CY28346OXCT [SILICON]

Processor Specific Clock Generator, 200MHz, CMOS, PDSO56, LEAD FREE, SSOP-56;
CY28346OXCT
型号: CY28346OXCT
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 200MHz, CMOS, PDSO56, LEAD FREE, SSOP-56

时钟 光电二极管 外围集成电路 晶体
文件: 总19页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28346  
Clock Synthesizer with Differential CPU Outputs  
• 5/6 copies of 3V66 clocks  
Features  
• SMBus support with read-back capabilities  
• Compliant with Intel® CK 408 Mobile Clock Synthesizer  
specifications  
• Spread Spectrum electromagnetic interference (EMI)  
reduction  
• 3.3V power supply  
• Dial-a-Frequency™ features  
• Dial-a-dB™ features  
• Three differential CPU clocks  
• Ten copies of PCI clocks  
• 56-pin TSSOP and SSOP packages  
Table 1. Frequency Table[1]  
66BUFF(0:2)/  
USB/  
S2  
S1  
S0 CPU (0:2)  
3V66  
3V66(0:4)  
66IN/3V66–5  
66-MHz clock input  
66-MHz clock input  
66-MHz clock input  
66-MHZ clock input  
66M  
PCI_FPCI  
66IN/2  
66IN/2  
66IN/2  
66IN/2  
33 M  
REF  
DOT  
1
0
0
1
0
1
0
1
0
1
0
1
66M  
100M  
200M  
133M  
66M  
66M  
66IN  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
14.318M  
Hi-Z  
48M  
1
0
66M  
66IN  
48M  
1
1
66M  
66IN  
48M  
1
1
66M  
66IN  
48M  
0
0
66M  
66M  
48M  
0
0
100M  
200M  
133M  
Hi-Z  
66M  
66M  
66M  
33 M  
48M  
0
1
66M  
66M  
66M  
33 M  
48M  
0
1
66M  
66M  
66M  
33 M  
48M  
M
M
0
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
0
TCLK/2  
TCLK/4  
TCLK/4  
TCLK/4  
TCLK/8  
TCLK  
TCLK/2  
Block Diagram  
Pin Configuration  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
REF  
S1  
S0  
CPU_STP#  
CPUT0  
CPUC0  
VDD  
CPUT1  
CPUC1  
VSS  
VDD  
XIN  
XOUT  
XIN  
XOUT  
REF  
VSS  
CPUT(0:2)  
CPUC(0:2)  
PLL1  
PCIF0  
PCIF1  
PCIF2  
VDD  
VSS  
PCI0  
PCI1  
PCI2  
PCI3  
VDD  
VSS  
PCI4  
PCI5  
PCI6  
VDD  
VSS  
CPU_STP#  
IREF  
VSSIREF  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
3V66_0  
S(0:2)  
VDD  
CPUT2  
CPUC2  
MULT0  
IREF  
VSSIREF  
S2  
48MUSB  
48MDOT  
VDD  
3V66_1/VCH  
MULT0  
VTT_PG#  
PCI_STP#  
/2  
PCI(0:6)  
PCI_F(0:2)  
48M USB  
48M DOT  
PLL2  
VSS  
66B0/3V66_2  
66B1/3V66_3  
66B2/3V66_4  
66IN/3V66_5  
PD#  
WD  
Logic  
PD#  
3V66_1/VCH  
PCI_STP#  
3V66_0  
VDD  
VSS  
SCLK  
I2C  
Logic  
SDATA  
SCLK  
VDDA  
VSSA  
VTT_PG#  
66B[0:2]/3V66[2:4]  
66IN/3V66-5  
Power  
Up Logic  
VDDA  
SDATA  
Note:  
1. TCLK is a test clock driven on the XTAL_IN input during test mode. M = driven to a level between 1.0V and 1.8V. If the S2 pin is at a M level during power-up, a  
0 state will be latched into the device’s internal state register.  
........................Document #: 38-07331 Rev. *C Page 1 of 19  
400 West Cesar Chavez, Austin, TX 78701  
1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
 
 
CY28346  
Pin Description  
Pin  
Name  
PWR  
I/O  
I
Description  
2
XIN  
Oscillator Buffer Input. Connect to a crystal or to an external clock.  
3
XOUT  
VDD  
VDD  
O
Oscillator Buffer Output. Connect to a crystal. Donot connect when an external  
clock is applied at XIN.  
52, 51, 49, 48, CPUT(0:2),  
O
O
O
Differential Host Output Clock Pairs. See Table 1 for frequency/functionality.  
PCI Clock Outputs. Are synchronous to 66IN or 3V66 clock. See Table 1.  
45, 44  
CPUC(0:2)  
PCI(0:6)  
10, 11, 12, 13,  
16, 17, 18  
VDDP  
VDD  
5, 6, 7  
PCIF (0:2)  
33MHz PCI Clocks. 2 copies of 66IN or 3V66 clocks that may be free running  
(not stopped when PCI_STP# is asserted LOW) or may be stoppable depending  
on the programming of SMBus register Byte3,Bits (3:5).  
56  
42  
REF  
VDD  
VDD  
O
I
Buffered Output Copy of the Device’s XIN Clock.  
IREF  
Current Reference Programming Input for CPU Buffers. A resistor is  
connected between this pin and VSSIREF.  
28  
VTT_PG#  
VDD  
I
Qualifying Input that Latches S(0:2) and MULT0. When this input is at a logic  
LOW, the S(0:2) and MULT0 are latched.  
39  
38  
33  
35  
48MUSB  
48MDOT  
VDD48  
VDD48  
VDD  
O
O
O
O
Fixed 48 MHz USB Clock Outputs.  
Fixed 48 MHZ DOT Clock Outputs.  
3.3V 66 MHz Fixed-frequency Clock.  
3V66_0  
3V66_1/VCH  
VDD  
3.3V Clock Selectable with SMBus Byte0,Bit5, When Byte5,Bit5. When Byte  
0,Bit 5 is at a logic 1, then this pin is a 48M output clock. When Byte0,Bit5 is a  
logic 0, this is a 66M output clock (default).  
25  
43  
PD#  
VDD  
I
Power-down Mode Pin. A logic LOW level causes the device to enter a  
PU power-down state. All internal logic is turned off except for the SMBus logic. All  
output buffers are stopped.  
MULT0  
I
Programming Input Selection for CPU Clock Current Multiplier.  
PU  
55, 54  
29  
S(0,1)  
I
I
I
I
Frequency Select Inputs. See Table 1.  
SDATA  
Serial Data Input. Conforms to the SMBus specification of a Slave  
Receive/Transmit device. It is an input when receiving data. It is an open drain  
output when acknowledging or transmitting data.  
30  
40  
SCLK  
S2  
I
I
Serial Clock Input. Conforms to the SMBus specification.  
VDD  
I
T
Frequency Select Input. See Table 1. This is a Tri-level input which is driven  
HIGH, LOW or driven to a intermediate level.  
34  
PCI_STP#  
VDD  
I
PCI Clock Disable Input. When asserted LOW, PCI (0:6) clocks are synchro-  
PU nously disabled in a LOW state. This pin does not effect PCIF (0:2) clocks’  
outputs if they are programmed to be PCIF clocks via the device’s SMBus  
interface.  
53  
CPU_STP#  
VDD  
I
CPU Clock Disable Input. When asserted LOW, CPUT (0:2) clocks are  
PU synchronously disabled in a HIGH state and CPUC(0:2) clocks are synchro-  
nously disabled in a LOW state.  
24  
66IN/3V66_5  
VDD  
VDD  
I/O Input Connection for 66CLK(0:2) Output Clock Buffers if S2 = 1, or output  
clock for fixed 66-MHz clock if S2 = 0. See Table 1.  
21, 22, 23  
66B(0:2)/  
3V66(2:4)  
O
3.3V Clock Outputs. These clocks are buffered copies of the 66IN clock or fixed  
at 66 MHz. See Table 1.  
1,8,14, 19, 32,  
37, 46, 50  
VDD  
PWR 3.3V Power Supply.  
4,9,15, 20, 27,  
31, 36, 47  
VSS  
PWR Common Ground.  
41  
VSSIREF  
PWR Current Reference Programming Input for CPU Buffers. A resistor is  
connected between this pin and IREF. This pin should also be returned to device  
VSS  
.
26  
VDDA  
PWR Analog Power Input. Used for phase-locked loops (PLLs) and internal analog  
circuits. It is also specifically used to detect and determine when power is at an  
acceptable level to enable the device to operate.  
........................Document #: 38-07331 Rev. *C Page 2 of 19  
CY28346  
Two-Wire SMBus Control Interface  
Serial Control Registers  
The two-wire control interface implements a Read/Write slave  
only interface according to SMBus specification.  
Following the acknowledge of the Address Byte, two additional  
bytes must be sent:  
The device will accept data written to the D2 address and data  
may read back from address D3. It will not respond to any  
other addresses, and previously set control registers are  
retained as long as power in maintained on the device.  
1. “Command code” byte  
2. “Byte count” byte.  
Although the data (bits) in the command is considered “don’t  
care,” it must be sent and will be acknowledged. After the  
Command Code and the Byte Count have been acknowl-  
edged, the sequence (Byte 0, Byte 1, and Byte 2) described  
below will be valid and acknowledged.  
Byte 0: CPU Clock Register[2,3]  
Bit  
@Pup  
Pin#  
Description  
7
0
Spread Spectrum Enable. 0 = Spread Off, 1 = Spread On  
This is a Read and Write control bit.  
6
0
0
CPU Clock Power-down Mode Select. 0 = Drive CPUT(0:2) to 4 or 6 IREF and drive  
CPUC(0:2) LOW when PD# is asserted LOW. 1 = Tri-state all CPU outputs. This is only  
applicable when PD# is LOW. It is not applicable to CPU_STP#.  
5
4
3
35  
3V66_1/VCH Frequency Select, 0 = 66M selected, 1 = 48M selected  
This is a Read and Write control bit.  
Pin 53 44,45,48,49,5 CPU_STP#. Reflects the current value of the external CPU_STP# (pin 53) This bit is  
1,52 Read-only.  
Pin 34 10,11,12,13,16 Reflects the current value of the internal PCI_STP# function when read. Internally PCI_STP#  
,17,18  
is a logical AND function of the internal SMBus register bit and the external PCI_STP# pin.  
Frequency Select Bit 2. Reflects the value of SEL2 (pin 40). This bit is Read-only.  
Frequency Select Bit 1. Reflects the value of SEL1 (pin 55). This bit is Read-only.  
Frequency Select Bit 0. Reflects the value of SEL0 (pin 54). This bit is Read-only.  
2
1
0
Pin 40  
Pin 55  
Pin 54  
Byte 1: CPU Clock Register  
Bit  
7
@Pup  
Pin 43  
0
Pin#  
43  
Description  
MULT0 (Pin 43) Value. This bit is Read-only.  
6
53  
CPUT/C(0:2) Output Functionality Control When CPU_STP# is Asserted. 0 = Drive  
CPUT(0:2) to 4 or 6 IREF and drive CPUC(0:2) LOW when CPU_STP# asserted LOW.  
1 = three-state all CPU outputs. This bit will override Byte0,Bit6 such that even if it is 0,  
when PD# goes LOW the CPU outputs will be three-stated.  
5
4
3
2
1
0
0
0
1
1
1
44,45  
48,49  
51,52  
44,45  
48,49  
51,52  
CPU2 Functionality Control When CPU_STP# is Asserted LOW. 1 = Free Running, 0 =  
Stopped LOW with CPU_STP# asserted LOW. This is a Read and Write control bit.  
CPU1 Functionality Control When CPU_STP# is Asserted LOW. 1 = Free Running, 0 =  
Stopped LOW with CPU_STP# asserted LOW. This is a Read and Write control bit.  
CPUT0 Functionality Control When CPU_STP# is Asserted LOW. 1 = Free Running, 0 =  
Stopped LOW with CPU_STP# asserted LOW. This is a Read and Write control bit.  
CPUT/C2 Output Control. 1 = enabled, 0 = disable HIGH and CPUC2 disables LOW. This  
is a Read and Write control bit.  
CPUT/C1 Output Control. 1 = enabled, 0 = disable HIGH and CPUC1 disables LOW. This  
is a Read and Write control bit.  
0
CPUT/C0 Output Control. 1 = enabled, 0 = disable HIGH and CPUC0 disables LOW. This  
is a Read and Write control bit.  
Notes:  
2. PU = internal pull-up. PD = internal pull-down. T = tri-level logic input with valid logic voltages of LOW = < 0.8V, T = 1.0 – 1.8V and HIGH = > 2.0V.  
3. The “Pin#” column lists the relevant pin number where applicable. The “@Pup” column gives the default state at power-up.  
........................Document #: 38-07331 Rev. *C Page 3 of 19  
 
CY28346  
Byte 2: PCI Clock Control Register (all bits are Read and Write functional)  
Bit  
7
@Pup  
Pin#  
53  
18  
17  
16  
13  
12  
11  
Description  
REF Output Control. 0 = high strength, 1 = low strength.  
PCI6 Output Control. 1 = enabled, 0 = forced LOW.  
PCI5 Output Control. 1 = enabled, 0 = forced LOW.  
PCI4 Output Control. 1 = enabled, 0 = forced LOW.  
PCI3 Output Control. 1 = enabled, 0 = forced LOW.  
PCI2 Output Control. 1 = enabled, 0 = forced LOW.  
PCI1 Output Control. 1 = enabled, 0 = forced LOW.  
PCI0 Output Control. 1 = enabled, 0 = forced LOW.  
0
1
1
1
1
1
1
1
6
5
4
3
2
1
0
10  
Byte 3: PCI_F Clock and 48M Control Register (all bits are Read and Write functional)  
Bit  
7
@Pup  
Pin#  
38  
39  
7
Description  
48MDOT Output Control. 1 = enabled, 0 = forced LOW.  
48MUSB Output Control. 1 = enabled, 0 = forced LOW.  
1
1
0
0
0
1
1
1
6
5
PCI_STP#, Control of PCI_F2. 0 = Free Running, 1 = Stopped when PCI_STP# is LOW.  
PCI_STP#, Control of PCI_F1. 0 = Free Running, 1 = Stopped when PCI_STP# is LOW.  
PCI_STP#, Control of PCI_F0. 0 = Free Running, 1 = Stopped when PCI_STP# is LOW.  
PCI_F2 Output Control. 1 = running, 0 = forced LOW.  
4
6
3
5
2
7
1
6
PCI_F1 Output Control. 1 = running, 0 = forced LOW.  
0
5
PCI_F0 Output Control. 1 = running, 0 = forced LOW.  
Byte 4: DRCG Control Register (all bits are Read and Write functional)  
Bit @Pup Pin# Description  
7
6
5
4
3
2
1
0
0
0
1
1
1
1
1
1
SS2 Spread Spectrum Control Bit (0 = down spread, 1 = center spread).  
Reserved. Set = 0.  
33 3V66_0 Output Enabled. 1 = enabled, 0 = disable.  
35 3V66_1/VCH Output Enable. 1 = enabled, 0 = disabled.  
24 3V66_5 Output Enable. 1 = enabled, 0 = disabled.  
23 66B2/3V66_4 Output Enabled. 1 = enabled, 0 = disabled.  
22 66B1/3V66_3 Output Enabled. 1 = enabled, 0 = disabled.  
21 66B0/3V66_2 Output Enabled. 1 = enabled, 0 = disabled.  
Byte 5: Clock Control Register (all bits are Read and Write functional)  
Bit @Pup Pin# Description  
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
SS1 Spread Spectrum Control Bit.  
SS0 Spread Spectrum Control Bit.  
66IN to 66M delay Control MSB.  
66IN to 66M delay Control LSB.  
Reserved. Set = 0.  
48MDOT Edge Rate Control. When set to 1, the edge is slowed by 15%.  
Reserved. Set = 0.  
USB edge rate control. When set to 1, the edge is slowed by 15%.  
........................Document #: 38-07331 Rev. *C Page 4 of 19  
CY28346  
Byte 6: Silicon Signature Register[4] (all bits are Read-only)  
Bit  
7
@Pup  
Pin#  
Description  
Description  
Description  
0
0
0
1
0
0
1
1
Revision = 0001  
6
5
4
3
Vendor Code = 0011  
2
1
0
Byte 7: Reserved Register  
Bit  
7
@Pup  
Pin#  
0
0
0
0
0
0
0
0
Reserved. Set = 0.  
Reserved. Set = 0.  
Reserved. Set = 0.  
Reserved. Set = 0.  
Reserved. Set = 0.  
Reserved. Set = 0.  
Reserved. Set = 0.  
Reserved. Set = 0.  
6
5
4
3
2
1
0
Byte 8: Dial-a-Frequency Control Register N  
Bit  
7
@Pup  
Name  
0
0
0
0
0
0
0
0
Reserved. Set = 0.  
6
N6, MSB These bits are for programming the PLL’s internal N register. This access allows the user to  
modify the CPU frequency at very high resolution (accuracy). All other synchronous clocks  
(clocks that are generated from the same PLL, such as PCI) remain at their existing ratios  
5
N5  
4
N4  
relative to the CPU clock.  
3
N3  
2
N2  
1
N3  
0
N0, LSB  
Byte 9: Dial-a-Frequency Control Register R  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
Reserved. Set = 0.  
6
R5, MSB  
R4  
These bits are for programming the PLL’s internal R register. This access allows the user to  
modify the CPU frequency at very high resolution (accuracy). All other synchronous clocks  
(clocks that are generated from the same PLL, such as PCI) remain at their existing ratios  
relative to the CPU clock.  
5
4
R3  
3
R2  
2
R1  
1
R0  
DAF_ENB R and N register mux selection. 0 = R and N values come from the ROM. 1 = data is loaded  
from DAF (SMBus) registers.  
0
0
Note:  
4. When writing to this register, the device will acknowledge the Write operation, but the data itself will be ignored.  
........................Document #: 38-07331 Rev. *C Page 5 of 19  
 
CY28346  
therefore causing the average energy at any one point in this  
band to decrease in value. This technique is achieved by  
modulating the clock away from its resting frequency by a  
certain percentage (which also determines the amount of EMI  
reduction). In this device, Spread Spectrum is enabled by  
setting specific register bits in the SMBus control bytes.  
Table 3 is a listing of the modes and percentages of Spread  
Spectrum modulation that this device incorporates.  
Dial-a-Frequency Features  
SMBus Dial-a-Frequency feature is available in this device via  
Byte8 and Byte9.  
P is a large-value PLL constant that depends on the frequency  
selection achieved through the hardware selectors (S1, S0). P  
value may be determined from Table 2.  
Table 2. P Value  
Table 3. Spread Spectrum  
S(1:0)  
0 0  
P
SS2 SS1  
SS0  
0
Spread Mode  
Down  
Spread%  
32005333  
48008000  
96016000  
64010667  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+0.00, –0.25  
+0.00, –0.50  
+0.00, –0.75  
+0.00, –1.00  
+0.13, –0.13  
+0.25, –0.25  
+0.37, –0.37  
+0.50, –1.50  
0 1  
1
Down  
1 0  
0
Down  
1 1  
1
Down  
0
Center  
Center  
Center  
Center  
Dial-a-dB Features  
1
SMBus Dial-a-dB feature is available in this device via Byte8  
and Byte9.  
0
1
Spread Spectrum Clock Generation (SSCG)  
Test and Measurement Set-up  
Spread Spectrum is a modulation technique used to  
minimizing EMI radiation generated by repetitive digital  
signals. A clock presents the greatest EMI energy at the center  
frequency it is generating. Spread Spectrum distributes this  
energy over a specific and controlled frequency bandwidth  
For Differential CPU Output Signals  
The following diagram shows lumped test load configurations  
for the differential Host Clock Outputs.  
TPCB  
  
Measurement Point  
Measurem ent Point  
CPUT  
2pF  
  
  
MULTSEL  
TPCB  
CPUC  
2pF  
  
  
  
Figure 1. 1.0V Test Load Termination  
TPCB  
  
  
Measurement Point  
CPUT  
VDD  
  
  
2pF  
2pF  
MULTSEL  
TPCB  
Measurement Point  
CPUC  
  
Figure 2. 0.7V Test Load Termination  
........................Document #: 38-07331 Rev. *C Page 6 of 19  
 
 
CY28346  
Output under Test  
Probe  
Load Cap  
3.3V signals  
tDC  
-
-
3.3V  
2.4V  
1.5V  
0.4V  
0V  
Tr  
Tf  
Figure 3. For Single-ended Output Signals  
3. Series resistance in the buffer circuit—Ros (see Figure 4).  
Buffer Characteristics  
4. Current accuracy at given configuration into nominal test  
load for given configuration.  
Current Mode CPU Clock Buffer Characteristics  
The current mode output buffer detail and current reference  
circuit details are contained in the previous table of this data  
sheet. The following parameters are used to specify output  
buffer characteristics:  
Iout is selectable depending on implementation. The param-  
eters above apply to all configurations. Vout is the voltage at  
the pin of the device.  
The various output current configurations are shown in the  
host swing select functions table. For all configurations, the  
deviation from the expected output current is ±7% as shown in  
the current accuracy table.  
1. Output impedance of the current mode buffer circuit—Ro  
(see Figure 4).  
2. Minimum and maximum required voltage operation range  
of the circuit—Vop (see Figure 4).  
VDD3 (3.3V +/- 5%)  
Slope ~ 1/R0  
Ro  
Iout  
Ros  
0V  
1.2V  
Iout  
Vout = 1.2V max  
Vout  
Figure 4. Buffer Characteristics  
........................Document #: 38-07331 Rev. *C Page 7 of 19  
 
CY28346  
Table 4. Host Clock (HCSL) Buffer Characteristics  
Characteristic  
Min.  
Max.  
Ro  
3000(recommended)  
N/A  
Ros  
Vout  
N/A  
1.2V  
Table 5. CPU Clock Current Select Function  
Mult0  
Board Target Trace/Term Z  
Reference R, Iref – Vdd (3*Rr)  
Rr = 221 1%, Iref = 5.00mA  
Rr = 475 1%, Iref = 2.32mA  
Output Current  
Ioh = 4*Iref  
Voh @ Z  
1.0V @ 50  
0.7V @ 50  
0
1
50  
50  
Ioh = 6*Iref  
Table 6. Group Timing Relationship and Tolerances  
Description  
Offset  
2.5 ns  
0.0 ns  
2.5 ns  
Tolerance  
1.0 ns  
Conditions  
3V66 Leads PCI (unbuffered mode)  
0 degrees phase shift  
3V66 to PCI  
48MUSB to 48MDOT Skew  
66B(0:2) to PCI offset  
1.0 ns  
1.0 ns  
66B Leads PCI (buffered mode)  
USB and DOT 48M Phase Relationship  
66B(0:2) to PCI Buffered Clock Skew  
The 48MUSB and 48MDOT clocks are in phase. It is under-  
stood that the difference in edge rate will introduce some  
inherent offset. When 3V66_1/VCH clock is configured for  
VCH (48-MHz) operation it is also in phase with the USB and  
DOT outputs. See Figure 5.  
Figure 7 shows the difference (skew) between the 3V33(0:5)  
outputs when the 66M clocks are connected to 66IN. This  
offset is described in the Group Timing Relationship and Toler-  
ances section of this data sheet. The measurements were  
taken at 1.5V.  
3V66 to PCI Un-Buffered Clock Skew  
66IN to 66B(0:2) Buffered Prop Delay  
Figure 8 shows the timing relationship between 3V66(0:5) and  
PCI(0:6) and PCI_F(0:2) when configured to run in the unbuf-  
fered mode.  
The 66IN to 66B(0:2) output delay is shown in Figure 6.  
The Tpd is the prop delay from the input pin (66IN) to the  
output pins (66B[0:2]). The outputs’ variation of Tpd is  
described in the AC parameters section of this data sheet. The  
measurement taken at 1.5V.  
48MUSB  
48MDOT  
Figure 5. 48MUSB and 48MDOT Phase Relationship  
66IN  
Tpd  
66B(0:2)  
Figure 6. 66IN to 66B(0:2) Output Delay Figure  
66B(0:2)  
1.5-  
3.5ns  
PCI(0:6)  
PCIF(0:2)  
Figure 7. Buffer Mode – 33V66(0:1); 66BUF(0:2) Phase Relationship  
........................Document #: 38-07331 Rev. *C Page 8 of 19  
 
 
 
CY28346  
CPU_STP# Clarification  
Special Functions  
The CPU_STP# signal is an active LOW input used to  
synchronously stop and start the CPU output clocks while the  
rest of the clock generator continues to function.  
PCI_F and IOAPIC Clock Outputs  
The PCIF clock outputs are intended to be used, if required,  
for systems IOAPIC clock functionality. Any two of the PCI_F  
clock outputs can be used as IOAPIC 33 Mhz clock outputs.  
They are 3.3V outputs will be divided down via a simple  
resistive voltage divider to meet specific system IOAPIC clock  
voltage requirements. In the event that these clocks are not  
required, they can be used as general PCI clocks or disabled  
via the assertion of the PCI_STP# pin.  
CPU_STP# – Assertion  
When CPU_STP# pin is asserted, all CPUT/C outputs that are  
set with the SMBus configuration to be stoppable via assertion  
of CPU_STP# will be stopped after being sampled by two  
falling CPUT/C clock edges. The final state of the stopped  
CPU signals is CPUT = HIGH and CPU0C = LOW. There is no  
change to the output drive current values during the stopped  
state. The CPUT is driven HIGH with a current value equal to  
(Mult 0 “select”) × (Iref), and the CPUC signal will not be  
driven. Due to external pull-down circuitry CPUC will be LOW  
during this stopped state.  
3V66_1/VCH Clock Output  
The 3V66_1/VCH pin has a dual functionality that is selectable  
via SMBus.  
Configured as DRCG (66M), SMBus Byte0, Bit 5 = “0”  
CPU_STP# Deassertion  
The default condition for this pin is to power-up in a 66M  
operation. In 66M operation this output is SSCG-capable and  
when spreading is turned on, this clock will be modulated.  
The deassertion of the CPU_STP# signal will cause all  
CPUT/C outputs that were stopped to resume normal  
operation in a synchronous manner (meaning that no short or  
stretched clock pulses will be produces when the clock  
resumes). The maximum latency from the deassertion to  
active outputs is no more than two CPUC clock cycles.  
Configured as VCH (48M), SMBus Byte0, Bit 5 = “1”  
In this mode, output is configured as a 48-Mhz non-spread  
spectrum output that is phase-aligned with other 48M outputs  
(USB and DOT) to within 1 ns pin-to-pin skew. The switching  
of 3V66_1/VCH into VCH mode occurs at system power-on.  
When the SMBus Bit 5 of Byte 0 is programmed from a “0” to  
a “1,” the 3V66_1/VCH output may glitch while transitioning to  
48M output mode.  
Three-state Control of CPU Clocks Clarification  
During CPU_STP# and PD# modes, CPU clock outputs may  
be set to driven or undriven (tri-state) by setting the corre-  
sponding SMBus entry in Bit6 of Byte0 and Bit6 of Byte1.  
3V66(0:5)  
Tpci  
PCI(0:6)  
PCI_F(0:2)  
Figure 8. Unbuffered Mode – 3V66(0:5) to PCI (0:6) and PCI_F(0:2) Phase Relationship  
CPU_STP#  
CPUT  
CPUC  
CPUT  
CPUC  
Figure 9. CPU_STP# Assertion Waveform  
........................Document #: 38-07331 Rev. *C Page 9 of 19  
CY28346  
PCI_STP# Assertion  
time for capturing PCI_STP# going LOW is 10 ns (tsetup) (see  
Figure 14.) The PCI_F (0:2) clocks will not be affected by this  
pin if their control bits in the SMBus register are set to allow  
them to be free running.  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
CPU_STP#  
CPUT  
CPUC  
CPUT  
CPUC  
Figure 10. CPU_STP# Deassertion Waveform  
Table 7. Cypress Clock Power Management Truth Table  
B0b6  
B1b6  
PD#  
CPU_STP# Stoppable CPUT  
Stoppable  
CPUC  
Non-Stop CPUT Non-Stop CPUC  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Running  
Iref x6  
Iref x2  
Iref x2  
Running  
Hi-Z  
Running  
Iref x6  
LOW  
Running  
Running  
Iref x2  
Iref x2  
Running  
Running  
Hi-Z  
Running  
Running  
LOW  
LOW  
LOW  
Running  
Hi-Z  
Running  
Running  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Running  
Iref x6  
Hi-Z  
Running  
Iref x6  
Hi-Z  
Running  
Running  
Hi-Z  
Running  
Running  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Running  
Hi-Z  
Running  
Hi-Z  
Running  
Running  
Hi-Z  
Running  
Running  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
......................Document #: 38-07331 Rev. *C Page 10 of 19  
CY28346  
PCI_STP# – Deassertion (transition from logic “0”  
to logic “1”)  
asynchronous function for powering up the system. When PD#  
is LOW, all clocks are driven to a LOW value and held there  
and the VCO and PLLs are also powered down. All clocks are  
shut down in a synchronous manner so has not to cause  
glitches while transitioning to the LOW “stopped” state.  
The deassertion of the PCI_STP# signal will cause all PCI(0:6)  
and stoppable PCI_F(0:2) clocks to resume running in a  
synchronous manner within two PCI clock periods after  
PCI_STP# transitions to a HIGH level.  
PD# – Assertion  
Note. The PCI STOP function is controlled by two inputs. One  
is the device PCI_STP# pin number 34 and the other is SMBus  
Byte 0,Bit 3. These two inputs to the function are logically  
AND’ed. If either the external pin or the internal SMBus  
register bit is set LOW, the stoppable PCI clocks will be  
stopped in a logic LOW state. Reading SMBus Byte 0,Bit 3 will  
return a 0 value if either of these control bits are set LOW  
(which indicates that the devices stoppable PCI clocks are not  
running).  
When PD# is sampled LOW by two consecutive rising edges  
of the CPUC clock, then on the next HIGH-to-LOW transition  
of PCIF, the PCIF clock is stopped LOW. On the next  
HIGH-to-LOW transition of 66Buff, the 66Buff clock is stopped  
LOW. From this time, each clock will stop LOW on its next  
HIGH-to-LOW transition, except the CPUT clock. The CPU  
clocks are held with the CPUT clock pin driven HIGH with a  
value of 2 × Iref, and CPUC undriven. After the last clock has  
stopped, the rest of the generator will be shut down.  
PD# (Power-down) Clarification  
PD# – Deassertion  
The PD# (power-down) pin is used to shut off all clocks prior  
to shutting off power to the device. PD# is an asynchronous  
active LOW input. This signal is synchronized internally to the  
device powering down the clock synthesizer. PD# is an  
The power-up latency between PD# rising to a valid logic ‘1’  
level and the starting of all clocks is less than 3.0 ms.  
t setup  
PCI_STP#  
PCI_F(0:2) 33M  
PCI(0:6) 33M  
Figure 11. PCI_STP# Assertion Waveform  
t setup  
PCI_STP#  
PCI_F(0:2)  
PCI(0:6)  
Figure 12. PCI_STP# Deassertion Waveform  
......................Document #: 38-07331 Rev. *C Page 11 of 19  
CY28346  
66Buff[0..2]  
PCIF  
PW RDW N#  
CPU 133MHz  
CPU# 133MHz  
3V66  
66In  
USB 48MHz  
REF 14.318MHz  
Figure 13. Power-down Assertion Timing Waveforms Figure—Buffered Mode  
PWRDWN#  
CPUT(0:2) 133MHz  
CPUC(0:2) 133MHz  
PCI 33MHz  
3V66  
USB 48MHz  
REF 14.318MHz  
Figure 14. Power-down Assertion Timing Waveforms—Unbuffered Mode  
......................Document #: 38-07331 Rev. *C Page 12 of 19  
CY28346  
30uS min  
<1.8mS  
400uS max  
66Buff1 / GMCH  
66Buff[0,2]  
PCIF / APIC  
33MHz  
PCI 33MHz  
PWRDWN#  
CPU 133MHz  
CPU# 133MHz  
3V66  
66In  
USB 48MHz  
REF 14.318MHz  
Figure 15. Power-down Deassertion Timing Waveforms—Buffered Mode  
Table 8. PD# Functionality  
PD#  
1
DRCG  
66M  
66CLK (0:2)  
66Input  
PCI_F/PCI  
66Input/2  
LOW  
PCI  
66Input/2  
LOW  
USB/DOT  
48M  
0
LOW  
LOW  
LOW  
......................Document #: 38-07331 Rev. *C Page 13 of 19  
CY28346  
Absolute Maximum Ratings[5]  
Storage Temperature:................................ –65C to + 150C  
Operating Temperature:.................................... 0C to +85C  
Maximum Power Supply:................................................ 3.5V  
Input Voltage Relative to VSS:.............................. VSS – 0.3V  
Input Voltage Relative to VDDQ or AVDD: .............VDD + 0.3V  
Current Accuracy[6]  
Parameter  
Iout  
Conditions  
Configuration  
Load  
Min.  
Max.  
VDD = nominal (3.30V)  
M0 = 0 or 1 and Rr (see Table 1)  
Nominal test load for given  
configuration  
–7%  
Inom Inom  
+ 7%  
Iout  
V
DD = 3.30 ± 5%  
All combinations of M0 or 1 and Rr Nominal test load for given  
(see Table 1) configuration  
–12% + 12%  
Inom Inom  
DC Parameters (VDD = VDDA = 3.3V ±5%, TA = 0°C to +70°C)  
Parameter  
Description  
Dynamic Supply Current  
Power-down Supply Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
Conditions  
All frequencies at maximum values[7]  
Min.  
Typ.  
Max.  
Unit  
mA  
mA  
pF  
IDD3.3V  
280  
IPD3.3V  
PD# asserted  
Note 8  
CIN  
5
6
COUT  
LPIN  
pF  
7
nH  
pF  
CXTAL  
Crystal Pin Capacitance  
Measured from the XIN or XOUT pin to ground  
30  
36  
42  
AC Parameters (VDD = VDDA = 3.3V ±5%, TA = 0°C to +70°C)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit Notes  
Crystal  
TDC  
XIN Duty Cycle  
47.5  
52.5  
71.0  
47.5  
52.5  
47.5  
52.5  
71.0  
47.5  
52.5  
71.0  
%
9, 10, 11  
TPERIOD  
XIN period  
69.84  
69.84  
71.0 69.84  
69.84  
ns  
9, 12,  
13, 10  
VHIGH  
VLOW  
TR / TF  
TCCJ  
XIN HIGH Voltage  
0.7VDD VDD  
0.7VDD VDD 0.7VDD VDD 0.7VDD VDD  
V
V
XIN LOW Voltage  
0
0.3VDD  
10.0  
0
0.3VDD  
10.0  
0
0.3VDD  
10.0  
0
0.3VDD  
10.0  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
ns  
ps  
14  
500  
500  
500  
500  
12, 15,  
10  
CPU at 0.7V Timing  
TDC  
CPUT and CPUC Duty  
Cycle  
45  
55  
45  
55  
45  
55  
45  
55  
5.1  
100  
%
ns  
ps  
15, 16,  
19  
TPERIOD  
CPUT and CPUC  
Period  
14.85  
15.3  
100  
9.85  
10.2  
100  
7.35  
7.65  
100  
4.85  
15, 16,  
19  
TSKEW  
Any CPU to CPU Clock  
Skew  
12, 15,  
16  
Notes:  
5. Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
6. Inom refers to the expected current based on the configuration of the device.  
7. All outputs loaded as per maximum capacitive load table.  
8. Absolute value = ((Programmed CPU Iref) × (2)) + 10 mA.  
9. This parameter is measured as an average over 1 s duration, with a crystal center frequency of 14.31818 MHz.  
10. When Xin is driven from an external clock source.  
11. This is required for the duty cycle on the REF clock out to be as specified. The device will operate reliably with input duty cycles up to 30/70 but the REF clock  
duty cycle will not be within data sheet specifications.  
12. All outputs loaded as perTable 9 below.  
13. Probes are placed on the pins and measurements are acquired at 1.5V for 3.3V signals (see test and measurement set-up section of this data sheet).  
14. Measured between 0.2V and 0.7V  
.
DD  
DD  
15. This measurement is applicable with Spread ON or Spread OFF.  
16. Measured at crossing point (Vx) or where subtraction of CLK–CLK# crosses 0V Measured from V = 0.175V to V = 0.525V.  
OL  
OH  
17. Measured from V = 0.175V to V = 0.525V.  
OL  
OH  
18. Determined as a fraction of 2*(Trise–Tfall)/ (Trise+Tfall).  
19. Test load is Rta = 33.2, Rd = 49.9.  
......................Document #: 38-07331 Rev. *C Page 14 of 19  
 
 
 
 
 
 
 
 
 
 
 
 
CY28346  
AC Parameters (VDD = VDDA = 3.3V ±5%, TA = 0°C to +70°C) (continued)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Parameter  
TCCJ  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit Notes  
CPU Cycle to Cycle  
Jitter  
150  
700  
20%  
150  
150  
150  
ps  
15, 16,  
19  
TR/TF  
CPUT and CPUC Rise  
and Fall Times  
175  
175  
700  
175  
700  
175  
700  
ps  
15, 17,  
20  
Rise/Fall Matching  
20%  
20%  
20%  
17, 18,  
19  
DeltaTR  
DeltaTF  
VCROSS  
Rise Time Variation  
Fall Time Variation  
125  
125  
430  
125  
125  
430  
125  
125  
430  
125  
125  
430  
ps  
ps  
17, 19  
17, 19  
Crossing Point Voltage  
at 0.7V Swing  
280  
280  
280  
280  
mV 15, 19  
CPU at 1.0V Timing  
TDC  
CPUT and CPUC Duty  
Cycle  
45  
55  
45  
55  
45  
55  
45  
55  
%
15, 16  
15, 16  
TPERIOD  
TSKEW  
TCCJ  
CPUT and CPUC  
Period  
14.85  
15.3  
100  
150  
467  
325  
9.85  
10.2  
100  
150  
467  
325  
7.35  
7.65  
100  
150  
467  
325  
4.85  
5.1  
nS  
Any CPU to Any CPU  
Clock Skew  
100  
150  
467  
325  
pS 12, 15,  
16  
CPU Cycle to Cycle  
Jitter  
pS  
ps  
ps  
12, 16  
15, 20  
21, 22  
Differential  
TR/TF  
CPUT and CPUC Rise  
and Fall Times  
175  
510  
175  
510  
175  
510  
175  
510  
SE–  
DeltaSlew  
Absolute Single- ended  
Rise/Fall Waveform  
Symmetry  
VCROSS  
Cross Point at 1.0V  
swing  
760  
760  
760  
760  
mV  
22  
3V66  
TDC  
3V66 Duty Cycle  
3V66 Period  
45  
55  
45  
55  
45  
55  
45  
55  
%
12, 13  
TPERIOD  
THIGH  
TLOW  
15.0  
4.95  
4.55  
0.5  
15.3  
15.0  
4.95  
4.55  
0.5  
15.3  
15.0  
4.95  
4.55  
0.5  
15.3  
15.0  
4.95  
4.55  
0.5  
15.3  
ns 9, 12, 13  
3V66 HIGH Time  
3V66 LOW Time  
ns  
ns  
ns  
23  
24  
25  
TR/TF  
3V66 Rise and Fall  
Times  
2.0  
500  
250  
250  
2.0  
500  
250  
250  
2.0  
500  
250  
250  
2.0  
500  
250  
250  
TSKEW  
Unbuffered  
3V66 to 3V66 Clock  
Skew  
ps  
ps  
ps  
12, 13  
12, 13  
12, 13  
TSKEW  
Buffered  
3V66 to 3V66 Clock  
Skew  
TCCJ  
DRCG Cycle to Cycle  
Jitter  
Notes:  
20. Measurement taken from differential waveform, from –0.35V to +0.35V.  
21. Measurements taken from common mode waveforms, measure rise/fall time from 0.41 to 0.86V. Rise/fall time matching is defined as “the instantaneous difference  
between maximum CLK rise (fall) and minimum CLK# fall (rise) time or minimum CLK rise (fall) and maximum CLK# fall (rise) time.” This parameter is designed  
form waveform symmetry.  
22. Measured in absolute voltage, i.e., single-ended measurement.  
23. THIGH is measured at 2.4V for non-host outputs.  
24. TLOW is measured at 0.4V for all outputs.  
25. Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals (see test and measurement set-up section of this data  
sheet).  
......................Document #: 38-07331 Rev. *C Page 15 of 19  
 
 
 
 
 
CY28346  
AC Parameters (VDD = VDDA = 3.3V ±5%, TA = 0°C to +70°C) (continued)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit Notes  
66B  
TDC  
66B(0:2) Duty Cycle  
45  
55  
45  
55  
45  
55  
45  
55  
%
12, 13  
12, 25  
TR/TF  
66B(0:2) Rise and Fall  
Times  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
ns  
TSKEW  
TPD  
Any 66B to Any 66B  
Skew  
175  
4.5  
175  
4.5  
175  
4.5  
175  
4.5  
ps  
ns  
ps  
12, 13  
12, 13  
66IN to 66B(0:2) Propa- 2.5  
gation Delay  
2.5  
2.5  
2.5  
TCCJ  
66B(0:2) Cycle to Cycle  
Jitter  
100  
100  
100  
100  
12, 13,  
26  
PCI  
TDC  
PCI_F(0:2) PCI (0:6)  
Duty Cycle  
45  
55  
45  
55  
45  
55  
45  
30  
55  
%
12, 13  
TPERIOD  
THIGH  
TLOW  
PCI_F(0:2) PCI (0:6)  
Period  
30.0  
12.0  
12.0  
0.5  
30.0  
12.0  
12.0  
0.5  
30.0  
12.0  
12.0  
0.5  
nS 9, 12, 13  
PCI_F(0:2) PCI (0:6)  
HIGH Time  
12.0  
12.0  
0.5  
nS  
nS  
nS  
pS  
ps  
23  
24  
PCI_F(0:2) PCI (0:6)  
LOW Time  
TR/TF  
TSKEW  
TCCJ  
PCI_F(0:2) PCI (0:6)  
Rise and Fall Times  
2.0  
500  
250  
2.0  
500  
250  
2.0  
500  
250  
2.0  
500  
250  
25  
Any PCI Clock to Any  
PCI Clock Skew  
12, 13  
12, 13  
PCI_F(0:2) PCI (0:6)  
Cycle to Cycle Jitter  
48MUSB  
TDC  
48MUSB Duty Cycle  
48MUSB Period  
45  
55  
45  
55  
45  
55  
45  
55  
%
12, 13  
12, 13  
12, 25  
TPERIOD  
TR/TF  
20.8299 20.8333 20.8299 20.8333 20.8299 20.8333 20.8299 20.8333 ns  
48MUSB Rise and Fall  
Times  
1.0  
2.0  
1.0  
2.0  
1.0  
2.0  
1.0  
2.10  
ns  
TCCJ  
48MUSBCycletoCycle  
Jitter  
350  
350  
350  
350  
ps 9, 12, 13  
48MDOT  
TDC  
48MDOT Duty Cycle  
48MDOT Period  
45  
20.837  
0.5  
55  
45  
20.837  
0.5  
55  
45  
20.837  
0.5  
55  
45  
20.837  
0.5  
55  
%
ns  
ns  
12, 13  
12, 13  
12, 13  
TPERIOD  
TR/TF  
48MDOT Rise and Fall  
Times  
1.0  
1.0  
1.0  
1.0  
TCCJ  
48MDOT Cycle to Cy-  
cle Jitter  
350  
350  
350  
350  
ps  
12, 13  
REF  
TDC  
REF Duty Cycle  
REF Period  
45  
69.84  
1.0  
55  
71.0  
4.0  
45  
69.84  
1.0  
55  
45  
55  
71.0  
4.0  
45  
69.84  
1.0  
55  
71.0  
4.0  
%
ns  
ns  
12, 13  
12, 13  
12, 25  
TPERIOD  
TR/TF  
71.0 69.84  
REF Rise and Fall  
Times  
4.0  
1.0  
TCCJ  
REF Cycle to Cycle  
Jitter  
1000  
1000  
1000  
1000  
ps  
12, 13  
Note:  
26. This figure is in addition to any jitter already present when the 66IN pin is being used as an input. Otherwise a 500-ps jitter figure is specified.  
......................Document #: 38-07331 Rev. *C Page 16 of 19  
CY28346  
AC Parameters (VDD = VDDA = 3.3V ±5%, TA = 0°C to +70°C) (continued)  
66 MHz 100 MHz  
133 MHz  
200 MHz  
Parameter  
Description  
Min.  
1.0  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit Notes  
TPZL/TPZH  
Output Enable Delay  
(All Outputs)  
10.0  
1.0  
10.0  
1.0  
10.0  
1.0  
10.0  
10.0  
3
ns  
10  
10  
10  
T
PZL/TPZH  
Outputdisabledelay(all 1.0  
outputs)  
10.0  
3
1.0  
10.0  
3
1.0  
10.0  
3
1.0  
ns  
TSTABLE  
All Clock Stabilization  
from Power-up  
ms  
TSS  
TSH  
TSU  
Stopclock Set-up Time  
Stopclock Hold Time  
Oscillator Start-up Time  
10.0  
0
10.0  
0
10.0  
0
10.0  
0
ns  
ns  
27  
27  
28  
X
X
X
X
ms  
VID (0:3),  
SEL (0,1)  
VTT_PWRGD#  
PWRGD  
0.2-0.3mS  
Delay  
Wait for  
VTT_GD#  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
(Note A)  
On  
Clock Outputs  
Clock VCO  
On  
Figure 16. VTT_PWRGD# Timing Diagram29[29]  
Off  
Table 9. Maximum Lumped Capacitive Output Loads  
Clock  
PCI Clocks  
3V66 (0,1)  
66B(0:2)  
Max. Load  
Units  
pF  
30  
30  
30  
20  
10  
50  
pF  
pF  
48MUSB Clock  
48MDOT  
pF  
pF  
REF Clock  
pF  
Notes:  
27. CPU_STP# and PCI _STP# set-up time with respect to any PCI_F clock to guarantee that the effected clock will stop or start at the next PCI_F clock’s rising edge  
28. When crystal meets minimum 40device series resistance specification.  
29. Device is not affected, VTT_PWRGD# is ignored.  
......................Document #: 38-07331 Rev. *C Page 17 of 19  
 
 
 
CY28346  
S1  
S2  
Sample  
Inputs (pins  
54,55)  
Delay 0.25mS  
Enable Outputs  
VDDA = 2.0V  
S0  
S3  
Normal  
Operation  
Power Off  
VDD3.3 = Off  
Figure 17. Clock Generator Power-up/Run State Diagram  
Package Type  
Ordering Information  
Part Number  
CY28346OC  
Product Flow  
56-pin SSOP – Tube  
Commercial, 0to 70C  
Commercial, 0to 70C  
Commercial, 0to 70C  
Commercial, 0to 70C  
CY28346OCT  
CY28346ZC  
56-pin SSOP – Tape and Reel  
56-pin TSSOP – Tube  
CY28346ZCT  
Lead-free  
56-pin TSSOP – Tape and Reel  
CY28346OXC  
CY28346OXCT  
CY28346ZXC  
CY28346ZXCT  
56-pin SSOP – Tube  
Commercial, 0to 70C  
Commercial, 0to 70C  
Commercial, 0to 70C  
Commercial, 0to 70C  
56-pin SSOP – Tape and Reel  
56-pin TSSOP – Tube  
56-pin TSSOP – Tape and Reel  
......................Document #: 38-07331 Rev. *C Page 18 of 19  
CY28346  
Package Drawing and Dimensions  
56-lead Shrunk Small Outline Package O56  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
0.249[0.009]  
28  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
7.950[0.313]  
8.255[0.325]  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.42gms  
5.994[0.236]  
6.198[0.244]  
PART #  
Z5624 STANDARD PKG.  
ZZ5624 LEAD FREE PKG.  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
......................Document #: 38-07331 Rev. *C Page 19 of 19  

相关型号:

CY28346ZC

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346ZC

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346ZC

Processor Specific Clock Generator, 200MHz, CMOS, PDSO56, 6 X 12 MM, MO-153, TSSOP2-56
SILICON

CY28346ZC-2

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346ZC-2

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346ZC-2T

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346ZC-2T

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346ZCT

Clock Synthesizer with Differential CPU Outputs
CYPRESS

CY28346ZCT

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346ZCT

Processor Specific Clock Generator, 200MHz, CMOS, PDSO56, 6 X 12 MM, MO-153, TSSOP2-56
SILICON

CY28346ZI-2

Clock Synthesizer with Differential CPU Outputs
SPECTRALINEAR

CY28346ZI-2

Clock Synthesizer with Differential CPU Outputs
CYPRESS