7456  
12.9024  
11.0592  
9.216  
115200  
115200  
115200  
115200  
115200  
80  
115200  
7.3728  
5.5296  
3.6864  
1.8432  
24.576  
25.0  
25.0  
24.576  
24.0  
23.592  
22.1184  
18.432  
16.5888  
14.7456  
12.9024  
11.0592  
9.216  
7.3728  
5.5296  
3.6864  
1.8432  
64  
115200  
48  
115200  
32  
115200  
16  
115200  
320  
434  
868  
848  
833  
819  
768  
640  
576  
512  
448  
384  
320  
256  
192  
128  
64  
76800  
57600 (57870)  
28800  
28800 (28921)  
28800 (28846)  
28800 (28911)  
28800  
28800  
28800  
28800  
28800  
28800  
28800  
28800  
28800  
28800  
28800  
* Assumes SMOD=1 and T1M=1.  
** Numbers in parenthesis show the actual baud rate.  
Figure 18.8. SBUF: Serial (UART) Data Buffer Register  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x99  
Bits7-0: SBUF.[7:0]: Serial Data Buffer Bits 7-0 (MSB-LSB)  
This is actually two registers; a transmit and a receive buffer register. When data is moved to  
SBUF, it goes to the transmit buffer and is held for serial transmission. Moving a byte to  
SBUF is what initiates the transmission. When data is moved from SBUF, it comes from the  
receive buffer.  
Rev. 1.7  
136  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 18.9. SCON: Serial Port Control Register  
R/W  
SM0  
Bit7  
R/W  
SM1  
Bit6  
R/W  
SM2  
Bit5  
R/W  
REN  
Bit4  
R/W  
TB8  
Bit3  
R/W  
RB8  
Bit2  
R/W  
TI  
R/W  
RI  
Reset Value  
00000000  
SFR Address:  
Bit1  
Bit0  
(bit addressable)  
0x98  
Bits7-6: SM0-SM1: Serial Port Operation Mode.  
These bits select the Serial Port Operation Mode.  
SM0  
SM1  
Mode  
0
0
1
1
0
1
0
1
Mode 0: Synchronous Mode  
Mode 1: 8-Bit UART, Variable Baud Rate  
Mode 2: 9-Bit UART, Fixed Baud Rate  
Mode 3: 9-Bit UART, Variable Baud Rate  
Bit5:  
SM2: Multiprocessor Communication Enable.  
The function of this bit is dependent on the Serial Port Operation Mode.  
Mode 0: No effect  
Mode 1: Checks for valid stop bit.  
0: Logic level of stop bit is ignored.  
1: RI will only be activated if stop bit is logic level 1.  
Mode 2 and 3: Multiprocessor Communications Enable.  
0: Logic level of ninth bit is ignored.  
1: RI is set and an interrupt is generated only when the ninth bit is logic 1.  
Bit4:  
REN: Receive Enable.  
This bit enables/disables the UART receiver.  
0: UART reception disabled.  
1: UART reception enabled.  
Bit3:  
Bit2:  
TB8: Ninth Transmission Bit.  
The logic level of this bit will be assigned to the ninth transmission bit in Modes 2 and 3. It  
is not used in Modes 0 and 1. Set or cleared by software as required.  
RB8: Ninth Receive Bit.  
The bit is assigned the logic level of the ninth bit received in Modes 2 and 3. In Mode 1, if  
SM2 is logic 0, RB8 is assigned the logic level of the received stop bit. RB8 is not used in  
Mode 0.  
Bit1:  
Bit0:  
TI: Transmit Interrupt Flag.  
Set by hardware when a byte of data has been transmitted by the UART (after the 8th bit in  
Mode 0, or at the beginning of the stop bit in other modes). When the UART interrupt is  
enabled, setting this bit causes the CPU to vector to the UART interrupt service routine.  
This bit must be cleared manually by software  
RI: Receive Interrupt Flag.  
Set by hardware when a byte of data has been received by the UART (after the 8th bit in  
Mode 0, or after the stop bit in other modes – see SM2 bit for exception). When the  
UART interrupt is enabled, setting this bit causes the CPU to vector to the UART interrupt  
service routine. This bit must be cleared manually by software.  
137  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19. TIMERS  
Each MCU implements four counter/timers: three are 16-bit counter/timers compatible with those found in the  
standard 8051, and one is a 16-bit timer for use with the ADC, SMBus, or for general purpose use. These can be  
used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1  
are nearly identical and have four primary modes of operation. Timer 2 offers additional capabilities not available  
in Timers 0 and 1. Timer 3 is similar to Timer 2, but without the capture or Baud Rate Generator modes.  
Timer 3:  
Timer 0 and Timer 1:  
Timer 2:  
13-bit counter/timer  
16-bit counter/timer with auto-reload 16-bit timer with auto-reload  
16-bit counter/timer  
16-bit counter/timer with capture  
8-bit counter/timer with auto-reload  
Two 8-bit counter/timers (Timer 0 only)  
Baud rate generator  
When functioning as a timer, the counter/timer registers are incremented on each clock tick. Clock ticks are derived  
from the system clock divided by either one or twelve as specified by the Timer Clock Select bits (T2M-T0M) in  
CKCON. The twelve-clocks-per-tick option provides compatibility with the older generation of the 8051 family.  
Applications that require a faster timer can use the one-clock-per-tick option.  
When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected  
input pin for T0, T1, or T2. Events with a frequency of up to one-fourth the system clock’s frequency can be  
counted. The input signal need not be periodic, but it should be held at a given level for at least two full system  
clock cycles to ensure the level is sampled.  
19.1. Timer 0 and Timer 1  
Timer 0 and Timer 1 are accessed and controlled through SFRs. Each counter/timer is implemented as a 16-bit  
register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The  
Counter/Timer Control (TCON) register is used to enable Timer 0 and Timer 1 as well as indicate their status. Both  
counter/timers operate in one of four primary modes selected by setting the Mode Select bits M1-M0 in the  
Counter/Timer Mode (TMOD) register. Each timer can be configured independently. Following is a detailed  
description of each operating mode.  
19.1.1. Mode 0: 13-bit Counter/Timer  
Timer 0 and Timer 1 operate as a 13-bit counter/timer in Mode 0. The following describes the configuration and  
operation of Timer 0. However, both timers operate identically and Timer 1 is configured in the same manner as  
described for Timer 0.  
The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4-  
TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or ignored when  
reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer  
overflow flag TF0 (TCON.5) is set and an interrupt will occur if enabled.  
The C/T0 bit (TMOD.2) selects the counter/timer’s clock source. Clearing C/T selects the system clock as the input  
for the timer. When C/T0 is set to logic 1, high-to-low transitions at the selected input pin increment the timer  
register. (Refer to Port I/O Section 15.1 for information on selecting and configuring external I/O pins.)  
Rev. 1.7  
138  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is 0 or the input signal /INT0 is  
logic-level one. Setting GATE0 to logic 1 allows the timer to be controlled by the external input signal /INT0,  
facilitating pulse width measurements.  
TR0  
GATE0  
/INT0  
Counter/Timer  
Disabled  
0
1
1
1
X
0
X
X
0
Enabled  
1
1
Disabled  
Enabled  
1
X = Don’t Care  
Setting TR0 does not reset the timer register. The timer register should be initialized to the desired value before  
enabling the timer.  
TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer  
1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0.  
Figure 19.1. T0 Mode 0 Block Diagram  
TMOD  
CKCON  
T T T  
2 1 0  
M M M  
G
A
T
E
1
G
A
T
C T T  
C T T  
/
1 1  
/ 0 0  
T M M T M M  
E
0
1 1 0  
0 1 0  
12  
0
1
SYSCLK  
T0  
0
1
TF1  
TR1  
TF0  
TR0  
IE1  
Interrupt  
Crossbar  
TCLK  
TL0  
TH0  
(5 bits)  
(8 bits)  
IT1  
TR0  
IE0  
IT0  
GATE0  
Crossbar  
/INT0  
19.1.2. Mode 1: 16-bit Counter/Timer  
Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers  
are enabled and configured in Mode 1 in the same manner as for Mode 0.  
139  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload  
Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value.  
The TL0 holds the count and TH0 holds the reload value. When the count in TL0 overflows from all ones to 0x00,  
the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If enabled, an interrupt  
will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired  
value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to  
Timer 0. Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0.  
Figure 19.2. T0 Mode 2 Block Diagram  
CKCON  
T T T  
2 1 0  
M M M  
TMOD  
G
A
T
E
1
G
C T T  
C T T  
A
T
/
1 1  
/ 0 0  
T M M T M M  
E
0
1 1 0  
0 1 0  
12  
0
1
SYSCLK  
T0  
0
1
TF1  
TR1  
TF0  
TR0  
IE1  
Crossbar  
TR0  
TCLK  
TL0  
Interrupt  
(8 bits)  
IT1  
IE0  
IT0  
GATE0  
Crossbar  
TH0  
Reload  
(8 bits)  
/INT0  
Rev. 1.7  
140  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)  
Timer 0 and Timer 1 behave differently in Mode 3. Timer 0 is configured as two separate 8-bit counter/timers held  
in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD:  
TR0, C/T0, GATE0 and TF0. It can use either the system clock or an external input signal as its timebase. The  
TH0 register is restricted to a timer function sourced by the system clock. TH0 is enabled using the Timer 1 run  
control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.  
Timer 1 is inactive in Mode 3, so with Timer 0 in Mode 3, Timer 1 can be turned off and on by switching it into and  
out of its Mode 3. When Timer 0 is in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked  
by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used for  
baud rate generation. Refer to Section 18 (UART) for information on configuring Timer 1 for baud rate generation.  
Figure 19.3. T0 Mode 3 Block Diagram  
CKCON  
T T T  
2 1 0  
M M M  
TMOD  
G
A
T
E
1
G
C T T  
C T T  
A
T
/
1 1  
/ 0 0  
T M M T M M  
E
0
1 1 0  
0 1 0  
TR1  
TH0  
Interrupt  
Interrupt  
TF1  
TR1  
TF0  
TR0  
IE1  
12  
(8 bits)  
0
SYSCLK  
T0  
C/T0  
1
0
1
IT1  
IE0  
IT0  
Crossbar  
TL0  
(8 bits)  
TR0  
GATE0  
Crossbar  
/INT0  
141  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.4. TCON: Timer Control Register  
R/W  
TF1  
Bit7  
R/W  
TR1  
Bit6  
R/W  
TF0  
Bit5  
R/W  
TR0  
Bit4  
R/W  
IE1  
Bit3  
R/W  
IT1  
Bit2  
R/W  
IE0  
Bit1  
R/W  
IT0  
Reset Value  
00000000  
SFR Address:  
Bit0  
(bit addressable)  
0x88  
Bit7:  
TF1: Timer 1 Overflow Flag.  
Set by hardware when Timer 1 overflows. This flag can be cleared by software but is  
automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.  
0: No Timer 1 overflow detected.  
1: Timer 1 has overflowed.  
Bit6:  
Bit5:  
TR1: Timer 1 Run Control.  
0: Timer 1 disabled.  
1: Timer 1 enabled.  
TF0: Timer 0 Overflow Flag.  
Set by hardware when Timer 0 overflows. This flag can be cleared by software but is  
automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.  
0: No Timer 0 overflow detected.  
1: Timer 0 has overflowed.  
Bit4:  
Bit3:  
TR0: Timer 0 Run Control.  
0: Timer 0 disabled.  
1: Timer 0 enabled.  
IE1: External Interrupt 1.  
This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can  
be cleared by software but is automatically cleared when the CPU vectors to the External  
Interrupt 1 service routine if IT1 = 1. This flag is the inverse of the /INT1 input signal’s  
logic level when IT1 = 0.  
Bit2:  
Bit1:  
Bit0:  
IT1: Interrupt 1 Type Select.  
This bit selects whether the configured /INT1 signal will detect falling edge or active-low  
level-sensitive interrupts.  
0: /INT1 is level triggered.  
1: /INT1 is edge triggered.  
IE0: External Interrupt 0.  
This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can  
be cleared by software but is automatically cleared when the CPU vectors to the External  
Interrupt 0 service routine if IT0 = 1. This flag is the inverse of the /INT0 input signal’s  
logic level when IT0 = 0.  
IT0: Interrupt 0 Type Select.  
This bit selects whether the configured /INT0 signal will detect falling edge or active-low  
level-sensitive interrupts.  
0: /INT0 is level triggered.  
1: /INT0 is edge triggered.  
Rev. 1.7  
142  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.5. TMOD: Timer Mode Register  
R/W  
GATE1  
Bit7  
R/W  
C/T1  
Bit6  
R/W  
T1M1  
Bit5  
R/W  
T1M0  
Bit4  
R/W  
GATE0  
Bit3  
R/W  
C/T0  
Bit2  
R/W  
T0M1  
Bit1  
R/W  
T0M0  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x89  
Bit7:  
Bit6:  
GATE1: Timer 1 Gate Control.  
0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level.  
1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one.  
C/T1: Counter/Timer 1 Select.  
0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4).  
1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin  
(T1).  
Bits5-4: T1M1-T1M0: Timer 1 Mode Select.  
These bits select the Timer 1 operation mode.  
T1M1 T1M0 Mode  
0
0
1
1
0
1
0
1
Mode 0: 13-bit counter/timer  
Mode 1: 16-bit counter/timer  
Mode 2: 8-bit counter/timer with auto-reload  
Mode 3: Timer 1 Inactive/stopped  
Bit3:  
Bit2:  
GATE0: Timer 0 Gate Control.  
0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level.  
1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one.  
C/T0: Counter/Timer Select.  
0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).  
1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin  
(T0).  
Bits1-0: T0M1-T0M0: Timer 0 Mode Select.  
These bits select the Timer 0 operation mode.  
T0M1 T0M0 Mode  
0
0
1
1
0
1
0
1
Mode 0: 13-bit counter/timer  
Mode 1: 16-bit counter/timer  
Mode 2: 8-bit counter/timer with auto-reload  
Mode 3: Two 8-bit counter/timers  
143  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.6. CKCON: Clock Control Register  
R/W  
-
R/W  
-
R/W  
T2M  
Bit5  
R/W  
T1M  
Bit4  
R/W  
T0M  
Bit3  
R/W  
Reserved  
Bit2  
R/W  
Reserved  
Bit1  
R/W  
Reserved  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
0x8E  
Bits7-6: UNUSED. Read = 00b, Write = don’t care.  
Bit5:  
T2M: Timer 2 Clock Select.  
This bit controls the division of the system clock supplied to Timer 2. This bit is ignored  
when the timer is in baud rate generator mode or counter mode (i.e. C/T2 = 1).  
0: Timer 2 uses the system clock divided by 12.  
1: Timer 2 uses the system clock.  
Bit4:  
Bit3:  
T1M: Timer 1 Clock Select.  
This bit controls the division of the system clock supplied to Timer 1.  
0: Timer 1 uses the system clock divided by 12.  
1: Timer 1 uses the system clock.  
T0M: Timer 0 Clock Select.  
This bit controls the division of the system clock supplied to Counter/Timer 0.  
0: Counter/Timer uses the system clock divided by 12.  
1: Counter/Timer uses the system clock.  
Bits2-0: Reserved. Read = 000b, Must Write = 000.  
Rev. 1.7  
144  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.7. TL0: Timer 0 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x8A  
Bits 7-0:TL0: Timer 0 Low Byte.  
The TL0 register is the low byte of the 16-bit Timer 0.  
Figure 19.8. TL1: Timer 1 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x8B  
Bits 7-0:TL1: Timer 1 Low Byte.  
The TL1 register is the low byte of the 16-bit Timer 1.  
Figure 19.9. TH0: Timer 0 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x8C  
Bits 7-0:TH0: Timer 0 High Byte.  
The TH0 register is the high byte of the 16-bit Timer 0.  
Figure 19.10. TH1: Timer 1 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x8D  
Bits 7-0:TH1: Timer 1 High Byte.  
The TH1 register is the high byte of the 16-bit Timer 1.  
145  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.2. Timer 2  
Timer 2 is a 16-bit counter/timer formed by the two 8-bit SFRs: TL2 (low byte) and TH2 (high byte). As with  
Timers 0 and 1, Timer 2 can use either the system clock or transitions on an external input pin as its clock source.  
The Counter/Timer Select bit C/T2 bit (T2CON.1) selects the clock source for Timer 2. Clearing C/T2 selects the  
system clock as the input for the timer (divided by either one or twelve as specified by the Timer Clock Select bit  
T2M in CKCON). When C/T2 is set to 1, high-to-low transitions at the T2 input pin increment the counter/timer  
register. (Refer to Section 14 for information on selecting and configuring external I/O pins.) Timer 2 can also be  
used to start an ADC Data Conversion.  
Timer 2 offers capabilities not found in Timer 0 and Timer 1. It operates in one of three modes: 16-bit  
Counter/Timer with Capture, 16-bit Counter/Timer with Auto-Reload or Baud Rate Generator Mode. Timer 2’s  
operating mode is selected by setting configuration bits in the Timer 2 Control (T2CON) register. Below is a  
summary of the Timer 2 operating modes and the T2CON bits used to configure the counter/timer. Detailed  
descriptions of each mode follow.  
RCLK TCLK CP/RL2  
TR2  
Mode  
0
0
0
0
1
0
1
1
1
1
1
0
16-bit Counter/Timer with Capture  
16-bit Counter/Timer with Auto-Reload  
Baud Rate Generator for TX  
Baud Rate Generator for RX  
Baud Rate Generator for TX and RX  
Off  
0
1
0
X
X
X
X
1
1
1
X
X
Rev. 1.7  
146  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.2.1. Mode 0: 16-bit Counter/Timer with Capture  
In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX  
input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H,  
RCAP2L).  
Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 pin as its  
clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the  
system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in  
CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer  
register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer  
overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.  
Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the  
Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be  
set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.  
Figure 19.11. T2 Mode 0 Block Diagram  
CKCON  
T T T  
2 1 0  
M M M  
12  
0
SYSCLK  
0
1
T2 Crossbar  
1
TCLK  
TL2  
TH2  
CP/RL2  
C/T2  
TR2  
TR2  
EXEN2  
TCLK  
RCLK  
EXF2  
TF2  
Interrupt  
Capture  
EXEN2  
Crossbar  
RCAP2L RCAP2H  
T2EX  
147  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.2.2. Mode 1: 16-bit Counter/Timer with Auto-Reload  
The Counter/Timer with Auto-Reload mode sets the TF2 timer overflow flag when the counter/timer register  
overflows from 0xFFFF to 0x0000. An interrupt is generated if enabled. On overflow, the 16-bit value held in the  
two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register and the timer is  
restarted.  
Counter/Timer with Auto-Reload mode is selected by clearing the CP/RL2 bit. Setting TR2 to logic 1 enables and  
starts the timer. Timer 2 can use either the system clock or transitions on an external input pin as its clock source, as  
specified by the C/T2 bit. If EXEN2 is set to logic 1, a high-to-low transition on T2EX will also cause Timer 2 to  
be reloaded. If EXEN2 is cleared, transitions on T2EX will be ignored.  
Figure 19.12. T2 Mode 1 Block Diagram  
CKCON  
T T T  
2 1 0  
M M M  
12  
0
SYSCLK  
1
0
1
TL2  
TH2  
T2  
Crossbar  
TCLK  
CP/RL2  
C/T2  
TR2  
EXEN2  
TCLK  
RCLK  
EXF2  
TF2  
TR2  
EXEN2  
Interrupt  
Reload  
RCAP2L RCAP2H  
Crossbar  
T2EX  
Rev. 1.7  
148  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.2.3. Mode 2: Baud Rate Generator  
Timer 2 can be used as a baud rate generator for the serial port (UART) when the UART is operated in modes 1 or 3  
(refer to Section 18.1 for more information on UART operational modes). In Baud Rate Generator mode, Timer 2  
works similarly to the auto-reload mode. On overflow, the 16-bit value held in the two capture registers (RCAP2H,  
RCAP2L) is automatically loaded into the counter/timer register. However, the TF2 overflow flag is not set and no  
interrupt is generated. Instead, the overflow event is used as the input to the UART’s shift clock. Timer 2  
overflows can be used to generate baud rates for transmit and/or receive independently.  
The Baud Rate Generator mode is selected by setting RCLK (T2CON.5) and/or TCLK (T2CON.4) to logic one.  
When RCLK or TCLK is set to logic 1, Timer 2 operates in the auto-reload mode regardless of the state of the  
CP/RL2 bit. The baud rate for the UART, when operating in mode 1 or 3, is determined by the Timer 2 overflow  
rate:  
Baud Rate = Timer 2 Overflow Rate / 16.  
Note, in all other modes, the timebase for the timer is the system clock divided by one or twelve as selected by the  
T2M bit in CKCON. However, in Baud Rate Generator mode, the timebase is the system clock divided by two. No  
other divisor selection is possible. If a different time base is required, setting the C/T2 bit to logic 1 will allow the  
timebase to be derived from the external input pin T2. In this case, the baud rate for the UART is calculated as:  
Baud Rate = FCLK / [32 * (65536 – [RCAP2H:RCAP2L]) ]  
Where FCLK is the frequency of the signal supplied to T2 and [RCAP2H:RCAP2L] is the 16-bit value held in the  
capture registers.  
As explained above, in Baud Rate Generator mode, Timer 2 does not set the TF2 overflow flag and therefore cannot  
generate an interrupt. However, if EXEN2 is set to logic 1, a high-to-low transition on the T2EX input pin will set  
the EXF2 flag and a Timer 2 interrupt will occur if enabled. Therefore, the T2EX input may be used as an  
additional external interrupt source.  
Figure 19.13. T2 Mode 2 Block Diagram  
SYSCLK  
T2  
2
C/T2  
0
1
Timer 2  
Overflow  
TL2  
TH2  
Crossbar  
TCLK  
1
0
TR2  
RX Clock  
TX Clock  
16  
16  
Reload  
PCON  
RCLK  
TCLK  
RCAP2L RCAP2H  
S
M
O
D
S I  
G G  
F F  
1 0  
T D  
O L  
P E  
2
1
0
0
1
Timer 1  
Overflow  
CP/RL2  
C/T2  
TR2  
EXEN2  
TCLK  
RCLK  
EXEN2  
Interrupt  
EXF2  
TF2  
Crossbar  
T2EX  
149  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.14. T2CON: Timer 2 Control Register  
R/W  
TF2  
Bit7  
R/W  
EXF2  
Bit6  
R/W  
RCLK  
Bit5  
R/W  
TCLK  
Bit4  
R/W  
EXEN2  
Bit3  
R/W  
TR2  
Bit2  
R/W  
C/T2  
Bit1  
R/W  
Reset Value  
CP/RL2  
00000000  
SFR Address:  
Bit0  
(bit addressable)  
0xC8  
Bit7:  
Bit6:  
TF2: Timer 2 Overflow Flag.  
Set by hardware when Timer 2 overflows from 0xFFFF to 0x0000 or reload value. When  
the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2  
interrupt service routine. This bit is not automatically cleared by hardware and must be  
cleared by software. TF2 will not be set when RCLK and/or TCLK are logic 1.  
EXF2: Timer 2 External Flag.  
Set by hardware when either a capture or reload is caused by a high-to-low transition on  
the T2EX input pin and EXEN2 is logic 1. When the Timer 2 interrupt is enabled, setting  
this bit causes the CPU to vector to the Timer 2 Interrupt service routine. This bit is not  
automatically cleared by hardware and must be cleared by software.  
Bit5:  
Bit4:  
Bit3:  
RCLK: Receive Clock Flag.  
Selects which timer is used for the UART’s receive clock in modes 1 or 3.  
0: Timer 1 overflows used for receive clock.  
1: Timer 2 overflows used for receive clock.  
TCLK: Transmit Clock Flag.  
Selects which timer is used for the UART’s transmit clock in modes 1 or 3.  
0: Timer 1 overflows used for transmit clock.  
1: Timer 2 overflows used for transmit clock.  
EXEN2: Timer 2 External Enable.  
Enables high-to-low transitions on T2EX to trigger captures or reloads when Timer 2 is not  
operating in Baud Rate Generator mode.  
0: High-to-low transitions on T2EX ignored.  
1: High-to-low transitions on T2EX cause a capture or reload.  
Bit2:  
Bit1:  
Bit0:  
TR2: Timer 2 Run Control.  
This bit enables/disables Timer 2.  
0: Timer 2 disabled.  
1: Timer 2 enabled.  
C/T2: Counter/Timer Select.  
0: Timer Function: Timer 2 incremented by clock defined by T2M (CKCON.5).  
1: Counter Function: Timer 2 incremented by high-to-low transitions on external input pin  
(T2).  
CP/RL2: Capture/Reload Select.  
This bit selects whether Timer 2 functions in capture or auto-reload mode. EXEN2 must  
be logic 1 for high-to-low transitions on T2EX to be recognized and used to trigger  
captures or reloads. If RCLK or TCLK is set, this bit is ignored and Timer 2 will function  
in auto-reload mode.  
0: Auto-reload on Timer 2 overflow or high-to-low transition at T2EX (EXEN2 = 1).  
1: Capture on high-to-low transition at T2EX (EXEN2 = 1).  
Rev. 1.7  
150  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.15. RCAP2L: Timer 2 Capture Register Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xCA  
Bits 7-0:RCAP2L: Timer 2 Capture Register Low Byte.  
The RCAP2L register captures the low byte of Timer 2 when Timer 2 is configured in  
capture mode. When Timer 2 is configured in auto-reload mode, it holds the low byte of  
the reload value.  
Figure 19.16. RCAP2H: Timer 2 Capture Register High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xCB  
Bits 7-0:RCAP2H: Timer 2 Capture Register High Byte.  
The RCAP2H register captures the high byte of Timer 2 when Timer 2 is configured in  
capture mode. When Timer 2 is configured in auto-reload mode, it holds the high byte of  
the reload value.  
Figure 19.17. TL2: Timer 2 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xCC  
Bits 7-0:TL2: Timer 2 Low Byte.  
The TL2 register contains the low byte of the 16-bit Timer 2.  
Figure 19.18. TH2: Timer 2 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xCD  
Bits 7-0:TH2: Timer 2 High Byte.  
The TH2 register contains the high byte of the 16-bit Timer 2.  
151  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
19.3. Timer 3  
Timer 3 is a 16-bit timer formed by the two 8-bit SFRs, TMR3L (low byte) and TMR3H (high byte). The input for  
Timer 3 is the system clock (divided by either one or twelve as specified by the Timer 3 Clock Select bit T3M in the  
Timer 3 Control Register TMR3CN). Timer 3 is always configured as an auto-reload timer, with the reload value  
held in the TMR3RLL (low byte) and TMR3RLH (high byte) registers. Timer 3 can be used to start an ADC Data  
Conversion, for SMBus timing (see Section 16.5), or as a general-purpose timer. Timer 3 does not have a counter  
mode.  
Figure 19.19. Timer 3 Block Diagram  
T3M  
12  
0
1
(to ADC)  
SYSCLK  
TMR3L  
TMR3H  
TCLK  
Interrupt  
TF3  
TR3  
TR3  
T3M  
(from SMBus)  
TOE  
Reload  
TMR3RLL TMR3RLH  
SCL  
Crossbar  
Figure 19.20. TMR3CN: Timer 3 Control Register  
R/W  
TF3  
Bit7  
R/W  
R/W  
-
R/W  
-
R/W  
-
R/W  
TR3  
Bit2  
R/W  
T3M  
Bit1  
R/W  
Reset Value  
-
-
00000000  
SFR Address:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit0  
0x91  
Bit7:  
TF3: Timer3 Overflow Flag.  
Set by hardware when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3  
interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 Interrupt  
service routine. This bit is not automatically cleared by hardware and must be cleared by  
software.  
Bits6-3: UNUSED. Read = 0000b, Write = don’t care.  
Bit2:  
Bit1:  
Bit0:  
TR3: Timer 3 Run Control.  
This bit enables/disables Timer 3.  
0: Timer 3 disabled.  
1: Timer 3 enabled.  
T3M: Timer 3 Clock Select.  
This bit controls the division of the system clock supplied to Counter/Timer 3.  
0: Counter/Timer 3 uses the system clock divided by 12.  
1: Counter/Timer 3 uses the system clock.  
UNUSED. Read = 0, Write = don’t care.  
Rev. 1.7  
152  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 19.21. TMR3RLL: Timer 3 Reload Register Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x92  
Bits 7-0:TMR3RLL: Timer 3 Reload Register Low Byte.  
Timer 3 is configured as an auto-reload timer. This register holds the low byte of the  
reload value.  
Figure 19.22. TMR3RLH: Timer 3 Reload Register High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x93  
Bits 7-0:TMR3RLH: Timer 3 Reload Register High Byte.  
Timer 3 is configured as an auto-reload timer. This register holds the high byte of the  
reload value.  
Figure 19.23. TMR3L: Timer 3 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x94  
Bits 7-0:TMR3L: Timer 3 Low Byte.  
The TMR3L register is the low byte of Timer 3.  
Figure 19.24. TMR3H: Timer 3 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0x95  
Bits 7-0:TMR3H: Timer 3 High Byte.  
The TMR3H register is the high byte of Timer 3.  
153  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20. PROGRAMMABLE COUNTER ARRAY  
The Programmable Counter Array (PCA) provides enhanced timer functionality while requiring less CPU  
intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five  
16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is  
routed through the Crossbar to Port I/O when enabled (see Section 15.1 for details on configuring the Crossbar).  
The counter/timer is driven by a configurable timebase that can select between four inputs as its source: system  
clock divided by twelve, system clock divided by four, Timer 0 overflow, or an external clock signal on the ECI  
line. The PCA is configured and controlled through the system controller’s Special Function Registers. The basic  
PCA block diagram is shown in Figure 20.1.  
Figure 20.1. PCA Block Diagram  
00  
/12  
/4  
System  
Clock  
01  
16-Bit Counter/Timer  
10  
CPS=11  
T0 Overflow  
Capture/Compare  
Module 0  
Capture/Compare  
Module 1  
Capture/Compare  
Module 2  
Capture/Compare  
Module 3  
Capture/Compare  
Module 4  
Crossbar  
Port I/O  
Rev. 1.7  
154  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20.1. Capture/Compare Modules  
Each module can be configured to operate independently in one of four operation modes: Edge-triggered Capture,  
Software Timer, High Speed Output, or Pulse Width Modulator. Each module has Special Function Registers  
(SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module  
and configure the module’s mode of operation.  
Table 20.1 summarizes the bit settings in the PCA0CPMn registers used to place the PCA capture/compare modules  
into different operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module’s CCFn  
interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0  
interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic 1. See Figure 20.2  
for details on the PCA interrupt configuration.  
Table 20.1. PCA0CPM Register Settings for PCA Capture/Compare Modules  
ECOM  
CAPP  
CAPN  
MAT  
TOG  
PWM  
ECCF  
Operation Mode  
X
1
0
0
0
0
X
Capture triggered by positive edge on  
CEXn  
X
0
1
0
0
0
X
Capture triggered by negative edge on  
CEXn  
X
1
1
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
X
X
X
X
Capture triggered by transition on CEXn  
Software Timer  
1
1
High Speed Output  
Pulse Width Modulator  
1
X
X = Don’t Care  
Figure 20.2. PCA Interrupt Block Diagram  
(for n = 0 to 4)  
PCA0CPMn  
PCA0CN  
PCA0MD  
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C  
F R C C C C C  
F F F F F  
C
I
C C E  
P P C  
S S F  
1 0  
D
L
4 3 2 1 0  
0
1
PCA Counter/  
Timer Overflow  
ECCF0  
ECCF1  
ECCF2  
ECCF3  
ECCF4  
EPCA0  
EA  
0
1
(EIE1.3)  
(IE.7)  
PCA Module 0  
PCA Module 1  
PCA Module 2  
PCA Module 3  
PCA Module 4  
Interrupt  
Priority  
0
1
0
1
Decoder  
0
1
0
1
0
1
0
1
155  
Rev. 1.7  
 
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20.1.1. Edge-triggered Capture Mode  
In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and  
load it into the corresponding module’s 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn  
and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-  
high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative  
edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt  
request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the  
CPU vectors to the interrupt service routine, and must be cleared by software.  
Figure 20.3. PCA Capture Mode Diagram  
PCA Interrupt  
PCA0CPMn  
PCA0CN  
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C  
F R C C C C C  
F F F F F  
4 3 2 1 0  
0
0 0 0  
PCA0CPLn  
PCA0CPHn  
PCA0H  
0
1
CEXn  
Capture  
Port I/O  
Crossbar  
0
1
PCA  
PCA0L  
Timebase  
Rev. 1.7  
156  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20.1.2. Software Timer (Compare) Mode  
In Software Timer mode, the PCA counter/timer is compared to the module’s 16-bit capture/compare register  
(PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to  
logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically  
cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.  
Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.  
Figure 20.4. PCA Software Timer Mode Diagram  
Write to  
0
PCA0CPLn  
Reset  
ENB  
Write to  
PCA0CPHn  
PCA Interrupt  
ENB  
1
PCA0CPMn  
PCA0CN  
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C  
F R C C C C C  
F F F F F  
PCA0CPLn  
PCA0CPHn  
4 3 2 1 0  
0
0
0
0
x
0
1
Enable  
Match  
16-bit Comparator  
PCA  
PCA0L  
PCA0H  
Timebase  
20.1.3. High Speed Output Mode  
In this mode, each time a match occurs between the PCA Timer Counter and a module’s 16-bit capture/compare  
register (PCA0CPHn and PCA0CPLn) the logic level on the module’s associated CEXn pin will toggle. Setting the  
TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.  
Figure 20.5. PCA High Speed Output Mode Diagram  
Write to  
0
PCA0CPLn  
Reset  
ENB  
Write to  
PCA0CPHn  
PCA0CPMn  
ENB  
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
1
PCA Interrupt  
0
0
0
x
PCA0CN  
C C C C C C C  
F R C C C C C  
F F F F F  
PCA0CPLn  
PCA0CPHn  
4 3 2 1 0  
0
1
Enable  
Match  
16-bit Comparator  
TOGn  
0
Toggle  
CEXn  
Crossbar  
Port I/O  
1
PCA  
Timebase  
PCA0L  
PCA0H  
157  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20.1.4. Pulse Width Modulator Mode  
All of the modules can be used independently to generate pulse width modulated (PWM) outputs on their respective  
CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of  
the PWM output signal is varied using the module’s PCA0CPLn capture/compare register. When the value in the  
low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will  
be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 20.6). Also, when  
the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the  
value stored in the PCA0CPHn without software intervention. It is good practice to write to PCA0CPHn instead of  
PCA0CPLn to avoid glitches in the digital comparator. Setting the ECOMn and PWMn bits in the PCA0CPMn  
register enables Pulse Width Modulator mode.  
Figure 20.6. PCA PWM Mode Diagram  
PCA0CPHn  
Write to  
0
PCA0CPLn  
Reset  
ENB  
PCA0CPMn  
Write to  
PCA0CPHn  
E C C M T P E  
C A A A O W C  
O P P T G M C  
M P N n n n F  
ENB  
1
PCA0CPLn  
n n n  
n
0
0 x 0  
x
SET  
CLR  
8-bit  
match  
CEXn  
Enable  
S
R
Q
Q
Crossbar  
Port I/O  
Comparator  
PCA Timebase  
PCA0L  
Overflow  
Rev. 1.7  
158  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20.2. PCA Counter/Timer  
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of  
the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of  
PCA0H at the same time. By reading the PCA0L Register first, this allows the PCA0H value to be held (at the time  
PCA0L was read) until the user reads the PCA0H Register. Reading PCA0H or PCA0L does not disturb the  
counter operation. The CPS1 and CPS0 bits in the PCA0MD register select the timebase for the counter/timer as  
shown in Table 20.2.  
When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to  
logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1  
enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the  
CPU vectors to the interrupt service routine, and must be cleared by software. (Note: PCA0 interrupts must be  
globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit  
(IE.7) and the EPCA0 bit in EIE1 to logic 1.) Clearing the CIDL bit in the PCA0MD register allows the PCA to  
continue normal operation while the microcontroller core is in Idle mode.  
Table 20.2. PCA Timebase Input Options  
CPS1  
CPS0  
Timebase  
0
0
1
1
0
1
0
1
System clock divided by 12  
System clock divided by 4  
Timer 0 overflow  
High-to-low transitions on ECI (max rate = system clock divided by 4)  
Figure 20.7. PCA Counter/Timer Block Diagram  
IDLE  
PCA0MD  
PCA0CN  
C
I
C C E  
P P C  
S S F  
1 0  
C C C C C C C  
PCA0L  
F R C C C C C  
F F F F F  
To SFR Bus  
read or  
write  
D
L
4 3 2 1 0  
Snapshot  
Register  
SYSCLK/12  
SYSCLK/4  
00  
01  
10  
11  
0
1
Overflow  
To PCA Interrupt System  
PCA0H  
PCA0L  
Timer 0 Overflow  
ECI  
CF  
To PCA Modules  
159  
Rev. 1.7  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
20.3. Register Descriptions for PCA  
The system device may implement one or more Programmable Counter Arrays. Following are detailed descriptions  
of the special function registers related to the operation of the PCA. The CIP-51 System Controller section of the  
datasheet provides additional information on the SFRs and their use.  
Figure 20.8. PCA0CN: PCA Control Register  
R/W  
CF  
R/W  
CR  
R/W  
-
R/W  
CCF4  
Bit4  
R/W  
CCF3  
Bit3  
R/W  
CCF2  
Bit2  
R/W  
CCF1  
Bit1  
R/W  
Reset Value  
CCF0  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit0  
(bit addressable)  
0xD8  
Bit7:  
Bit6:  
CF: PCA Counter/Timer Overflow Flag.  
Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When  
the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to  
vector to the CF interrupt service routine. This bit is not automatically cleared by  
hardware and must be cleared by software.  
CR: PCA Counter/Timer Run Control.  
This bit enables/disables the PCA Counter/Timer.  
0: PCA Counter/Timer disabled.  
1: PCA Counter/Timer enabled.  
Bit5:  
Bit4:  
UNUSED. Read = 0, Write = don’t care.  
CCF4: PCA Module 4 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
CCF3: PCA Module 3 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF2: PCA Module 2 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF1: PCA Module 1 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF0: PCA Module 0 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
Rev. 1.7  
160  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 20.9. PCA0MD: PCA Mode Register  
R/W  
CIDL  
Bit7  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
CPS1  
Bit2  
R/W  
CPS0  
Bit1  
R/W  
ECF  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit6  
Bit5  
Bit4  
Bit3  
0xD9  
Bit7:  
CIDL: PCA Counter/Timer Idle Control.  
Specifies PCA behavior when CPU is in Idle Mode.  
0: PCA continues to function normally while the system controller is in Idle Mode.  
1: PCA operation is suspended while the system controller is in Idle Mode.  
Bits6-3: UNUSED. Read = 0000b, Write = don’t care.  
Bits2-1: CPS1-CPS0: PCA Counter/Timer Pulse Select.  
These bits select the timebase source for the PCA counter.  
CPS1  
CPS0  
Timebase  
0
0
1
1
0
1
0
1
System clock divided by 12  
System clock divided by 4  
Timer 0 overflow  
High-to-low transitions on ECI (max rate = system clock divided by 4)  
Bit0:  
ECF: PCA Counter/Timer Overflow Interrupt Enable.  
This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt.  
0: Disable the CF interrupt.  
1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.  
161  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 20.10. PCA0CPMn: PCA Capture/Compare Registers  
R/W  
-
R/W  
ECOMn  
Bit6  
R/W  
CAPPn  
Bit5  
R/W  
CAPNn  
Bit4  
R/W  
MATn  
Bit3  
R/W  
TOGn  
Bit2  
R/W  
PWMn  
Bit1  
R/W  
ECCFn  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xDA-0xDE  
Bit7  
PCA0CPMn Address: PCA0CPM0 = 0xDA (n = 0)  
PCA0CPM1 = 0xDB (n = 1)  
PCA0CPM2 = 0xDC (n = 2)  
PCA0CPM3 = 0xDD (n = 3)  
PCA0CPM4 = 0xDE (n = 4)  
Bit7:  
UNUSED. Read = 0, Write = don’t care.  
Bit6: ECOMn: Comparator Function Enable.  
This bit enables/disables the comparator function for PCA module n.  
0: Disabled.  
1: Enabled.  
Bit5:  
Bit4:  
Bit3:  
CAPPn: Capture Positive Function Enable.  
This bit enables/disables the positive edge capture for PCA module n.  
0: Disabled.  
1: Enabled.  
CAPNn: Capture Negative Function Enable.  
This bit enables/disables the negative edge capture for PCA module n.  
0: Disabled.  
1: Enabled.  
MATn: Match Function Enable.  
This bit enables/disables the match function for PCA module n. When enabled, matches of  
the PCA counter with a module’s capture/compare register cause the CCFn bit in  
PCA0MD register to be set.  
0: Disabled.  
1: Enabled.  
Bit2:  
TOGn: Toggle Function Enable.  
This bit enables/disables the toggle function for PCA module n. When enabled, matches  
of the PCA counter with a module’s capture/compare register cause the logic level on the  
CEXn pin to toggle.  
0: Disabled.  
1: Enabled.  
Bit1:  
Bit0:  
PWMn: Pulse Width Modulation Mode Enable.  
This bit enables/disables the comparator function for PCA module n. When enabled, a  
pulse width modulated signal is output on the CEXn pin.  
0: Disabled.  
1: Enabled.  
ECCFn: Capture/Compare Flag Interrupt Enable.  
This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.  
0: Disable CCFn interrupts.  
1: Enable a Capture/Compare Flag interrupt request when CCFn is set.  
Rev. 1.7  
162  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 20.11. PCA0L: PCA Counter/Timer Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xE9  
Bits 7-0:PCA0L: PCA Counter/Timer Low Byte.  
The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.  
Figure 20.12. PCA0H: PCA Counter/Timer High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xF9  
Bits 7-0:PCA0H: PCA Counter/Timer High Byte.  
The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Note  
the value read is actually from the snapshot register in order to synchronize it with PCA0L.  
Figure 20.13. PCA0CPLn: PCA Capture Module Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xEA-0xEE  
PCA0CPLn Address: PCA0CPL0 = 0xEA (n = 0)  
PCA0CPL1 = 0xEB (n = 1)  
PCA0CPL2 = 0xEC (n = 2)  
PCA0CPL3 = 0xED (n = 3)  
PCA0CPL4 = 0xEE (n = 4)  
Bits7-6: PCA0CPLn: PCA Capture Module Low Byte.  
The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.  
Figure 20.14. PCA0CPHn: PCA Capture Module High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
0xFA-0xFE  
PCA0CPHn Address:  
PCA0CPH0 = 0xFA (n = 0)  
PCA0CPH1 = 0xFB (n = 1)  
PCA0CPH2 = 0xFC (n = 2)  
PCA0CPH3 = 0xFD (n = 3)  
PCA0CPH4 = 0xFE (n = 4)  
Bits7-0: PCA0CPHn: PCA Capture Module High Byte.  
The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.  
163  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
21. JTAG (IEEE 1149.1)  
Each MCU has an on-chip JTAG interface and logic to support boundary scan for production and in-system testing,  
Flash read and write operations, and non-intrusive in-circuit debug. The JTAG interface is fully compliant with the  
IEEE 1149.1 specification. Refer to this specification for detailed descriptions of the Test Interface and Boundary-  
Scan Architecture. Access of the JTAG Instruction Register (IR) and Data Registers (DR) are as described in the  
Test Access Port and Operation of the IEEE 1149.1 specification.  
The JTAG interface is via four dedicated pins on the MCU, which are TCK, TMS, TDI, and TDO. These pins are  
all 5V tolerant.  
Through the 16-bit JTAG Instruction Register (IR), any of the eight instructions shown in Figure 21.1 can be  
commanded. There are three Data Registers (DR’s) associated with JTAG Boundary-Scan, and four associated with  
Flash read/write operations on the MCU.  
Figure 21.1. IR: JTAG Instruction Register  
Reset Value  
0x0004  
Bit15  
Bit0  
IR value  
0x0000  
Instruction  
EXTEST  
Description  
Selects the Boundary Data Register for control and observability of all  
device pins  
0x0002  
SAMPLE/  
PRELOAD  
IDCODE  
Selects the Boundary Data Register for observability and presetting the  
scan-path latches  
Selects device ID Register  
Selects Bypass Data Register  
Selects FLASHCON Register to control how the interface logic responds to  
reads and writes to the FLASHDAT Register  
Selects FLASHDAT Register for reads and writes to the Flash memory  
Selects FLASHADR Register which holds the address of all Flash read,  
write, and erase operations  
Selects FLASHSCL Register which controls the prescaler used to generate  
timing signals for Flash operations  
0x0004  
0xFFFF  
0x0082  
BYPASS  
Flash Control  
0x0083  
0x0084  
Flash Data  
Flash Address  
0x0085  
Flash Scale  
Rev. 1.7  
164  
 
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
21.1. Boundary Scan  
The Data Register in the Boundary Scan path is an 87-bit shift register. The Boundary DR provides control and  
observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE  
commands.  
Table 21.1. Boundary Data Register Bit Definitions  
EXTEST provides access to both capture and update actions, while Sample only performs a capture.  
Bit  
Action  
Capture Reset Enable from MCU  
Update Reset Enable to /RST pin  
Capture Reset input from /RST pin  
Update Reset output to /RST pin  
Capture External Clock from XTAL1 pin  
Update Not used  
Capture Weak pullup enable from MCU  
Update Weak pullup enable to Port Pins  
Capture SFR Address Bus bit from CIP-51 (e.g. Bit4=SFRA0, Bit5=SFRA1…)  
Update SFR Address Bus bit to SFR Address Bus (e.g. Bit4=XSFRA0, Bit5=XSFRA1)  
Capture SFR Data Bus bit read from SFR (e.g. Bit12=SFRD0, Bit13=SFRD1…)  
Update SFR Data Bus bit written to SFR (e.g. Bit12=SFRD0, Bit13=SFRD1…)  
Capture SFR Write Strobe from CIP-51  
Update SFR Write Strobe to SFR Bus  
Capture SFR Read Strobe from CIP-51  
Update SFR Read Strobe to SFR Bus  
Capture SFR Read/Modify/Write Strobe from CIP-51  
Update SFR Read/Modify/Write Strobe to SFR Bus  
Capture P0.n output enable from MCU (e.g. Bit23=P0.0, Bit25=P0.1, etc.)  
Update P0.n output enable to pin (e.g. Bit23=P0.0oe, Bit25=P0.1oe, etc.)  
Capture P0.n input from pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)  
Update P0.n output to pin (e.g. Bit24=P0.0, Bit26=P0.1, etc.)  
Capture P1.n output enable from MCU (e.g. Bit39=P1.0, Bit41=P1.1, etc.)  
Update P1.n output enable to pin (e.g. Bit39=P1.0oe, Bit41=P1.1oe, etc.)  
Capture P1.n input from pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)  
Update P1.n output to pin (e.g. Bit40=P1.0, Bit42=P1.1, etc.)  
Capture P2.n output enable from MCU (e.g. Bit55=P2.0, Bit57=P2.1, etc.)  
Update P2.n output enable to pin (e.g. Bit55=P2.0oe, Bit57=P2.1oe, etc.)  
Capture P2.n input from pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)  
Update P2.n output to pin (e.g. Bit56=P2.0, Bit58=P2.1, etc.)  
Capture P3.n output enable from MCU (e.g. Bit71=P3.0, Bit73=P3.1, etc.)  
Update P3.n output enable to pin (e.g. Bit71=P3.0oe, Bit73=P3.1oe, etc.)  
Capture P3.n input from pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)  
Update P3.n output to pin (e.g. Bit72=P3.0, Bit74=P3.1, etc.)  
Target  
0
1
2
3
4-11  
12-19  
20  
21  
22  
23,25,27,29,  
31,33,35,37  
24,26,28,30,  
32,34,36,38  
39,41,43,45,  
47,49,51,53  
40,42,44,46,  
48,50,52,54  
55,57,59,61,  
63,65,67,69  
56,58,60,62,  
64,66,68,70  
71,73,75,77,  
79,81,83,85  
72,74,76,78,  
80,82,84,86  
165  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
21.1.1. EXTEST Instruction  
The EXTEST instruction is accessed via the IR. The Boundary DR provides control and observability of all the  
device pins as well as the SFR bus and Weak Pullup feature. All inputs to on-chip logic are set to one.  
21.1.2. SAMPLE Instruction  
The SAMPLE instruction is accessed via the IR. The Boundary DR provides observability and presetting of the  
scan-path latches.  
21.1.3. BYPASS Instruction  
The BYPASS instruction is accessed via the IR. It provides access to the standard 1-bit JTAG Bypass data register.  
21.1.4. IDCODE Instruction  
The IDCODE instruction is accessed via the IR. It provides access to the 32-bit Device ID register.  
Figure 21.2. DEVICEID: JTAG Device ID Register  
Reset Value  
(Varies)  
Version  
Part Number  
Manufacturer ID  
1
Bit31  
Bit28 Bit27  
Bit12 Bit11  
Bit1 Bit0  
Version = 0000b (Revision A) or  
= 0001b (Revision B)  
Part Number = 0000 0000 0000 0000b or  
= 0000 0000 0000 0010b  
Manufacturer ID = 0010 0100 001b (Silicon Laboratories)  
Rev. 1.7  
166  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
21.2. Flash Programming Commands  
The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash Data, Flash  
Address, and Flash Scale registers. These Indirect Data Registers are accessed via the JTAG Instruction Register.  
Read and write operations on indirect data registers are performed by first setting the appropriate DR address in the  
IR register. Each read or write is then initiated by writing the appropriate Indirect Operation Code (IndOpCode) to  
the selected data register. Incoming commands to this register have the following format:  
19:18  
IndOpCode  
17:0  
WriteData  
IndOpCode: These bit set the operation to perform according to the following table:  
IndOpCode  
Operation  
Poll  
0x  
10  
11  
Read  
Write  
The Poll operation is used to check the Busy bit as described below. Although a Capture-DR is performed, no  
Update-DR is allowed for the Poll operation. Since updates are disabled, polling can be accomplished by shifting  
in/out a single bit.  
The Read operation initiates a read from the register addressed by the IR. Reads can be initiated by shifting only 2  
bits into the indirect register. After the read operation is initiated, polling of the Busy bit must be performed to  
determine when the operation is complete.  
The write operation initiates a write of WriteData to the register addressed by the IR. Registers of any width up to  
18 bits can be written. If the register to be written contains fewer than 18 bits, the data in WriteData should be left-  
justified, i.e. its MSB should occupy bit 17 above. This allows shorter registers to be written in fewer JTAG clock  
cycles. For example, an 8-bit register could be written by shifting only 10 bits. After a Write is initiated, the Busy  
bit should be polled to determine when the next operation can be initiated. The contents of the Instruction Register  
should not be altered while either a read or write operation is in progress.  
Outgoing data from the indirect Data Register has the following format:  
19  
0
18:1  
ReadData  
0
Busy  
The Busy bit indicates that the current operation is not complete. It goes high when an operation is initiated and  
returns low when complete. Read and Write commands are ignored while Busy is high. In fact, if polling for Busy  
to be low will be followed by another read or write operation, JTAG writes of the next operation can be made while  
checking for Busy to be low. They will be ignored until Busy is read low, at which time the new operation will  
initiate. This bit is placed at bit 0 to allow polling by single-bit shifts. When waiting for a Read to complete and  
Busy is 0, the following 18 bits can be shifted out to obtain the resulting data. ReadData is always right-justified.  
This allows registers shorter than 18 bits to be read using a reduced number of shifts. For example, the result from a  
byte-read requires 9 bit shifts (Busy + 8 bits).  
167  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 21.3. FLASHCON: JTAG Flash Control Register  
Reset Value  
00000000  
WRMD3  
Bit7  
WRMD2  
Bit6  
WRMD1  
Bit5  
WRMD0  
Bit4  
RDMD3  
Bit3  
RDMD2  
Bit2  
RDMD1  
Bit1  
RDMD0  
Bit0  
This register determines how the Flash interface logic will respond to reads and writes to the  
FLASHDAT Register.  
Bits7-4: WRMD3-0: Write Mode Select Bits.  
The Write Mode Select Bits control how the interface logic responds to writes to the  
FLASHDAT Register per the following values:  
0000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise  
ignored.  
0001: A FLASHDAT write initiates a write of FLASHDAT into the memory location  
addressed by the FLASHADR register. FLASHADR is incremented by one when  
complete.  
0010: A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page  
containing the address in FLASHADR. FLASHDAT must be 0xA5 for the erase to  
occur. FLASHADR is not affected. If FLASHADR = 0x7DFE – 0x7DFF, the entire  
user space will be erased (i.e. entire Flash memory except for Reserved area 0x7E00 –  
0x7FFF).  
(All other values for WRMD3-0 are reserved.)  
Bits3-0: RDMD3-0: Read Mode Select Bits.  
The Read Mode Select Bits control how the interface logic responds to reads to the  
FLASHDAT Register per the following values:  
0000: A FLASHDAT read provides the data in the FASHDAT register, but is otherwise  
ignored.  
0001: A FLASHDAT read initiates a read of the byte addressed by the FLASHADR register  
if no operation is currently active. This mode is used for block reads.  
0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no  
operation is active and any data from a previous read has already been read from  
FLASHDAT. This mode allows single bytes to be read (or the last byte of a block)  
without initiating an extra read.  
(All other values for RDMD3-0 are reserved.)  
Figure 21.4. FLASHADR: JTAG Flash Address Register  
Reset Value  
0x0000  
Bit15  
Bit0  
This register holds the address for all JTAG Flash read, write, and erase operations. This register  
autoincrements after each read or write, regardless of whether the operation succeeded or failed.  
Bits15-0: Flash Operation 16-bit Address.  
Rev. 1.7  
168  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Figure 21.5. FLASHDAT: JTAG Flash Data Register  
Reset Value  
0000000000  
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0  
FAIL  
Bit1  
FBUSY  
Bit0  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
This register is used to read or write data to the Flash memory across the JTAG interface.  
Bits9-2: DATA7-0: Flash Data Byte.  
Bit1:  
FAIL: Flash Fail Bit.  
0:  
1:  
Previous Flash memory operation was successful.  
Previous Flash memory operation failed. Usually indicates the associated memory  
location was locked.  
Bit0:  
FBUSY: Flash Busy Bit.  
0:  
1:  
Flash interface logic is not busy.  
Flash interface logic is processing a request. Reads or writes while FBUSY = 1 will  
not initiate another operation  
Figure 21.6. FLASHSCL: JTAG Flash Scale Register  
Reset Value  
00000000  
FOSE  
Bit7  
FRAE  
Bit6  
-
-
FLSCL3  
Bit3  
FLSCL2  
Bit2  
FLSCL1  
Bit1  
FLSCL0  
Bit0  
Bit5  
Bit4  
This register controls the Flash read timing circuit and the prescaler required to generate the correct  
timing for Flash operations.  
Bit7:  
FOSE: Flash One-Shot Enable Bit.  
0: Flash read strobe is a full clock-cycle wide.  
1: Flash read strobe is 50nsec.  
Bit6:  
FRAE: Flash Read Always Bit.  
0: The Flash output enable and sense amplifier enable are on only when needed to read the  
Flash memory.  
1: The Flash output enable and sense amplifier enable are always on. This can be used to  
limit the variations in digital supply current due to switching the sense amplifiers, thereby  
reducing digitally induced noise.  
Bits5-4: UNUSED. Read = 00b, Write = don’t care.  
Bits3-0: FLSCL3-0: Flash Prescaler Control Bits.  
The FLSCL3-0 bits control the prescaler used to generate timing signals for Flash  
operations. Its value should be written before any Flash operations are initiated. The value  
written should be the smallest integer for which:  
FLSCL[3:0] > log2(fSYSCLK / 50kHz)  
Where fSYSCLK is the system clock frequency. All Flash read/write/erase operations are  
disallowed when FLSCL[3:0] = 1111b.  
169  
Rev. 1.7  
 
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
21.3. Debug Support  
Each MCU has on-chip JTAG and debug circuitry that provide non-intrusive, full speed, in-circuit debug using the  
production part installed in the end application using the four pin JTAG I/F. Silicon Labs’ debug system supports  
inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, and run and  
halt commands. No additional target RAM, program memory, or communications channels are required. All the  
digital and analog peripherals are functional and work correctly (remain in sync) while debugging. The WDT is  
disabled when the MCU is halted during single stepping or at a breakpoint.  
The C8051F000DK, C8051F005DK, C8051F010DK, and C8051F015DK are development kits with all the  
hardware and software necessary to develop application code and perform in-circuit debugging with each MCU in  
the C8051F000 family. Each kit includes an Integrated Development Environment (IDE) which has a debugger and  
integrated 8051 assembler. It has an RS-232 to JTAG protocol translator module referred to as the EC. There is  
also a target application board with a C8051F000, F005, F010, or F015 installed and with a large prototyping area.  
The kit also includes RS-232 and JTAG cables, and wall-mount power supply.  
Rev. 1.7  
170  
C8051F000/1/2/5/6/7  
C8051F010/1/2/5/6/7  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without  
notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences  
resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning  
of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon  
Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor  
does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed,  
intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of  
the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon  
Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders  
171  
Rev. 1.7  

相关型号:

C8051F001

20 MIPS, 32 kB Flash, 12-Bit ADC, 48-Pin Mixed-Signal MCU
SILICON

C8051F001-GQ

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQFP48, ROHS COMPLIANT, TQFP-48
SILICON

C8051F002

20 MIPS, 32 kB Flash, 12-Bit ADC, 32-Pin Mixed-Signal MCU
SILICON

C8051F002-GQR

Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQFP32, ROHS COMPLIANT, LQFP-32
SILICON

C8051F005

25 MIPS, 32 kB Flash, 12-Bit ADC, 64-Pin Mixed-Signal MCU
SILICON

C8051F005-GQ

Microcontroller, 8-Bit, FLASH, 8051 CPU, 25MHz, CMOS, PQFP64, ROHS COMPLIANT, TQFP-64
SILICON

C8051F005-GQR

Mixed-Signal 32KB ISP FLASH MCU Family
SILICON

C8051F005DK

Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PQFP32, LQFP-32
SILICON

C8051F006

25 MIPS, 32 kB Flash, 12-Bit ADC, 48-Pin Mixed-Signal MCU
SILICON

C8051F006-GQ

25 MIPS, 32 kB Flash, 12-Bit ADC, 48-Pin Mixed-Signal MCU
SILICON

C8051F006-GQR

Microcontroller, 8-Bit, FLASH, 8051 CPU, 25MHz, CMOS, PQFP48, ROHS COMPLIANT, TQFP-48
SILICON

C8051F006R

Microcontroller, 8-Bit, FLASH, 25MHz, CMOS, PQFP48, TQFP-48
SILICON