CY28549LFXC [SILICON]

Clock Generator,;
CY28549LFXC
型号: CY28549LFXC
厂家: SILICON    SILICON
描述:

Clock Generator,

文件: 总23页 (文件大小:860K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28549  
PRELIMINARY  
Clock Generator for Intel® CK410M  
• 96/100-MHz low power spreadable differential video  
clock  
Features  
• Compliant to Intel® CK410M  
• 33-MHz PCI clocks  
• Selectable CPU frequencies  
• Buffered Reference Clock 14.318 MHz  
• Low-voltage frequency select inputs  
• I2C support with readback capabilities  
• Low power differential CPU clock pairs  
• 100-MHz low power differential SRC clocks  
• 96-MHz low power differential dot clock  
• 27-MHz Spread and Non-spread video clock  
• 48-MHz USB clock  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V power supply  
• 72-pin QFN package  
• SRC clocks independently stoppable through  
CLKREQ#[1:9]  
Table 1. Output Confguration Table  
CPU  
SRC  
PCI  
x5  
REF  
x 2  
DOT96  
x 1  
USB_48M  
x 1  
LCD  
x1  
27M  
x2  
x2/x3  
x9/11  
Block Diagram  
Pin Configuration  
VDD_REF  
REF[1:0]  
Xin  
Xout  
14.318MHz  
Crystal  
PLL Reference  
VDD_CPU  
CPUT[1:0]  
CPUC[1:0]  
CPU_STP#  
PCI_STP#  
CLKREQ#  
PLL1  
CPU  
Divider  
72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55  
VDD_SRC  
1
2
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
CLKREQ9#  
VDD_SRC  
SRCC_9  
VDD_SRC  
CPUT2_ITP/SRCT10  
CPUC2_ITP/SRCC10  
SRCC_2  
FS[C:A]  
ITP_EN  
3
SRCT_2  
SRCT_9  
4
SRCC_1/SATAC  
SRCT_1/SATAT  
VDD_SRC  
VDD_SRC  
5
VSS_SRC  
Divider  
Divider  
CPUC2_ITP  
CPUT2_ITP  
/
SRCC_10  
SRCT_10  
VDDA  
6
SRCT [9:1]  
SRCC [9:1]  
/
7
SRCC_0  
SRCT_0  
/
LCD100MC  
8
/ LCD100MT  
VDD_PCI  
VSSA  
9
CY28549  
CLKREQ1#  
PCI[4:1]  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
FSB/TEST_MODE  
VDD_PCI  
CPUC1_MCH  
CPUT1_MCH  
VDD_CPU  
CPUC0  
DOT96C  
DOT96T  
VSS_48  
/
27M_SS  
/
27M_NSS  
PCIF0  
VDD_SRC  
48M  
/ FSA  
PLL3  
Graphi  
c
LCD_100MT/SRCT0  
LCD_100MC/SRCC0  
Divider  
Divider  
CPUT0  
VDD_48  
VSS_CPU  
SCLK  
VTT_PW RGD#  
CLKREQ7#  
/ PD  
VDD_48  
27_SS  
FCTSEL  
SDATA  
PCIF0/ITP_SEL  
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  
VDD_48  
PLL2  
Fixed  
DOT96T  
DOT96C  
VDD_48  
USB_48 [1:0]  
PLL4  
27M  
VDD_48  
27_NSS  
VTTPWR_GD#/PD  
I2C  
Logic  
SDATA  
SCLK  
Cypress Semiconductor Corporation  
Document #:xxx-xxxxx Rev **  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 14, 2006  
PRELIMINARY  
CY28549  
Pin Description  
Pin No.  
Name  
CLKREQ9#  
VDD_SRC  
Type  
Description  
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
1
2
3
4
5
6
I
PWR 3.3V power supply for outputs.  
SRCC_9  
SRCT_9  
VSS_SRC  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
O, DIF True 100-MHz Differential serial reference clocks.  
GND Ground for outputs.  
CPUC2_ITP/SRCC10 O, DIF Selectable Complementary differential CPU or SRC clock output.  
ITP_SEL = 0 @ VTTPWRGD#/PD assertion = SRC10  
ITP_SEL = 1 @ VTTPWRGD#/PD assertion = CPU2  
7
CPUT2_ITP/SRCT10, O, DIF Selectable True differential CPU or SRC clock output.  
ITP_SEL = 0 @ VTTPWRGD#/PD assertion = SRC10  
ITP_SEL = 1 @ VTTPWRGD#/PD assertion = CPU2  
8
VDDA  
PWR 3.3V power supply for PLL.  
9
VSSA  
GND Ground for PLL.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
GND  
GND Ground for outputs.  
CPUC1_MCH,  
CPUT1_MCH,  
VDD_CPU  
CPUC0  
O, DIF Complementary Differential CPU clock output to MCH  
O, DIF True Differential CPU clock output to MCH  
PWR 3.3V power supply for outputs.  
O, DIF Complementary Differential CPU clock output  
O, DIF True Differential CPU clock output  
GND Ground for outputs.  
CPUT0  
VSS_CPU  
SCLK  
I
SMBus-compatible SCLOCK.  
SDATA  
I/O, OD SMBus-compatible SDATA.  
PWR 3.3V power supply for outputs.  
O, SE 14.318-MHz crystal output.  
VDD_REF  
XOUT  
XIN  
I
14.318-MHz crystal input.  
VSS_REF  
REF0/FSC_TESTSEL  
GND Ground for outputs.  
I/O  
Fixed 14.318 clock output/3.3V-tolerant input for CPU frequency  
selection/Selects test mode if pulled to VIMFS_C when VTTPWRGD#/PD is  
asserted LOW.  
Refer to DC Electrical Specifications table for VILFS_C,VIMFS_C,VIHFS_C specifi-  
cations.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
CPU_STP#  
PCI_SRC_STP#  
CLKREQ2#  
PCI1  
I
I
I
3.3V LVTTL input for CPU_STP# active LOW  
3.3V LVTTL input for PCI_STP# active LOW  
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
O, SE 33MHz clock output  
CLKREQ3#  
CLKREQ5#  
VDD_PCI  
VSS_PCI  
PCI2  
I
I
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
O, SE 33-MHz clock output  
O, SE 33-MHz clock output  
PCI3  
Document #:xxx-xxxxx Rev **  
Page 2 of 23  
PRELIMINARY  
CY28549  
Pin Description (continued)  
Pin No.  
Name  
Type  
Description  
34  
PCI4/FCTSEL1  
I/O,SE, 33-MHz clock output/3.3V LVTTL input for selecting pins 47,48 (SRC[T/C]0,  
100M[T/C]) and pins 43,44 (DOT96[T/C] and 27M Spread and Non-spread)  
(sampled on VTTPWRGD#/PD assertion).  
FCTSEL1 Pin 43  
0 DOT96T  
Pin 44  
DOT96C  
27M_SS  
Pin 47  
Pin 48  
96/100M_T 96/100M_C  
1 27M_NSS  
SRCT0 SRCC0  
35  
36  
37  
VSS_PCI  
GND Ground for outputs.  
PWR 3.3V power supply for outputs.  
VDD_PCI  
ITP_SEL/PCIF0  
I/O, SE 3.3V LVTTL input to enable SRC10 or CPU2_ITP/33-MHz clock output. (sampled  
on VTTPWRGD#/PD assertion).  
1 = CPU2_ITP, 0 = SRC10  
38  
39  
CLKREQ7#  
I
I
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
VTT_PWRGD#/PD  
3.3V LVTTL input. This pin is a level sensitive strobe. it latches data on the FSA,  
FSB, FSC, FCTSEL1 and ITP_SEL pins. After assertion, it becomes a real time  
input for controlling power down.  
40  
41  
VDD_48  
PWR 3.3V power supply for outputs.  
48M/FSA  
I/O  
Fixed 48-MHz clock output/3.3V-tolerant input for CPU frequency selection  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
42  
43  
VSS_48  
GND Ground for outputs.  
DOT96T/ 27M_NSS  
O, DIF True Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread output  
Selected via FCTSEL1 at VTTPWRGD#/PD assertion.  
44  
45  
DOT96C/ 27M_SS  
FSB/TEST_MODE  
O, DIF Complementary Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread  
output Selected via FCTSEL1 at VTTPWRGD#/PD assertion.  
I
3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state when  
in test mode  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
46  
47  
CLKREQ6#  
I
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
SRCT_0/  
LCD100MT  
O,DIF True 100-MHz differential serial reference clock output/Differential 96/100-MHz  
SS clock for flat-panel display  
Selected via FCTSEL1 at VTTPWRGD#/PD assertion.  
48  
SRCC0/  
LCD100MC  
O,DIF Complementary 100-MHz differential serial reference clock output/Differential  
96/100-MHz SS clock for flat-panel display  
Selected via FCTSEL1 at VTTPWRGD#/PD assertion.  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
VDD_SRC  
SRCT_1/SATAT,  
SRCC_1/SATAC  
SRCT_2  
PWR 3.3V power supply for outputs.  
O, DIF True 100-MHz Differential serial reference clocks.  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
O, DIF True 100-MHz Differential serial reference clocks.  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
PWR 3.3V power supply for outputs.  
SRCC_2  
VDD_SRC  
SRCT_3  
O, DIF True 100-MHz Differential serial reference clocks.  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
SRCC_3  
CLKREQ4#  
SRCT_4  
I
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
O, DIF True 100-MHz Differential serial reference clocks.  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRCC_4  
VSS_SRC  
SRCT_5  
O, DIF True 100-MHz Differential serial reference clocks.  
Document #:xxx-xxxxx Rev **  
Page 3 of 23  
PRELIMINARY  
CY28549  
Pin Description (continued)  
Pin No.  
Name  
SRCC_5  
Type  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
Description  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
CLKREQ6#  
SRCT_6  
I
O, DIF True 100-MHz Differential serial reference clocks.  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
PWR 3.3V power supply for outputs.  
SRCC_6  
VDD_SRC  
SRCT_7  
O, DIF True 100-MHz Differential serial reference clocks.  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRCC_7  
VSS_SRC  
SRCC_8  
SRCT_8  
O, DIF Complementary 100-MHz Differential serial reference clocks.  
O, DIF True 100-MHz Differential serial reference clocks.  
CLKREQ8#  
I
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
initialize to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
Frequency Select Pins (FSA, FSB, and FSC)  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FSA, FSB, FSC inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled LOW by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
samples the FSA, FSB, and FSC input values. For all logic  
levels of FSA, FSB, and FSC, VTT_PWRGD# employs a  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 3.  
one-shot functionality in that once  
a valid LOW on  
VTT_PWRGD# has been sampled, all further VTT_PWRGD#,  
FSA, FSB, and FSC transitions will be ignored, except in test  
mode.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
Table 2. Frequency Select Table FSA, FSB, and FSC  
The block write and block read protocol is outlined in Table 4  
while Table 5 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h)  
FSC FSB FSA  
CPU  
SRC  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
27MHz  
27 MHz  
27 MHz  
27 MHz  
27 MHz  
REF  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
USB  
1
0
0
0
0
0
1
1
1
1
1
0
100 MHz  
133 MHz  
166 MHz  
200 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
Table 3. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0)  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be  
'0000000'  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
Document #:xxx-xxxxx Rev **  
Page 4 of 23  
PRELIMINARY  
CY28549  
Table 4. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
10  
Bit  
10  
Acknowledge from slave  
Acknowledge from slave  
18:11  
19  
Command Code–8 bits  
Acknowledge from slave  
18:11  
19  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
27:20  
Byte Count–8 bits  
20  
(Skip this step if I2C_EN bit set)  
28  
36:29  
37  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte/Slave Acknowledges  
Data Byte N–8 bits  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave/Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Control Registers  
Byte 0 Control Register 0  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
RESEREVD  
RESEREVD  
RESEREVD  
RESEREVD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
Document #:xxx-xxxxx Rev **  
Page 5 of 23  
PRELIMINARY  
CY28549  
Control Registers  
Byte 0 Control Register 0  
Bit  
3
@Pup  
Name  
Description  
0
0
0
1
RESEREVD  
RESEREVD  
RESEREVD  
RESEREVD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
2
1
0
Byte 1 Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
SRC[T/C]7  
SRC[T/C]7 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC[T/C]6  
SRC[T/C]5  
SRC[T/C]4  
SRC[T/C]3  
SRC[T/C]2  
SRC[T/C]1  
SRC[T/C]6 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]5 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]4 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]3 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]2 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]1 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]0  
/LCD_96_100M[T/C]  
SRC[T/C]0/LCD_96_100M[T/C] Output Enable  
0 = Disabled, 1 = Enabled  
Byte 2 Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
PCIF0  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
1
1
1
27M NSS/DOT_96[T/C] 27M Non-spread and DOT_96 MHz Output Enable  
0 = Disable, 1 = Enabled  
48M  
48-MHz Output Enable  
0 = Disabled, 1 = Enabled  
REF0  
REF0 Output Enable  
0 = Disabled, 1 = Enabled  
3
2
1
1
RESERVED  
CPU[T/C]1  
RESERVED  
CPU[T/C]1 Output Enable  
0 = Disabled, 1 = Enabled  
1
0
1
1
CPU[T/C]0  
CPU[T/C]0 Output Enable  
0 = Disabled, 1 = Enabled  
CPU, SRC, PCI, PCIF PLL1 (CPU PLL) Spread Spectrum Enable  
Spread Enable  
0 = Spread off, 1 = Spread on  
Byte 3 Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
PCI4  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
1
1
PCI3  
PCI2  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
Document #:xxx-xxxxx Rev **  
Page 6 of 23  
PRELIMINARY  
CY28549  
Byte 3 Control Register 3  
Bit  
@Pup  
Name  
Description  
4
1
PCI1  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
3
2
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CPU[T/C]2/SRC[T/C]10 CPU[T/C]2/SRC[T/C]10 Output Enable  
0 = Disabled, 1 = Enabled  
0
1
RESERVED  
RESERVED  
Byte 4 Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
SRC7  
Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
SRC6  
SRC5  
SRC4  
SRC3  
SRC2  
SRC1  
SRC0  
Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]0 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 5 Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
LCD_96_100M[T/C]  
LCD_96_100M[T/C] PWRDWN Drive Mode  
0 = Driven in PWRDWN, 1 = Tri-state  
6
0
DOT96[T/C]  
DOT PWRDWN Drive Mode  
0 = Driven in PWRDWN, 1 = Tri-state  
5
4
3
0
0
0
RESERVED  
RESERVED  
PCIF0  
RESERVED, Set = 0  
RESERVED, Set = 0  
Allow control of PCIF0 with assertion of SW and HW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
2
1
0
1
1
1
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
Allow control of CPU[T/C]2 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]1 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]0 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Byte 6 Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
SRC[T/C]  
SRC[T/C] Stop Drive Mode  
0 = Driven when PCI_STP# asserted  
1 = Tri-state when PCI_STP# asserted  
6
0
CPU[T/C]2  
CPU[T/C]2 Stop Drive Mode  
0 = Driven when CPU_STP# asserted  
1 = Tri-state when CPU_STP# asserted  
Document #:xxx-xxxxx Rev **  
Page 7 of 23  
PRELIMINARY  
CY28549  
Byte 6 Control Register 6  
5
4
3
2
1
0
0
0
0
0
0
0
CPU[T/C]1  
CPU[T/C]0  
SRC[T/C][9:1]  
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
CPU[T/C]1 Stop Drive Mode  
0 = Driven when CPU_STP# asserted  
1 = Tri-state when CPU_STP# asserted  
CPU[T/C]0 Stop Drive Mode  
0 = Driven when CPU_STP# asserted  
1 = Tri-state when CPU_STP# asserted  
SRC[T/C][9:1] PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
CPU[T/C]2 PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
CPU[T/C]1 PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
CPU[T/C]0 PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
Byte 7 Control Register 7  
Bit  
@Pup  
Name  
Description  
7
0
TEST_SEL  
REF/N or Tri-state Select  
0 = Tri-state, 1 = REF/N Clock  
6
0
TEST_MODE  
Test Clock Mode Entry Control  
0 = Normal operation, 1 = REF/N or Tri-state mode,  
5
4
1
1
RESEREVD  
REF0  
RESERVED  
REF0 Output Drive Strength  
0 = Low, 1 = High  
3
1
PCI, PCIF and SRC clock SW PCI_STP Function  
outputs except those set to 0 = SW PCI_STP assert, 1= SW PCI_STP deassert  
free running  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
2
1
0
HW  
HW  
HW  
FSC  
FSB  
FSA  
FSC Reflects the value of the FSC pin sampled on power up  
0 = FSC was low during VTT_PWRGD# assertion  
FSB Reflects the value of the FSB pin sampled on power up  
0 = FSB was low during VTT_PWRGD# assertion  
FSA Reflects the value of the FSA pin sampled on power up  
0 = FSA was low during VTT_PWRGD# assertion  
Byte 8 Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
1
0
1
1
0
0
0
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
6
5
4
3
2
Vendor ID Bit 2  
Vendor ID Bit 2  
1
Vendor ID Bit 1  
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Vendor ID Bit 0  
Byte 9 Control Register 9  
Bit @Pup  
Name  
Description  
Document #:xxx-xxxxx Rev **  
Page 8 of 23  
PRELIMINARY  
CY28549  
Byte 9 Control Register 9  
7
6
5
4
3
2
0
0
0
0
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
48M  
RESERVED, Set = 0  
RESERVED, Set = 0  
RESERVED  
RESERVED  
RESERVED  
48-MHz Output Drive Strength  
0 = Low, 1 = High  
1
0
1
1
RESERVED  
PCIF0  
RESERVED  
PCIF0 Output Drive Strength  
0 = Low, 1 = High  
Byte 10 Control Register 10  
Bit  
7
@Pup  
Name  
RESERVED  
RESERVED  
S1  
Description  
0
0
0
0
RESERVED  
RESERVED  
6
5
27M_SS/LCD 96_100M SS Spread Spectrum Selection table:  
S[1:0] SS%  
‘00’ = –0.5%(Default value)  
‘01’ = –1.0%  
4
S0  
‘10’ = –1.5%  
‘11’ = –2.0%  
3
2
1
1
RESERVED  
27M_SS  
RESERVED  
27M Spread Output Enable  
0 = Disabled, 1 = Enabled  
1
1
27M_SS/LCD_100M  
Spread Enable  
27M_SS/LCD_100M Spread spectrum enable.  
0 = Disabled, 1 = Enabled  
0
0
RESERVED  
RESERVED  
Byte 11 Control Register 11  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
1
RESERVED  
RESERVED  
SRC[T/C]9  
6
RESERVED  
5
SRC[T/C]9 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
4
1
SRC[T/C]8  
SRC[T/C]8 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
3
2
1
0
RESERVED  
SRC[T/C]10  
RESERVED  
Allow control of SRC[T/C]10 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
1
0
0
0
SRC[T/C]9  
SRC[T/C]8  
Allow control of SRC[T/C]9 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]8 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 12 Control Register 12  
Bit  
7
@Pup  
0
Name  
Description  
RESERVED, Set = 0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
HW  
HW  
HW  
5
RESERVED  
4
RESERVED  
Document #:xxx-xxxxx Rev **  
Page 9 of 23  
PRELIMINARY  
CY28549  
Byte 12 Control Register 12  
Bit  
@Pup  
Name  
Description  
3
1
27M_SS/27M_NSS  
27-MHz (spread and non-spread) Output Drive Strength  
0 = Low, 1 = High  
2
1
0
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED, Set = 1  
RESERVED  
HW  
Byte 13 Control Register 13  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#9  
CLKREQ#9 Input Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
CLKREQ#8  
CLKREQ#7  
CLKREQ#6  
CLKREQ#5  
CLKREQ#4  
CLKREQ#3  
CLKREQ#2  
CLKREQ#8 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#7 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#6 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#5 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#4 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#3 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#2 Input Enable  
0 = Disabled, 1 = Enabled  
Byte 14 Control Register 14  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#1  
CLKREQ#1 Input Enable  
0 = Disabled, 1 = Enabled  
6
1
LCD 96_100M Clock  
Speed  
LCD 96_100M Clock Speed  
0 = 96 MHz 1 = 100 MHz  
5
4
3
1
1
1
RESERVED  
RESERVED  
PCI4  
RESERVED, Set = 1  
RESERVED, Set = 1  
PCI4 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
2
1
0
1
1
1
PCI3  
PCI2  
PCI1  
PCI3 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI2 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI1 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
Byte 15 Control Register 15  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
HW  
1
RESEREVD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
1
RESERVED  
4
1
RESERVED  
3
1
RESERVED  
Document #:xxx-xxxxx Rev **  
Page 10 of 23  
PRELIMINARY  
CY28549  
Byte 15 Control Register 15  
Bit  
2
@Pup  
Name  
Description  
1
0
1
IO_VOUT2  
IO_VOUT1  
IO_VOUT0  
IO_VOUT[2,1,0]  
000 = 0.63V  
001 = 0.71V  
1
0
010 = 0.77V  
011 = 0.82V (Default)  
100 = 0.86V  
101 = 0.90V  
110 = 0.93V  
111 = Reserved  
Table 6. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The CY28549 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal will cause the CY28549 to  
operate at the wrong frequency and violate the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading.  
Clock Chip  
Ci2  
Ci1  
Pin  
3 to 6p  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8 pF  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It’s a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
XTAL  
Ce1  
Ce2  
Trim  
33 pF  
Figure 2. Crystal Loading Example  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
Figure 1. Crystal Capacitive Clarification  
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
CL....................................................Crystal load capacitance  
Calculating Load Capacitors  
CLe.........................................Actual loading seen by crystal  
using standard value trim capacitors  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
Ce.....................................................External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
Ci .......................................................... Internal capacitance  
(lead frame, bond wires etc.)  
CLK_REQ# Description  
The CLKREQ# signals are active LOW inputs used for clean  
enabling and disabling selected SRC outputs. The outputs  
Document #:xxx-xxxxx Rev **  
Page 11 of 23  
PRELIMINARY  
CY28549  
CLKREQ#X  
SRCT(free running)  
SRCC(free running)  
SRCT(stoppable)  
SRCT(stoppable)  
Figure 3. CLK_REQ#[1:9] Deassertion/Assertion Waveform  
controlled by CLKREQ# are determined by the settings in  
register byte 8. The CLKREQ# signal is a de-bounced signal  
in that it’s state must remain unchanged during two consec-  
utive rising edges of SRCC to be recognized as a valid  
assertion or deassertion. (The assertion and deassertion of  
this signal is absolutely asynchronous.)  
shutting off power to the device. This signal is synchronized  
internal to the device prior to powering down the clock synthe-  
sizer. PD is also an asynchronous input for powering up the  
system. When PD is asserted HIGH, all clocks need to be  
driven to a LOW value and held prior to turning off the VCOs  
and the crystal oscillator.  
CLK_REQ[1:9]# Assertion (CLKREQ# -> LOW)  
PD (Power-down) Assertion  
All differential outputs that were stopped are to resume normal  
operation in a glitch-free manner. The maximum latency from  
the assertion to active outputs is between 2 and 6 SRC clock  
periods (2 clocks are shown) with all SRC outputs resuming  
simultaneously. All stopped SRC outputs must be driven HIGH  
within 10 ns of CLKREQ# deassertion to a voltage greater than  
200 mV.  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must be  
held HIGH or tri-stated (depending on the state of the control  
register drive mode bit) on the next diff clock# HIGH-to-LOW  
transition within 4 clock periods. When the SMBus PD drive  
mode bit corresponding to the differential (CPU, SRC, and  
DOT) clock output of interest is programmed to ‘0’, the clock  
outputs are held with “Diff clock” pin driven HIGH, and “Diff  
clock#” tri-state. If the control register PD drive mode bit corre-  
sponding to the output of interest is programmed to “1”, then  
both the “Diff clock” and the “Diff clock#” are tri-state. Note that  
Figure 4 shows CPUT = 133 MHz and PD drive mode = ‘1’ for  
all differential outputs. This diagram and description is appli-  
cable to valid CPU frequencies 100, 133, 166, and 200 MHz.  
In the event that PD mode is desired as the initial power-on  
state, PD must be asserted HIGH in less than 10 μs after  
asserting Vtt_PwrGd#. It should be noted that 96_100_SSC  
will follow the DOT waveform when selected for 96 MHz and  
the SRC waveform when in 100-MHz mode.  
CLK_REQ[1:9]# Deassertion (CLKREQ# -> HIGH)  
The impact of deasserting the CLKREQ# pins is that all SRC  
outputs that are set in the control registers to stoppable via  
deassertion of CLKREQ# are to be stopped after their next  
transition. The final state of all stopped SRC clocks is  
Low/Low.  
PD (Power-down) Clarification  
The VTT_PWRGD#/PD pin is a dual-function pin. During initial  
power-up, the pin functions as VTT_PWRGD#. Once  
VTT_PWRGD# has been sampled LOW by the clock chip, the  
pin assumes PD functionality. The PD pin is an asynchronous  
active HIGH input used to shut off all clocks cleanly prior to  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 4. Power-down Assertion Timing Waveform  
Document #:xxx-xxxxx Rev **  
Page 12 of 23  
PRELIMINARY  
CY28549  
PD Deassertion  
than 300 μs of PD deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs will be enabled within a few clock cycles of  
each other. Figure 5 is an example showing the relationship of  
clocks coming up. It should be noted that 96_100_SSC will  
follow the DOT waveform when selected for 96 MHz and the  
SRC waveform when in 100-MHz mode.  
The power-up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are output from the  
clock chip. All differential outputs stopped in a three-state  
condition resulting from power down will be driven high in less  
Tstable  
<1.8 ms  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33MHz  
Tdrive_PWRDN#  
<300 μs, >200 mV  
REF  
Figure 5. Power-down Deassertion Timing Waveform  
set with the SMBus configuration to be stoppable via assertion  
CPU_STP# Assertion  
of CPU_STP# will be stopped within two–six CPU clock  
periods after being sampled by two rising edges of the internal  
CPUC clock. The final state of all stopped CPU clocks is  
High/Low when driven, Low/Low when tri-stated.  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
Document #:xxx-xxxxx Rev **  
Page 13 of 23  
PRELIMINARY  
CY28549  
PCI_STP# Assertion  
driven Low, SRC outputs are High/Low if set to driven and  
Low/Low if set to tri-state.  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs and SRC  
outputs if they are set to be stoppable in SMbus while the rest  
of the clock generator continues to function. The set-up time  
for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 9.) The PCIF clocks will not be affected by this pin if  
their corresponding control bit in the SMBus register is set to  
allow them to be free running. All stopped PCI outputs are  
PCI_STP# Deassertion  
The deassertion of the PCI_STP# signal will cause all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods after PCI_STP# transi-  
tions to a HIGH level  
1.8mS  
CPU_STOP#  
PD  
CPUT(Free Running)  
CPUC(Free Running)  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 9. PCI_STP# Assertion Waveform  
1.8 ms  
CPU_STOP#  
PD  
CPUT(Free Running  
CPUC(Free Running  
CPUT(Stoppable)  
CPUC(Stoppable)  
Figure 10. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven  
Document #:xxx-xxxxx Rev **  
Page 14 of 23  
PRELIMINARY  
CY28549  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 11. PCI_STP# Deassertion Waveform  
FS_A, FS_B,FS_C  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3mS  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 12. VTTPWRGD# Timing DIagram  
Document #:xxx-xxxxx Rev **  
Page 15 of 23  
PRELIMINARY  
CY28549  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
Unit  
V
4.6  
VDD_A  
VIN  
Analog Supply Voltage  
Input Voltage  
V
V
+ 0.5  
Relative to VSS  
Non-functional  
VDC  
°C  
DD  
TS  
Temperature, Storage  
150  
85  
150  
20  
60  
TA  
Temperature, Operating Ambient  
Temperature, Junction  
Functional  
°C  
TJ  
Functional  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Mil-STD-883E Method 1012.1  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
ØJA  
ESDHBM  
UL-94  
MSL  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
All VDDs  
VILI2C  
VIHI2C  
VIL_FS  
VIH_FS  
VILFS_C  
VIMFS_C  
VIHFS_C  
VIL  
Description  
3.3V Operating Voltage  
Input Low Voltage  
Condition  
Min.  
3.135  
Max. Unit  
3.3 ± 5%  
3.465  
1.0  
V
V
SDATA, SCLK  
SDATA, SCLK  
Input High Voltage  
2.2  
V
V
V
– 0.3  
FS_[A,B] Input Low Voltage  
FS_[A,B] Input High Voltage  
FS_C Input Low Voltage  
FS_C Input Middle Voltage  
FS_C Input High Voltage  
3.3V Input Low Voltage  
3.3V Input High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
3.3V Output Low Voltage  
3.3V Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
0.35  
V
SS  
V
+ 0.5  
0.7  
– 0.3  
V
DD  
0.35  
1.7  
+ 0.5  
V
SS  
0.7  
2.0  
– 0.3  
V
V
V
V
DD  
V
0.8  
+ 0.3  
V
SS  
VIH  
2.0  
–5  
V
DD  
IIL  
Except internal pull-up resistors, 0 < VIN < VDD  
Except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
5
5
μA  
μA  
V
IIH  
VOL  
0.4  
VOH  
IOH = –1 mA  
2.4  
–10  
3
V
IOZ  
10  
5
μA  
pF  
pF  
nH  
V
CIN  
COUT  
LIN  
3
6
7
VXIH  
Xin High Voltage  
0.7V  
VDD  
DD  
VXIL  
Xin Low Voltage  
0
0.3V  
V
DD  
IDD3.3V  
Dynamic Supply Current  
In low drive mode per Figure 13 and Figure 15  
250  
mA  
@133 MHz  
IPD3.3V  
IPD3.3V  
Power-down Supply Current  
Power-down Supply Current  
PD asserted, Outputs Driven  
PD asserted, Outputs Tri-state  
30  
5
mA  
mA  
Document #:xxx-xxxxx Rev **  
Page 16 of 23  
PRELIMINARY  
CY28549  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max. Unit  
XIN Duty Cycle  
The device will operate reliably with input duty  
cycles up to 30/70 but the REF clock duty cycle  
will not be within specification  
47.5  
52.5  
%
TPERIOD  
TR/TF  
XIN Period  
When XIN is driven from an external clock source 69.841  
71.0  
10.0  
500  
300  
ns  
ns  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
As an average over 1-μs duration  
Measured at crossing point VOX  
TCCJ  
ps  
LACC  
ppm  
CPU at 0.8V  
TDC  
CPUT and CPUC Duty Cycle  
Measured at crossing point VOX  
45  
55  
%
ns  
ns  
ns  
ns  
ns  
9.997001 10.00300  
7.497751 7.502251  
5.998201 6.001801  
4.998500 5.001500  
9.997001 10.05327  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
100-MHz CPUT and CPUC Period Measured at crossing point VOX  
133-MHz CPUT and CPUC Period Measured at crossing point VOX  
166-MHz CPUT and CPUC Period Measured at crossing point VOX  
200-MHz CPUT and CPUC Period Measured at crossing point VOX  
TPERIODSS 100-MHz CPUT and CPUC Period, Measured at crossing point VOX  
SSC  
7.497751 7.539950  
5.998201 6.031960  
4.998500 5.026634  
9.912001 10.08800  
7.412751 7.587251  
5.913201 6.086801  
4.913500 5.086500  
9.912001 10.13827  
7.412751 7.624950  
5.913201 6.116960  
TPERIODSS 133-MHz CPUT and CPUC Period, Measured at crossing point VOX  
SSC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPERIODSS 166-MHz CPUT and CPUC Period, Measured at crossing point VOX  
SSC  
TPERIODSS 200-MHz CPUT and CPUC Period, Measured at crossing point VOX  
SSC  
TPERIODAbs 100-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
TPERIODAbs 133-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
TPERIODAbs 166-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
TPERIODAbs 200-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
TPERI-  
ODSSAbs  
100-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
TPERI-  
ODSSAbs  
TPERI-  
133-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
166-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
ODSSAbs  
4.913500 5.111634  
TPERI-  
ODSSAbs  
200-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
ns  
[1]  
85  
TCCJ  
CPUT/C Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
ps  
ps  
[1]  
125  
TCCJ2  
LACC  
300  
100  
150  
700  
ppm  
ps  
TSKEW  
TSKEW2  
TR/TF  
CPU1 to CPU0 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
ps  
CPUT and CPUC Rise and Fall Time Measured from VOL = 0.175 to  
OH = 0.525V  
175  
ps  
V
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
Document #:xxx-xxxxx Rev **  
Page 17 of 23  
PRELIMINARY  
CY28549  
AC Electrical Specifications (continued)  
Parameter  
Description  
Rise Time Variation  
Fall Time Variation  
Condition  
Min.  
Max. Unit  
ΔTR  
125  
125  
ps  
ps  
ΔTF  
Note:  
1. Measured with one REF on.  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 15  
Math averages Figure 15  
660  
–150  
250  
850  
mV  
mV  
mV  
V
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
VUDS  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
VRB  
See Figure 15. Measure SE  
0.2  
SRC at 0.8V  
TDC  
SRCT and SRCC Duty Cycle  
Measured at crossing point VOX  
45  
55  
%
ns  
ns  
9.997001 10.00300  
9.997001 10.05327  
TPERIOD  
100-MHz SRCT and SRCC Period Measured at crossing point VOX  
TPERIODSS 100-MHz SRCT and SRCC Period, Measured at crossing point VOX  
SSC  
9.872001 10.12800  
9.872001 10.17827  
TPERIODAbs 100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period  
ns  
ns  
TPERI-  
100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period, SSC  
ODSSAbs  
TSKEW  
Any SRCT/C to SRCT/C Clock Skew Measured at crossing point VOX  
250  
125[1]  
300  
ps  
ps  
TCCJ  
LACC  
TR/TF  
SRCT/C Cycle to Cycle Jitter  
SRCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
ppm  
ps  
SRCT and SRCC Rise and Fall Time Measured from VOL = 0.175 to  
OH = 0.525V  
175  
800  
V
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
ΔTR  
Rise TimeVariation  
Fall Time Variation  
125  
125  
15  
ps  
ps  
ns  
ΔTF  
Tdrive  
SRC output enable after PCI_STP#  
de-assertion  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 15  
Math averages Figure 15  
660  
–150  
180  
850  
mV  
mV  
mV  
V
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 15. Measure SE  
0.2  
LCD 96_100M_SSC at 0.8V  
TDC  
SSCT and SSCC Duty Cycle  
100-MHz SSCT and SSCC Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
ns  
ns  
9.997001 10.00300  
9.997001 10.05327  
TPERIOD  
TPERIODSS 100-MHz SSCT and SSCC Period, Measured at crossing point VOX  
SSC  
9.872001 10.12800  
9.872001 10.17827  
10.41354 10.41979  
TPERIODAbs 100-MHz SSCT and SSCC Absolute Measured at crossing point VOX  
Period  
ns  
ns  
ns  
TPERI-  
ODSSAbs  
TPERIOD  
100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period, SSC  
96-MHz SSCT and SSCC Period  
Measured at crossing point VOX  
Document #:xxx-xxxxx Rev **  
Page 18 of 23  
PRELIMINARY  
CY28549  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Measured at crossing point VOX  
Min.  
Max. Unit  
10.41354 10.47215  
10.16354 10.66979  
10.16354 10.72266  
TPERIODSS 96-MHz SSCT and SSCC Period,  
SSC  
ns  
ns  
ns  
TPERIODAbs 96-MHz SSCT and SSCC Absolute Measured at crossing point VOX  
Period  
TPERI-  
ODSSAbs  
TCCJ  
96-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period, SSC  
SSCT/C Cycle to Cycle Jitter  
SSCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
125  
300  
700  
ps  
ppm  
ps  
LACC  
175  
TR/TF  
SSCT and SSCC Rise and Fall Time Measured from VOL = 0.175 to  
OH = 0.525V  
V
20  
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
%
125  
125  
850  
ΔTR  
Rise TimeVariation  
ps  
ps  
ΔTF  
Fall Time Variation  
660  
–150  
250  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 15  
Math averages Figure 15  
mV  
mV  
mV  
V
Voltage Low  
550  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
V
+
VOVS  
HIGH  
0.3  
–0.3  
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
V
V
0.2  
See Figure 15. Measure SE  
PCI/PCIF at 3.3V  
45  
55  
TDC  
PCI Duty Cycle  
Spread Disabled PCIF/PCI Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
%
ns  
ns  
29.99100 30.00900  
29.9910 30.15980  
TPERIOD  
TPERIODSS Spread Enabled PCIF/PCI Period,  
SSC  
29.49100 30.50900  
29.49100 30.65980  
TPERIODAbs Spread Disabled PCIF/PCI Period  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
ns  
TPERI-  
ODSSAbs  
THIGH  
Spread Enabled PCIF/PCI Period,  
SSC  
12.0  
12.0  
1.0  
PCIF and PCI high time  
PCIF and PCI low time  
Measurement at 2.4V  
Measurement at 0.4V  
ns  
ns  
TLOW  
TR/TF  
TSKEW  
Tdelay  
Tdrive  
PCIF/PCI rising and falling Edge Rate Measured between 0.8V and 2.0V  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
4.0  
1000  
200  
15  
V/ns  
ps  
Intentional PCI-PCI delay  
Measurement at 1.5V  
pS  
ns  
PCI output enable after PCI_STP#  
de-assertion  
500  
300  
TCCJ  
LACC  
PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V  
PCIF/PCI Long Term Accuracy Measured at crossing point VOX  
ps  
ppm  
DOT96 at 0.8V  
45  
55  
TDC  
DOT96T and DOT96C Duty Cycle  
DOT96T and DOT96C Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
%
ns  
ns  
10.41354 10.41979  
10.16354 10.66979  
TPERIOD  
TPERIODAbs DOT96T and DOT96C Absolute  
Period  
250  
300  
900  
TCCJ  
LACC  
TR/TF  
DOT96T/C Cycle to Cycle Jitter  
DOT96T/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
ps  
ppm  
ps  
175  
DOT96T and DOT96C Rise and Fall Measured from VOL = 0.175 to  
Time OH = 0.525V  
V
Document #:xxx-xxxxx Rev **  
Page 19 of 23  
PRELIMINARY  
CY28549  
AC Electrical Specifications (continued)  
Parameter  
Description  
Rise/Fall Matching  
Condition  
Min.  
Max. Unit  
TRFM  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
ΔTR  
Rise Time Variation  
125  
125  
850  
ps  
ps  
ΔTF  
Fall Time Variation  
660  
–150  
250  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 15  
Math averages Figure 15  
mV  
mV  
mV  
V
Voltage Low  
550  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
V
+
VOVS  
HIGH  
0.3  
–0.3  
VUDS  
Minimum Undershoot Voltage  
Ring Back Voltage  
V
V
0.2  
VRB  
See Figure 15. Measure SE  
48_M at 3.3V  
TDC  
45  
55  
Duty Cycle  
Period  
Measurement at 1.5V  
%
ns  
20.83125 20.83542  
20.48125 21.18542  
TPERIOD  
Measurement at 1.5V  
TPERIODAbs Absolute Period  
Measurement at 1.5V  
ns  
8.094  
7.694  
1.0  
11.100  
11.100  
2.0  
THIGH  
48_M High time  
Measurement at 2.4V  
ns  
TLOW  
48_M Low time  
Measurement at 0.4V  
ns  
TR/TF  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
350  
TCCJ  
100  
LACC  
Measured at crossing point VOX  
ppm  
27_M at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
45  
27.000  
27.000  
10.5  
10.5  
1.0  
55  
27.0547  
27.0547  
%
TPERIOD  
Spread Disabled 27M Period  
Spread Enabled 27M Period  
27_M High time  
Measurement at 1.5V  
ns  
Measurement at 1.5V  
THIGH  
Measurement at 2.0V  
ns  
ns  
TLOW  
27_M Low time  
Measurement at 0.8V  
4.0  
TR/TF  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
27_M Long Term Accuracy  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
500  
TCCJ  
50  
LACC  
Measured at crossing point VOX  
ppm  
REF at 3.3V  
TDC  
45  
55  
REF Duty Cycle  
REF Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
%
ns  
69.8203 69.8622  
68.82033 70.86224  
TPERIOD  
TPERIODAbs REF Absolute Period  
ns  
1.0  
4.0  
500  
TR/TF  
TSKEW  
TCCJ  
REF Rising and Falling Edge Rate  
V/ns  
ps  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Long Term Accuracy  
1000  
300  
ps  
LACC  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS  
10.0  
0
1.8  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Document #:xxx-xxxxx Rev **  
Page 20 of 23  
PRELIMINARY  
CY28549  
Test and Measurement Set-up  
For Single-ended Signals and Reference  
The following diagram shows test load configurations for the  
single-ended PCI, USB, and REF output signals.  
Measurement  
Point  
5 pF  
33Ω  
PCI/  
USB  
60Ω  
Measurement  
Point  
5 pF  
12Ω  
12Ω  
60Ω  
60Ω  
REF  
Measurement  
Point  
5 pF  
Figure 13.Single-ended Load Configuration Low Drive Option  
Measurement  
12Ω  
Point  
60Ω  
60Ω  
5 pF  
Measurement  
Point  
12Ω  
PCI/  
USB  
5 pF  
Measurement  
Point  
5 pF  
12Ω  
60Ω  
Measurement  
Point  
5 pF  
Measurement  
Point  
5 pF  
12Ω  
12Ω  
REF  
60Ω  
60Ω  
Figure 14. Single-ended Load Configuration High Drive Option  
The following diagram shows the test load configuration for the  
differential CPU and SRC outputs.  
Figure 15. 0.8V Differential Load Configuration  
Document #:xxx-xxxxx Rev **  
Page 21 of 23  
PRELIMINARY  
CY28549  
3 .3 V s ig n a ls  
T D C  
-
-
3.3V  
2.0V  
1.5V  
0.8V  
0V  
T R  
T F  
Figure 16. Single-ended Output Signals (for AC Parameters Measurement)  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
CY28549LFXC  
CY28549LFXCT  
72-pin QFN  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
72-pin QFN–Tape and Reel  
Package Diagram  
72-Lead QFN 10 x 10 mm (Punch Version) LF72A  
$)-%.3)/.3 ). --;).#(%3= -).ꢃ  
2%&%2%.#% *%$%# -/ꢊꢅꢅꢂ  
7%)'(4ꢀ ꢂꢃꢅꢉ '2!-3  
-!8ꢃ  
0!$$,% 3):%8ꢁ --  
ꢂꢃꢂꢇ;ꢂꢃꢂꢂꢉ=  
#
ꢆꢃꢂꢂ;ꢂꢃꢂꢉꢌ= -!8ꢃ  
ꢂꢃꢇꢂ;ꢂꢃꢂꢉꢆ= -!8ꢃ  
ꢌꢃꢌꢂ;ꢂꢃꢉꢌꢂ=  
ꢆꢂꢃꢆꢂ;ꢂꢃꢉꢌꢇ=  
!
ꢂꢃꢂꢄ;ꢂꢃꢂꢂꢅ= -!8ꢃ  
ꢌꢃꢈꢂ;ꢂꢃꢉꢇꢅ=  
ꢌꢃꢇꢂ;ꢂꢃꢉꢇꢁ=  
ꢂꢃꢅꢂ;ꢂꢃꢂꢂꢇ= 2%&ꢃ  
ꢂꢃꢆꢇ;ꢂꢃꢂꢂꢈ=  
ꢂꢃꢅꢇ;ꢂꢃꢂꢆꢆ=  
0).ꢆ )$  
ꢂꢃꢅꢂ 2ꢃ  
.
.
ꢂꢃꢇꢂ $)!ꢃ  
ꢂꢃꢋꢄ;ꢂꢃꢂꢆꢇ=  
%ꢊ0!$  
0!$ 3):% 6!29  
"9 $%6)#% 490%ꢎ  
ꢂꢃꢉꢂ;ꢂꢃꢂꢆꢅ=  
ꢂꢃꢄꢂ;ꢂꢃꢂꢅꢂ=  
ꢂꢃꢅꢋ;ꢂꢃꢂꢂꢌ=  
ꢂꢃꢁꢂ;ꢂꢃꢂꢅꢋ=  
ꢍꢋ8ꢎ  
ꢂ²ꢊꢆꢅ²  
ꢂꢃꢄꢂ;ꢂꢃꢂꢅꢂ=  
ꢇꢃꢋꢄ;ꢂꢃꢉꢉꢉ=  
ꢇꢃꢄꢄ;ꢂꢃꢉꢉꢈ=  
#
3%!4).'  
0,!.%  
3)$% 6)%7  
4/0 6)%7  
"/44/- 6)%7  
51-85216-*A  
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips  
2
2
2
I C Patent Rights to use these components in an I C system, provided that the system conforms to the I C Standard Specification  
as defined by Philips. Intel and Pentium are registered trademarks of Intel Corporation. All product and company names mentioned  
in this document are the trademarks of their respective holders.  
Document #:xxx-xxxxx Rev **  
Page 22 of 23  
PRELIMINARY  
CY28549  
Document History Page  
Document Title: CY28549 Clock Generator for Intel® CK410M  
Document Number: xxx-xxxxx  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
**  
New data sheet  
Document #:xxx-xxxxx Rev **  
Page 23 of 23  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  

相关型号:

CY28551

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28551-3

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXC

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28551LFXC-3

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXC-3T

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXCT

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28800

100-MHz Differential Buffer for PCI Express and SATA
SPECTRALINEAR

CY28800

100-MHz Differential Buffer for PCI Express and SATA
CYPRESS

CY28800OXC

100-MHz Differential Buffer for PCI Express and SATA
SPECTRALINEAR

CY28800OXC

100-MHz Differential Buffer for PCI Express and SATA
CYPRESS

CY28800OXCT

100-MHz Differential Buffer for PCI Express and SATA
SPECTRALINEAR

CY28800OXCT

100-MHz Differential Buffer for PCI Express and SATA
CYPRESS