CYW150OXC [SILICON]

440BX AGPset Spread Spectrum Frequency Synthesizer;
CYW150OXC
型号: CYW150OXC
厂家: SILICON    SILICON
描述:

440BX AGPset Spread Spectrum Frequency Synthesizer

文件: 总15页 (文件大小:1140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW150  
440BX AGPset Spread Spectrum Frequency Synthesizer  
Table 1. Mode Input Table  
Features  
Mode  
Pin 3  
PCI_STOP#  
REF0  
• Maximized electromagnetic interference (EMI)  
suppression using Cypress’s Spread Spectrum  
technology  
• Single-chip system frequency synthesizer for Intel®  
440BX AGPset  
0
1
Table 2. Pin Selectable Frequency  
Input Address  
CPU_F, 1:2  
PCI_F, 0:5  
• Three copies of CPU output  
FS3 FS2 FS1 FS0  
(MHz)  
133.3  
124  
150  
140  
105  
110  
(MHz)  
• Seven copies of PCI output  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
33.3 (CPU/4)  
31 (CPU/4)  
• One 48 MHz output for USB/one 24 MHz for SIO  
• Two buffered reference outputs  
• Two IOAPIC outputs  
37.5 (CPU/4)  
35 (CPU/4)  
• 17 SDRAM outputs provide support for four DIMMs  
• Supports frequencies up to 150 MHz  
• SMBus interface for programming  
• Power management control inputs  
35 (CPU/3)  
36.7 (CPU/3)  
38.3 (CPU/3)  
40 (CPU/3)  
115  
120  
100  
133.3  
112  
33.3 (CPU/3)  
44.43 (CPU/3)  
37.3 (CPU/3)  
34.3 (CPU/3)  
33.4 (CPU/2)  
41.7 (CPU/2)  
37.5 (CPU/2)  
41.3 (CPU/3)  
Key Specifications  
CPU Cycle-to-Cycle Jitter: ..........................................250 ps  
CPU to CPU Output Skew: .........................................175 ps  
PCI to PCI Output Skew:.............................................500 ps  
SDRAMIN to SDRAM0:15 Delay:.......................... 3.7 ns typ.  
103  
66.8  
83.3  
75  
V
DDQ3:..................................................................... 3.3V±5%  
DDQ2:..................................................................... 2.5V±5%  
V
124  
SDRAM0:15 (leads) to SDRAM_F Skew: ............. 0.4 ns typ.  
[1]  
Logic Block Diagram  
Pin Configuration  
VDDQ3  
REF0/(PCI_STOP#)  
VDDQ3  
REF1/FS2  
REF0/(PCI_STOP#)  
GND  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDDQ2  
IOAPIC0  
IOAPIC_F  
GND  
2
REF1/FS2  
X1  
X2  
XTAL  
OSC  
3
4
PLL Ref Freq  
X1  
5
CPU_F  
CPU1  
VDDQ2  
CPU2  
GND  
VDDQ2  
X2  
6
Stop  
Clock  
Control  
IOAPIC_F  
VDDQ3  
PCI_F/MODE  
PCI0/FS3  
GND  
7
I/O Pin  
Control  
8
IOAPIC0  
9
CLK_STOP#  
SDRAM_F  
VDDQ3  
SDRAM0  
SDRAM1  
GND  
SDRAM2  
SDRAM3  
SDRAM4  
SDRAM5  
VDDQ3  
SDRAM6  
SDRAM7  
GND  
CLK_STOP#  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VDDQ2  
CPU_F  
PCI1  
PCI2  
Stop  
Clock  
PCI3  
CPU1  
CPU2  
PCI4  
Control  
PLL 1  
VDDQ3  
PCI5  
÷2,3,4  
SDRAMIN  
SDRAM11  
SDRAM10  
VDDQ3  
SDRAM9  
SDRAM8  
GND  
VDDQ3  
PCI_F/MODE  
PCI0/FS3  
PCI1  
Stop  
Clock  
Control  
PCI2  
PCI3  
SDRAM15  
SDRAM12  
SDRAM13  
VDDQ3  
24MHz/FS0  
48MHz/FS1  
25  
26  
27  
28  
SDRAM14  
SDATA  
SCLK  
SMBus  
Logic  
GND  
PCI4  
SDATA  
SCLK  
PCI5  
VDDQ3  
Note:  
48MHz/FS1  
1. 1.Internal pull-up resistors should not be relied upon for setting I/O pins HIGH. Pin function  
with parentheses determined by MODE pin resistor strapping. Unlike other I/O pins, input  
FS3 has an internal pull-down resistor.  
PLL2  
24MHz/FS0  
VDDQ3  
SDRAM0:15  
Stop  
Clock  
Control  
SDRAMIN  
16  
SDRAM_F  
........................ Document #: 38-07177 Rev. *B Page 1 of 14  
400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
CYW150  
Pin Definitions  
Pin  
Pin No. Type  
Pin Name  
Pin Description  
CPU1:2  
51, 49  
O
O
O
CPU Outputs 1 and 2: Frequency is set by the FS0:3 inputs or through serial input interface,  
see Table 2 and Table 6. These outputs are affected by the CLK_STOP# input.  
CPU_F  
PCI1:5  
52  
Free-Running CPU Output: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Table 2 and Table 6. This output is not affected by the CLK_STOP# input.  
11,12,13,  
14, 16  
PCI Outputs 1 through 5: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Table 2 and Table 6. These outputs are affected by the PCI_STOP# input.  
PCI0/FS3  
9
I/O PCI Output/Frequency Select Input: As an output, frequency is set by the FS0:3 inputs or  
through serial input interface, see Table 2 and Table 6. This output is affected by the  
PCI_STOP# input. When an input, latches data selecting the frequency of the CPU and PCI outputs.  
PCI_F/MODE  
CLK_STOP#  
8
I/O Free Running PCI Output: Frequency is set by the FS0:3 inputs or through serial input  
interface, see Table 2 and Table 6. This output is not affected by the PCI_STOP# input. When  
an input, selects function of pin 3 as described in Table 1.  
47  
I
CLK_STOP# Input: When brought LOW, affected outputs are stopped LOW after completing  
a full clock cycle (2–3 CPU clock latency). When brought HIGH, affected outputs start  
beginning with a full clock cycle (2–3 CPU clock latency).  
IOAPIC_F  
IOAPIC0  
54  
55  
29  
O
O
Free-running IOAPIC Output: This output is a buffered version of the reference input which  
is not affected by the CPU_STOP# logic input. Its swing is set by voltage applied to VDDQ2.  
IOAPIC Output: Provides 14.318 MHz fixed frequency. The output voltage swing is set by  
voltage applied to VDDQ2. This output is disabled when CLK_STOP# is set LOW.  
48MHz/FS1  
I/O 48 MHz Output: 48 MHz is provided in normal operation. In standard systems, this output can  
be used as the reference for the Universal Serial Bus. Upon power up, FS1 input will be  
latched, setting output frequencies as described in Table 2.  
24MHz/FS0  
REF1/FS2  
30  
I/O 24 MHz Output: 24 MHz is provided in normal operation. In standard systems, this output can  
be used as the clock input for a Super I/O chip. Upon power up, FS0 input will be latched,  
setting output frequencies as described in Table 2.  
2
3
I/O Reference Output: 14.318 MHz is provided in normal operation. Upon power-up, FS2 input  
will be latched, setting output frequencies as described in Table 2.  
REF0  
(PCI_STOP#)  
I/O Fixed 14.318 MHz Output 0 or PCI_STOP# Pin: Function determined by MODE pin. The  
PCI_STOP# input enables the PCI 0:5 outputs when HIGH and causes them to remain at logic  
0 when LOW. The PCI_STOP signal is latched on the rising edge of PCI_F. Its effects take  
place on the next PCI_F clock cycle. As an output, this pin provides a fixed clock signal equal  
in frequency to the reference signal provided at the X1/X2 pins (14.318 MHz).  
SDRAMIN  
17  
I
Buffered Input Pin: The signal provided to this input pin is buffered to 17 outputs  
(SDRAM0:15, SDRAM_F).  
SDRAM0:15  
44, 43,  
41, 40,  
39, 38,  
36, 35,  
22, 21,  
19, 18,  
33, 32,  
25, 24  
O
Buffered Outputs: These sixteen dedicated outputs provide copies of the signal provided at  
the SDRAMIN input. The swing is set by VDDQ3, and they are deactivated when CLK_STOP#  
input is set LOW.  
SDRAM_F  
46  
O
I
Free-Running Buffered Output: This output provides a single copy of the SDRAMIN input.  
The swing is set by VDDQ3; this signal is unaffected by the CLK_STOP# input.  
SCLK  
SDATA  
X1  
28  
27  
5
Clock pin for SMBus circuitry.  
I/O Data pin for SMBus circuitry.  
I
Crystal Connection or External Reference Frequency Input: This pin has dual functions.  
It can be used as an external 14.318 MHz crystal connection or as an external reference  
frequency input.  
X2  
6
I
Crystal Connection: An input connection for an external 14.318-MHz crystal. If using an  
external reference, this pin must be left unconnected.  
VDDQ3  
1, 7, 15,  
20, 31,  
37, 45  
P
Power Connection: Power supply for core logic, PLL circuitry, SDRAM output buffers, PCI  
output buffers, reference output buffers, and 48 MHz/24 MHz output buffers. Connect to 3.3V.  
........................Document #: 38-07177 Rev. *B Page 2 of 14  
CYW150  
Pin Definitions (continued)  
Pin  
Pin Name  
VDDQ2  
Pin No. Type  
Pin Description  
50, 56  
P
Power Connection: Power supply for IOAPIC and CPU output buffers. Connect to 2.5V or  
3.3V.  
GND  
4, 10, 23,  
26, 34,  
G
Ground Connections: Connect all ground pins to the common system ground plane.  
42, 48, 53  
resistor on the l/O pins to pull the pins and their associated  
capacitive clock load to either a logic HIGH or LOW state. At  
Overview  
The CYW150 was designed as a single-chip alternative to the  
standard two-chip Intel 440BX AGPset clock solution. It  
provides sufficient outputs to support most single-processor,  
four SDRAM DIMM designs.  
the end of the 2-ms period, the established logic “0” or “1”  
condition of the l/O pin is latched. Next the output buffer is  
enabled, converting the l/O pins into operating clock outputs.  
The 2-ms timer starts when VDD reaches 2.0V. The input bits  
can only be reset by turning VDD off and then back on again.  
Functional Description  
It should be noted that the strapping resistors have no signif-  
icant effect on clock output signal integrity. The drive  
impedance of clock output (< 40, nominal) is minimally  
affected by the 10-kstrap to ground or VDD. As with the  
series termination resistor, the output strapping resistor should  
be placed as close to the l/O pin as possible in order to keep  
the interconnecting trace short. The trace from the resistor to  
ground or VDD should be kept less than two inches in length  
to minimize system noise coupling during input logic sampling.  
I/O Pin Operation  
Pins 2, 8, 9, 29, and 30 are dual-purpose l/O pins. Upon  
power-up these pins act as logic inputs, allowing the determi-  
nation of assigned device functions. A short time after  
power-up, the logic state of each pin is latched and the pins  
become clock outputs. This feature reduces device pin count  
by combining clock outputs with input select pins.  
An external 10-k“strapping” resistor is connected between  
the l/O pin and ground or VDD. Connection to ground sets a  
latch to “0,” connection to VDD sets a latch to “1.” Figure 1 and  
Figure 2 show two suggested methods for strapping resistor  
connections.  
When the clock outputs are enabled following the 2-ms input  
period, the corresponding specified output frequency is  
delivered on the pins, assuming that VDD has stabilized. If VDD  
has not yet reached full value, output frequency initially may  
be below target but will increase to target once VDD voltage  
has stabilized. In either case, a short output clock cycle may  
be produced from the CPU clock outputs when the outputs are  
enabled.  
Upon CYW150 power-up, the first 2 ms of operation are used  
for input logic selection. During this period, the five I/O pins (2,  
8, 9, 29, 30) are three-stated, allowing the output strapping  
V
DD  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
CYW150  
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
........................Document #: 38-07177 Rev. *B Page 3 of 14  
CYW150  
Jumper Options  
Output Strapping Resistor  
Series Termination Resistor  
VDD  
10 k  
Clock Load  
CYW150  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Resistor Value R  
Hold  
Output  
Low  
Output Three-state  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the ampli-  
tudes of the radiated electromagnetic emissions are reduced.  
This effect is depicted in Figure 3.  
The output clock is modulated with a waveform depicted in  
Figure 4. This waveform, as discussed in “Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissions” by  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is specified in Table 6. Figure 4  
details the Cypress spreading pattern. Cypress does offer  
options with more spread and greater EMI reduction. Contact  
your local Sales representative for details on these devices.  
As shown in Figure 3, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is  
Spread Spectrum clocking is activated or deactivated by  
selecting the appropriate values for bits 1–0 in data byte 0 of  
the SMBus data stream. Refer to Table 7 for more details.  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
5 dB/div  
SSFTG  
Typical Clock  
–1.0  
0
+1.0  
+0.5%  
+SS%  
–0.5%  
–SS%  
Frequency Span (MHz)  
Figure 3. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
........................Document #: 38-07177 Rev. *B Page 4 of 14  
CYW150  
MAX  
MIN  
Figure 4. Typical Modulation Profile  
outputs of the chipset. If needed, clock device register  
changes are normally made upon system initialization. The  
interface can also be used during system operation for power  
management functions. Table 3 summarizes the control  
functions of the serial data interface.  
Serial Data Interface  
The CYW150 features a two-pin, serial data interface that can  
be used to configure internal register settings that control  
particular device functions. Upon power-up, the CYW150  
initializes with default register settings, therefore the use of this  
serial data interface is optional. The serial interface is  
write-only (to the clock chip) and is the dedicated function of  
device pins SDATA and SCLOCK. In motherboard applica-  
tions, SDATA and SCLOCK are typically driven by two logic  
Operation  
Data is written to the CYW150 in eleven bytes of eight bits  
each. Bytes are written in the order shown in Table 4.  
Table 3. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable Any individual clock output(s) can be disabled.  
Disabled outputs are actively held LOW.  
Unused outputs are disabled to reduce EMI and  
system power. Examples are clock outputs to  
unused PCI slots.  
CPU Clock  
Provides CPU/PCI frequency selections through  
For alternate microprocessors and power  
management options. Smooth frequency transition  
allowsCPUfrequencychangeundernormalsystem  
operation.  
Frequency Selection software. Frequency is changed in a smooth and  
controlled fashion.  
Spread Spectrum  
Enabling  
Enables or disables spread spectrum clocking.  
Puts clock output into a high-impedance state.  
For EMI reduction.  
Output Three-state  
Test Mode  
Production PCB testing.  
Production PCB testing.  
All clock outputs toggle in relation to X1 input,  
internal PLL is bypassed. Refer to Table 5.  
(Reserved)  
Reserved function for future device revision or  
production device testing.  
No user application. Register bit must be written as  
0.  
Table 4. Byte Writing Sequence  
Byte  
Sequence Byte Name Bit Sequence  
Byte Description  
1
2
3
Slave Address 11010010  
Commands the CYW150 to accept the bits in Data Bytes 0–7 for internal register  
configuration. Since other devices may exist on the same common serial data bus,  
it is necessary to have a specific slave address for each potential receiver. The  
slave receiver address for the CYW150 is 11010010. Register setting will not be  
made if the Slave Address is not correct (or is for an alternate slave receiver).  
Command  
Code  
Don’t Care  
Don’t Care  
Unused by the CYW150, therefore bit values are ignored (“Don’t Care”). This byte  
must be included in the data write sequence to maintain proper byte allocation. The  
Command Code Byte is part of the standard serial communication protocol and  
may be used when writing to another addressed slave receiver on the serial data  
bus.  
Byte Count  
Unused by the CYW150, therefore bit values are ignored (“Don’t Care”). This byte  
must be included in the data write sequence to maintain proper byte allocation. The  
Byte Count Byte is part of the standard serial communication protocol and may be  
used when writing to another addressed slave receiver on the serial data bus.  
........................Document #: 38-07177 Rev. *B Page 5 of 14  
CYW150  
Table 4. Byte Writing Sequence (continued)  
Byte  
Sequence Byte Name Bit Sequence  
Byte Description  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Data Byte 7  
Refer to Table 5 The data bits in Data Bytes 0–5 set internal CYW150 registers that control device  
operation. The data bits are only accepted when the Address Byte bit sequence is  
11010010, as noted above. For description of bit control functions, refer to Table 5,  
Data Byte Serial Configuration Map.  
6
7
8
9
10  
11  
Don’t Care  
Unused by the CYW150, therefore bit values are ignored (Don’t Care).  
Writing Data Bytes  
Table 5 gives the bit formats for registers located in Data Bytes  
0–7.  
Each bit in Data Bytes 0–7 control a particular device function  
except for the “reserved” bits which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit 7.  
Table 6 details additional frequency selections that are  
available through the serial data interface.  
Table 7 details the select functions for Byte 0, bits 1 and 0.  
Table 5. Data Bytes 0–5 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 0  
7
6
5
4
3
(Reserved)  
0
0
0
0
0
SEL_2  
See Table 6  
See Table 6  
See Table 6  
SEL_1  
SEL_0  
Frequency Table Selection  
Frequency  
Controlled by FS  
(3:0) Table 2  
Frequency  
Controlled by SEL  
(3:0) Table 6  
2
SEL3  
Refer to Table 6  
0
1–0  
Bit 1  
Bit 0  
Function (See Table 7 for function details)  
Normal Operation  
00  
0
0
1
1
0
1
0
1
(Reserved)  
Spread Spectrum On  
All Outputs Three-stated  
Data Byte 1  
7
6
5
4
0
0
0
0
1
1
1
1
3
2
1
0
46  
49  
51  
52  
SDRAM_F  
CPU2  
CPU1  
CPU_F  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Data Byte 2  
7
6
8
(Reserved)  
0
1
1
PCI_F  
PCI5  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
5
16  
........................Document #: 38-07177 Rev. *B Page 6 of 14  
CYW150  
Table 5. Data Bytes 0–5 Serial Configuration Map (continued)  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
PCI4  
Control Function  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
0
1
Default  
4
3
2
1
0
14  
13  
12  
11  
9
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
1
1
1
1
1
PCI3  
PCI2  
PCI1  
PCI0  
Data Byte 3  
7
6
(Reserved)  
0
0
1
1
1
(Reserved)  
5
4
3
29  
30  
48MHz  
24MHz  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Active  
Active  
Active  
33, 32, SDRAM12:15 Clock Output Disable  
25, 24  
2
1
0
22, 21,  
19, 18  
SDRAM8:11 Clock Output Disable  
SDRAM4:7 Clock Output Disable  
SDRAM0:3 Clock Output Disable  
Low  
Low  
Low  
Active  
Active  
Active  
1
1
1
39, 38,  
36, 35  
44, 43,  
41, 40  
Data Byte 4  
7
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
0
0
0
0
0
0
0
0
6
5
4
3
2
1
0
Data Byte 5  
7
6
(Reserved)  
0
0
1
1
0
0
1
1
IOAPIC_F  
IOAPICO  
(Reserved)  
5
4
3
2
1
0
54  
55  
Disabled  
Low  
Low  
Active  
Active  
Disabled  
(Reserved)  
(Reserved)  
2
REF1  
REF0  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
3
........................Document #: 38-07177 Rev. *B Page 7 of 14  
CYW150  
Table 6. Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Output Frequency  
Spread On  
Data Byte 0, Bit 3 = 1  
Bit 2  
Bit 6  
Bit 5  
Bit 4  
CPU, SDRAM  
Clocks (MHz)  
PCI Clocks  
(MHz)  
SEL_3  
SEL_2  
SEL_1  
SEL_0  
Spread Percentage  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.9% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.5% Center  
± 0.9% Center  
± 0.5% Center  
± 0.5% Center  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
133.3  
124  
150  
140  
105  
110  
33.3 (CPU/4)  
31 (CPU/4)  
37.5 (CPU/4)  
35 (CPU/4)  
35 (CPU/3)  
36.7 (CPU/3)  
38.3 (CPU/3)  
40 (CPU/3)  
115  
120  
100  
133.3  
112  
33.3 (CPU/3)  
44.43 (CPU/3)  
37.3 (CPU/3)  
34.3 (CPU/3)  
33.4 (CPU/2)  
41.7 (CPU/2)  
37.5 (CPU/2)  
41.3 (CPU/3)  
103  
66.8  
83.3  
75  
124  
Table 7. Select Function for Data Byte 0, Bits 0:1  
Input Conditions  
Data Byte 0  
Output Conditions  
REF0:1, IO-  
Function  
Normal Operation  
Test Mode  
Bit 1  
Bit 0  
CPU_F, 1:2 PCI_F, PCI0:5  
APIC0,_F  
14.318 MHz  
X1  
48 MHZ  
24 MHZ  
24 MHz  
X1/4  
0
0
1
1
0
1
0
1
Note 2  
X1/2  
Note 2  
CPU/(2 or 3)  
Note 2  
48 MHz  
X1/2  
Spread Spectrum  
Tristate  
Note 2  
Hi-Z  
14.318 MHz  
Hi-Z  
48 MHz  
Hi-Z  
24 MHz  
Hi-Z  
Hi-Z  
Note:  
2. CPU and PCI frequency selections are listed in Table 2 and Table 6.  
........................Document #: 38-07177 Rev. *B Page 8 of 14  
CYW150  
Absolute Maximum Ratings[3]  
Stresses greater than those listed in this table may cause  
permanent damage to the device. These represent a stress  
rating only. Operation of the device at these or any other condi-  
tions above those specified in the operating sections of this  
specification is not implied. Maximum conditions for extended  
periods may affect reliability.  
Parameter  
DD, VIN  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
–0.5 to +7.0  
–65 to +150  
–55 to +125  
0 to +70  
Unit  
V
V
TSTG  
TB  
°C  
°C  
°C  
kV  
Ambient Temperature under Bias  
Operating Temperature  
TA  
ESDPROT  
Input ESD Protection  
2 (min)  
DC Electrical Characteristics (TA = 0°C to +70°C; VDDQ3 = 3.3V ±5%; VDDQ2 = 2.5V ±5%)  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
IDD  
IDD  
Logic Inputs  
3.3V Supply Current  
CPU_F, 1:2= 100 MHz  
Outputs Loaded[4]  
320  
40  
mA  
mA  
2.5V Supply Current  
CPU_F, 1:2= 100 MHz  
Outputs Loaded[4]  
VIL  
VIH  
IIL  
Input Low Voltage  
GND – 0.3  
2.0  
0.8  
VDD + 0.3  
–25  
V
Input High Voltage  
Input Low Current[5]  
Input High Current[5]  
V
A  
A  
µA  
µA  
IIH  
IIL  
10  
Input Low Current (SEL100/66#)  
Input High Current (SEL100/66#)  
–5  
IIH  
+5  
Clock Outputs  
VOL  
VOH  
VOH  
IOL  
Output Low Voltage  
Output High Voltage  
IOL = 1 mA  
IOH = 1 mA  
50  
mV  
V
3.1  
2.2  
60  
96  
72  
61  
60  
60  
95  
43  
76  
60  
50  
50  
50  
75  
Output High Voltage CPU_F, 1:2, IOAPIC IOH = –1 mA  
V
Output Low Current CPU_F, 1:2  
PCI_F, PCI1:5  
VOL = 1.25V  
OL = 1.5V  
73  
110  
92  
71  
70  
70  
110  
60  
96  
90  
60  
60  
60  
95  
85  
130  
110  
80  
mA  
mA  
mA  
mA  
mA  
mA  
V
IOAPIC0, IOAPIC_F VOL = 1.25V  
REF0:1  
VOL = 1.5V  
48-MHz  
VOL = 1.5V  
80  
24-MHz  
V
OL = 1.5V  
OL = 1.5V  
80  
SDRAM0:15, _F  
V
130  
80  
IOH  
Output High Current CPU_F, 1:2  
VOH = 1.25V  
mA  
mA  
mA  
mA  
mA  
mA  
PCI_F, PCI1:5  
IOAPIC  
VOH = 1.5V  
VOH = 1.25V  
VOH = 1.5V  
VOH = 1.5V  
VOH = 1.5V  
VOH = 1.5V  
120  
130  
72  
REF0:1  
48-MHz  
72  
24-MHz  
72  
SDRAM0:15, _F  
120  
Notes:  
3. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
4. All clock outputs loaded with 6" 60traces with 22-pF capacitors.  
5. CYW150 logic inputs have internal pull-up devices (not to full CMOS level). Logic input FS3 has an internal pull-down device.  
........................Document #: 38-07177 Rev. *B Page 9 of 14  
CYW150  
DC Electrical Characteristics (TA = 0°C to +70°C; VDDQ3 = 3.3V ±5%; VDDQ2 = 2.5V ±5%) (continued)  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Crystal Oscillator  
VTH  
X1 Input threshold Voltage[6]  
VDDQ3 = 3.3V  
1.65  
14  
V
CLOAD  
Load Capacitance, Imposed on  
External Crystal[7]  
pF  
CIN,X1  
X1 Input Capacitance[8]  
Pin X2 unconnected  
Except X1 and X2  
28  
pF  
Pin Capacitance/Inductance  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
5
6
7
pF  
pF  
nH  
COUT  
LIN  
AC Electrical Characteristics  
TA = 0°C to +70°C; VDDQ3 = 3.3V±5%; VDDQ2 = 2.5V±5%; fXTL  
= 14.31818 MHz. AC clock parameters are tested and  
guaranteed over stated operating conditions using the stated  
lump capacitive load at the clock output; Spread Spectrum  
clocking is disabled.  
CPU Clock Outputs, CPU_F, 1:2 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 100 MHz  
Parameter  
tP  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.25  
Duration of clock cycle above 2.0V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
15  
5.2  
5.0  
1
15.5  
10  
3.0  
2.8  
1
10.5  
ns  
ns  
tH  
tL  
High Time  
Low Time  
ns  
tR  
tF  
tD  
Output Rise Edge Rate Measured from 0.4V to 2.0V  
Output Fall Edge Rate Measured from 2.0V to 0.4V  
4
4
4
4
V/ns  
V/ns  
%
1
1
Duty Cycle  
Measured on rising and falling edge at  
45  
55  
45  
55  
1.25V  
tJC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.25V.  
Maximum difference of cycle time  
between two adjacent cycles.  
250  
250  
ps  
tSK  
fST  
Output Skew  
Measured on rising edge at 1.25V  
175  
3
175  
3
ps  
Frequency Stabilization Assumes full supply voltage reached  
from Power-up (cold  
start)  
ms  
within 1 ms from power-up. Short cycles  
exist prior to frequency stabilization.  
Zo  
AC Output Impedance Average value during switching  
transition. Used for determining series  
termination value.  
20  
20  
PCI Clock Outputs, PCI_F and PCI0:5 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.6/100 MHz  
Min. Typ. Max.  
30  
Parameter  
tP  
Description  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
Unit  
Period  
ns  
ns  
tH  
tL  
High Time  
12.0  
12.0  
1
Low Time  
ns  
tR  
Output Rise Edge Rate  
4
V/ns  
Notes:  
6. X1 input threshold voltage (typical) is V  
/2.  
DDQ3  
7. The CYW150 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is  
14 pF; this includes typical stray capacitance of short PCB traces to crystal.  
8. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
tF  
Output Fall Edge Rate  
Measured from 2.4V to 0.4V  
1
4
V/ns  
......................Document #: 38-07177 Rev. *B Page 10 of 14  
CYW150  
PCI Clock Outputs, PCI_F and PCI0:5 (Lump Capacitance Test Load = 30 pF) (continued)  
CPU = 66.6/100 MHz  
Parameter  
tD  
Description  
Duty Cycle  
Test Condition/Comments  
Min.  
Typ.  
Max.  
55  
Unit  
%
Measured on rising and falling edge at 1.5V  
45  
tJC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum  
difference of cycle time between two  
adjacent cycles.  
250  
ps  
tSK  
tO  
Output Skew  
Measured on rising edge at 1.5V  
500  
4
ps  
ns  
CPU to PCI Clock Skew  
Covers all CPU/PCI outputs. Measured on  
rising edge at 1.5V. CPU leads PCI output.  
1.5  
fST  
Frequency Stabilization  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior  
to frequency stabilization.  
Assumes full supply voltage reached within  
3
ms  
Zo  
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination  
value.  
15  
IOAPIC0 and IOAPIC_F Clock Outputs (Lump Capacitance Test Load = 20 pF)  
CPU = 66.6/100 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.0V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
tR  
1
1
4
4
tF  
Measured from 2.0V to 0.4V  
tD  
Measured on rising and falling edge at 1.25V  
45  
55  
1.5  
fST  
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
15  
REF0:1 Clock Outputs (Lump Capacitance Test Load = 20 pF)  
CPU = 66.6/100 MHz  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ. Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
Frequency, Actual  
Frequency generated by crystal oscillator  
14.318  
tR  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
0.5  
0.5  
45  
2
2
tF  
tD  
Duty Cycle  
Measured on rising and falling edge at 1.5V  
55  
3
fST  
Frequency Stabilization Assumes full supply voltage reached within 1 ms from  
ms  
from Power-up (cold  
start)  
power-up. Short cycles exist prior to frequency stabili-  
zation.  
Zo  
AC Output Impedance Average value during switching transition. Used for  
determining series termination value.  
25  
SDRAM 0:15, _F Clock Outputs (Lump Capacitance Test Load = 30 pF)  
CPU = 66.8 MHz  
CPU = 100 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
t
15  
5.2  
5.0  
1
15.5  
10  
3.0  
2.0  
1
10.5  
ns  
ns  
P
tH  
High Time  
Low Time  
tL  
tR  
tF  
ns  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
4
4
4
4
V/ns  
V/ns  
1
1
...................... Document #: 38-07177 Rev. *B Page 11 of 14  
CYW150  
SDRAM 0:15, _F Clock Outputs (Lump Capacitance Test Load = 30 pF) (continued)  
CPU = 66.8 MHz  
Min. Typ. Max. Min. Typ. Max. Unit  
CPU = 100 MHz  
Parameter  
tD  
Description  
Duty Cycle  
Test Condition/Comments  
Measured on rising and falling edge at  
1.5V  
45  
55  
45  
55  
%
tSK  
Output Skew  
Measured on rising and falling edge at  
1.5V  
250  
250  
ps  
tPD  
Zo  
Propagation Delay  
Measured from SDRAMIN  
3.7  
15  
3.7  
15  
ns  
AC Output Impedance Average value during switching  
transition. Used for determining series  
termination value.  
48-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8/100 MHz  
Min. Typ. Max. Unit  
Parameter  
Description  
Test Condition/Comments  
Determined by PLL divider ratio (see m/n below)  
f
Frequency, Actual  
48.008  
+167  
MHz  
ppm  
fD  
Deviation from 48 MHz (48.008 – 48)/48  
m/n  
tR  
PLL Ratio  
(14.31818 MHz x 57/17 = 48.008 MHz)  
57/17  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
tF  
Output Fall Edge Rate  
Duty Cycle  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.5V  
55  
3
fST  
Frequency Stabilization Assumes full supply voltage reached within 1 ms from  
ms  
from Power-up (cold  
start)  
power-up. Short cycles exist prior to frequency stabili-  
zation.  
Zo  
AC Output Impedance  
Average value during switching transition. Used for deter-  
mining series termination value.  
25  
24-MHz Clock Output (Lump Capacitance Test Load = 20 pF  
CPU = 66.8/100 MHz  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ.  
24.004  
+167  
Max.  
Unit  
MHz  
ppm  
f
Frequency, Actual  
Determined by PLL divider ratio (see m/n below)  
fD  
Deviation from 24 MHz (24.004 – 24)/24  
m/n  
tR  
PLL Ratio  
(14.31818 MHz x 57/34 = 24.004 MHz)  
57/34  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
tF  
tD  
Duty Cycle  
Measured on rising and falling edge at 1.5V  
55  
3
fST  
Frequency Stabilization Assumes full supply voltage reached within 1 ms from  
ms  
from Power-up (cold  
start)  
power-up. Short cycles exist prior to frequency stabili-  
zation.  
Zo  
AC Output Impedance Average value during switching transition. Used for  
determining series termination value.  
25  
Layout Example  
......................Document #: 38-07177 Rev. *B Page 12 of 14  
CYW150  
+2.5V Supply  
FB  
+3.3V Supply  
FB  
VDDQ2  
VDDQ3  
10 mF  
0.005 mf  
10 mF  
0.005 mF  
C1  
C2  
C3  
C4  
G
G
G
G
V
G
G
V
1
56  
55  
54  
53  
G
G
2
3
4
G
G
G
5
52  
G
6
51  
50  
49  
48  
47  
46  
45  
G
V
V
G
7
G
G
8
G
G
9
G
10  
11  
12  
V
G
G
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
G
G
V
G
G
G
G
G
V
V
G
G
G
G
G
G
V
G
G
G
G
FB = Dale ILB1206 - 300 (300@ 100 MHz)  
C2 & C4 = 0.005  
µF  
µF  
Cermaic CapsC1 & C3 = 10 – 22  
= VIA to GND plane layer  
V =VIA to respective supply plane layer  
G
Note: Each supply plane or strip should have a ferrite bead and capacitors  
All bypass caps = 0.1F ceramic  
......................Document #: 38-07177 Rev. *B Page 13 of 14  
CYW150  
Ordering Information  
Ordering Code  
Package Type  
56-pin SSOP  
56-pin SSOP – Tape and Reel  
Industrial Product Flow  
Commercial, 0 to 70°C  
Commercial, 0 to 70°C  
CYW150OXC  
CYW150OXCT  
Package Drawing and Dimensions  
56-Lead Shrunk Small Outline Package O56  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
......................Document #: 38-07177 Rev. *B Page 14 of 14  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

CYW150OXCT

440BX AGPset Spread Spectrum Frequency Synthesizer
SILICON

CYW15G0101DXB

Single-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0101DXB-BBC

Single-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0101DXB-BBI

Single-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0101DXB-BBXC

Single-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0101DXB-BBXI

Single-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0201DXB

Dual-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0201DXB-BBC

Dual-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0201DXB-BBI

Dual-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0201DXB-BBXC

Dual-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0201DXB-BBXI

Dual-channel HOTLink II⑩ Transceiver
CYPRESS

CYW15G0401DXB

Quad HOTLink II⑩ Transceiver
CYPRESS