EFM32TG108F8-D-QFN24 [SILICON]

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PQCC24, QFN-24;
EFM32TG108F8-D-QFN24
型号: EFM32TG108F8-D-QFN24
厂家: SILICON    SILICON
描述:

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PQCC24, QFN-24

时钟 微控制器 外围集成电路
文件: 总202页 (文件大小:2966K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32 Gecko Family  
EFM32TG Data Sheet  
The EFM32 Gecko MCUs are the world’s most energy-friendly mi-  
crocontrollers.  
KEY FEATURES  
• ARM Cortex-M3 at 32 MHz  
The EFM32TG offers unmatched performance and ultra low power consumption in both  
active and sleep modes. EFM32TG devices consume as little as 0.6 μA in Stop mode  
and 150 μA/MHz in Run mode. It also features autonomous peripherals, high overall chip  
and analog integration, and the performance of the industry standard 32-bit ARM Cortex-  
M3 processor, making it perfect for battery-powered systems and systems with high-per-  
formance, low-energy requirements.  
• Ultra low power operation  
• 0.6 μA current in Stop (EM3), with  
brown-out detection and RAM retention  
• 51 μA/MHz in EM1  
• 150 μA/MHz in Run mode (EM0)  
• Fast wake-up time of 2 µs  
EFM32TG applications include the following:  
• Hardware cryptography (AES)  
• Up to 32 kB of Flash and 4 kB of RAM  
• Industrial and home automation  
• Smart metering  
• Alarm and security systems  
• Water metering  
• Health and fitness applications  
• Gas metering  
Core / Memory  
Clock Management  
Energy Management  
Security  
High Frequency  
High Frequency  
Voltage  
Regulator  
Voltage  
Comparator  
Crystal Oscillator  
RC Oscillator  
ARM CortexTM M3 processor  
Hardware AES  
Auxiliary High  
Freq. RC Osc.  
Low Freq.  
RC Oscillator  
Flash Program  
Memory  
Debug Interface  
DMA Controller  
Power-on  
Reset  
Brown-out  
Detector  
Low Frequency  
Crystal Oscillator  
Watchdog  
Oscillator  
RAM Memory  
32-bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/O Ports  
Timers and Triggers  
Analog Interfaces  
Timer/Counter  
Low Energy Timer  
Pulse Counter  
LESENSE  
ADC  
DAC  
External  
Interrupts  
General  
Purpose I/O  
I2C  
USART  
Operational  
Amplifier  
Analog  
Comparator  
Real Time Counter  
Watchdog Timer  
Low Energy  
UARTTM  
Pin Reset  
LCD Controller  
Lowest power mode with peripheral operational:  
EM0 - Active  
EM2 – Deep Sleep  
EM1 - Sleep  
EM3 - Stop  
EM4 - Shutoff  
silabs.com | Building a more connected world.  
Rev. 2.10  
EFM32TG Data Sheet  
Feature List  
1. Feature List  
• ARM Cortex-M3 CPU platform  
• High Performance 32-bit processor @ up to 32 MHz  
• Wake-up Interrupt Controller  
• SysTick System Timer  
• Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention  
• 1.0 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• 51 µA/MHz @ 3 V Sleep Mode  
• 150 µA/MHz @ 3 V Run Mode, with code executed from flash  
• 32/16/8 KB Flash  
• 4/2 KB RAM  
• Up to 56 General Purpose I/O pins  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive strength  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
• 8 Channel DMA Controller  
• 8 Channel Peripheral Reflex System (PRS) for autonomous inter- peripheral signaling  
• Hardware AES with 128/256-bit keys in 54/75 cycles  
• Timers/Counters  
• 2× 16-bit Timer/Counter  
• 2×3 Compare/Capture/PWM channels  
• 16-bit Low Energy Timer  
• 1× 24-bit Real-Time Counter  
• 1× 16-bit Pulse Counter  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
• Integrated LCD Controller for up to 8×20 segments  
• Voltage boost, adjustable contrast and autonomous animation  
• Communication interfaces  
• Up to 2× Universal Synchronous/Asynchronous Receiver/ Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• Low Energy UART  
• Autonomous operation with DMA in Deep Sleep Mode  
I2C Interface with SMBus support  
• Address recognition in Stop Mode  
• Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 8 single ended channels/4 differential channels  
• On-chip temperature sensor  
• 12-bit 500 ksamples/s Digital to Analog Converter  
• Up to 2× Analog Comparator  
• Capacitive sensing with up to 8 inputs  
• 3× Operational Amplifier  
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain  
• Supply Voltage Comparator  
• Low Energy Sensor Interface (LESENSE)  
• Autonomous sensor monitoring in Deep Sleep Mode  
• Wide range of sensors supported, including LC sensors and capacitive buttons  
• Ultra efficient Power-on Reset and Brown-Out Detector  
silabs.com | Building a more connected world.  
Rev. 2.10 | 2  
EFM32TG Data Sheet  
Feature List  
• 2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
• Pre-Programmed UART Bootloader  
• Temperature range -40 to 85 ºC  
• Single power supply 1.98 to 3.8 V  
• Packages:  
• BGA48  
• QFN24  
• QFN32  
• QFN64  
• TQFP48  
• TQFP64  
silabs.com | Building a more connected world.  
Rev. 2.10 | 3  
EFM32TG Data Sheet  
Ordering Information  
2. Ordering Information  
The following table shows the available EFM32TG devices.  
Table 2.1. Ordering Information  
Max Speed  
(MHz)  
Supply  
Voltage (V)  
Temperature  
Ordering Code  
Flash (kB)  
RAM (kB)  
(ºC)  
Package  
QFN24  
QFN24  
QFN24  
QFN24  
QFN24  
QFN24  
QFN24  
QFN24  
QFN32  
QFN32  
QFN32  
TQFP48  
TQFP48  
TQFP48  
BGA48  
BGA48  
BGA48  
QFN64  
QFN64  
QFN64  
TQFP64  
TQFP64  
TQFP64  
TQFP48  
TQFP48  
TQFP48  
BGA48  
BGA48  
BGA48  
QFN64  
QFN64  
QFN64  
EFM32TG108F4-D-QFN24  
EFM32TG108F8-D-QFN24  
EFM32TG108F16-D-QFN24  
EFM32TG108F32-D-QFN24  
EFM32TG110F4-D-QFN24  
EFM32TG110F8-D-QFN24  
EFM32TG110F16-D-QFN24  
EFM32TG110F32-D-QFN24  
EFM32TG210F8-D-QFN32  
EFM32TG210F16-D-QFN32  
EFM32TG210F32-D-QFN32  
EFM32TG222F8-D-QFP48  
EFM32TG222F16-D-QFP48  
EFM32TG222F32-D-QFP48  
EFM32TG225F8-D-BGA48  
EFM32TG225F16-D-BGA48  
EFM32TG225F32-D-BGA48  
EFM32TG230F8-D-QFN64  
EFM32TG230F16-D-QFN64  
EFM32TG230F32-D-QFN64  
EFM32TG232F8-D-QFP64  
EFM32TG232F16-D-QFP64  
EFM32TG232F32-D-QFP64  
EFM32TG822F8-D-QFP48  
EFM32TG822F16-D-QFP48  
EFM32TG822F32-D-QFP48  
EFM32TG825F8-D-BGA48  
EFM32TG825F16-D-BGA48  
EFM32TG825F32-D-BGA48  
EFM32TG840F8-D-QFN64  
EFM32TG840F16-D-QFN64  
EFM32TG840F32-D-QFN64  
4
8
2
2
4
4
2
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
2
4
4
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
16  
32  
4
8
16  
32  
8
16  
32  
8
16  
32  
8
16  
32  
8
16  
32  
8
16  
32  
8
16  
32  
8
16  
32  
8
16  
32  
silabs.com | Building a more connected world.  
Rev. 2.10 | 4  
EFM32TG Data Sheet  
Ordering Information  
Max Speed  
(MHz)  
Supply  
Voltage (V)  
Temperature  
Ordering Code  
Flash (kB)  
RAM (kB)  
(ºC)  
Package  
TQFP64  
TQFP64  
TQFP64  
EFM32TG842F8-D-QFP64  
EFM32TG842F16-D-QFP64  
EFM32TG842F32-D-QFP64  
8
2
4
4
32  
32  
32  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
-40 - 85  
16  
32  
EFM32 TG 842 F 32 D QFP 64 T  
Tray (Optional)  
Pin Count  
Package  
Revision  
Memory Size in kB  
Memory Type (Flash)  
Feature Set Code  
Gecko  
Energy Friendly Microcontroller 32-bit  
Figure 2.1. Ordering Code Decoder  
Adding the suffix 'T' to the part number (e.g. EFM32TG842F32-D-QFP64T) denotes tray.  
Visit http://www.silabs.com for information on global distributors and representatives.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 5  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3. System Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1 System Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.1.1 ARM Cortex-M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.1.2 Debug Interface (DBG). . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . . . . . . . . . . .10  
3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . . . . . . . . . . .11  
3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . .11  
3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . . . . . . . . . . .11  
3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . . . . . . . . . . .11  
3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . .11  
3.1.10 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . . . . . . . . .11  
3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . . . . . . . . .11  
3.1.12 Pre-Programmed UART Bootloader . . . . . . . . . . . . . . . . . . . . .11  
3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . . . . . . . . .11  
3.1.14 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1.15 Real Time Counter (RTC) . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1.16 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . . . . . . . . . .12  
3.1.17 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1.18 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .12  
3.1.19 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . . . . . . . . .12  
3.1.20 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .12  
3.1.21 Digital to Analog Converter (DAC) . . . . . . . . . . . . . . . . . . . . .12  
3.1.22 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . .12  
3.1.23 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . .12  
3.1.24 Advanced Encryption Standard Accelerator (AES) . . . . . . . . . . . . . . . .13  
3.1.25 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . .13  
3.1.26 Liquid Crystal Display Driver (LCD) . . . . . . . . . . . . . . . . . . . . .13  
3.2 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.2.1 EFM32TG108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.2.2 EFM32TG110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2.3 EFM32TG210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.2.4 EFM32TG222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.2.5 EFM32TG225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.2.6 EFM32TG230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.2.7 EFM32TG232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.2.8 EFM32TG822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.2.9 EFM32TG825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.2.10 EFM32TG840 . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.2.11 EFM32TG842 . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
silabs.com | Building a more connected world.  
Rev. 2.10 | 6  
4.1 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.1.1 Typical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.1.2 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . .27  
4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.3 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.4 Current Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.4.1 EM2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . .29  
4.4.2 EM3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . .29  
4.4.3 EM4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . .30  
4.5 Transition between Energy Modes . . . . . . . . . . . . . . . . . . . . . . .30  
4.6 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.7 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.8 General Purpose Input Output . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.9 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4.9.1 LFXO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
4.9.2 HFXO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
4.9.3 LFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.9.4 HFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
4.9.5 AUXHFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
4.9.6 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
4.10 Analog Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . .47  
4.10.1 Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . .53  
4.11 Digital Analog Converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . .57  
4.12 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . .59  
4.13 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . . .64  
4.14 Voltage Comparator (VCMP) . . . . . . . . . . . . . . . . . . . . . . . . .66  
4.15 LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
4.16 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.17 Digital Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.1 EFM32TG108 (QFN24) . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
5.1.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
5.1.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . .74  
5.1.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . .76  
5.2 EFM32TG110 (QFN24) . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
5.2.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
5.2.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . .80  
5.2.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . .82  
5.2.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . .83  
5.3 EFM32TG210 (QFN32) . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
5.3.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
5.3.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . .87  
silabs.com | Building a more connected world.  
Rev. 2.10 | 7  
5.3.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . .90  
5.3.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . .90  
5.4 EFM32TG222 (TQFP48) . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.4.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
5.4.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . .95  
5.4.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . .98  
5.4.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . .98  
5.5 EFM32TG225 (BGA48) . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
5.5.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
5.5.2 Alternate Functionality Pinout  
5.5.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.5.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . .106  
5.6 EFM32TG230 (QFN64) . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.6.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 07  
5.6.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . 1.12  
5.6.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 116  
. . . . . . . . . . . . . . . . . . . . . 1.03  
5.6.4 Opamp Pinout Overview  
. . . . . . . . . . . . . . . . . . . . . . . .116  
5.7 EFM32TG232 (TQFP64)  
. . . . . . . . . . . . . . . . . . . . . . . . 1.17  
5.7.1 Pinout  
5.7.2 Alternate Functionality Pinout  
5.7.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 126  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 17  
. . . . . . . . . . . . . . . . . . . . . 1.22  
5.7.4 Opamp Pinout Overview  
. . . . . . . . . . . . . . . . . . . . . . . .126  
5.8 EFM32TG822 (TQFP48)  
. . . . . . . . . . . . . . . . . . . . . . . . 1.27  
5.8.1 Pinout  
5.8.2 Alternate Functionality Pinout  
5.8.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 135  
5.8.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . .135  
5.9 EFM32TG825 (BGA48) . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
5.9.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 36  
5.9.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . 1.40  
5.9.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 144  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 27  
. . . . . . . . . . . . . . . . . . . . . 1.31  
5.9.4 Opamp Pinout Overview  
. . . . . . . . . . . . . . . . . . . . . . . .144  
5.10 EFM32TG840 (QFN64)  
. . . . . . . . . . . . . . . . . . . . . . . . 1.45  
5.10.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
5.10.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . .150  
5.10.3 GPIO Pinout Overview  
. . . . . . . . . . . . . . . . . . . . . . . 1. 55  
5.10.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . 155  
5.11 EFM32TG842 (TQFP64) . . . . . . . . . . . . . . . . . . . . . . . . .156  
5.11.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
5.11.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . .160  
5.11.3 GPIO Pinout Overview  
. . . . . . . . . . . . . . . . . . . . . . . 1. 65  
5.11.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . 165  
6. BGA48 Package Specifications . . . . . . . . . . . . . . . . . . . . . . 1.66  
6.1 BGA48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .166  
6.2 BGA48 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
silabs.com | Building a more connected world.  
Rev. 2.10 | 8  
6.3 BGA48 Package Marking  
. . . . . . . . . . . . . . . . . . . . . . . . .169  
7. QFN24 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 170  
7.1 QFN24 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .170  
7.2 QFN24 PCB Layout  
. . . . . . . . . . . . . . . . . . . . . . . . . . .171  
. . . . . . . . . . . . . . . . . . . . . . . . .173  
7.3 QFN24 Package Marking  
8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 174  
8.1 QFN32 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .174  
8.2 QFN32 PCB Layout  
. . . . . . . . . . . . . . . . . . . . . . . . . . .175  
. . . . . . . . . . . . . . . . . . . . . . . . .177  
8.3 QFN32 Package Marking  
9. QFN64 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 178  
9.1 QFN64 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .178  
9.2 QFN64 PCB Layout  
. . . . . . . . . . . . . . . . . . . . . . . . . . .180  
. . . . . . . . . . . . . . . . . . . . . . . . .182  
9.3 QFN64 Package Marking  
10. TQFP48 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 183  
10.1 TQFP48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . .183  
10.2 TQFP48 PCB Layout  
. . . . . . . . . . . . . . . . . . . . . . . . . .185  
. . . . . . . . . . . . . . . . . . . . . . . 1. 87  
10.3 TQFP48 Package Marking  
11. TQFP64 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 188  
11.1 TQFP64 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . .188  
11.2 TQFP64 PCB Layout  
. . . . . . . . . . . . . . . . . . . . . . . . . .190  
. . . . . . . . . . . . . . . . . . . . . . . 1. 92  
11.3 TQFP64 Package Marking  
12. Chip Revision, Solder Information, Errata . . . . . . . . . . . . . . . . . . .193  
12.1 Chip Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
12.2 Soldering Information  
12.3 Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 93  
13. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
. . . . . . . . . . . . . . . . . . . . . . . . . .193  
silabs.com | Building a more connected world.  
Rev. 2.10 | 9  
EFM32TG Data Sheet  
System Summary  
3. System Summary  
3.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-  
M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the  
EFM32TG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and  
low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of  
the configuration for the EFM32TG devices. For a complete feature set and in-depth information on the modules, refer to the .  
A block diagram of the EFM32TG is shown in the following figure.  
Core / Memory  
Clock Management  
Energy Management  
Security  
High Frequency  
High Frequency  
Voltage  
Regulator  
Voltage  
Comparator  
Crystal Oscillator  
RC Oscillator  
ARM CortexTM M3 processor  
Hardware AES  
Auxiliary High  
Freq. RC Osc.  
Low Freq.  
RC Oscillator  
Flash Program  
Memory  
Debug Interface  
DMA Controller  
Power-on  
Reset  
Brown-out  
Detector  
Low Frequency  
Crystal Oscillator  
Watchdog  
Oscillator  
RAM Memory  
32-bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/O Ports  
Timers and Triggers  
Analog Interfaces  
Timer/Counter  
Low Energy Timer  
Pulse Counter  
LESENSE  
ADC  
DAC  
External  
Interrupts  
General  
Purpose I/O  
I2C  
USART  
Operational  
Amplifier  
Analog  
Comparator  
Real Time Counter  
Watchdog Timer  
Low Energy  
UARTTM  
Pin Reset  
LCD Controller  
Lowest power mode with peripheral operational:  
EM0 - Active  
EM2 – Deep Sleep  
EM1 - Sleep  
EM3 - Stop  
EM4 - Shutoff  
Figure 3.1. Block Diagram  
3.1.1 ARM Cortex-M3 Core  
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A wake-up Interrupt  
Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in  
EFM32TG Reference Manual.  
3.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire  
Viewer pin which can be used to output profiling information, data trace and software-generated messages.  
3.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller. The flash memory is readable and  
writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block.  
Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock  
bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations  
are supported in the energy modes EM0 and EM1.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 10  
EFM32TG Data Sheet  
System Summary  
3.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing  
the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance  
data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230  
µDMA controller licensed from ARM.  
3.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32TG.  
3.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32TG microcontrollers. Each energy mode man-  
ages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.  
3.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32TG. The CMU provides  
the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the  
available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not  
wasting power on peripherals and oscillators that are inactive.  
3.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may  
e.g. be caused by an external event, such as an ESD pulse, or by a software failure.  
3.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each  
other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex  
signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but  
edge triggers and other functionality can be applied by the PRS.  
3.1.10 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and  
supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all  
the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant  
system. The interface provided to software by the I2C module, allows both fine-grained control of the transmission process and close to  
automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.  
3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full  
duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-  
Cards, IrDA, and I2S devices.  
3.1.12 Pre-Programmed UART Bootloader  
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are  
supported. The autobaud feature, interface and commands are described further in the application note.  
3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a  
32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support  
to make asynchronous serial communication possible with minimum of software intervention and energy consumption.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 11  
EFM32TG Data Sheet  
System Summary  
3.1.14 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse- Width Modulation (PWM) out-  
put.  
3.1.15 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC  
oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time  
since the RTC is enabled in EM2 where most of the device is powered down.  
3.1.16 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0.  
Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be  
performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of  
waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start  
counting on compare matches from the RTC.  
3.1.17 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either  
the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.  
3.1.18 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high-  
er. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current  
consumption can be configured by altering the current supply to the comparator.  
3.1.19 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply  
falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by  
altering the current supply to the comparator.  
3.1.20 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per  
second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.  
3.1.21 Digital to Analog Converter (DAC)  
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail,  
with 12-bit resolution. It has two single-ended output buffers which can be combined into one differential output. The DAC may be used  
for a number of different applications such as sensor interfaces or sound output.  
3.1.22 Operational Amplifier (OPAMP)  
The EFM32TG features up to three Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-  
to-rail differential input and rail-to-rail single-ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin,  
OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable  
gain using internal resistors etc.  
3.1.23 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 8 individually configu-  
rable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and meas-  
urement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a pro-  
grammable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy  
mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 12  
EFM32TG Data Sheet  
System Summary  
3.1.24 Advanced Encryption Standard Accelerator (AES)  
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data  
block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave  
which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or  
16-bit operations are not supported.  
3.1.25 General Purpose Input/Output (GPIO)  
In the EFM32TG, there are up to 56 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each.  
These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive  
strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Tim-  
er PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asyn-  
chronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed  
through the Peripheral Reflex System to other peripherals.  
3.1.26 Liquid Crystal Display Driver (LCD)  
The LCD driver is capable of driving a segmented LCD display with up to 8x20 segments. A voltage boost function enables it to provide  
the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations  
on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame  
Counter interrupt that can wake-up the device on a regular basis for updating data.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 13  
EFM32TG Data Sheet  
System Summary  
3.2 Configuration Summary  
3.2.1 EFM32TG108  
The features of the EFM32TG108 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.1. EFM32TG108 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
17 pins  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
WDOG  
PRS  
NA  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
GPIO  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[1:0], ACMP0_O  
ACMP1_CH[1:0], ACMP1_O  
NA  
Available pins are shown in 5.1.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 14  
EFM32TG Data Sheet  
System Summary  
3.2.2 EFM32TG110  
The features of the EFM32TG110 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.2. EFM32TG110 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[1:0], ACMP0_O  
ACMP1_CH[1:0], ACMP1_O  
NA  
ADC0_CH[7:6]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, In-  
puts: OPAMP_P1, OPAMP_N1  
AES  
Full configuration  
17 pins  
NA  
GPIO  
Available pins are shown in 5.2.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 15  
EFM32TG Data Sheet  
System Summary  
3.2.3 EFM32TG210  
The features of the EFM32TG210 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.3. EFM32TG210 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[1:0], ACMP0_O  
ACMP1_CH[7:5], ACMP1_O  
NA  
ADC0_CH[7:4]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,  
OPAMP_OUT2, Inputs: OPAMP_P1, OPAMP_N1, OPAMP_P2  
AES  
Full configuration  
24 pins  
NA  
GPIO  
Available pins are shown in 5.3.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 16  
EFM32TG Data Sheet  
System Summary  
3.2.4 EFM32TG222  
The features of the EFM32TG222 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.4. EFM32TG222 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[4:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
ADC0_CH[7:4]  
DAC0  
DAC0_OUT[1], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,  
OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1,  
OPAMP_P2  
AES  
Full configuration  
37 pins  
NA  
GPIO  
Available pins are shown in 5.4.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 17  
EFM32TG Data Sheet  
System Summary  
3.2.5 EFM32TG225  
The features of the EFM32TG225 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.5. EFM32TG225 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[3:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
ADC0_CH[7:4]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,  
OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1,  
OPAMP_P2  
AES  
Full configuration  
37 pins  
NA  
GPIO  
Available pins are shown in 5.5.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 18  
EFM32TG Data Sheet  
System Summary  
3.2.6 EFM32TG230  
The features of the EFM32TG230 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.6. EFM32TG230 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
ADC0_CH[7:0]  
DAC0  
DAC0_OUT[1:0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px,  
OPAMP_Nx  
AES  
Full configuration  
56 pins  
NA  
GPIO  
Available pins are shown in 5.6.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 19  
EFM32TG Data Sheet  
System Summary  
3.2.7 EFM32TG232  
The features of the EFM32TG232 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.7. EFM32TG232 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
ADC0_CH[7:0]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px,  
OPAMP_Nx  
AES  
Full configuration  
53 pins  
NA  
GPIO  
Available pins are shown in 5.7.3 GPIO Pinout Overview  
silabs.com | Building a more connected world.  
Rev. 2.10 | 20  
EFM32TG Data Sheet  
System Summary  
3.2.8 EFM32TG822  
The features of the EFM32TG822 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.8. EFM32TG822 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[4], ACMP0_O  
ACMP1_CH[7:5], ACMP1_O  
NA  
ADC0_CH[7:4]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs:  
OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2  
AES  
GPIO  
LCD  
Full configuration  
37 pins  
NA  
Available pins are shown in 5.8.3 GPIO Pinout Overview  
Full configuration  
LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,  
LCD_BEXT  
silabs.com | Building a more connected world.  
Rev. 2.10 | 21  
EFM32TG Data Sheet  
System Summary  
3.2.9 EFM32TG825  
The features of the EFM32TG825 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.9. EFM32TG825 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[4], ACMP0_O  
ACMP1_CH[7:5], ACMP1_O  
NA  
ADC0_CH[7:4]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs:  
OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2  
AES  
GPIO  
LCD  
Full configuration  
37 pins  
NA  
Available pins are shown in 5.9.3 GPIO Pinout Overview  
Full configuration  
LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,  
LCD_BEXT  
silabs.com | Building a more connected world.  
Rev. 2.10 | 22  
EFM32TG Data Sheet  
System Summary  
3.2.10 EFM32TG840  
The features of the EFM32TG840 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.10. EFM32TG840 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[7:4], ACMP0_O  
ACMP1_CH[7:4], ACMP1_O  
NA  
ADC0_CH[7:0]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,  
OPAMP_OUT2, Inputs: OPAMP_Px, OPAMP_Nx  
AES  
GPIO  
LCD  
Full configuration  
56 pins  
NA  
Available pins are shown in 5.10.3 GPIO Pinout Overview  
Full configuration  
LCD_SEG[19:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,  
LCD_BEXT  
silabs.com | Building a more connected world.  
Rev. 2.10 | 23  
EFM32TG Data Sheet  
System Summary  
3.2.11 EFM32TG842  
The features of the EFM32TG842 is a subset of the feature set described in the EFM32TG Reference Manual. The following table de-  
scribes device specific implementation of the features.  
Table 3.11. EFM32TG842 Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration, 16-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO, DBG_SWO  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
NA  
WDOG  
PRS  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART0  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
ADC0  
LET0_O[1:0]  
PCNT0_S[1:0]  
ACMP0_CH[7:4], ACMP0_O  
ACMP1_CH[7:4], ACMP1_O  
NA  
ADC0_CH[7:0]  
DAC0  
DAC0_OUT[0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,  
OPAMP_OUT2, Inputs: OPAMP_Px, OPAMP_Nx  
AES  
GPIO  
LCD  
Full configuration  
53 pins  
NA  
Available pins are shown in 5.11.3 GPIO Pinout Overview  
Full configuration  
LCD_SEG[17:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,  
LCD_BEXT  
silabs.com | Building a more connected world.  
Rev. 2.10 | 24  
EFM32TG Data Sheet  
System Summary  
3.3 Memory Map  
The EFM32TG memory map is shown in the following figure, with RAM and Flash sizes for the largest memory configuration.  
Figure 3.2. System Address Space with Core and Code Space Listing  
silabs.com | Building a more connected world.  
Rev. 2.10 | 25  
EFM32TG Data Sheet  
System Summary  
Figure 3.3. System Address Space with Peripheral Listing  
silabs.com | Building a more connected world.  
Rev. 2.10 | 26  
EFM32TG Data Sheet  
Electrical Characteristics  
4. Electrical Characteristics  
4.1 Test Conditions  
4.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in 4.3 General Operating Conditions, unless otherwise specified.  
4.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined  
in 4.3 General Operating Conditions, unless otherwise specified.  
4.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond  
the limits specified in the following table may affect the device reliability or cause permanent damage to the device. Functional operat-  
ing conditions are given in 4.3 General Operating Conditions.  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Symbol  
TSTG  
TS  
Test Condition  
Min  
-40  
Typ  
Max  
150  
260  
Unit  
°C  
Storage temperature range  
Maximum soldering temperature  
Latest IPC/JEDEC J-  
STD-020 Standard  
°C  
External main supply voltage  
Voltage on any I/O pin  
VDDMAX  
0
-0.3  
3.8  
VDD+0.3  
100  
V
V
VIOPIN  
Current per I/O pin (sink)  
Current per I/O pin (source)  
IIOMAX_SINK  
IIOMAX_SOURCE  
mA  
mA  
-100  
4.3 General Operating Conditions  
Table 4.2. General Operating Conditions  
Parameter  
Symbol  
TAMB  
VDDOP  
fAPB  
Min  
-40  
1.98  
Typ  
Max  
85  
Unit  
°C  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
3.8  
32  
V
MHz  
MHz  
fAHB  
32  
silabs.com | Building a more connected world.  
Rev. 2.10 | 27  
EFM32TG Data Sheet  
Electrical Characteristics  
4.4 Current Consumption  
Table 4.3. Current Consumption  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
32 MHz HFXO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
157  
µA/MHz  
28 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
150  
153  
155  
157  
162  
200  
53  
170  
172  
175  
178  
183  
240  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA  
21 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
EM0 current. No prescaling.  
Running prime number calcula-  
tion code from Flash. (Produc-  
tion test condition = 14 MHz)  
14 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
IEM0  
11 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
6.6 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
1.2 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
32 MHz HFXO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
28 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
51  
57  
21 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
55  
59  
14 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
56  
61  
EM1 current (Production test  
condition = 14 MHz)  
IEM1  
11 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
58  
63  
6.6 MHz HFRCO, all peripheral clocks disa-  
bled, VDD= 3.0 V  
63  
68  
1.2 MHz HFRCO. all peripheral clocks disa-  
bled, VDD= 3.0 V  
100  
1.0  
122  
1.2  
EM2 current with RTC prescaled to 1 Hz,  
32.768 kHz LFRCO, VDD= 3.0 V,  
TAMB=25ºC  
IEM2  
EM2 current  
EM2 current with RTC prescaled to 1 Hz,  
32.768 kHz LFRCO, VDD= 3.0 V,  
TAMB=85ºC  
2.4  
5.0  
µA  
VDD= 3.0 V, TAMB=25ºC  
VDD= 3.0 V, TAMB=85ºC  
VDD= 3.0 V, TAMB=25ºC  
VDD= 3.0 V, TAMB=85ºC  
0.59  
2.0  
1.0  
4.5  
µA  
µA  
µA  
µA  
IEM3  
EM3 current  
EM4 current  
0.02  
0.25  
0.055  
0.70  
IEM4  
silabs.com | Building a more connected world.  
Rev. 2.10 | 28  
EFM32TG Data Sheet  
Electrical Characteristics  
4.4.1 EM2 Current Consumption  
Figure 4.1. EM2 Current Consumption, RTC prescaled to 1 kHz, 32.768 kHz LFRCO  
4.4.2 EM3 Current Consumption  
Figure 4.2. EM3 Current Consumption  
silabs.com | Building a more connected world.  
Rev. 2.10 | 29  
EFM32TG Data Sheet  
Electrical Characteristics  
4.4.3 EM4 Current Consumption  
Figure 4.3. EM4 Current Consumption  
4.5 Transition between Energy Modes  
The transition times are measured from the trigger to the first clock edge in the CPU.  
Table 4.4. Energy Modes Transitions  
Parameter  
Symbol  
tEM10  
Min  
Typ  
0
Max  
Unit  
Transition time from EM1 to EM0  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
HFCORECLK cycles  
tEM20  
2
µs  
µs  
µs  
tEM30  
2
tEM40  
163  
silabs.com | Building a more connected world.  
Rev. 2.10 | 30  
EFM32TG Data Sheet  
Electrical Characteristics  
4.6 Power Management  
The EFM32TG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level.  
For practical schematic recommendations, please see the application note, AN0002 EFM32 Hardware Design Considerations.  
Table 4.5. Power Management  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
BOD threshold on falling exter- VBODextthr-  
nal supply voltage  
1.74  
1.96  
V
BOD threshold on rising exter-  
nal supply voltage  
VBODextthr+  
1.85  
1.98  
1.98  
V
V
Power-on Reset (POR) thresh- VPORthr+  
old on rising external supply  
voltage  
Delay from reset is released un- tRESET  
til program execution starts  
Applies to Power-on Reset, Brown-  
out Reset and pin reset.  
163  
1
µs  
Voltage regulator decoupling  
capacitor.  
CDECOUPLE  
X5R capacitor recommended. Apply  
between DECOUPLE pin and  
GROUND  
µF  
4.7 Flash  
Table 4.6. Flash  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Flash erase cycles before fail-  
ure  
ECFLASH  
20000  
cycles  
21  
Flash word write cycles be-  
tween erase  
WWCFLASH  
cycles  
TAMB<150ºC  
TAMB<85ºC  
TAMB<70ºC  
10000  
10  
h
years  
years  
µs  
RETFLASH  
Flash data retention  
20  
Word (32-bit) programming time tW_PROG  
20  
Page erase time  
Device erase time  
Erase current  
tP_ERASE  
tD_ERASE  
IERASE  
20  
20.4  
40.8  
20.8  
41.6  
ms  
40  
ms  
72  
mA  
mA  
V
72  
Write current  
IWRITE  
Supply voltage during flash  
erase and write  
VFLASH  
1.98  
3.8  
Note:  
1. There is a maximum of two writes to the same word between each erase due to a physical limitation of the flash. No bit should be  
written to ‘0’ more than once between erases. To write a word twice between erases, any bit written to ‘0’ by the first write should  
be written to ‘1’ by the second write. This preserves the specified flash write/erase endurance and does not change the ‘0’ written  
by the first write.  
2. Measured at 25°C  
silabs.com | Building a more connected world.  
Rev. 2.10 | 31  
EFM32TG Data Sheet  
Electrical Characteristics  
4.8 General Purpose Input Output  
Table 4.7. GPIO  
Parameter  
Symbol Test Condition  
VIOIL  
Min  
Typ  
Max  
0.30×VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.70×VDD  
V
Sourcing 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE = LOW-  
EST  
0.80×VDD  
V
Sourcing 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE = LOW-  
EST  
0.90×VDD  
V
Sourcing 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.85×VDD  
0.90×VDD  
V
V
V
Sourcing 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE = LOW  
Output high voltage (Produc-  
tion test condition = 3.0V,  
DRIVEMODE = STANDARD)  
VIOOH  
Sourcing 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE =  
STANDARD  
0.75×VDD  
Sourcing 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE =  
STANDARD  
0.85×VDD  
V
Sourcing 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE = HIGH  
0.60×VDD  
0.80×VDD  
V
V
V
Sourcing 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE = HIGH  
Sinking 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE = LOW-  
EST  
0.20×VDD  
Sinking 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE = LOW-  
EST  
0.10×VDD  
V
Sinking 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.10×VDD  
0.05×VDD  
V
V
V
Sinking 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE = LOW  
Output low voltage (Produc-  
tion test condition = 3.0V,  
DRIVEMODE = STANDARD)  
VIOOL  
Sinking 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE =  
STANDARD  
0.30×VDD  
Sinking 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE =  
STANDARD  
0.20×VDD  
V
Sinking 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE = HIGH  
0.35×VDD  
0.20×VDD  
V
V
Sinking 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE = HIGH  
silabs.com | Building a more connected world.  
Rev. 2.10 | 32  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Input leakage current  
IIOLEAK  
High Impedance IO connected to  
±0.1  
±100  
nA  
GROUND or VDD  
I/O pin pull-up resistor  
RPU  
10  
40  
40  
50  
kΩ  
kΩ  
Ω
I/O pin pull-down resistor  
Internal ESD series resistor  
RPD  
RIOESD  
200  
Pulse width of pulses to be re- tIO-  
moved by the glitch suppres-  
ns  
GLITCH  
sion filter  
tIOOF  
GPIO_Px_CTRL DRIVEMODE = LOW-  
EST and load capacitance  
CL=12.5-25pF.  
20+0.1×CL  
250  
ns  
Output fall time  
GPIO_Px_CTRL DRIVEMODE = LOW  
and load capacitance CL=350-600pF  
20+0.1×CL  
0.1×VDD  
250  
ns  
V
I/O pin hysteresis (VIOTHR+  
-
VIOHYST VDD = 1.98 - 3.8 V  
VIOTHR-  
)
silabs.com | Building a more connected world.  
Rev. 2.10 | 33  
EFM32TG Data Sheet  
Electrical Characteristics  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
Figure 4.4. Typical Low-Level Output Current, 2V Supply Voltage  
silabs.com | Building a more connected world.  
Rev. 2.10 | 34  
EFM32TG Data Sheet  
Electrical Characteristics  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.00  
–0.05  
–0.10  
–0.15  
–0.20  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
0
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–10  
–5  
–20  
–30  
–40  
–50  
–10  
–15  
–20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
Figure 4.5. Typical High-Level Output Current, 2 V Supply Voltage  
silabs.com | Building a more connected world.  
Rev. 2.10 | 35  
EFM32TG Data Sheet  
Electrical Characteristics  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
40  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
Figure 4.6. Typical Low-Level Output Current, 3 V Supply Voltage  
silabs.com | Building a more connected world.  
Rev. 2.10 | 36  
EFM32TG Data Sheet  
Electrical Characteristics  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
0
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–10  
–10  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
Figure 4.7. Typical High-Level Output Current, 3 V Supply Voltage  
silabs.com | Building a more connected world.  
Rev. 2.10 | 37  
EFM32TG Data Sheet  
Electrical Characteristics  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
Figure 4.8. Typical Low-Level Output Current, 3.8 V Supply Voltage  
silabs.com | Building a more connected world.  
Rev. 2.10 | 38  
EFM32TG Data Sheet  
Electrical Characteristics  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
0
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–10  
–10  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
Figure 4.9. Typical High-Level Output Current, 3.8 V Supply Voltage  
4.9 Oscillators  
silabs.com | Building a more connected world.  
Rev. 2.10 | 39  
EFM32TG Data Sheet  
Electrical Characteristics  
4.9.1 LFXO  
Parameter  
Table 4.8. LFXO  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supported nominal crystal  
frequency  
fLFXO  
32.768  
kHz  
Supported crystal equivalent ESRLFXO  
series resistance (ESR)  
30  
120  
25  
kΩ  
pF  
nA  
ms  
X1  
Supported crystal external  
load range  
CLFXOL  
Current consumption for core ILFXO  
and buffer after startup.  
ESR=30 kOhm, CL=10 pF, LFXO-  
BOOST in CMU_CTRL is 1  
190  
400  
Start- up time.  
tLFXO  
ESR=30 kOhm, CL=10 pF, 40% - 60%  
duty cycle has been reached, LFXO-  
BOOST in CMU_CTRL is 1  
Note:  
1. See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio.  
For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capaci-  
tance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note  
AN0016 EFM32 Oscillator Design Consideration.  
4.9.2 HFXO  
Table 4.9. HFXO  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supported nominal crystal  
Frequency  
fHFXO  
4
32  
MHz  
ESRHFXO  
Crystal frequency 32 MHz  
Crystal frequency 4 MHz  
20  
30  
400  
60  
1500  
Ω
Ω
Supported crystal equivalent  
series resistance (ESR)  
The transconductance of the gmHFXO  
HFXO input transistor at crys-  
tal startup  
HFXOBOOST in CMU_CTRL equals  
0b11  
mS  
Supported crystal external  
load range  
CHFXOL  
5
25  
pF  
µA  
4 MHz: ESR=400 Ohm, CL=20 pF,  
HFXOBOOST in CMU_CTRL equals  
0b11  
85  
Current consumption for  
HFXO after startup  
gmHFXO  
32 MHz: ESR=30 Ohm, CL=10 pF,  
HFXOBOOST in CMU_CTRL equals  
0b11  
165  
400  
µA  
µs  
Startup time  
tHFXO  
32 MHz: ESR=30 Ohm, CL=10 pF,  
HFXOBOOST in CMU_CTRL equals  
0b11  
silabs.com | Building a more connected world.  
Rev. 2.10 | 40  
EFM32TG Data Sheet  
Electrical Characteristics  
4.9.3 LFRCO  
Parameter  
Table 4.10. LFRCO  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Oscillation frequency, VDD  
=
fLFRCO  
31.29  
32.768  
34.24  
kHz  
3.0 V, TAMB=25°C  
Startup time not including  
software calibration  
tLFRCO  
150  
µs  
Current consumption  
ILFRCO  
210  
1.5  
380  
nA  
%
Frequency step for LSB  
change in TUNING value  
TUNESTEPLFRCO  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
-40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–40  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
silabs.com | Building a more connected world.  
Rev. 2.10 | 41  
EFM32TG Data Sheet  
Electrical Characteristics  
4.9.4 HFRCO  
Parameter  
Table 4.11. HFRCO  
Symbol  
Test Condition  
Min  
Typ  
28.0  
21.0  
14.0  
11.0  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
27.16  
20.37  
13.58  
10.67  
28.84  
21.63  
14.42  
11.33  
Oscillation frequency, VDD  
3.0 V, TAMB=25ºC  
=
fHFRCO  
6.401  
6.601  
6.801  
1.162  
1.202  
0.6  
160  
125  
104  
94  
1.242  
1 MHz frequency band  
fHFRCO = 14 MHz  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
fHFRCO = 14 MHz  
fHFRCO = 11 MHz  
fHFRCO = 6.6 MHz  
fHFRCO = 1.2 MHz  
MHz  
Cycles  
µA  
tHFRCO_settling  
Settling time after start-up  
190  
155  
120  
110  
90  
µA  
Current consumption (Pro-  
duction test condition = 14  
MHz)  
µA  
IHFRCO  
µA  
63  
µA  
22  
32  
µA  
0.33  
Frequency step for LSB  
change in TUNING value  
TUNESTEPHFRCO  
%
Note:  
1. For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.  
2. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment  
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature.  
By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and  
the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating condi-  
tions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 42  
EFM32TG Data Sheet  
Electrical Characteristics  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
-40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–40  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
-40°C  
6.35  
2.0 V  
3.0 V  
3.8 V  
25°C  
85°C  
6.30  
–40  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature  
silabs.com | Building a more connected world.  
Rev. 2.10 | 43  
EFM32TG Data Sheet  
Electrical Characteristics  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
-40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–40  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
-40°C  
13.5  
2.0 V  
3.0 V  
3.8 V  
25°C  
85°C  
13.4  
–40  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature  
silabs.com | Building a more connected world.  
Rev. 2.10 | 44  
EFM32TG Data Sheet  
Electrical Characteristics  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
-40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–40  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
28.4  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
-40°C  
27.0  
2.0 V  
3.0 V  
3.8 V  
25°C  
85°C  
26.8  
–40  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 4.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature  
silabs.com | Building a more connected world.  
Rev. 2.10 | 45  
EFM32TG Data Sheet  
Electrical Characteristics  
4.9.5 AUXHFRCO  
Parameter  
Table 4.12. AUXHFRCO  
Symbol  
Test Condition  
Min  
Typ  
28.0  
21.0  
14.0  
11.0  
Max  
28.84  
21.63  
14.42  
11.33  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
27.16  
20.37  
13.58  
10.67  
Oscillation frequency, VDD  
3.0 V, TAMB=25ºC  
=
fAUXHFRCO  
6.401  
6.601  
6.801  
1.162  
1.202  
0.6  
1.242  
1 MHz frequency band  
MHz  
Cycles  
%
Settling time after start-up  
tAUXHFRCO_settling fAUXHFRCO = 14 MHz  
0.33  
Frequency step for LSB  
change in TUNING value  
TUNE-  
STEPAUXHFRCO  
Note:  
1. For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable  
2. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough  
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and  
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUN-  
ING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz  
across operating conditions.  
4.9.6 ULFRCO  
Table 4.13. ULFRCO  
Parameter  
Symbol  
Test Condition  
Min  
0.7  
Typ  
Max  
1.75  
Unit  
kHz  
Oscillation frequency  
Temperature coefficient  
Supply voltage coefficient  
fULFRCO  
25°C, 3V  
TCULFRCO  
VCULFRCO  
0.05  
-18.2  
%/°C  
%/V  
silabs.com | Building a more connected world.  
Rev. 2.10 | 46  
EFM32TG Data Sheet  
Electrical Characteristics  
4.10 Analog Digital Converter (ADC)  
Table 4.14. ADC  
Parameter  
Symbol  
Test Condition  
Single ended  
Differential  
Min  
0
Typ  
Max  
VREF  
VREF/2  
VDD  
Unit  
V
VADCIN  
Input voltage range  
-VREF/2  
1.25  
V
Input range of external refer-  
ence voltage, single ended and  
differential  
VADCREFIN  
V
Input range of external negative VADCREFIN_CH7  
reference voltage on channel 7  
See VADCREFIN  
0
VDD-1.1  
VDD  
V
V
Input range of external positive VADCREFIN_CH6  
reference voltage on channel 6  
See VADCREFIN  
0.625  
Common mode input range  
Input current  
VADCCMIN  
IADCIN  
0
<100  
65  
VDD  
V
2pF sampling capacitors  
nA  
dB  
Analog input common mode re- CMRRADC  
jection ratio  
1 MSamples/s, 12 bit, external  
reference  
377  
67  
µA  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b00  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b01  
68  
71  
µA  
µA  
µA  
µA  
IADC  
Average active current  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b11  
244  
65  
Current consumption of internal IADCREF  
voltage reference  
Internal voltage reference  
Input capacitance  
CADCIN  
300  
2
800  
pF  
Ω
Input ON resistance  
Input RC filter resistance  
RADCIN  
RADCFILT  
CADCFILT  
10  
250  
kΩ  
fF  
Input RC filter/decoupling ca-  
pacitance  
ADC Clock Frequency  
fADCCLK  
13  
MHz  
silabs.com | Building a more connected world.  
Rev. 2.10 | 47  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
6 bit  
7
ADCCLK  
Cycles  
8 bit  
11  
13  
1
ADCCLK  
Cycles  
tADCCONV  
Conversion time  
12 bit  
ADCCLK  
Cycles  
Acquisition time  
tADCACQ  
Programmable  
256  
ADCCLK  
Cycles  
Required acquisition time for  
VDD/3 reference  
tADCACQVDD3  
2
µs  
Startup time of reference gener- tADCSTART  
ator and ADC core in NORMAL  
modeStartup time of reference  
generator and ADC core in  
5
1
µs  
µs  
KEEPADCWARM mode  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V reference  
63  
59  
63  
65  
60  
65  
54  
67  
69  
62  
63  
67  
63  
66  
66  
69  
70  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
SNRADC  
Signal to Noise Ratio (SNR)  
200 kSamples/s, 12 bit, single  
ended, internal 1.25V reference  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
200 kSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
200 kSamples/s, 12 bit, differen-  
tial, 5V reference  
200 kSamples/s, 12 bit, differen-  
tial, VDD reference  
200 kSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
silabs.com | Building a more connected world.  
Rev. 2.10 | 48  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, single  
58  
dB  
ended, internal 1.25V reference  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
62  
62  
64  
60  
64  
54  
66  
68  
61  
65  
66  
63  
66  
66  
68  
69  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
SIgnal-to-Noise And Distortion-  
ratio (SINAD)  
SINADADC  
200 kSamples/s, 12 bit, single  
ended, internal 1.25V reference  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
200 kSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
200 kSamples/s, 12 bit, differen-  
tial, 5V reference  
200 kSamples/s, 12 bit, differen-  
tial, VDD reference  
200 kSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
silabs.com | Building a more connected world.  
Rev. 2.10 | 49  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, single  
64  
dBc  
ended, internal 1.25V reference  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
68  
76  
73  
66  
77  
76  
75  
69  
75  
75  
76  
79  
79  
78  
79  
79  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
Spurious-Free Dynamic Range  
(SFDR)  
SFDRADC  
200 kSamples/s, 12 bit, single  
ended, internal 1.25V reference  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
200 kSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
200 kSamples/s, 12 bit, differen-  
tial, 5V reference  
200 kSamples/s, 12 bit, differen-  
tial, VDD reference  
200 kSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
After calibration, single ended  
After calibration, differential  
-4  
0.3  
0.3  
4
mV  
mV  
VADCOFFSET  
Offset voltage  
-1.92  
-6.3  
mV/ºC  
TGRADADCTH  
DNLADC  
Thermometer output gradient  
Differential non-linearity (DNL)  
ADC Co-  
des/ºC  
VDD= 3.0 V, external 2.5V refer-  
ence  
-1  
±0.7  
±1.2  
12  
4
LSB  
Integral non-linearity (INL), End INLADC  
point method  
VDD= 3.0 V, external 2.5V refer-  
ence  
±3  
LSB  
11.9991  
No missing codes  
MCADC  
bits  
0.012  
0.012  
0.0333  
0.033  
1.25V reference  
2.5V reference  
%/ºC  
%/ºC  
GAINED  
Gain error drift  
silabs.com | Building a more connected world.  
Rev. 2.10 | 50  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Offset error drift  
Note:  
Symbol  
Test Condition  
Min  
Typ  
0.22  
0.22  
Max  
0.73  
Unit  
1.25V reference  
LSB/ºC  
OFFSETED  
0.623  
2.5V reference  
LSB/ºC  
1. On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in the  
set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at  
all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
2. Typical numbers given by abs(Mean) / (85 - 25).  
3. Max number given by (abs(Mean) + 3x stddev) / (85 - 25).  
The integral non-linearity (INL) and differential non-linearity parameters are explained in the following two figures.  
Digital output code  
INL=|[(VD-VSS)/VLSBIDEAL] - D| where 0 < D < 2N  
- 1  
4095  
4094  
4093  
4092  
Actual ADC  
tranfer function  
before offset and  
gain correction  
Actual ADC  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
Figure 4.17. Integral Non-Linearity (INL)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 51  
EFM32TG Data Sheet  
Electrical Characteristics  
Digital  
output  
code  
DNL=|[(VD+1 - VD)/VLSBIDEAL] - 1| where 0 < D < 2N  
- 2  
Full Scale Range  
4095  
4094  
4093  
4092  
Example: Adjacent  
input value VD+1  
corrresponds to digital  
output code D+1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VDcorrresponds to  
digital output code D  
Code width =2 LSB  
DNL=1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL=1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
Figure 4.18. Differential Non-Linearity (DNL)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 52  
EFM32TG Data Sheet  
Electrical Characteristics  
4.10.1 Typical Performance  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
Figure 4.19. ADC Frequency Spectrum, VDD = 3 V, Temp = 25 °C  
silabs.com | Building a more connected world.  
Rev. 2.10 | 53  
EFM32TG Data Sheet  
Electrical Characteristics  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
Figure 4.20. ADC Integral Linearity Error vs Code, VDD = 3 V, Temp = 25 °C  
silabs.com | Building a more connected world.  
Rev. 2.10 | 54  
EFM32TG Data Sheet  
Electrical Characteristics  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
Figure 4.21. ADC Differential Linearity Error vs Code, VDD = 3 V, Temp = 25 °C  
silabs.com | Building a more connected world.  
Rev. 2.10 | 55  
EFM32TG Data Sheet  
Electrical Characteristics  
Offset vs Supply Voltage, Temp = 25°C  
Offset vs Temperature, VDD = 3V  
5
4
3
2
1
0
2.0  
1.5  
Vref=1V25  
Vref=2V5  
VRef=1V25  
VRef=2V5  
Vref=2XVDDVSS  
VRef=2XVDDVSS  
VRef=5VDIFF  
VRef=VDD  
Vref=5VDIFF  
Vref=VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
–0.5  
–1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
–40  
–15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Figure 4.22. ADC Absolute Offset, Common Mode = VDD/2  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDVSS  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDVSS  
5VDIFF  
85  
1V25  
–40  
–15  
5
25  
45  
65  
85  
–40  
–15  
5
25  
45  
65  
Temperature [°C]  
Temperature [°C]  
Figure 4.23. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3 V  
silabs.com | Building a more connected world.  
Rev. 2.10 | 56  
EFM32TG Data Sheet  
Electrical Characteristics  
4.11 Digital Analog Converter (DAC)  
Table 4.15. DAC  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
VDD  
VDD  
VDD  
Unit  
V
Output voltage range  
VDACOUT VDD voltage reference, single ended  
VDD voltage reference, differential  
VDACCM  
-VDD  
0
V
Output common mode voltage  
range  
V
500 kSamples/s, 12bit  
400  
200  
17  
650  
250  
25  
µA  
µA  
µA  
Active current including referen-  
ces for 2 channels  
IDAC  
100 kSamples/s, 12 bit  
1 kSamples/s 12 bit NORMAL  
Sample rate  
SRDAC  
500  
ksamples/  
s
Continuous Mode  
Sample/Hold Mode  
Sample/Off Mode  
2
1000  
250  
250  
kHz  
kHz  
fDAC  
DAC clock frequency  
kHz  
Clock cycles per conversion  
CYCDAC-  
cycles  
CONV  
Conversion time  
Settling time  
tDACCONV  
2
5
µs  
µs  
tDACSET-  
TLE  
500 kSamples/s, 12 bit, single ended,  
internal 1.25V reference  
58  
59  
58  
58  
59  
57  
54  
56  
53  
55  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
500 kSamples/s, 12 bit, single ended,  
internal 2.5V reference  
500 kSamples/s, 12 bit, differential, in-  
ternal 1.25V reference  
SNRDAC  
Signal to Noise Ratio (SNR)  
500 kSamples/s, 12 bit, differential, in-  
ternal 2.5V reference  
500 kSamples/s, 12 bit, differential,  
VDD reference  
500 kSamples/s, 12 bit, single ended,  
internal 1.25V reference  
500 kSamples/s, 12 bit, single ended,  
internal 2.5V reference  
500 kSamples/s, 12 bit, differential, in-  
ternal 1.25V reference  
Signal to Noise-pulse Distortion  
Ratio (SNDR)  
SNDRDAC  
500 kSamples/s, 12 bit, differential, in-  
ternal 2.5V reference  
500 kSamples/s, 12 bit, differential,  
VDD reference  
silabs.com | Building a more connected world.  
Rev. 2.10 | 57  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
500 kSamples/s, 12 bit, single ended,  
internal 1.25V reference  
62  
dBc  
500 kSamples/s, 12 bit, single ended,  
internal 2.5V reference  
56  
61  
55  
60  
dBc  
dBc  
dBc  
dBc  
500 kSamples/s, 12 bit, differential, in-  
ternal 1.25V reference  
Spurious-Free Dynamic  
Range(SFDR)  
SFDRDAC  
500 kSamples/s, 12 bit, differential, in-  
ternal 2.5V reference  
500 kSamples/s, 12 bit, differential,  
VDD reference  
Offset voltage  
VDACOFF- After calibration, single ended  
2
11  
mV  
mV  
SET  
After calibration, differential  
2
Differential non-linearity  
Integral non-linearity  
No missing codes  
Load current  
DNLDAC  
INLDAC  
MCDAC  
ILOAD_DC  
VDD= 3.0 V, VDD reference  
VDD= 3.0 V, VDD reference  
±1  
±5  
12  
LSB  
LSB  
bits  
mA  
silabs.com | Building a more connected world.  
Rev. 2.10 | 58  
EFM32TG Data Sheet  
Electrical Characteristics  
4.12 Operational Amplifier (OPAMP)  
The electrical characteristics for the Operational Amplifiers are based on simulations.  
Table 4.16. OPAMP  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0xF,  
350  
405  
µA  
(OPA2)HALFBIAS=0x0, Unity Gain  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, Unity Gain  
95  
13  
115  
17  
µA  
µA  
IOPAMP  
Active Current  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, Unity Gain  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
101  
98  
dB  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
dB  
GOL  
Open Loop Gain  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
91  
dB  
OPA0/OPA1 BIASPROG=0xF,  
HALFBIAS=0x0  
16.36  
0.81  
0.11  
2.11  
0.72  
0.09  
64  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
º
OPA0/OPA1 BIASPROG=0x7,  
HALFBIAS=0x1  
OPA0/OPA1 BIASPROG=0x0,  
HALFBIAS=0x1  
Gain Bandwidth Prod-  
uct  
GBWOPAMP  
OPA2 BIASPROG=0xF, HALF-  
BIAS=0x0  
OPA2 BIASPROG=0x7, HALF-  
BIAS=0x1  
OPA2 BIASPROG=0x0, HALF-  
BIAS=0x1  
BIASPROG=0xF, HALFBIAS=0x0,  
CL=75 pF  
BIASPROG=0x7, HALFBIAS=0x1,  
CL=75 pF  
58  
º
PMOPAMP  
Phase Margin  
BIASPROG=0x0, HALFBIAS=0x1,  
CL=75 pF  
58  
º
Input Resistance  
Load Resistance  
RINPUT  
200  
2000  
100  
MΩ  
Ω
OPA0/OPA1  
OPA2  
RLOAD  
Ω
OPA0/OPA1  
OPA2  
11  
mA  
mA  
V
ILOAD_DC  
Load Current  
1.5  
OPAxHCMDIS=0  
OPAxHCMDIS=1  
VSS  
VSS  
VSS  
VDD  
VDD-1.2  
VDD  
VINPUT  
Input Voltage  
V
Output Voltage  
VOUTPUT  
V
silabs.com | Building a more connected world.  
Rev. 2.10 | 59  
EFM32TG Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Unity Gain, VSS<Vin<VDD  
OPAxHCMDIS=0  
,
6
mV  
VOFFSET  
Input Offset Voltage  
Unity Gain, VSS<Vin<VDD-1.2,  
OPAxHCMDIS=1  
1
0.02  
mV  
mV/ºC  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
µs  
Input Offset Voltage  
Drift  
VOFFSET_DRIFT  
OPA0/OPA1 BIASPROG=0xF,  
HALFBIAS=0x0  
46.11  
1.21  
0.16  
4.43  
1.30  
0.16  
0.09  
1.52  
12.74  
0.09  
0.13  
0.17  
101  
OPA0/OPA1 BIASPROG=0x7,  
HALFBIAS=0x1  
OPA0/OPA1 BIASPROG=0x0,  
HALFBIAS=0x1  
SROPAMP  
Slew Rate  
OPA2 BIASPROG=0xF, HALF-  
BIAS=0x0  
OPA2 BIASPROG=0x7, HALF-  
BIAS=0x1  
OPA2 BIASPROG=0x0, HALF-  
BIAS=0x1  
OPA0/OPA1 BIASPROG=0xF,  
HALFBIAS=0x0  
OPA0/OPA1 BIASPROG=0x7,  
HALFBIAS=0x1  
µs  
OPA0/OPA1 BIASPROG=0x0,  
HALFBIAS=0x1  
µs  
PUOPAMP  
Power-up Time  
OPA2 BIASPROG=0xF, HALF-  
BIAS=0x0  
µs  
OPA2 BIASPROG=0x7, HALF-  
BIAS=0x1  
µs  
OPA2 BIASPROG=0x0, HALF-  
BIAS=0x1  
µs  
Vout=1V, RESSEL=0, 0.1 Hz<f<10  
kHz, OPAxHCMDIS=0  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
Vout=1V, RESSEL=0, 0.1 Hz<f<10  
kHz, OPAxHCMDIS=1  
141  
Vout=1V, RESSEL=0, 0.1 Hz<f<1  
MHz, OPAxHCMDIS=0  
196  
Vout=1V, RESSEL=0, 0.1 Hz<f<1  
MHz, OPAxHCMDIS=1  
229  
NOPAMP  
Voltage Noise  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=0  
1230  
2130  
1630  
2590  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=1  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=0  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 60  
EFM32TG Data Sheet  
Electrical Characteristics  
Figure 4.24. OPAMP Common Mode Rejection Ratio  
Figure 4.25. OPAMP Positive Power Supply Rejection Ratio  
silabs.com | Building a more connected world.  
Rev. 2.10 | 61  
EFM32TG Data Sheet  
Electrical Characteristics  
Figure 4.26. OPAMP Negative Power Supply Rejection Ratio  
Figure 4.27. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V  
silabs.com | Building a more connected world.  
Rev. 2.10 | 62  
EFM32TG Data Sheet  
Electrical Characteristics  
Figure 4.28. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 63  
EFM32TG Data Sheet  
Electrical Characteristics  
4.13 Analog Comparator (ACMP)  
Table 4.17. ACMP  
Test Condition  
Parameter  
Symbol  
VACMPIN  
Min  
0
Typ  
Max  
VDD  
VDD  
Unit  
V
Input voltage range  
ACMP Common Mode voltage VACMPCM  
range  
0
V
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0.0  
0.6  
12  
µA  
µA  
µA  
µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
520  
0.5  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consumption of internal  
voltage reference  
IACMPREF  
Internal voltage reference  
2.15  
0
3.00  
12  
µA  
Offset voltage  
VACMPOFFSET  
BIASPROG= 0b1010, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
-12  
mV  
ACMP hysteresis  
VACMPHYST  
Programmable  
17  
39  
mV  
kΩ  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
10  
kΩ  
kΩ  
kΩ  
µs  
Capacitive Sense Internal Re-  
sistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
Startup time  
tACMPSTART  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in in the following  
equation. IACMPREF is zero if an external voltage reference is used.  
I
= I  
+ I  
ACMP ACMPREF  
ACMPTOTAL  
silabs.com | Building a more connected world.  
Rev. 2.10 | 64  
EFM32TG Data Sheet  
Electrical Characteristics  
Current Consumption, HYSTSEL = 4  
Response Time, Vcm = 1.25V, CP+ to CP- = 100mV  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
HYSTSEL=0  
HYSTSEL=2  
HYSTSEL=4  
HYSTSEL=6  
0
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Hysteresis  
100  
80  
60  
40  
20  
0
BIASPROG=0.0  
BIASPROG=4.0  
BIASPROG=8.0  
BIASPROG=12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Figure 4.29. ACMP Characteristics, Vdd = 3 V, Temp = 25 °C, FULLBIAS = 0, HALFBIAS = 1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 65  
EFM32TG Data Sheet  
Electrical Characteristics  
4.14 Voltage Comparator (VCMP)  
Table 4.18. VCMP  
Test Condition  
Parameter  
Symbol  
VVCMPIN  
Min  
Typ  
VDD  
VDD  
Max  
Unit  
V
Input voltage range  
VCMP Common Mode voltage VVCMPCM  
range  
V
Active current  
IVCMP  
BIASPROG=0b0000 and HALF-  
BIAS=1 in VCMPn_CTRL regis-  
ter  
0.3  
22  
10  
0.6  
30  
µA  
µA  
µs  
BIASPROG=0b1111 and HALF-  
BIAS=0 in VCMPn_CTRL regis-  
ter. LPREF=0.  
Startup time reference genera- tVCMPREF  
tor  
NORMAL  
Offset voltage  
VVCMPOFFSET  
Single ended  
Differential  
10  
10  
17  
10  
mV  
mV  
mV  
µs  
VCMP hysteresis  
Startup time  
VVCMPHYST  
tVCMPSTART  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following  
equation:  
V
= 1.667V + 0.034 × TRIGLEVEL  
DD Trigger Level  
silabs.com | Building a more connected world.  
Rev. 2.10 | 66  
EFM32TG Data Sheet  
Electrical Characteristics  
4.15 LCD  
Table 4.19. LCD  
Test Condition  
Parameter  
Symbol  
fLCDFR  
NUMSEG  
VLCD  
Min  
30  
Typ  
Max  
200  
Unit  
Hz  
seg  
V
Frame rate  
Number of segments supported  
LCD supply voltage range  
20×8  
Internal boost circuit enabled  
2.0  
3.8  
Display disconnected, static  
mode, framerate 32 Hz, all  
segments on.  
250  
nA  
Display disconnected, quad-  
ruplex mode, framerate 32  
Hz, all segments on, bias  
mode to ONETHIRD in  
550  
nA  
ILCD  
Steady state current consumption.  
LCD_DISPCTRL register.  
Internal voltage boost off  
0
µA  
µA  
Steady state Current contribution  
of internal boost.  
ILCDBOOST  
Internal voltage boost on,  
boosting from 2.2 V to 3.0 V.  
8.4  
VBLEV of LCD_DISPCTRL  
register to LEVEL0  
3.0  
V
V
V
V
V
V
V
V
VBLEV of LCD_DISPCTRL  
register to LEVEL1  
3.08  
3.17  
3.26  
3.34  
3.43  
3.52  
3.6  
VBLEV of LCD_DISPCTRL  
register to LEVEL2  
VBLEV of LCD_DISPCTRL  
register to LEVEL3  
VBOOST  
Boost Voltage  
VBLEV of LCD_DISPCTRL  
register to LEVEL4  
VBLEV of LCD_DISPCTRL  
register to LEVEL5  
VBLEV of LCD_DISPCTRL  
register to LEVEL6  
VBLEV of LCD_DISPCTRL  
register to LEVEL7  
The total LCD current is given by the following equation. ILCDBOOST is zero if internal boost is off.  
= I + I  
I
LCDTOTAL  
LCD  
LCDBOOST  
silabs.com | Building a more connected world.  
Rev. 2.10 | 67  
EFM32TG Data Sheet  
Electrical Characteristics  
4.16 I2C  
Table 4.20. I2C Standard-mode (Sm)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
1001  
SCL clock frequency  
fSCL  
0
kHz  
SCL clock low time  
tLOW  
4.7  
4.0  
250  
8
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
SCL clock high time  
tHIGH  
SDA set-up time  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
34502,3  
SDA hold time  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
4.7  
4.0  
4.0  
4.7  
Bus free time between a STOP and a START condition  
tBUF  
Note:  
1. For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32TG Reference Manual.  
2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10-9 [s] * fHFPERCLK [Hz]) - 4).  
Table 4.21. I2C Fast-mode (Fm)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
4001  
SCL clock frequency  
fSCL  
0
kHz  
SCL clock low time  
tLOW  
1.3  
0.6  
100  
8
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
SCL clock high time  
tHIGH  
SDA set-up time  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
9002,3  
SDA hold time  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and a START condition  
Note:  
0.6  
0.6  
0.6  
1.3  
1. For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32TG Reference Manual.  
2. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10-9 [s] * fHFPERCLK [Hz]) - 4).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 68  
EFM32TG Data Sheet  
Electrical Characteristics  
Table 4.22. I2C Fast-mode Plus (Fm+)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
10001  
SCL clock frequency  
fSCL  
0
kHz  
SCL clock low time  
tLOW  
0.5  
0.26  
50  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
SCL clock high time  
tHIGH  
SDA set-up time  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
SDA hold time  
8
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
0.26  
0.26  
0.26  
0.5  
Bus free time between a STOP and a START condition  
tBUF  
Note:  
1. For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32TG Reference Manual.  
4.17 Digital Peripherals  
Table 4.23. Digital Peripherals  
Parameter  
Symbol Test Condition  
Min  
Typ  
7.5  
Max  
Unit  
µA/MHz  
nA  
USART current  
LEUART current  
I2C current  
IUSART  
ILEUART  
II2C  
USART idle current, clock enabled  
LEUART idle current, clock enabled  
I2C idle current, clock enabled  
150  
6.25  
8.75  
75  
µA/MHz  
µA/MHz  
nA  
TIMER current  
LETIMER current  
PCNT current  
RTC current  
LCD current  
ITIMER  
TIMER_0 idle current, clock enabled  
ILETIMER LETIMER idle current, clock enabled  
IPCNT  
IRTC  
ILCD  
IAES  
IGPIO  
IPRS  
IDMA  
PCNT idle current, clock enabled  
RTC idle current, clock enabled  
LCD idle current, clock enabled  
AES idle current, clock enabled  
GPIO idle current, clock enabled  
PRS idle current  
60  
nA  
40  
nA  
50  
nA  
AES current  
2.5  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
GPIO current  
PRS current  
DMA current  
5.31  
2.81  
8.12  
Clock enable  
silabs.com | Building a more connected world.  
Rev. 2.10 | 69  
EFM32TG Data Sheet  
Pin Definitions  
5. Pin Definitions  
Note: Please refer to the application note AN0002 EFM32 Hardware Design Considerations for guidelines on designing Printed Circuit  
Boards (PCBs) for the EFM32TG.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 70  
EFM32TG Data Sheet  
Pin Definitions  
5.1 EFM32TG108 (QFN24)  
5.1.1 Pinout  
The EFM32TG108 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.1. EFM32TG108 Pinout (top view, not to scale)  
Table 5.1. Device Pinout  
QFN24 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
0
1
2
VSS  
Ground.  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
PA0  
TIM0_CC0 #0/1/4  
GPIO_EM4WU0  
IOVDD_0  
Digital IO power supply 0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 71  
EFM32TG Data Sheet  
Pin Definitions  
QFN24 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US1_TX #0  
Other  
TIM0_CC1 #4  
PCNT0_S0IN #2  
TIM0_CC2 #4  
PCNT0_S1IN #2  
TIM1_CC0 #3  
TIM1_CC1 #3  
LES_CH0 #0  
PRS_CH2 #0  
LES_CH1 #0  
PRS_CH3 #0  
3
4
PC0  
ACMP0_CH0  
I2C0_SDA #4  
US1_RX #0  
PC1  
ACMP0_CH1  
I2C0_SCL #4  
US1_CLK #0  
US1_CS #0  
5
6
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
7
8
RESETn  
PB11  
TIM1_CC2 #3  
LETIM0_OUT0 #1  
9
AVDD_2  
PB13  
Analog power supply 2.  
10  
11  
12  
HFXTAL_P  
HFXTAL_N  
LEU0_TX #1  
LEU0_RX #1  
PB14  
AVDD_0  
Analog power supply 0.  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
13  
14  
PD6  
PD7  
I2C0_SDA #1  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
15  
16  
VDD_DREG  
DECOUPLE  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
TIM1_CC1 #0  
17  
18  
PC14  
PC15  
ACMP1_CH6  
ACMP1_CH7  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
TIM1_CC2 #0  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
BOOT_TX  
19  
20  
21  
PF0  
PF1  
PF2  
LETIM0_OUT0 #2  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
BOOT_RX  
TIM0_CC1 #5  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
TIM0_CC2 #5  
LEU0_TX #4  
silabs.com | Building a more connected world.  
Rev. 2.10 | 72  
EFM32TG Data Sheet  
Pin Definitions  
QFN24 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
I2C0_SDA #6  
I2C0_SCL #6  
Other  
22  
IOVDD_5  
Digital IO power supply 5.  
CMU_CLK1 #2  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
23  
PE12  
PE13  
TIM1_CC2 #1  
24  
GPIO_EM4WU5  
silabs.com | Building a more connected world.  
Rev. 2.10 | 73  
EFM32TG Data Sheet  
Pin Definitions  
5.1.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.2. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_O  
0
PC0  
PC1  
PE13  
PC14  
PC15  
PF2  
1
2
PD6  
PD7  
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
Bootloader RX.  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
BOOT_RX  
PF1  
BOOT_TX  
PF0  
Bootloader TX.  
CMU_CLK0  
CMU_CLK1  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
Debug-interface Serial Wire clock input.  
PE12  
DBG_SWCLK  
DBG_SWDIO  
DBG_SWO  
PF0  
PF1  
PF2  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
PB13  
HFXTAL_P  
I2C0_SCL  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PD6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PA0  
PD6  
PD7  
PE12  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX6  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 6.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 74  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
LES_ALTEX7  
LES_CH0  
0
1
2
4
5
6
Description  
PE13  
PC0  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
LES_CH1  
PC1  
LESENSE channel 1.  
LES_CH14  
LES_CH15  
PC14  
PC15  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
LEU0_RX  
PB11  
PF0  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
LEU0_TX  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
LFXTAL_P  
PB8  
PB7  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US1_CLK  
US1_CS  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
PC14  
PA0  
PC0  
PC1  
PA0  
Pulse Counter PCNT0 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART1 clock input / output.  
PA0  
PA0  
PC0  
PC1  
PD6  
PD7  
PF0  
PF1  
PF2  
PB7  
PB8  
PB11  
PC14  
PC15 PE12  
PB7  
PF0  
PF1  
PB8  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 75  
EFM32TG Data Sheet  
Pin Definitions  
5.1.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG108 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.3. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0  
-
PB14 PB13  
PB11  
PB8 PB7  
PC15 PC14  
-
-
-
-
-
-
-
-
-
-
-
PC1 PC0  
-
-
-
-
-
-
PD7 PD6  
-
-
-
-
PE13 PE12  
-
-
-
-
-
-
PF2 PF1 PF0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 76  
EFM32TG Data Sheet  
Pin Definitions  
5.2 EFM32TG110 (QFN24)  
5.2.1 Pinout  
The EFM32TG110 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.2. EFM32TG110 Pinout (top view, not to scale)  
Table 5.4. Device Pinout  
QFN24 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
0
1
2
VSS  
Ground.  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
PA0  
TIM0_CC0 #0/1/4  
GPIO_EM4WU0  
IOVDD_0  
Digital IO power supply 0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 77  
EFM32TG Data Sheet  
Pin Definitions  
QFN24 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
Other  
ACMP0_CH0  
TIM0_CC1 #4  
LES_CH0 #0  
PRS_CH2 #0  
3
PC0  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH1  
PCNT0_S0IN #2  
TIM0_CC2 #4  
LES_CH1 #0  
PRS_CH3 #0  
4
5
PC1  
PB7  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
PCNT0_S1IN #2  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
6
7
PB8  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
RESETn  
DAC0_OUT0 /  
OPAMP_OUT0  
TIM1_CC2 #3  
8
9
PB11  
AVDD_2  
PB13  
LETIM0_OUT0 #1  
Analog power supply 2.  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
10  
HFXTAL_P  
HFXTAL_N  
11  
12  
PB14  
AVDD_0  
Analog power supply 0.  
ADC0_CH6  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
13  
14  
PD6  
PD7  
DAC0_P1/  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
DAC0_N1/  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
15  
16  
VDD_DREG  
DECOUPLE  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
ACMP1_CH6  
TIM1_CC1 #0  
17  
18  
PC14  
PC15  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
silabs.com | Building a more connected world.  
Rev. 2.10 | 78  
EFM32TG Data Sheet  
Pin Definitions  
QFN24 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
Other  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
BOOT_TX  
19  
20  
PF0  
LETIM0_OUT0 #2  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
BOOT_RX  
TIM0_CC1 #5  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
21  
22  
23  
PF2  
IOVDD_5  
PE12  
TIM0_CC2 #5  
TIM1_CC2 #1  
LEU0_TX #4  
Digital IO power supply 5.  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
CMU_CLK1 #2  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
24  
PE13  
GPIO_EM4WU5  
silabs.com | Building a more connected world.  
Rev. 2.10 | 79  
EFM32TG Data Sheet  
Pin Definitions  
5.2.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.5. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_O  
0
1
2
PD6  
PD7  
4
5
6
Description  
PC0  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC1  
PE13  
PC14  
PC15  
PF2  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
Analog to digital converter ADC0, input channel  
number 6.  
ADC0_CH6  
ADC0_CH7  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PF1  
PF0  
Bootloader RX.  
Bootloader TX.  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PE12  
DAC0_N1/  
OPAMP_N1  
PD7  
Operational Amplifier 1 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
OPAMP_OUT0  
ALT  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC14 PC15  
OPAMP_OUT1  
ALT  
DAC0_P1/  
OPAMP_P1  
PD6  
PF0  
Operational Amplifier 1 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
DBG_SWDIO  
PF0  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 80  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Debug-interface Serial Wire viewer Output.  
DBG_SWO  
PF2  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
PB13  
HFXTAL_P  
I2C0_SCL  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PA0  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PD6  
PD7  
PE12  
PE13  
PC0  
LES_CH1  
PC1  
LESENSE channel 1.  
LES_CH14  
LES_CH15  
PC14  
PC15  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
LEU0_RX  
PB11  
PF0  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
LEU0_TX  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
LFXTAL_P  
PB8  
PB7  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
PC14  
PA0  
PC0  
PC1  
PA0  
Pulse Counter PCNT0 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
PA0  
PA0  
PC0  
PC1  
PF0  
PF1  
PF2  
silabs.com | Building a more connected world.  
Rev. 2.10 | 81  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
0
1
2
4
5
6
Description  
PB7  
PB8  
PB11  
PD6  
PD7  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PC14  
PC15 PE12  
PE12  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
PE13  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
5.2.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG110 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.6. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0  
-
PB14 PB13  
PB11  
PB8 PB7  
PC15 PC14  
-
-
-
-
-
-
-
-
-
-
-
PC1 PC0  
-
-
-
-
-
-
PD7 PD6  
-
-
-
-
PE13 PE12  
-
-
-
-
-
-
PF2 PF1 PF0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 82  
EFM32TG Data Sheet  
Pin Definitions  
5.2.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG110 is shown in the following figure.  
PB11  
OUT0ALT  
+
PC0  
OPA0  
OUT0  
PC1  
-
+
OPA2  
-
OUT2  
PC14  
PC15  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
Figure 5.3. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 83  
EFM32TG Data Sheet  
Pin Definitions  
5.3 EFM32TG210 (QFN32)  
5.3.1 Pinout  
The EFM32TG210 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.4. EFM32TG210 Pinout (top view, not to scale)  
Table 5.7. Device Pinout  
QFN32 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
0
VSS  
Ground.  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
1
PA0  
PA1  
TIM0_CC0 #0/1/4  
TIM0_CC1 #0/1  
2
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 84  
EFM32TG Data Sheet  
Pin Definitions  
QFN32 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PA2  
Analog  
Timers  
Communication  
Other  
3
4
TIM0_CC2 #0/1  
CMU_CLK0 #0  
IOVDD_0  
Digital IO power supply 0.  
ACMP0_CH0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
TIM0_CC1 #4  
LES_CH0 #0  
PRS_CH2 #0  
5
PC0  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH1  
PCNT0_S0IN #2  
TIM0_CC2 #4  
LES_CH1 #0  
PRS_CH3 #0  
6
7
PC1  
PB7  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
PCNT0_S1IN #2  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
8
9
PB8  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
RESETn  
DAC0_OUT0/  
OPAMP_OUT0  
TIM1_CC2 #3  
10  
11  
12  
PB11  
AVDD_2  
PB13  
LETIM0_OUT0 #1  
Analog power supply 2.  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
HFXTAL_P  
HFXTAL_N  
13  
PB14  
14  
15  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH4  
16  
17  
PD4  
PD5  
LEU0_TX #0  
LEU0_RX #0  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
18  
19  
PD6  
PD7  
DAC0_P1/  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
DAC0_N1/  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
20  
21  
VDD_DREG  
DECOUPLE  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 85  
EFM32TG Data Sheet  
Pin Definitions  
QFN32 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
22  
23  
24  
25  
26  
27  
PC13  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
TIM1_CC1 #0  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PF2  
TIM0_CC2 #5  
LEU0_TX #4  
28  
29  
IOVDD_5  
PE10  
Digital IO power supply 5.  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
BOOT_TX  
LES_ALTEX5 #0  
BOOT_RX  
30  
PE11  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
CMU_CLK1 #2  
31  
PE12  
TIM1_CC2 #1  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
32  
PE13  
GPIO_EM4WU5  
silabs.com | Building a more connected world.  
Rev. 2.10 | 86  
EFM32TG Data Sheet  
Pin Definitions  
5.3.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.8. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_O  
0
1
2
4
5
6
Description  
PC0  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC1  
PE13  
PC13  
PC14  
PC15  
PF2  
PD6  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PD7  
Analog to digital converter ADC0, input channel  
number 4.  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
PE12  
DAC0_N1/  
OPAMP_N1  
PD7  
Operational Amplifier 1 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
OPAMP_OUT0  
ALT  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC13 PC14 PC15  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
Operational Amplifier 2 output.  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
Operational Amplifier 2 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
silabs.com | Building a more connected world.  
Rev. 2.10 | 87  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
DBG_SWDIO  
DBG_SWO  
PF0  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PA0  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PD6  
PD7  
PE11  
PE12  
PE13  
PC0  
LES_CH1  
PC1  
LESENSE channel 1.  
LES_CH13  
LES_CH14  
LES_CH15  
PC13  
PC14  
PC15  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
PB8  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
PB7  
PCNT0_S0IN  
PC13  
PC0  
PD6  
Pulse Counter PCNT0 input number 0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 88  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
0
PC14  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
1
2
3
4
5
6
Description  
PC1  
PD7  
Pulse Counter PCNT0 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA0  
PA1  
PA2  
PA0  
PC0  
PC1  
PD6  
PD7  
PC13  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PE12  
PB7  
PB8  
PB11  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
PE13  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 89  
EFM32TG Data Sheet  
Pin Definitions  
5.3.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG210 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.9. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA2 PA1 PA0  
PB14 PB13  
PB11  
PB8 PB7  
-
-
-
-
-
-
PC15 PC14 PC13  
-
-
-
-
-
-
-
PC1 PC0  
-
-
-
-
-
-
-
PD7 PD6 PD5 PD4  
-
-
-
-
PE13 PE12 PE11 PE10  
-
-
-
-
-
-
-
-
-
-
-
-
PF2 PF1 PF0  
5.3.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG210 is shown in the following figure.  
PB11  
OUT0ALT  
+
PC0  
PC1  
OPA0  
OUT0  
-
+
PD4  
OPA2  
OUT2  
-
PC13  
PC14  
PC15  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD5  
Figure 5.5. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 90  
EFM32TG Data Sheet  
Pin Definitions  
5.4 EFM32TG222 (TQFP48)  
5.4.1 Pinout  
The EFM32TG222 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.6. EFM32TG222 Pinout (top view, not to scale)  
Table 5.10. Device Pinout  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
LEU0_RX #4  
Other  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
CMU_CLK0 #0  
1
PA0  
TIM0_CC0 #0/1/4  
I2C0_SDA #0  
2
3
PA1  
PA2  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 91  
EFM32TG Data Sheet  
Pin Definitions  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
IOVDD_0  
VSS  
Analog  
Digital IO power supply 0.  
Ground.  
Timers  
Communication  
Other  
4
5
ACMP0_CH0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC1 #4  
LES_CH0 #0  
PRS_CH2 #0  
6
7
PC0  
PC1  
PC2  
PC3  
PC4  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH1  
PCNT0_S0IN #2  
TIM0_CC2 #4  
LES_CH1 #0  
PRS_CH3 #0  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
ACMP0_CH2  
PCNT0_S1IN #2  
8
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
ACMP0_CH3  
LES_CH2 #0  
LES_CH3 #0  
LES_CH4 #0  
9
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
ACMP0_CH4  
10  
DAC0_P0 /  
LETIM0_OUT0 #3  
OPAMP_P0  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
11  
12  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
13  
14  
15  
PA8  
PA9  
PA10  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
16  
17  
RESETn  
PB11  
DAC0_OUT0/  
TIM1_CC2 #3  
OPAMP_OUT0  
LETIM0_OUT0 #1  
18  
19  
VSS  
Ground.  
AVDD_1  
Analog power supply 1.  
HFXTAL_P  
US0_CLK #4/5  
LEU0_TX #1  
20  
21  
PB13  
PB14  
US0_CS #4/5  
LEU0_RX #1  
HFXTAL_N  
22  
23  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 92  
EFM32TG Data Sheet  
Pin Definitions  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
ADC0_CH4  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
DAC0_P1/  
Timers  
Communication  
Other  
24  
25  
PD4  
LEU0_TX #0  
PD5  
PD6  
LEU0_RX #0  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
26  
27  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
DAC0_N1/  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
PD7  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
28  
29  
30  
VDD_DREG  
DECOUPLE  
PC8  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
ACMP1_CH0  
US0_CS #2  
LES_CH8 #0  
LES_CH9 #0  
31  
PC9  
ACMP1_CH1  
US0_CLK #2  
GPIO_EM4WU2  
LES_CH10 #0  
LES_CH11 #0  
32  
33  
PC10  
PC11  
ACMP1_CH2  
ACMP1_CH3  
US0_RX #2  
US0_TX #2  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
34  
35  
36  
37  
38  
39  
PC13  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
LES_CH14 #0  
TIM1_CC1 #0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PF2  
TIM0_CC2 #5  
LEU0_TX #4  
silabs.com | Building a more connected world.  
Rev. 2.10 | 93  
EFM32TG Data Sheet  
Pin Definitions  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PF3  
Analog  
Timers  
Communication  
Other  
40  
41  
42  
43  
44  
45  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF4  
PF5  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground.  
PE10  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
BOOT_TX  
LES_ALTEX5 #0  
BOOT_RX  
46  
PE11  
PE12  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
CMU_CLK1 #2  
47  
TIM1_CC2 #1  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
48  
PE13  
GPIO_EM4WU5  
silabs.com | Building a more connected world.  
Rev. 2.10 | 94  
EFM32TG Data Sheet  
Pin Definitions  
5.4.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.11. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_O  
0
1
2
4
5
6
Description  
PC0  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC1  
PC2  
PC3  
PC4  
PE13  
PC8  
PD6  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PC9  
PC10  
PC11  
PC13  
PC14  
PC15  
PF2  
PD7  
Analog to digital converter ADC0, input channel  
number 4.  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
PE12  
DAC0_N1/  
OPAMP_N1  
PD7  
Operational Amplifier 1 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
silabs.com | Building a more connected world.  
Rev. 2.10 | 95  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
PC2  
PC3  
OPAMP_OUT0  
ALT  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC13 PC14 PC15  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU2 PC9  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PA0  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PD6  
PD7  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 96  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
LES_CH3  
LES_CH4  
LES_CH8  
LES_CH9  
LES_CH10  
LES_CH11  
LES_CH13  
LES_CH14  
LES_CH15  
0
1
2
4
5
6
Description  
LESENSE channel 3.  
PC3  
PC4  
LESENSE channel 4.  
LESENSE channel 8.  
LESENSE channel 9.  
LESENSE channel 10.  
LESENSE channel 11.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
PC8  
PC9  
PC10  
PC11  
PC13  
PC14  
PC15  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PF1  
PC4  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
LFXTAL_P  
PB8  
PB7  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
PC13  
PC14  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA0  
PA1  
PA2  
PA0  
PC0  
PC1  
PD6  
PD7  
PC13  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PE12  
PB7  
PB8  
PB11  
PC9  
PC8  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
PE13  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
PE11  
PC10 PE12  
PB8  
PC1  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 97  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
US0_TX  
PE10  
PC11 PE13  
PB7  
PC0  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
5.4.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG222 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.12. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
PA10 PA9 PA8  
-
-
-
-
-
-
-
-
-
-
-
PA2 PA1 PA0  
PB14 PB13  
PB11  
-
-
PB8 PB7  
-
-
-
PC15 PC14 PC13  
PC11 PC10 PC9 PC8  
-
PC4 PC3 PC2 PC1 PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD7 PD6 PD5 PD4  
-
-
-
-
-
-
-
-
PE13 PE12 PE11 PE10  
-
-
-
-
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.4.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG222 is shown in the following figure.  
PB11  
OUT0ALT  
OUT0  
PC4  
PD4  
+
PC0  
PC1  
PC2  
PC3  
OPA0  
-
+
OPA2  
-
OUT2  
PC13  
PC14  
PC15  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD5  
Figure 5.7. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 98  
EFM32TG Data Sheet  
Pin Definitions  
5.5 EFM32TG225 (BGA48)  
5.5.1 Pinout  
The EFM32TG225 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.8. EFM32TG225 Pinout (top view, not to scale)  
Table 5.13. Device Pinout  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_TX #3  
Other  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
A1  
PE13  
US0_CS #0  
I2C0_SCL #6  
silabs.com | Building a more connected world.  
Rev. 2.10 | 99  
EFM32TG Data Sheet  
Pin Definitions  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_RX #3  
Other  
CMU_CLK1 #2  
A2  
PE12  
TIM1_CC2 #1  
US0_CLK #0  
I2C0_SDA #6  
LES_ALTEX6 #0  
LES_ALTEX5 #0  
BOOT_RX  
A3  
PE11  
TIM1_CC1 #1  
US0_RX #0  
A4  
A5  
PF5  
PF3  
PRS_CH2 #1  
PRS_CH0 #1  
ACMP1_CH6  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
TIM1_CC1 #0  
A6  
A7  
PC14  
PC15  
US0_CS #3  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
I2C0_SCL #0  
CMU_CLK1 #0  
PRS_CH1 #0  
PRS_CH0 #0  
GPIO_EM4WU0  
BOOT_TX  
B1  
B2  
PA1  
PA0  
TIM0_CC1 #0/1  
LEU0_RX #4  
I2C0_SDA #0  
US0_TX #0  
TIM0_CC0 #0/1/4  
TIM1_CC0 #1  
B3  
B4  
PE10  
PF4  
PRS_CH1 #1  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
LES_CH11 #0  
B5  
B6  
B7  
PF2  
TIM0_CC2 #5  
LEU0_TX #4  
US0_TX #2  
PC11  
PC13  
ACMP1_CH3  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP0_CH0  
LES_CH13 #0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
TIM0_CC1 #4  
LES_CH0 #0  
PRS_CH2 #0  
C1  
PC0  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
PCNT0_S0IN #2  
C2  
C3  
C4  
PA2  
VSS  
TIM0_CC2 #0/1  
CMU_CLK0 #0  
Ground.  
IOVDD_5  
Digital IO power supply 5.  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
C5  
PF1  
LETIM0_OUT1 #2  
silabs.com | Building a more connected world.  
Rev. 2.10 | 100  
EFM32TG Data Sheet  
Pin Definitions  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
LES_CH9 #0  
GPIO_EM4WU2  
LES_CH10 #0  
C6  
C7  
PC9  
ACMP1_CH1  
US0_CLK #2  
PC10  
ACMP1_CH2  
ACMP0_CH1  
US0_RX #2  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC2 #4  
LES_CH1 #0  
PRS_CH3 #0  
D1  
PC1  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
ACMP0_CH3  
PCNT0_S1IN #2  
D2  
D3  
D5  
PC3  
IOVDD_0  
PF0  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
Digital IO power supply 0.  
LES_CH3 #0  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US0_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LES_CH8 #0  
LETIM0_OUT0 #2  
D6  
D7  
PC8  
ACMP1_CH0  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
DECOUPLE  
ACMP0_CH2  
E1  
E2  
PC2  
PC4  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
ACMP0_CH4  
LES_CH2 #0  
LES_CH4 #0  
DAC0_P0/  
LETIM0_OUT0 #3  
OPAMP_P0  
E3  
E4  
E5  
PA8  
VDD_DREG  
AVSS_0  
Power supply for on-chip voltage regulator.  
Analog ground 0.  
ADC0_CH7  
DAC0_N1/  
OPAMP_N1  
ADC0_CH6  
DAC0_P1/  
OPAMP_P1  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
TIM1_CC0 #4  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
E6  
PD7  
I2C0_SCL #1  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
E7  
F1  
PD6  
PB7  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
I2C0_SDA #1  
US0_TX #4  
LFXTAL_P  
TIM1_CC0 #3  
US1_CLK #0  
F2  
F3  
PA9  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
RESETn  
silabs.com | Building a more connected world.  
Rev. 2.10 | 101  
EFM32TG Data Sheet  
Pin Definitions  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
IOVDD_3  
AVDD_1  
AVDD_0  
Analog  
Timers  
Communication  
Other  
F4  
F5  
F6  
Digital IO power supply 3.  
Analog power supply 1.  
Analog power supply 0.  
ADC0_CH5  
F7  
PD5  
LEU0_RX #0  
OPAMP_OUT2 #0  
US0_RX #4  
US1_CS #0  
G1  
G2  
G3  
G4  
G5  
PB8  
PA10  
LFXTAL_N  
TIM1_CC1 #3  
DAC0_OUT0/  
OPAMP_OUT0  
TIM1_CC2 #3  
PB11  
LETIM0_OUT0 #1  
AVSS_1  
PB13  
Analog ground 1.  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
HFXTAL_P  
HFXTAL_N  
G6  
G7  
PB14  
PD4  
ADC0_CH4  
OPAMP_P2  
LEU0_TX #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 102  
EFM32TG Data Sheet  
Pin Definitions  
5.5.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.14. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_O  
0
1
2
4
5
6
Description  
PC0  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC1  
PC2  
PC3  
PC4  
PE13  
PC8  
PD6  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PC9  
PC10  
PC11  
PC13  
PC14  
PC15  
PF2  
PD7  
Analog to digital converter ADC0, input channel  
number 4.  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
PE12  
DAC0_N1/  
OPAMP_N1  
PD7  
Operational Amplifier 1 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
silabs.com | Building a more connected world.  
Rev. 2.10 | 103  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
PC2  
PC3  
OPAMP_OUT0  
ALT  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC13 PC14 PC15  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU2 PC9  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PA0  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PD6  
PD7  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 104  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
LES_CH3  
LES_CH4  
LES_CH8  
LES_CH9  
LES_CH10  
LES_CH11  
LES_CH13  
LES_CH14  
LES_CH15  
0
1
2
4
5
6
Description  
LESENSE channel 3.  
PC3  
PC4  
LESENSE channel 4.  
LESENSE channel 8.  
LESENSE channel 9.  
LESENSE channel 10.  
LESENSE channel 11.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
PC8  
PC9  
PC10  
PC11  
PC13  
PC14  
PC15  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PF1  
PC4  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
LFXTAL_P  
PB8  
PB7  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
PC13  
PC14  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA0  
PA1  
PA2  
PA0  
PC0  
PC1  
PD6  
PD7  
PC13  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PE12  
PB7  
PB8  
PB11  
PC9  
PC8  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
PE13  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
PE11  
PC10 PE12  
PB8  
PC1  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 105  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
US0_TX  
PE10  
PC11 PE13  
PB7  
PC0  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
5.5.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG225 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.15. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
PA10 PA9 PA8  
-
-
-
-
-
-
-
-
-
-
-
PA2 PA1 PA0  
PB14 PB13  
PB11  
-
-
PB8 PB7  
-
-
-
PC15 PC14 PC13  
PC11 PC10 PC9 PC8  
-
PC4 PC3 PC2 PC1 PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD7 PD6 PD5 PD4  
-
-
-
-
-
-
-
-
PE13 PE12 PE11 PE10  
-
-
-
-
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.5.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG225 is shown in the following figure.  
PB11  
OUT0ALT  
OUT0  
PC4  
PD4  
+
PC0  
PC1  
PC2  
PC3  
OPA0  
-
+
OPA2  
-
OUT2  
PC13  
PC14  
PC15  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD5  
Figure 5.9. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 106  
EFM32TG Data Sheet  
Pin Definitions  
5.6 EFM32TG230 (QFN64)  
5.6.1 Pinout  
The EFM32TG230 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.10. EFM32TG230 Pinout (top view, not to scale)  
Table 5.16. Device Pinout  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
0
VSS  
Ground.  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
1
PA0  
PA1  
TIM0_CC0 #0/1/4  
TIM0_CC1 #0/1  
2
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 107  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PA2  
Analog  
Timers  
Communication  
Other  
3
4
5
6
7
8
TIM0_CC2 #0/1  
CMU_CLK0 #0  
LES_ALTEX2 #0  
LES_ALTEX3 #0  
LES_ALTEX4 #0  
GPIO_EM4WU1  
PA3  
PA4  
PA5  
PA6  
IOVDD_0  
Digital IO power supply 0.  
ACMP0_CH0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC1 #4  
LES_CH0 #0  
PRS_CH2 #0  
9
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH1  
PCNT0_S0IN #2  
TIM0_CC2 #4  
LES_CH1 #0  
PRS_CH3 #0  
10  
11  
12  
13  
14  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
ACMP0_CH2  
PCNT0_S1IN #2  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
ACMP0_CH3  
LES_CH2 #0  
LES_CH3 #0  
LES_CH4 #0  
LES_CH5 #0  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
ACMP0_CH4  
DAC0_P0/  
LETIM0_OUT0 #3  
LETIM0_OUT1 #3  
OPAMP_P0  
ACMP0_CH5  
DAC0_N0/  
OPAMP_N0  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
15  
16  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
17  
18  
19  
PA8  
PA9  
PA10  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
20  
21  
RESETn  
PB11  
DAC0_OUT0/  
TIM1_CC2 #3  
OPAMP_OUT0  
LETIM0_OUT0 #1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 108  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
DAC0_OUT1/  
Timers  
Communication  
Other  
22  
23  
24  
PB12  
LETIM0_OUT1 #1  
OPAMP_OUT1  
AVDD_1  
PB13  
Analog power supply 1.  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
HFXTAL_P  
HFXTAL_N  
25  
PB14  
26  
27  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
OPAMP_OUT2 #1  
ADC0_CH1  
28  
PD0  
US1_TX #1  
US1_RX #1  
29  
PD1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
ADC0_CH2  
TIM0_CC0 #3  
30  
31  
PD2  
PD3  
TIM0_CC1 #3  
TIM0_CC2 #3  
US1_CLK #1  
US1_CS #1  
ADC0_CH3  
OPAMP_N2  
ADC0_CH4  
32  
33  
PD4  
PD5  
LEU0_TX #0  
LEU0_RX #0  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
34  
35  
PD6  
PD7  
DAC0_P1/  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
CMU_CLK1 #1  
LES_CH6 #0  
US1_TX #2  
DAC0_N1/  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
36  
37  
38  
39  
PD8  
PC6  
ACMP0_CH6  
ACMP0_CH7  
I2C0_SDA #2  
I2C0_SCL #2  
PC7  
LES_CH7 #0  
VDD_DREG  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
40  
41  
DECOUPLE  
PC8  
ACMP1_CH0  
US0_CS #2  
LES_CH8 #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 109  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
LES_CH9 #0  
GPIO_EM4WU2  
LES_CH10 #0  
LES_CH11 #0  
42  
PC9  
ACMP1_CH1  
US0_CLK #2  
43  
44  
PC10  
PC11  
ACMP1_CH2  
ACMP1_CH3  
US0_RX #2  
US0_TX #2  
ACMP1_CH4  
CMU_CLK0 #1  
LES_CH12 #0  
45  
46  
47  
48  
49  
50  
51  
PC12  
PC13  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #0/  
OPAMP_OUT1ALT  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
LES_CH14 #0  
TIM1_CC1 #0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF2  
TIM0_CC2 #5  
LEU0_TX #4  
52  
53  
54  
55  
56  
57  
58  
PF3  
PF4  
PF5  
IOVDD_5  
PE8  
Digital IO power supply 5.  
PRS_CH3 #1  
PE9  
PE10  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
BOOT_TX  
LES_ALTEX5 #0  
BOOT_RX  
59  
PE11  
silabs.com | Building a more connected world.  
Rev. 2.10 | 110  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_RX #3  
Other  
CMU_CLK1 #2  
60  
61  
PE12  
TIM1_CC2 #1  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
PE13  
US0_CS #0  
I2C0_SCL #6  
LEU0_TX #2  
LEU0_RX #2  
GPIO_EM4WU5  
62  
63  
64  
PE14  
PE15  
PA15  
silabs.com | Building a more connected world.  
Rev. 2.10 | 111  
EFM32TG Data Sheet  
Pin Definitions  
5.6.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.17. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
PC0  
1
2
PD6  
PD7  
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, channel 4.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH4  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PF2  
Analog to digital converter ADC0, input channel  
number 0.  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
Analog to digital converter ADC0, input channel  
number 1.  
Analog to digital converter ADC0, input channel  
number 2.  
Analog to digital converter ADC0, input channel  
number 3.  
Analog to digital converter ADC0, input channel  
number 4.  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 112  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Analog to digital converter ADC0, input channel  
number 7.  
ADC0_CH7  
PD7  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PC12 PD7  
PD8 PE12  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
DAC0_N0/  
OPAMP_N0  
PC5  
Operational Amplifier 0 external negative input.  
DAC0_N1/  
OPAMP_N1  
PD7  
PD3  
PB11  
Operational Amplifier 1 external negative input.  
Operational Amplifier 2 external negative input.  
OPAMP_N2  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
PC2  
PC3  
PD0  
OPAMP_OUT0  
ALT  
DAC0_OUT1/  
OPAMP_OUT1  
Digital to Analog Converter DAC0_OUT1 /OPAMP  
output channel number 1.  
PB12  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC12 PC13 PC14 PC15 PD1  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
PD0  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU1 PA6  
GPIO_EM4WU2 PC9  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
silabs.com | Building a more connected world.  
Rev. 2.10 | 113  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC7  
PC6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PA0  
PD6  
PD7  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
LES_CH3  
LESENSE channel 3.  
LES_CH4  
LESENSE channel 4.  
LES_CH5  
LESENSE channel 5.  
LES_CH6  
LESENSE channel 6.  
LES_CH7  
LESENSE channel 7.  
LES_CH8  
LESENSE channel 8.  
LES_CH9  
LESENSE channel 9.  
LES_CH10  
LES_CH11  
LES_CH12  
LES_CH13  
LES_CH14  
LES_CH15  
LESENSE channel 10.  
LESENSE channel 11.  
LESENSE channel 12.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PB12  
PB14  
PF0  
PC4  
PC5  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PE15  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
PB13  
PE14  
PF0  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
PB8  
silabs.com | Building a more connected world.  
Rev. 2.10 | 114  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
PB7  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
PC13  
PC14  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PE8  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PD1  
PD2  
PD3  
PB7  
PB8  
PB11  
PA0  
PC0  
PC1  
PD6  
PD7  
PC13  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PE12  
PC9  
PC8  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
PE13  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PC10 PE12  
PC11 PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 115  
EFM32TG Data Sheet  
Pin Definitions  
5.6.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.18. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
PA15  
-
-
-
-
-
PA10 PA9 PA8  
-
PA6 PA5 PA4 PA3 PA2 PA1 PA0  
PB14 PB13 PB12 PB11  
-
-
PB8 PB7  
-
-
-
-
-
-
-
PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
-
-
-
-
-
-
-
PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.6.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG230 is shown in the following figure.  
PB11  
PB12  
PC0  
OUT0ALT  
OUT0  
PC4  
PC5  
+
OPA0  
-
PC1  
PC2  
PC3  
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
Figure 5.11. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 116  
EFM32TG Data Sheet  
Pin Definitions  
5.7 EFM32TG232 (TQFP64)  
5.7.1 Pinout  
The EFM32TG232 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.12. EFM32TG232 Pinout (top view, not to scale)  
Table 5.19. Device Pinout  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
LEU0_RX #4  
Other  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
CMU_CLK0 #0  
1
PA0  
TIM0_CC0 #0/1/4  
I2C0_SDA #0  
2
3
PA1  
PA2  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 117  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PA3  
Analog  
Timers  
Communication  
Other  
4
5
6
7
8
LES_ALTEX2 #0  
LES_ALTEX3 #0  
LES_ALTEX4 #0  
PA4  
PA5  
IOVDD_0  
VSS  
Digital IO power supply 0.  
Ground.  
ACMP0_CH0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC1 #4  
LES_CH0 #0  
PRS_CH2 #0  
9
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH1  
PCNT0_S0IN #2  
TIM0_CC2 #4  
LES_CH1 #0  
PRS_CH3 #0  
10  
11  
12  
13  
14  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
ACMP0_CH2  
PCNT0_S1IN #2  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
ACMP0_CH3  
LES_CH2 #0  
LES_CH3 #0  
LES_CH4 #0  
LES_CH5 #0  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
ACMP0_CH4  
DAC0_P0/  
LETIM0_OUT0 #3  
LETIM0_OUT1 #3  
OPAMP_P0  
ACMP0_CH5  
DAC0_N0/  
OPAMP_N0  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
15  
16  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
17  
18  
19  
PA8  
PA9  
PA10  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
20  
21  
RESETn  
PB11  
DAC0_OUT0/  
TIM1_CC2 #3  
OPAMP_OUT0  
LETIM0_OUT0 #1  
22  
23  
VSS  
Ground.  
Analog power supply 1.  
AVDD_1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 118  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_CLK #4/5  
LEU0_TX #1  
Other  
24  
25  
PB13  
HFXTAL_P  
US0_CS #4/5  
LEU0_RX #1  
PB14  
HFXTAL_N  
26  
27  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
OPAMP_OUT2 #1  
ADC0_CH1  
28  
PD0  
US1_TX #1  
US1_RX #1  
29  
PD1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
ADC0_CH2  
TIM0_CC0 #3  
30  
31  
PD2  
PD3  
TIM0_CC1 #3  
TIM0_CC2 #3  
US1_CLK #1  
US1_CS #1  
ADC0_CH3  
OPAMP_N2  
ADC0_CH4  
32  
33  
PD4  
PD5  
LEU0_TX #0  
LEU0_RX #0  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
34  
35  
PD6  
PD7  
DAC0_P1/  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
CMU_CLK1 #1  
LES_CH6 #0  
US1_TX #2  
DAC0_N1/  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
36  
37  
38  
39  
PD8  
PC6  
ACMP0_CH6  
ACMP0_CH7  
I2C0_SDA #2  
I2C0_SCL #2  
PC7  
LES_CH7 #0  
VDD_DREG  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
40  
41  
DECOUPLE  
PC8  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
US0_CS #2  
US0_CLK #2  
US0_RX #2  
LES_CH8 #0  
LES_CH9 #0  
42  
43  
PC9  
GPIO_EM4WU2  
LES_CH10 #0  
PC10  
silabs.com | Building a more connected world.  
Rev. 2.10 | 119  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
44  
45  
PC11  
ACMP1_CH3  
US0_TX #2  
LES_CH11 #0  
ACMP1_CH4  
CMU_CLK0 #1  
LES_CH12 #0  
PC12  
PC13  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #0/  
OPAMP_OUT1ALT  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
46  
47  
48  
49  
50  
51  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
LES_CH14 #0  
TIM1_CC1 #0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF2  
TIM0_CC2 #5  
LEU0_TX #4  
52  
53  
54  
55  
56  
57  
58  
59  
PF3  
PF4  
PF5  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground.  
PE8  
PRS_CH3 #1  
PE9  
PE10  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
BOOT_TX  
LES_ALTEX5 #0  
BOOT_RX  
60  
PE11  
PE12  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
CMU_CLK1 #2  
61  
TIM1_CC2 #1  
LES_ALTEX6 #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 120  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_TX #3  
Other  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
62  
PE13  
US0_CS #0  
I2C0_SCL #6  
LEU0_TX #2  
LEU0_RX #2  
63  
64  
PE14  
PE15  
silabs.com | Building a more connected world.  
Rev. 2.10 | 121  
EFM32TG Data Sheet  
Pin Definitions  
5.7.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.20. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
PC0  
1
2
PD6  
PD7  
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, channel 4.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH4  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PF2  
Analog to digital converter ADC0, input channel  
number 0.  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
Analog to digital converter ADC0, input channel  
number 1.  
Analog to digital converter ADC0, input channel  
number 2.  
Analog to digital converter ADC0, input channel  
number 3.  
Analog to digital converter ADC0, input channel  
number 4.  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 122  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Analog to digital converter ADC0, input channel  
number 7.  
ADC0_CH7  
PD7  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PC12 PD7  
PD8 PE12  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
DAC0_N0/  
OPAMP_N0  
PC5  
Operational Amplifier 0 external negative input.  
DAC0_N1/  
OPAMP_N1  
PD7  
PD3  
PB11  
Operational Amplifier 1 external negative input.  
Operational Amplifier 2 external negative input.  
OPAMP_N2  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
PC2  
PC3  
PD0  
OPAMP_OUT0  
ALT  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC12 PC13 PC14 PC15 PD1  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
PD0  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU2 PC9  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
silabs.com | Building a more connected world.  
Rev. 2.10 | 123  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
HFXTAL_P  
I2C0_SCL  
0
PB13  
PA1  
1
2
4
5
6
Description  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC7  
PC6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PA0  
PD6  
PD7  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
LES_CH3  
LESENSE channel 3.  
LES_CH4  
LESENSE channel 4.  
LES_CH5  
LESENSE channel 5.  
LES_CH6  
LESENSE channel 6.  
LES_CH7  
LESENSE channel 7.  
LES_CH8  
LESENSE channel 8.  
LES_CH9  
LESENSE channel 9.  
LES_CH10  
LES_CH11  
LES_CH12  
LES_CH13  
LES_CH14  
LES_CH15  
LESENSE channel 10.  
LESENSE channel 11.  
LESENSE channel 12.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PC4  
PC5  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PE15  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
PE14  
PF0  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
PB8  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
PB7  
PCNT0_S0IN  
PC13  
PC0  
PD6  
Pulse Counter PCNT0 input number 0.  
Rev. 2.10 | 124  
silabs.com | Building a more connected world.  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
0
PC14  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
1
2
3
4
5
6
Description  
PC1  
PD7  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PE8  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PD1  
PD2  
PD3  
PB7  
PB8  
PB11  
PA0  
PC0  
PC1  
PD6  
PD7  
PC13  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PE12  
PC9  
PC8  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
PE13  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PC10 PE12  
PC11 PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 125  
EFM32TG Data Sheet  
Pin Definitions  
5.7.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG232 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.21. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
PA10 PA9 PA8  
-
-
-
PA5 PA4 PA3 PA2 PA1 PA0  
PB14 PB13  
PB11  
-
-
PB8 PB7  
-
-
-
-
-
-
PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
-
-
-
-
-
-
-
PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.7.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG232 is shown in the following figure.  
PB11  
PB12  
PC0  
OUT0ALT  
OUT0  
PC4  
PC5  
+
OPA0  
-
PC1  
PC2  
PC3  
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
Figure 5.13. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 126  
EFM32TG Data Sheet  
Pin Definitions  
5.8 EFM32TG822 (TQFP48)  
5.8.1 Pinout  
The EFM32TG822 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.14. EFM32TG822 Pinout (top view, not to scale)  
Table 5.22. Device Pinout  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
LEU0_RX #4  
Other  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
CMU_CLK0 #0  
1
PA0  
LCD_SEG13  
TIM0_CC0 #0/1/4  
I2C0_SDA #0  
2
3
PA1  
PA2  
LCD_SEG14  
LCD_SEG15  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 127  
EFM32TG Data Sheet  
Pin Definitions  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
IOVDD_0  
VSS  
Analog  
Digital IO power supply 0.  
Ground.  
Timers  
Communication  
Other  
4
5
LCD_SEG20/  
LCD_COM4  
6
7
8
9
PB3  
PB4  
PB5  
PB6  
LCD_SEG21/  
LCD_COM5  
LCD_SEG22/  
LCD_COM6  
LCD_SEG23/  
LCD_COM7  
ACMP0_CH4  
DAC0_P0/  
10  
PC4  
LETIM0_OUT0 #3  
LES_CH4 #0  
OPAMP_P0  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
11  
12  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
13  
14  
15  
PA12  
PA13  
PA14  
LCD_BCAP_P  
LCD_BCAP_N  
LCD_BEXT  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
16  
17  
RESETn  
PB11  
DAC0_OUT0/  
TIM1_CC2 #3  
OPAMP_OUT0  
LETIM0_OUT0 #1  
18  
19  
VSS  
Ground.  
AVDD_1  
Analog power supply 1.  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
20  
21  
PB13  
PB14  
HFXTAL_P  
HFXTAL_N  
22  
23  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH4  
24  
25  
PD4  
PD5  
LEU0_TX #0  
LEU0_RX #0  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 128  
EFM32TG Data Sheet  
Pin Definitions  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
ADC0_CH6  
DAC0_P1/  
OPAMP_P1  
ADC0_CH7  
DAC0_N1/  
OPAMP_N1  
TIM1_CC0 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
26  
27  
PD6  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
I2C0_SDA #1  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
PD7  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
28  
29  
VDD_DREG  
DECOUPLE  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
30  
31  
32  
33  
PE4  
PE5  
PE6  
PE7  
LCD_COM0  
LCD_COM1  
US0_CS #1  
US0_CLK #1  
US0_RX #1  
US0_TX #1  
LCD_COM2  
LCD_COM3  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
34  
35  
36  
37  
38  
39  
PC13  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
LES_CH14 #0  
TIM1_CC1 #0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF2  
LCD_SEG0  
TIM0_CC2 #5  
LEU0_TX #4  
40  
41  
42  
43  
44  
PF3  
PF4  
LCD_SEG1  
LCD_SEG2  
PF5  
LCD_SEG3  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 129  
EFM32TG Data Sheet  
Pin Definitions  
QFP48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
BOOT_TX  
45  
PE10  
LCD_SEG6  
TIM1_CC0 #1  
US0_TX #0  
LES_ALTEX5 #0  
BOOT_RX  
46  
PE11  
PE12  
LCD_SEG7  
LCD_SEG8  
TIM1_CC1 #1  
TIM1_CC2 #1  
US0_RX #0  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
CMU_CLK1 #2  
47  
48  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
PE13  
LCD_SEG9  
GPIO_EM4WU5  
silabs.com | Building a more connected world.  
Rev. 2.10 | 130  
EFM32TG Data Sheet  
Pin Definitions  
5.8.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.23. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH4  
ACMP0_O  
0
1
2
4
5
6
Description  
PC4  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PE13  
PC13  
PC14  
PC15  
PF2  
PD6  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PD7  
Analog to digital converter ADC0, input channel  
number 4.  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
PE12  
DAC0_N1/  
OPAMP_N1  
PD7  
Operational Amplifier 1 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC13 PC14 PC15  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 131  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PF2  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
I2C0_SDA  
PB13  
PA1  
PA0  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PD6  
PF1  
PF0  
PE13  
PE12  
LCD voltage booster (optional), boost capacitor,  
negative pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD_BCAP_N PA13  
LCD_BCAP_P PA12  
LCD voltage booster (optional), boost capacitor,  
positive pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD voltage booster (optional), boost output. If us-  
ing the LCD voltage booster, connect a 1 uF capaci-  
tor between this pin and VSS.  
LCD_BEXT  
PA14  
An external LCD voltage may also be applied to this  
pin if the booster is not enabled.  
If AVDD is used directly as the LCD supply voltage,  
this pin may be left unconnected or used as a GPIO.  
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
PE4  
PE5  
PE6  
PE7  
LCD driver common line number 0.  
LCD driver common line number 1.  
LCD driver common line number 2.  
LCD driver common line number 3.  
LCD segment line 0. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG3  
PF2  
PF3  
PF4  
PF5  
LCD segment line 1. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD segment line 2. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD segment line 3. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 132  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LCD segment line 6. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
LCD_SEG6  
LCD_SEG7  
LCD_SEG8  
LCD_SEG9  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
PE10  
LCD segment line 7. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
PE11  
PE12  
PE13  
PA0  
LCD segment line 8. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 9. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 13. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 14. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
PA1  
LCD segment line 15. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
PA2  
LCD segment line 20. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 4  
LCD_SEG20/  
LCD_COM4  
PB3  
PB4  
PB5  
PB6  
LCD segment line 21. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 5  
LCD_SEG21/  
LCD_COM5  
LCD segment line 22. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 6  
LCD_SEG22/  
LCD_COM6  
LCD segment line 23. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 7  
LCD_SEG23/  
LCD_COM7  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH4  
PD6  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 4.  
PD7  
PE11  
PE12  
PE13  
PC4  
LES_CH13  
PC13  
PC14  
PC15  
LESENSE channel 13.  
LES_CH14  
LESENSE channel 14.  
LES_CH15  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PF1  
PC4  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
PB8  
silabs.com | Building a more connected world.  
Rev. 2.10 | 133  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
PB7  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
PC13  
PC14  
PA0  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA1  
PA0  
PA1  
PA2  
PA0  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PB7  
PB8  
PB11  
PD6  
PD7  
PC13  
PE12  
PE13  
PE5  
PE4  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PE12  
PE13  
PB8  
PB7  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 134  
EFM32TG Data Sheet  
Pin Definitions  
5.8.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG822 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.24. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
PA14 PA13 PA12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA2 PA1 PA0  
PB14 PB13  
-
-
-
PB11  
PB8 PB7 PB6 PB5 PB4 PB3  
-
-
-
-
-
-
-
-
-
-
-
-
PC15 PC14 PC13  
-
-
-
-
-
-
-
-
-
PC4  
-
-
-
-
-
-
-
-
-
-
PD7 PD6 PD5 PD4  
PE7 PE6 PE5 PE4  
PE13 PE12 PE11 PE10  
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.8.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG822 is shown in the following figure.  
PB11  
OUT0ALT  
OUT0  
PC4  
PD4  
+
OPA0  
-
+
OPA2  
-
OUT2  
PC13  
PC14  
PC15  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD5  
Figure 5.15. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 135  
EFM32TG Data Sheet  
Pin Definitions  
5.9 EFM32TG825 (BGA48)  
5.9.1 Pinout  
The EFM32TG825 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.16. EFM32TG825 Pinout (top view, not to scale)  
Table 5.25. Device Pinout  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_TX #3  
Other  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
A1  
PE13  
LCD_SEG9  
US0_CS #0  
I2C0_SCL #6  
silabs.com | Building a more connected world.  
Rev. 2.10 | 136  
EFM32TG Data Sheet  
Pin Definitions  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_RX #3  
Other  
CMU_CLK1 #2  
A2  
PE12  
LCD_SEG8  
TIM1_CC2 #1  
US0_CLK #0  
I2C0_SDA #6  
LES_ALTEX6 #0  
LES_ALTEX5 #0  
BOOT_RX  
A3  
PE11  
LCD_SEG7  
TIM1_CC1 #1  
US0_RX #0  
A4  
A5  
PF5  
PF3  
LCD_SEG3  
LCD_SEG1  
PRS_CH2 #1  
PRS_CH0 #1  
ACMP1_CH6  
TIM1_CC1 #0  
A6  
A7  
PC14  
PC15  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
I2C0_SCL #0  
CMU_CLK1 #0  
PRS_CH1 #0  
PRS_CH0 #0  
GPIO_EM4WU0  
BOOT_TX  
B1  
B2  
PA1  
PA0  
LCD_SEG14  
LCD_SEG13  
TIM0_CC1 #0/1  
LEU0_RX #4  
I2C0_SDA #0  
US0_TX #0  
TIM0_CC0 #0/1/4  
TIM1_CC0 #1  
B3  
B4  
PE10  
PF4  
LCD_SEG6  
LCD_SEG2  
PRS_CH1 #1  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
B5  
B6  
B7  
PF2  
PE7  
LCD_SEG0  
TIM0_CC2 #5  
LEU0_TX #4  
US0_TX #1  
LCD_COM3  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
PC13  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
LCD_SEG20/  
LES_CH13 #0  
CMU_CLK0 #0  
C1  
PB3  
LCD_COM4  
C2  
C3  
C4  
PA2  
VSS  
LCD_SEG15  
TIM0_CC2 #0/1  
Ground.  
IOVDD_5  
Digital IO power supply 5.  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
US0_CLK #1  
US0_RX #1  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
C5  
PF1  
LETIM0_OUT1 #2  
C6  
C7  
PE5  
PE6  
LCD_COM1  
LCD_COM2  
silabs.com | Building a more connected world.  
Rev. 2.10 | 137  
EFM32TG Data Sheet  
Pin Definitions  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
LCD_SEG21/  
Timers  
Communication  
Other  
D1  
PB4  
LCD_COM5  
LCD_SEG23/  
D2  
D3  
PB6  
LCD_COM7  
IOVDD_0  
Digital IO power supply 0.  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US0_CS #1  
TIM0_CC0 #5  
D5  
PF0  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
D6  
D7  
PE4  
LCD_COM0  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
DECOUPLE  
LCD_SEG22/  
LCD_COM6  
ACMP0_CH4  
E1  
E2  
PB5  
PC4  
DAC0_P0/  
OPAMP_P0  
LCD_BCAP_P  
LETIM0_OUT0 #3  
LES_CH4 #0  
E3  
E4  
E5  
PA12  
VDD_DREG  
AVSS_0  
Power supply for on-chip voltage regulator.  
Analog ground 0.  
ADC0_CH7  
DAC0_N1/  
OPAMP_N1  
ADC0_CH6  
DAC0_P1/  
OPAMP_P1  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
TIM1_CC0 #4  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
E6  
PD7  
I2C0_SCL #1  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
E7  
F1  
PD6  
PB7  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
I2C0_SDA #1  
US0_TX #4  
LFXTAL_P  
TIM1_CC0 #3  
US1_CLK #0  
F2  
F3  
PA13  
LCD_BCAP_N  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
RESETn  
F4  
F5  
F6  
IOVDD_3  
AVDD_1  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 1.  
Analog power supply 0.  
ADC0_CH5  
F7  
PD5  
PB8  
LEU0_RX #0  
OPAMP_OUT2 #0  
US0_RX #4  
G1  
LFXTAL_N  
TIM1_CC1 #3  
US1_CS #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 138  
EFM32TG Data Sheet  
Pin Definitions  
BGA48 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
LCD_BEXT  
Timers  
Communication  
Other  
G2  
G3  
G4  
G5  
PA14  
DAC0_OUT0/  
OPAMP_OUT0  
Analog ground 1.  
TIM1_CC2 #3  
PB11  
AVSS_1  
PB13  
LETIM0_OUT0 #1  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
HFXTAL_P  
HFXTAL_N  
G6  
G7  
PB14  
PD4  
ADC0_CH4  
OPAMP_P2  
LEU0_TX #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 139  
EFM32TG Data Sheet  
Pin Definitions  
5.9.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.26. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH4  
ACMP0_O  
0
1
2
4
5
6
Description  
PC4  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PE13  
PC13  
PC14  
PC15  
PF2  
PD6  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PD7  
Analog to digital converter ADC0, input channel  
number 4.  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
PE12  
DAC0_N1/  
OPAMP_N1  
PD7  
Operational Amplifier 1 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC13 PC14 PC15  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 140  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PF2  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
I2C0_SDA  
PB13  
PA1  
PA0  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PD6  
PF1  
PF0  
PE13  
PE12  
LCD voltage booster (optional), boost capacitor,  
negative pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD_BCAP_N PA13  
LCD_BCAP_P PA12  
LCD voltage booster (optional), boost capacitor,  
positive pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD voltage booster (optional), boost output. If us-  
ing the LCD voltage booster, connect a 1 uF capaci-  
tor between this pin and VSS.  
LCD_BEXT  
PA14  
An external LCD voltage may also be applied to this  
pin if the booster is not enabled.  
If AVDD is used directly as the LCD supply voltage,  
this pin may be left unconnected or used as a GPIO.  
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
PE4  
PE5  
PE6  
PE7  
LCD driver common line number 0.  
LCD driver common line number 1.  
LCD driver common line number 2.  
LCD driver common line number 3.  
LCD segment line 0. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG3  
PF2  
PF3  
PF4  
PF5  
LCD segment line 1. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD segment line 2. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD segment line 3. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 141  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LCD segment line 6. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
LCD_SEG6  
LCD_SEG7  
LCD_SEG8  
LCD_SEG9  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
PE10  
LCD segment line 7. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
PE11  
PE12  
PE13  
PA0  
LCD segment line 8. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 9. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 13. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 14. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
PA1  
LCD segment line 15. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
PA2  
LCD segment line 20. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 4  
LCD_SEG20/  
LCD_COM4  
PB3  
PB4  
PB5  
PB6  
LCD segment line 21. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 5  
LCD_SEG21/  
LCD_COM5  
LCD segment line 22. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 6  
LCD_SEG22/  
LCD_COM6  
LCD segment line 23. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 7  
LCD_SEG23/  
LCD_COM7  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH4  
PD6  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 4.  
PD7  
PE11  
PE12  
PE13  
PC4  
LES_CH13  
PC13  
PC14  
PC15  
LESENSE channel 13.  
LES_CH14  
LESENSE channel 14.  
LES_CH15  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PF1  
PC4  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
PB8  
silabs.com | Building a more connected world.  
Rev. 2.10 | 142  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
PB7  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
PC13  
PC14  
PA0  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA1  
PA0  
PA1  
PA2  
PA0  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PB7  
PB8  
PB11  
PD6  
PD7  
PC13  
PE12  
PE13  
PE5  
PE4  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PE12  
PE13  
PB8  
PB7  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 143  
EFM32TG Data Sheet  
Pin Definitions  
5.9.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG825 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.27. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
PA14 PA13 PA12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA2 PA1 PA0  
PB14 PB13  
-
-
-
PB11  
PB8 PB7 PB6 PB5 PB4 PB3  
-
-
-
-
-
-
-
-
-
-
-
-
PC15 PC14 PC13  
-
-
-
-
-
-
-
-
-
PC4  
-
-
-
-
-
-
-
-
-
-
PD7 PD6 PD5 PD4  
PE7 PE6 PE5 PE4  
PE13 PE12 PE11 PE10  
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.9.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG825 is shown in the following figure.  
PB11  
OUT0ALT  
OUT0  
PC4  
PD4  
+
OPA0  
-
+
OPA2  
-
OUT2  
PC13  
PC14  
PC15  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD5  
Figure 5.17. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 144  
EFM32TG Data Sheet  
Pin Definitions  
5.10 EFM32TG840 (QFN64)  
5.10.1 Pinout  
The EFM32TG840 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.18. EFM32TG840 Pinout (top view, not to scale)  
Table 5.28. Device Pinout  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
LEU0_RX #4  
Other  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
CMU_CLK0 #0  
1
PA0  
LCD_SEG13  
TIM0_CC0 #0/1/4  
I2C0_SDA #0  
2
3
PA1  
PA2  
LCD_SEG14  
LCD_SEG15  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 145  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PA3  
Analog  
LCD_SEG16  
LCD_SEG17  
LCD_SEG18  
LCD_SEG19  
Digital IO power supply 0.  
LCD_SEG20/  
LCD_COM4  
Timers  
Communication  
Other  
4
5
6
7
8
LES_ALTEX2 #0  
LES_ALTEX3 #0  
LES_ALTEX4 #0  
GPIO_EM4WU1  
PA4  
PA5  
PA6  
IOVDD_0  
9
PB3  
PB4  
PB5  
PB6  
LCD_SEG21/  
LCD_COM5  
10  
11  
12  
LCD_SEG22/  
LCD_COM6  
LCD_SEG23/  
LCD_COM7  
ACMP0_CH4  
DAC0_P0/  
13  
14  
PC4  
PC5  
LETIM0_OUT0 #3  
LETIM0_OUT1 #3  
LES_CH4 #0  
LES_CH5 #0  
OPAMP_P0  
ACMP0_CH5  
DAC0_N0/  
OPAMP_N0  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
15  
16  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
17  
18  
19  
PA12  
PA13  
PA14  
LCD_BCAP_P  
LCD_BCAP_N  
LCD_BEXT  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
20  
21  
RESETn  
PB11  
DAC0_OUT0/  
OPAMP_OUT0  
TIM1_CC2 #3  
LETIM0_OUT0 #1  
DAC0_OUT1/  
22  
23  
24  
PB12  
AVDD_1  
PB13  
LETIM0_OUT1 #1  
OPAMP_OUT1  
Analog power supply 1.  
US0_CLK #4/5  
LEU0_TX #1  
HFXTAL_P  
silabs.com | Building a more connected world.  
Rev. 2.10 | 146  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
US0_CS #4/5  
LEU0_RX #1  
Other  
25  
PB14  
HFXTAL_N  
26  
27  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
OPAMP_OUT2 #1  
ADC0_CH1  
28  
PD0  
US1_TX #1  
US1_RX #1  
29  
PD1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
ADC0_CH2  
TIM0_CC0 #3  
30  
31  
PD2  
PD3  
TIM0_CC1 #3  
TIM0_CC2 #3  
US1_CLK #1  
US1_CS #1  
ADC0_CH3  
OPAMP_N2  
ADC0_CH4  
32  
33  
PD4  
PD5  
LEU0_TX #0  
LEU0_RX #0  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
34  
35  
PD6  
PD7  
DAC0_P1/  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
CMU_CLK1 #1  
LES_CH6 #0  
US1_TX #2  
DAC0_P1/  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
36  
37  
38  
39  
PD8  
PC6  
ACMP0_CH6  
ACMP0_CH7  
I2C0_SDA #2  
I2C0_SCL #2  
PC7  
LES_CH7 #0  
VDD_DREG  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
40  
DECOUPLE  
41  
42  
43  
44  
PE4  
PE5  
PE6  
PE7  
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
US0_CS #1  
US0_CLK #1  
US0_RX #1  
US0_TX #1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 147  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
ACMP1_CH4  
CMU_CLK0 #1  
LES_CH12 #0  
45  
46  
47  
48  
49  
50  
51  
PC12  
DAC0_OUT1ALT #0/  
OPAMP_OUT1ALT  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
PC13  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
LES_CH14 #0  
TIM1_CC1 #0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF2  
LCD_SEG0  
TIM0_CC2 #5  
LEU0_TX #4  
52  
53  
54  
55  
56  
57  
58  
PF3  
PF4  
LCD_SEG1  
LCD_SEG2  
PF5  
LCD_SEG3  
IOVDD_5  
PE8  
Digital IO power supply 5.  
LCD_SEG4  
PRS_CH3 #1  
PE9  
LCD_SEG5  
PE10  
LCD_SEG6  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
BOOT_TX  
LES_ALTEX5 #0  
BOOT_RX  
59  
PE11  
PE12  
LCD_SEG7  
LCD_SEG8  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
CMU_CLK1 #2  
60  
TIM1_CC2 #1  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
61  
PE13  
LCD_SEG9  
GPIO_EM4WU5  
silabs.com | Building a more connected world.  
Rev. 2.10 | 148  
EFM32TG Data Sheet  
Pin Definitions  
QFN64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PE14  
Analog  
Timers  
Communication  
LEU0_TX #2  
Other  
62  
63  
64  
LCD_SEG10  
LCD_SEG11  
LCD_SEG12  
PE15  
LEU0_RX #2  
PA15  
silabs.com | Building a more connected world.  
Rev. 2.10 | 149  
EFM32TG Data Sheet  
Pin Definitions  
5.10.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.29. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
PD6  
PD7  
4
5
6
Description  
PC4  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 4.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC5  
PC6  
PC7  
PE13  
PC12  
PC13  
PC14  
PC15  
PF2  
ACMP1_CH4  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
Analog to digital converter ADC0, input channel  
number 0.  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 1.  
Analog to digital converter ADC0, input channel  
number 2.  
Analog to digital converter ADC0, input channel  
number 3.  
Analog to digital converter ADC0, input channel  
number 4.  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PC12 PD7  
PD8 PE12  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
DAC0_N0/  
OPAMP_N0  
PC5  
PD7  
Operational Amplifier 0 external negative input.  
Operational Amplifier 1 external negative input.  
DAC0_N1/  
OPAMP_N1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 150  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
OPAMP_N2  
0
1
2
4
5
6
Description  
PD3  
Operational Amplifier 2 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PD0  
OPAMP_OUT0  
ALT  
DAC0_OUT1/  
OPAMP_OUT1  
Digital to Analog Converter DAC0_OUT1 /OPAMP  
output channel number 1.  
PB12  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC12 PC13 PC14 PC15 PD1  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
PD0  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU1 PA6  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
I2C0_SDA  
PB13  
PA1  
PA0  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PD6  
PC7  
PC6  
PF1  
PF0  
PE13  
PE12  
LCD voltage booster (optional), boost capacitor,  
negative pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD_BCAP_N PA13  
silabs.com | Building a more connected world.  
Rev. 2.10 | 151  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LCD voltage booster (optional), boost capacitor,  
positive pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD_BCAP_P PA12  
LCD voltage booster (optional), boost output. If us-  
ing the LCD voltage booster, connect a 1 uF capaci-  
tor between this pin and VSS.  
LCD_BEXT  
PA14  
An external LCD voltage may also be applied to this  
pin if the booster is not enabled.  
If AVDD is used directly as the LCD supply voltage,  
this pin may be left unconnected or used as a GPIO.  
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
PE4  
PE5  
PE6  
PE7  
LCD driver common line number 0.  
LCD driver common line number 1.  
LCD driver common line number 2.  
LCD driver common line number 3.  
LCD segment line 0. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG3  
LCD_SEG4  
LCD_SEG5  
LCD_SEG6  
LCD_SEG7  
LCD_SEG8  
LCD_SEG9  
LCD_SEG10  
LCD_SEG11  
LCD_SEG12  
LCD_SEG13  
LCD_SEG14  
PF2  
LCD segment line 1. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
PF3  
LCD segment line 2. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
PF4  
LCD segment line 3. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
PF5  
LCD segment line 4. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
PE8  
LCD segment line 5. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
PE9  
LCD segment line 6. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
LCD segment line 7. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
LCD segment line 8. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 9. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 10. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 11. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 12. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 13. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 14. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
PA1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 152  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LCD segment line 15. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD_SEG15  
LCD_SEG16  
LCD_SEG17  
LCD_SEG18  
LCD_SEG19  
PA2  
LCD segment line 16. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
PA3  
PA4  
PA5  
PA6  
LCD segment line 17. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
LCD segment line 18. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
LCD segment line 19. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
LCD segment line 20. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 4  
LCD_SEG20/  
LCD_COM4  
PB3  
PB4  
PB5  
PB6  
LCD segment line 21. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 5  
LCD_SEG21/  
LCD_COM5  
LCD segment line 22. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 6  
LCD_SEG22/  
LCD_COM6  
LCD segment line 23. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 7  
LCD_SEG23/  
LCD_COM7  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH4  
PD6  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 4.  
PD7  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC4  
LES_CH5  
PC5  
LESENSE channel 5.  
LES_CH6  
PC6  
LESENSE channel 6.  
LES_CH7  
PC7  
LESENSE channel 7.  
LES_CH12  
LES_CH13  
LES_CH14  
LES_CH15  
PC12  
PC13  
PC14  
PC15  
LESENSE channel 12.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PB12  
PB14  
PF0  
PC4  
PC5  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
LEU0_RX  
PD5  
PE15  
PF1  
PA0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 153  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
LEU0_TX  
LFXTAL_N  
LFXTAL_P  
PD4  
PB13  
PE14  
PF0  
PF2  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
PB8  
PB7  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
PC13  
PC14  
PA0  
PD6  
PD7  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PE8  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA1  
PA0  
PA1  
PA2  
PD1  
PD2  
PD3  
PB7  
PB8  
PB11  
PA0  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PD6  
PD7  
PC13  
PE12  
PE13  
PE5  
PE4  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PE12  
PE13  
PB8  
PB7  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 154  
EFM32TG Data Sheet  
Pin Definitions  
5.10.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG840 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.30. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
PA15 PA14 PA13 PA12  
-
-
-
-
-
-
-
-
-
-
-
PA6 PA5 PA4 PA3 PA2 PA1 PA0  
-
PB14 PB13 PB12 PB11  
PB8 PB7 PB6 PB5 PB4 PB3  
PC7 PC6 PC5 PC4  
-
-
-
-
-
-
PC15 PC14 PC13 PC12  
-
-
-
-
-
-
-
-
PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8 PE7 PE6 PE5 PE4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.10.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG840 is shown in the following figure.  
PB11  
PB12  
OUT0ALT  
OUT0  
PC4  
PC5  
+
OPA0  
-
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
Figure 5.19. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 155  
EFM32TG Data Sheet  
Pin Definitions  
5.11 EFM32TG842 (TQFP64)  
5.11.1 Pinout  
The EFM32TG842 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location  
number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the  
*_ROUTE register in the module in question.  
Figure 5.20. EFM32TG842 Pinout (top view, not to scale)  
Table 5.31. Device Pinout  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
LEU0_RX #4  
Other  
PRS_CH0 #0  
GPIO_EM4WU0  
CMU_CLK1 #0  
PRS_CH1 #0  
CMU_CLK0 #0  
1
PA0  
LCD_SEG13  
TIM0_CC0 #0/1/4  
I2C0_SDA #0  
2
3
PA1  
PA2  
LCD_SEG14  
LCD_SEG15  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SCL #0  
silabs.com | Building a more connected world.  
Rev. 2.10 | 156  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
PA3  
Analog  
LCD_SEG16  
LCD_SEG17  
LCD_SEG18  
Digital IO power supply 0.  
Ground.  
Timers  
Communication  
Other  
4
5
6
7
8
LES_ALTEX2 #0  
LES_ALTEX3 #0  
LES_ALTEX4 #0  
PA4  
PA5  
IOVDD_0  
VSS  
LCD_SEG20/  
LCD_COM4  
LCD_SEG21/  
LCD_COM5  
LCD_SEG22/  
LCD_COM6  
LCD_SEG23/  
LCD_COM7  
ACMP0_CH4  
DAC0_P0/  
9
PB3  
PB4  
PB5  
PB6  
10  
11  
12  
13  
14  
PC4  
PC5  
LETIM0_OUT0 #3  
LETIM0_OUT1 #3  
LES_CH4 #0  
LES_CH5 #0  
OPAMP_P0  
ACMP0_CH5  
DAC0_N1/  
OPAMP_N0  
US0_TX #4  
US1_CLK #0  
US0_RX #4  
US1_CS #0  
15  
16  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
17  
18  
19  
PA12  
PA13  
PA14  
LCD_BCAP_P  
LCD_BCAP_N  
LCD_BEXT  
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin  
low during reset, and let the internal pull-up ensure that reset is released.  
20  
21  
RESETn  
PB11  
DAC0_OUT0/  
TIM1_CC2 #3  
OPAMP_OUT0  
LETIM0_OUT0 #1  
22  
23  
VSS  
Ground.  
AVDD_1  
Analog power supply 1.  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
24  
25  
PB13  
PB14  
HFXTAL_P  
HFXTAL_N  
silabs.com | Building a more connected world.  
Rev. 2.10 | 157  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
IOVDD_3  
AVDD_0  
Analog  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
Timers  
Communication  
Other  
26  
27  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
OPAMP_OUT2 #1  
ADC0_CH1  
28  
PD0  
US1_TX #1  
US1_RX #1  
29  
PD1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
ADC0_CH2  
TIM0_CC0 #3  
30  
31  
PD2  
PD3  
TIM0_CC1 #3  
TIM0_CC2 #3  
US1_CLK #1  
US1_CS #1  
ADC0_CH3  
OPAMP_N2  
ADC0_CH4  
32  
33  
PD4  
PD5  
LEU0_TX #0  
LEU0_RX #0  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
TIM1_CC1 #4  
US1_RX #2  
LES_ALTEX0 #0  
ACMP0_O #2  
34  
35  
PD6  
PD7  
DAC0_P1/  
I2C0_SDA #1  
OPAMP_P1  
ADC0_CH7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
CMU_CLK1 #1  
LES_CH6 #0  
US1_TX #2  
DAC0_N1/  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
I2C0_SCL #1  
OPAMP_N1  
36  
37  
38  
39  
PD8  
PC6  
ACMP0_CH6  
ACMP0_CH7  
I2C0_SDA #2  
I2C0_SCL #2  
PC7  
LES_CH7 #0  
VDD_DREG  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required  
at this pin.  
40  
DECOUPLE  
41  
42  
43  
44  
PE4  
PE5  
PE6  
PE7  
LCD_COM0  
LCD_COM1  
US0_CS #1  
US0_CLK #1  
US0_RX #1  
US0_TX #1  
LCD_COM2  
LCD_COM3  
ACMP1_CH4  
CMU_CLK0 #1  
LES_CH12 #0  
45  
PC12  
DAC0_OUT1ALT #0/  
OPAMP_OUT1ALT  
silabs.com | Building a more connected world.  
Rev. 2.10 | 158  
EFM32TG Data Sheet  
Pin Definitions  
QFP64 Pin# and Name  
Pin Alternate Functionality / Description  
Pin #  
Pin Name  
Analog  
Timers  
Communication  
Other  
ACMP1_CH5  
TIM1_CC0 #0  
TIM1_CC2 #4  
PCNT0_S0IN #0  
46  
47  
48  
49  
50  
51  
PC13  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
ACMP1_CH6  
LES_CH13 #0  
TIM1_CC1 #0  
PC14  
PC15  
PF0  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
ACMP1_CH7  
US0_CS #3  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM1_CC2 #0  
US0_CLK #3  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
US1_CS #2  
TIM0_CC0 #5  
DBG_SWCLK #0/1  
LETIM0_OUT0 #2  
TIM0_CC1 #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
PF1  
LEU0_RX #3  
I2C0_SCL #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF2  
LCD_SEG0  
TIM0_CC2 #5  
LEU0_TX #4  
52  
53  
54  
55  
56  
57  
58  
59  
PF3  
PF4  
LCD_SEG1  
LCD_SEG2  
PF5  
LCD_SEG3  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground.  
PE8  
LCD_SEG4  
PRS_CH3 #1  
PE9  
LCD_SEG5  
PE10  
LCD_SEG6  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
BOOT_TX  
LES_ALTEX5 #0  
BOOT_RX  
60  
PE11  
PE12  
LCD_SEG7  
LCD_SEG8  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
US0_TX #3  
CMU_CLK1 #2  
61  
TIM1_CC2 #1  
LES_ALTEX6 #0  
LES_ALTEX7 #0  
ACMP0_O #0  
62  
PE13  
LCD_SEG9  
US0_CS #0  
I2C0_SCL #6  
LEU0_TX #2  
LEU0_RX #2  
GPIO_EM4WU5  
63  
64  
PE14  
PE15  
LCD_SEG10  
LCD_SEG11  
silabs.com | Building a more connected world.  
Rev. 2.10 | 159  
EFM32TG Data Sheet  
Pin Definitions  
5.11.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table  
shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 5.32. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
PD6  
PD7  
4
5
6
Description  
PC4  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 4.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
PC5  
PC6  
PC7  
PE13  
PC12  
PC13  
PC14  
PC15  
PF2  
ACMP1_CH4  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
Analog to digital converter ADC0, input channel  
number 0.  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
Analog to digital converter ADC0, input channel  
number 1.  
Analog to digital converter ADC0, input channel  
number 2.  
Analog to digital converter ADC0, input channel  
number 3.  
Analog to digital converter ADC0, input channel  
number 4.  
Analog to digital converter ADC0, input channel  
number 5.  
Analog to digital converter ADC0, input channel  
number 6.  
Analog to digital converter ADC0, input channel  
number 7.  
BOOT_RX  
BOOT_TX  
CMU_CLK0  
CMU_CLK1  
PE11  
PE10  
PA2  
Bootloader RX.  
Bootloader TX.  
PC12 PD7  
PD8 PE12  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PA1  
DAC0_N0/  
OPAMP_N0  
PC5  
PD7  
Operational Amplifier 0 external negative input.  
Operational Amplifier 1 external negative input.  
DAC0_N1/  
OPAMP_N1  
silabs.com | Building a more connected world.  
Rev. 2.10 | 160  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
OPAMP_N2  
0
1
2
4
5
6
Description  
PD3  
Operational Amplifier 2 external negative input.  
DAC0_OUT0/  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /OPAMP  
output channel number 0.  
PB11  
DAC0_OUT0AL  
T/  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PD0  
OPAMP_OUT0  
ALT  
DAC0_OUT1AL  
T/  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC12 PC13 PC14 PC15 PD1  
OPAMP_OUT1  
ALT  
OPAMP_OUT2 PD5  
PD0  
Operational Amplifier 2 output.  
DAC0_P0/  
PC4  
Operational Amplifier 0 external positive input.  
OPAMP_P0  
DAC0_P1/  
PD6  
Operational Amplifier 1 external positive input.  
OPAMP_P1  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
Note that this function is enabled to pin out of reset,  
and has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
PF2  
PF1  
Note that this function is enabled to pin out of reset,  
and has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and  
must be enabled by software to be used.  
GPIO_EM4WU0 PA0  
GPIO_EM4WU3 PF1  
GPIO_EM4WU4 PF2  
GPIO_EM4WU5 PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as  
external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
I2C0_SDA  
PB13  
PA1  
PA0  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PD6  
PC7  
PC6  
PF1  
PF0  
PE13  
PE12  
LCD voltage booster (optional), boost capacitor,  
negative pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
LCD_BCAP_N PA13  
LCD_BCAP_P PA12  
LCD voltage booster (optional), boost capacitor,  
positive pin. If using the LCD voltage booster, con-  
nect a 22 nF capacitor between LCD_BCAP_N and  
LCD_BCAP_P.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 161  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LCD voltage booster (optional), boost output. If us-  
ing the LCD voltage booster, connect a 1 uF capaci-  
tor between this pin and VSS.  
LCD_BEXT  
PA14  
An external LCD voltage may also be applied to this  
pin if the booster is not enabled.  
If AVDD is used directly as the LCD supply voltage,  
this pin may be left unconnected or used as a GPIO.  
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
PE4  
PE5  
PE6  
PE7  
LCD driver common line number 0.  
LCD driver common line number 1.  
LCD driver common line number 2.  
LCD driver common line number 3.  
LCD segment line 0. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG3  
LCD_SEG4  
LCD_SEG5  
LCD_SEG6  
LCD_SEG7  
LCD_SEG8  
LCD_SEG9  
LCD_SEG10  
LCD_SEG11  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
LCD_SEG16  
LCD_SEG17  
PF2  
LCD segment line 1. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
PF3  
LCD segment line 2. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
PF4  
LCD segment line 3. Segments 0, 1, 2 and 3 are  
controlled by SEGEN0.  
PF5  
LCD segment line 4. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
PE8  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PA0  
PA1  
PA2  
PA3  
PA4  
LCD segment line 5. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
LCD segment line 6. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
LCD segment line 7. Segments 4, 5, 6 and 7 are  
controlled by SEGEN1.  
LCD segment line 8. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 9. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 10. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 11. Segments 8, 9, 10 and 11 are  
controlled by SEGEN2.  
LCD segment line 13. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 14. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 15. Segments 12, 13, 14 and 15  
are controlled by SEGEN3.  
LCD segment line 16. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
LCD segment line 17. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 162  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LCD segment line 18. Segments 16, 17, 18 and 19  
are controlled by SEGEN4.  
LCD_SEG18  
PA5  
LCD segment line 20. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 4  
LCD_SEG20/  
LCD_COM4  
PB3  
PB4  
PB5  
PB6  
LCD segment line 21. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 5  
LCD_SEG21/  
LCD_COM5  
LCD segment line 22. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 6  
LCD_SEG22/  
LCD_COM6  
LCD segment line 23. Segments 20, 21, 22 and 23  
are controlled by SEGEN5. This pin may also be  
used as LCD COM line 7  
LCD_SEG23/  
LCD_COM7  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH4  
PD6  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 4.  
PD7  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC4  
LES_CH5  
PC5  
LESENSE channel 5.  
LES_CH6  
PC6  
LESENSE channel 6.  
LES_CH7  
PC7  
LESENSE channel 7.  
LES_CH12  
LES_CH13  
LES_CH14  
LES_CH15  
PC12  
PC13  
PC14  
PC15  
LESENSE channel 12.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
LETIM0_OUT0 PD6  
LETIM0_OUT1 PD7  
PB11  
PF0  
PC4  
PC5  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
LEU0_RX  
LEU0_TX  
PD5  
PD4  
PB14  
PB13  
PE15  
PF1  
PF0  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive in-  
put in half duplex communication.  
PE14  
Low Frequency Crystal (typically 32.768 kHz) nega-  
tive pin. Also used as an optional external clock in-  
put pin.  
LFXTAL_N  
PB8  
Low Frequency Crystal (typically 32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
PB7  
PCNT0_S0IN  
PC13  
PD6  
Pulse Counter PCNT0 input number 0.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 163  
EFM32TG Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US0_CLK  
US0_CS  
0
PC14  
PA0  
PA1  
1
2
3
4
5
6
Description  
PD7  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PE8  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PA0  
PA1  
PA2  
PD1  
PD2  
PD3  
PB7  
PB8  
PB11  
PA0  
PF0  
PF1  
PF2  
PC13 PE10  
PC14 PE11  
PC15 PE12  
PD6  
PD7  
PC13  
PE12  
PE13  
PE5  
PE4  
PC15 PB13  
PC14 PB14  
PB13  
PB14  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PE12  
PE13  
PB8  
PB7  
USART0 Synchronous mode Master Input / Slave  
Output (MISO).  
USART0 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART0 Synchronous mode Master Output / Slave  
Input (MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave  
Output (MISO).  
USART1 Asynchronous Transmit.Also used as re-  
ceive input in half duplex communication.  
USART1 Synchronous mode Master Output / Slave  
Input (MOSI).  
silabs.com | Building a more connected world.  
Rev. 2.10 | 164  
EFM32TG Data Sheet  
Pin Definitions  
5.11.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG842 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated  
by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.  
Table 5.33. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
PA14 PA13 PA12  
PB14 PB13  
-
-
-
-
-
-
-
-
-
-
-
-
PA5 PA4 PA3 PA2 PA1 PA0  
-
PB11  
PB8 PB7 PB6 PB5 PB4 PB3  
PC7 PC6 PC5 PC4  
-
-
-
-
-
-
PC15 PC14 PC13 PC12  
-
-
-
-
-
-
-
-
PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0  
PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8 PE7 PE6 PE5 PE4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF5 PF4 PF3 PF2 PF1 PF0  
5.11.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32TG842 is shown in the following figure.  
PB11  
OUT0ALT  
OUT0  
PC4  
PC5  
+
OPA0  
-
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
Figure 5.21. Opamp Pinout  
silabs.com | Building a more connected world.  
Rev. 2.10 | 165  
EFM32TG Data Sheet  
BGA48 Package Specifications  
6. BGA48 Package Specifications  
6.1 BGA48 Package Dimensions  
0.1 C  
A
B
(2X)  
A1 BALL CORNER  
4.00  
A1 BALL CORNER  
48X 0.3±0.05  
7
6
5
4
3
2
1
A
B
C
D
E
F
0.15  
0.05  
C
C
A B  
G
(0.50)  
0.50  
B
3.00  
0.08 C  
Figure 6.1. BGA48  
Note:  
1. The dimensions in parenthesis are reference.  
2. Datum 'C' and seating plane are defined by the crown of the solder balls.  
3. All dimensions are in millimeters.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 166  
EFM32TG Data Sheet  
BGA48 Package Specifications  
6.2 BGA48 PCB Layout  
b
a
e
d
Figure 6.2. BGA48 PCB Land Pattern  
Table 6.1. BGA48 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
Symbol  
Row name and column num-  
ber  
a
b
d
e
0.25  
0.50  
3.00  
3.00  
r1  
rn  
A
G
1
c1  
cn  
7
b
a
e
d
Figure 6.3. BGA48 PCB Solder Mask  
Table 6.2. BGA48 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.28  
a
b
d
e
0.50  
3.00  
3.00  
silabs.com | Building a more connected world.  
Rev. 2.10 | 167  
EFM32TG Data Sheet  
BGA48 Package Specifications  
b
a
e
d
Figure 6.4. BGA48 PCB Stencil Design  
Table 6.3. BGA48 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.25  
a
b
d
e
0.50  
3.00  
3.00  
Note:  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Pin Definitions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 168  
EFM32TG Data Sheet  
BGA48 Package Specifications  
6.3 BGA48 Package Marking  
In the illustration below package fields and position are shown.  
Figure 6.5. Example Chip Marking (Top View)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 169  
EFM32TG Data Sheet  
QFN24 Package Specifications  
7. QFN24 Package Specifications  
7.1 QFN24 Package Dimensions  
EXPOSED DIE  
ATTACHED PAD  
D
D2  
B
0.1  
C A B  
A
PIN #1 CORNER  
PIN #1 CORNER  
19 20 21 22 23 24  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
12 11 10  
9
8
7
24 X b  
24 X L  
bbb  
ddd  
C
A
B
e
M
G
ccc  
C
eee  
C
TERMINAL TIP  
DETAIL G  
VIEW ROTATED 90° CLOCKWISE  
C
SEATING PLANE  
e
EVEN / ODD TERMINAL SIDE  
M
Figure 7.1. QFN24  
Note:  
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1  
represents terminal full back from package edge up to 0.1 mm is acceptable.  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional.  
Table 7.1. QFN (Dimensions in mm)  
Symbol  
Min  
A
A1  
0.80 0.00  
0.85  
0.90 0.05  
A3  
b
D
E
D2  
E2  
e
L
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.25  
0.30  
0.35  
3.50 3.50  
3.60 3.60  
3.70 3.70  
0.35 0.00  
0.40  
0.203  
REF  
5.00 5.00  
BSC BSC  
0.65  
BSC  
Nom  
Max  
0.10 0.10 0.10 0.05 0.08  
0.45 0.10  
The QFN24 package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 170  
EFM32TG Data Sheet  
QFN24 Package Specifications  
7.2 QFN24 PCB Layout  
a
p8  
p7  
p1  
p6  
b
c
p9  
g
e
p2  
p5  
p3  
p4  
f
d
Figure 7.2. QFN24 PCB Land Pattern  
Table 7.2. QFN24 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.80  
Symbol  
P1  
Pin Number  
Symbol  
Pin Number  
a
b
c
d
e
f
1
6
P8  
24  
0
-
0.30  
P2  
P9  
0.65  
P3  
7
-
-
-
-
-
5.00  
P4  
12  
13  
18  
19  
-
5.00  
P5  
-
3.60  
P6  
-
g
3.60  
P7  
-
a
b
c
g
e
f
d
Figure 7.3. QFN24 PCB Solder Mask  
Table 7.3. QFN24 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.92  
a
b
c
0.42  
0.65  
silabs.com | Building a more connected world.  
Rev. 2.10 | 171  
EFM32TG Data Sheet  
QFN24 Package Specifications  
Symbol  
Dim. (mm)  
d
e
f
5.00  
5.00  
3.72  
3.72  
g
a
b
c
x
y
e
z
d
Figure 7.4. QFN24 PCB Stencil Design  
Table 7.4. QFN24 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.60  
a
b
c
d
e
x
y
z
0.25  
0.65  
5.00  
5.00  
1.00  
1.00  
0.50  
Note:  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Pin Definitions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 172  
EFM32TG Data Sheet  
QFN24 Package Specifications  
7.3 QFN24 Package Marking  
In the illustration below package fields and position are shown.  
Figure 7.5. Example Chip Marking (Top View)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 173  
EFM32TG Data Sheet  
QFN32 Package Specifications  
8. QFN32 Package Specifications  
8.1 QFN32 Package Dimensions  
D2  
D
25  
26  
27  
28  
29  
30  
31  
32  
1
24  
23  
22  
21  
20  
19  
18  
17  
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
32xL  
32xb  
m
m
G
M
SEATING PLANE  
DETAIL G  
VIEW ROTATED 90° CLOCKWISE  
e
EVEN / ODD TERMINL SIDE  
M
Figure 8.1. QFN32  
Note:  
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1  
represents terminal full back from package edge up to 0.1 mm is acceptable.  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional.  
Table 8.1. QFN32 (Dimensions in mm)  
Symbol  
Min  
A
A1  
0.80 0.00  
0.85  
0.90 0.05  
A3  
b
D
E
D2  
E2  
e
L
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.25  
0.30  
0.35  
4.30 4.30  
4.40 4.40  
4.50 4.50  
0.35 0.00  
0.40  
0.203  
REF  
6.00 6.00  
BSC BSC  
0.65  
BSC  
Nom  
Max  
0.10 0.10 0.10 0.05 0.08  
0.45 0.10  
The QFN32 package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 174  
EFM32TG Data Sheet  
QFN32 Package Specifications  
8.2 QFN32 PCB Layout  
a
p8  
p7  
p1  
p6  
b
c
p9  
g
e
p2  
p5  
p3  
p4  
f
d
Figure 8.2. QFN32 PCB Land Pattern  
Table 8.2. QFN32 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.80  
Symbol  
P1  
Pin Number  
Symbol  
P6  
Pin Number  
a
b
c
d
e
f
1
8
24  
25  
32  
0
0.35  
P2  
P7  
0.65  
P3  
9
P8  
6.00  
P4  
16  
17  
P9  
6.00  
P5  
4.40  
g
4.40  
a
b
c
g
e
f
d
Figure 8.3. QFN32 PCB Solder Mask  
silabs.com | Building a more connected world.  
Rev. 2.10 | 175  
EFM32TG Data Sheet  
QFN32 Package Specifications  
Table 8.3. QFN32 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
f
0.92  
0.47  
0.65  
6.00  
6.00  
4.52  
4.52  
g
a
b
c
x
y
e
z
d
Figure 8.4. QFN32 PCB Stencil Design  
Table 8.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.70  
a
b
c
d
e
x
y
z
0.25  
0.65  
6.00  
6.00  
1.30  
1.30  
0.50  
Note:  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Pin Definitions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 176  
EFM32TG Data Sheet  
QFN32 Package Specifications  
8.3 QFN32 Package Marking  
In the illustration below package fields and position are shown.  
Figure 8.5. Example Chip Marking (Top View)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 177  
EFM32TG Data Sheet  
QFN64 Package Specifications  
9. QFN64 Package Specifications  
9.1 QFN64 Package Dimensions  
49  
64  
48  
1
33  
16  
32  
17  
m
m
Figure 9.1. QFN64  
Note:  
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1  
represents terminal full back from package edge up to 0.1 mm is acceptable.  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 178  
EFM32TG Data Sheet  
QFN64 Package Specifications  
Table 9.1. QFN64 (Dimensions in mm)  
Symbol  
A
Min  
0.80  
0.00  
Nom  
0.85  
Max  
0.90  
0.05  
A1  
A3  
b
0.203 REF  
0.25  
0.20  
0.30  
D
9.00 BSC  
9.00 BSC  
7.20  
E
D2  
E2  
e
7.10  
7.10  
7.30  
7.30  
7.20  
0.50 BSC  
0.45  
L
0.40  
0.00  
0.50  
0.10  
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.10  
0.05  
0.08  
silabs.com | Building a more connected world.  
Rev. 2.10 | 179  
EFM32TG Data Sheet  
QFN64 Package Specifications  
9.2 QFN64 PCB Layout  
a
p8  
p7  
p1  
p6  
b
c
p9  
g
e
p2  
p5  
p3  
p4  
f
d
Figure 9.2. QFN64 PCB Land Pattern  
Table 9.2. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.85  
Symbol  
P1  
Pin Number  
Symbol  
P8  
Pin Number  
a
b
c
d
e
f
1
64  
0
0.30  
P2  
16  
17  
32  
33  
48  
49  
P9  
0.50  
P3  
8.90  
P4  
8.90  
P5  
7.20  
P6  
g
7.20  
P7  
a
b
c
g
e
f
d
Figure 9.3. QFN64 PCB Solder Mask  
Table 9.3. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.97  
Symbol  
Dim. (mm)  
a
b
c
e
f
8.90  
7.32  
7.32  
0.42  
0.50  
g
silabs.com | Building a more connected world.  
Rev. 2.10 | 180  
EFM32TG Data Sheet  
QFN64 Package Specifications  
Symbol  
Dim. (mm)  
Symbol  
Dim. (mm)  
d
8.90  
-
-
a
b
c
x
y
e
z
d
Figure 9.4. QFN64 PCB Stencil Design  
Table 9.4. QFN64 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.75  
Symbol  
Dim. (mm)  
8.90  
a
b
c
d
e
x
y
z
0.22  
2.70  
0.50  
2.70  
8.90  
0.80  
Note:  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Pin Definitions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 181  
EFM32TG Data Sheet  
QFN64 Package Specifications  
9.3 QFN64 Package Marking  
In the illustration below package fields and position are shown.  
Figure 9.5. Example Chip Marking (Top View)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 182  
EFM32TG Data Sheet  
TQFP48 Package Specifications  
10. TQFP48 Package Specifications  
10.1 TQFP48 Package Dimensions  
Figure 10.1. TQFP48  
Note:  
1. Dimensions and tolerance per ASME Y14.5M-1994  
2. Control dimension: Millimeter  
3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the  
bottom of the parting line.  
4. Datums T, U and Z to be determined at datum plane AB.  
5. Dimensions S and V to be determined at seating plane AC.  
6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold  
mismatch and are determined at datum AB.  
7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimension to exceed 0.350.  
8. Minimum solder plate thickness shall be 0.0076.  
9. Exact shape of each corner is optional.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 183  
EFM32TG Data Sheet  
TQFP48 Package Specifications  
Table 10.1. QFP48 (Dimensions in mm)  
DIM  
A
MIN  
NOM  
MAX  
DIM  
M
MIN  
NOM  
12DEG REF  
MAX  
7.000 BSC  
A1  
B
3.500 BSC  
N
0.090  
0.160  
7.000 BSC  
P
0.250 BSC  
B1  
C
3.500 BSC  
R
0.150  
0.250  
1.000  
0.170  
0.950  
0.170  
1.200  
0.270  
1.050  
0.230  
S
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 BSC  
1.000 BSC  
D
S1  
V
E
F
V1  
W
AA  
G
H
0.500 BSC  
0.050  
0.090  
0.500  
0DEG  
0.150  
0.200  
0.700  
7DEG  
J
K
L
The TQFP48 package is 7 by 7 mm in size and has a 0.5 mm pin pitch.  
The TQFP48 package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 184  
EFM32TG Data Sheet  
TQFP48 Package Specifications  
10.2 TQFP48 PCB Layout  
a
p8  
p7  
p6  
p1  
b
c
e
p2  
p5  
p3  
p4  
d
Figure 10.2. TQFP48 PCB Land Pattern  
Table 10.2. TQFP48 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.60  
Symbol  
P1  
Pin Number  
Symbol  
P6  
Pin Number  
a
b
c
d
e
1
36  
37  
48  
0.30  
P2  
12  
13  
24  
25  
P7  
0.50  
P3  
P8  
8.50  
P4  
8.50  
P5  
a
b
c
e
d
Figure 10.3. TQFP48 PCB Solder Mask  
Table 10.3. TQFP48 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.72  
a
b
c
d
e
0.42  
0.50  
8.50  
8.50  
silabs.com | Building a more connected world.  
Rev. 2.10 | 185  
EFM32TG Data Sheet  
TQFP48 Package Specifications  
a
b
c
e
d
Figure 10.4. TQFP48 PCB Stencil Design  
Table 10.4. TQFP48 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.50  
a
b
c
d
e
0.20  
0.50  
8.50  
8.50  
Note:  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Pin Definitions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 186  
EFM32TG Data Sheet  
TQFP48 Package Specifications  
10.3 TQFP48 Package Marking  
In the illustration below package fields and position are shown.  
Figure 10.5. Example Chip Marking (Top View)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 187  
EFM32TG Data Sheet  
TQFP64 Package Specifications  
11. TQFP64 Package Specifications  
11.1 TQFP64 Package Dimensions  
F
C
L
Figure 11.1. TQFP64  
Note:  
1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.  
2. The top package body size may be smaller than the bottom package body size.  
3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.  
4. To be determined at seating place 'C'.  
5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side. 'D1' and 'E1' are maximum plas-  
tic body size dimension including mold mismatch. Dimension 'D1' and 'E1' shall be determined at datum plane 'H'.  
6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.  
7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maxi-  
mum 'b' dimension by more than 0.08 mm. Dambar can not be located on the lower radius or the foot. Minimum space between  
protrusion and an adjacent lead is 0.07 mm.  
8. Exact shape of each corner is optional.  
9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.  
10. All dimensions are in millimeters.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 188  
EFM32TG Data Sheet  
TQFP64 Package Specifications  
Table 11.1. QFP64 (Dimensions in mm)  
DIM  
A
MIN  
NOM  
1.10  
MAX  
1.20  
0.15  
1.05  
0.27  
0.23  
0.20  
0.16  
DIM  
L1  
R1  
R2  
S
MIN  
NOM  
MAX  
A1  
A2  
b
0.05  
0.95  
0.17  
0.17  
0.09  
0.09  
0.08  
0.08  
0.20  
0°  
0.20  
1.00  
0.22  
0.20  
b1  
c
θ
3.5°  
7°  
θ1  
θ2  
θ3  
0°  
C1  
D
11°  
11°  
12°  
12°  
13°  
13°  
12.0 BSC  
D1  
e
10.0 BSC  
0.50 BSC  
12.0 BSC  
10.0 BSC  
E
E1  
L
0.45  
0.60  
0.75  
silabs.com | Building a more connected world.  
Rev. 2.10 | 189  
EFM32TG Data Sheet  
TQFP64 Package Specifications  
11.2 TQFP64 PCB Layout  
a
p8  
p7  
p6  
p1  
b
c
e
p2  
p5  
p3  
p4  
d
Figure 11.2. TQFP64 PCB Land Pattern  
Table 11.2. TQFP64 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.60  
Symbol  
P1  
Pin Number  
Symbol  
P6  
Pin Number  
a
b
c
d
e
1
48  
49  
64  
0.30  
P2  
16  
17  
32  
33  
P7  
0.50  
P3  
P8  
11.50  
11.50  
P4  
P5  
a
b
c
e
d
Figure 11.3. TQFP64 PCB Solder Mask  
Table 11.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.72  
a
b
c
d
e
0.42  
0.50  
11.50  
11.50  
silabs.com | Building a more connected world.  
Rev. 2.10 | 190  
EFM32TG Data Sheet  
TQFP64 Package Specifications  
a
b
c
e
d
Figure 11.4. TQFP64 PCB Stencil Design  
Table 11.4. TQFP64 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.50  
a
b
c
d
e
0.20  
0.50  
11.50  
11.50  
Note:  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Pin Definitions.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 191  
EFM32TG Data Sheet  
TQFP64 Package Specifications  
11.3 TQFP64 Package Marking  
In the illustration below package fields and position are shown.  
Figure 11.5. Example Chip Marking (Top View)  
silabs.com | Building a more connected world.  
Rev. 2.10 | 192  
EFM32TG Data Sheet  
Chip Revision, Solder Information, Errata  
12. Chip Revision, Solder Information, Errata  
12.1 Chip Revision  
The revision of a chip can be determined from the "Revision" field in the package marking.  
12.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
12.3 Errata  
See the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at:  
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit  
silabs.com | Building a more connected world.  
Rev. 2.10 | 193  
EFM32TG Data Sheet  
Revision History  
13. Revision History  
Revision 2.10  
November, 2019  
1. Feature List - Added SysTick.  
2. Ordering Information - Updated for release of revision D devices.  
4.2 Absolute Maximum Ratings - Removed footnote about storage temperature and added max sink/source current per I/O pin.  
4.7 Flash – Added word write cycles between erase (WWCFLASH) specification.  
4.10 Analog Digital Converter (ADC) - Updated ADC input impedance.  
4.11 Digital Analog Converter (DAC) - Added max load current specification.  
7.2 QFN24 PCB Layout - Corrected pin number for symbol P9.  
8.2 QFN32 PCB Layout - Corrected pin number for symbol P9.  
9.2 QFN64 PCB Layout - Corrected pin number for symbol P9.  
Revision 2.00  
August, 2018  
• Consolidated all EFM32TG data sheets:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Added a Feature List section.  
2. Ordering Information – Added ordering code decoder.  
3.3 Memory Map – Separated the Memory Map into two figures – one for core and code space listing and one for peripheral listing.  
• Environmental – Removed this section. Environmental specifications are available in the qualification report.  
• Removed MSL information (Moisture Sensitivity Level). Instead, MSL information can be found in the Qual report that is available on  
the Silicon Labs website.  
• For QFN32 packages, corrected pin number for symbol P3.  
6.1 BGA48 Package Dimensions – Removed statements regarding materials used.  
• New formatting throughout.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 194  
EFM32TG Data Sheet  
Revision History  
Revision 1.40  
March 6th, 2015  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Updated Block Diagram.  
• Updated Energy Modes current consumption.  
• Updated Power Management section.  
• Updated LFRCO and HFRCO sections.  
• Added AUXHFRCO to block diagram and Electrical Characteristics.  
• Corrected unit to kHz on LFRCO plots y-axis.  
• For devices with ADC, updated ADC section and added clarification on conditions for INLADCand DNLADC parameters.  
• For devices with DAC, updated ADC section and added clarification on conditions for INLDACand DNLDAC parameters.  
• For devices with OPAMP, updated OPAMP section.  
• For devices with ACMP, updated ACMP section and the response time graph.  
• For devices with VCMP, updated VCMP section.  
• For QFN24 and QFN32 packages, updated Package dimensions table.  
• Updated Digital Peripherals section.  
Revision 1.30  
July 2nd, 2014  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Updated current consumption.  
• Updated transition between energy modes.  
• Updated power management data.  
• Updated GPIO data.  
• Updated LFXO, HFXO, HFRCO and ULFRCO data.  
• Updated LFRCO and HFRCO plots.  
• Updated ACMP data.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 195  
EFM32TG Data Sheet  
Revision History  
Revision 1.21  
November 21st, 2013  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Updated figures.  
• Updated errata-link.  
• Updated chip marking.  
• Added link to Environmental and Quality information.  
• For devices with DAC, re-added missing DAC-data.  
Revision 1.20  
September 30th, 2013  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Added I2C characterization data.  
• For devices with DAC, corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section.  
• Corrected GPIO operating voltage from 1.8 V to 1.85 V.  
• For devices with ADC, corrected the ADC gain and offset measurement reference voltage from 2.25 to 2.5V.  
• For devices with ADC, corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.  
• For QFP48 devices, updated the Max VESDCDM value to 750 V.  
• Document changed status from "Preliminary".  
• Updated Environmental information.  
• Updated trademark, disclaimer and contact information.  
• Other minor corrections.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 196  
EFM32TG Data Sheet  
Revision History  
Revision 1.10  
June 28th, 2013  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• For BGA packages, updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.  
• Updated power requirements in the Power Management section.  
• Removed minimum load capacitance figure and table. Added reference to application note.  
• Other minor corrections.  
Revision 1.00  
September 11th, 2012  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Updated the HFRCO 1 MHz band typical value to 1.2 MHz.  
• Updated the HFRCO 7 MHz band typical value to 6.6 MHz.  
• Added GPIO_EM4WU3, GPIO_EM4WU4 and GPIO_EM4WU5 pins and removed GPIO_EM4WU1 in the Alternate functionality  
overview table.  
• Other minor corrections.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 197  
EFM32TG Data Sheet  
Revision History  
Revision 0.96  
May 4th, 2012  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• For BGA48 packages, added PCB land pattern, Stencil design and solder mask.  
• For BGA48 packages, corrected PCB footprint figures and tables.  
Revision 0.95  
February 27th, 2012  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• For BGA48 packages, initial preliminary release.  
• For BGA48 packages, corrected operating voltage from 1.8 V to 1.85 V.  
• For BGA48 packages, added rising POR level and corrected Thermometer output gradient in Electrical Characteristics section.  
• For BGA48 packages, updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup.  
• For BGA48 packages, added Gain error drift and Offset error drift to ADC table.  
• For devices with OPAMP in BGA48 packages, added Opamp pinout overview.  
• For BGA48 packages, added reference to errata document.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 198  
EFM32TG Data Sheet  
Revision History  
Revision 0.92  
July 22nd, 2011  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG222  
• EFM32TG225  
• EFM32TG230  
• EFM32TG232  
• EFM32TG822  
• EFM32TG825  
• EFM32TG840  
• EFM32TG842  
• Updated current consumption numbers from latest device characterization data.  
• For devices with OPAMP, updated OPAMP electrical characteristics.  
• For devices with ADC, made ADC plots render properly in Adobe Reader.  
• For EFM32TG822, corrected number of DAC channels available.  
• For EFM32TG232, corrected number of DAC channels available.  
• For EFM32TG842, corrected number of DAC channels available.  
• For EFM32TG230, corrected number of DAC channels available.  
Revision 0.91  
February 4th, 2011  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG230  
• EFM32TG840  
• Corrected max DAC sampling rate.  
• Increased max storage temperature.  
• Added data for <150°C and <70°C on Flash data retention.  
• Changed latch-up sensitivity test description.  
• Added IO leakage current.  
• Added Flash current consumption.  
• Updated HFRCO data.  
• Updated LFRCO data.  
• For devices with ADC, added graph for ADC Absolute Offset over temperature.  
• For devices with ADC, added graph for ADC Temperature sensor readout.  
• For devices with OPAMP, updated OPAMP electrical characteristics.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 199  
EFM32TG Data Sheet  
Revision History  
Revision 0.90  
December 1st, 2010  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG230  
• EFM32TG840  
• New peripherals added to pinout, including LESENSE and OpAmps.  
April 14th, 2011  
• This revision applies the following devices:  
• EFM32TG222  
• EFM32TG232  
• EFM32TG822  
• Initial preliminary release.  
June 30th, 2011  
• This revision applies the following devices:  
• EFM32TG842  
• Initial preliminary release.  
Revision 0.70  
August 16th, 2010  
• This revision applies the following devices:  
• EFM32TG110  
• Added pinout.  
Revision 0.60  
June 8th, 2010  
• This revision applies the following devices:  
• EFM32TG230  
• Corrected pinout.  
Revision 0.50  
May 25th, 2010  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG230  
• EFM32TG840  
• Block diagram update.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 200  
EFM32TG Data Sheet  
Revision History  
Revision 0.40  
March 26th, 2010  
• This revision applies the following devices:  
• EFM32TG108  
• EFM32TG110  
• EFM32TG210  
• EFM32TG230  
• EFM32TG840  
• Initial preliminary release.  
silabs.com | Building a more connected world.  
Rev. 2.10 | 201  
Simplicity Studio  
One-click access to MCU and  
wireless tools, documentation,  
software, source code libraries &  
more. Available for Windows,  
Mac and Linux!  
IoT Portfolio  
www.silabs.com/IoT  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.  
Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the  
performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant  
any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket  
approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or  
health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon  
Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering  
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such  
unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri  
DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.  
Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective  
holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

EFM32TG108F8-QFN24

RISC Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, QFN-24
SILICON

EFM32TG108F8-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32TG110

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32TG110F16-QFN24

Updated specifications based on the results of additional silicon characterization.
SILICON

EFM32TG110F16-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32TG110F32-D-QFN24

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PQCC24, QFN-24
SILICON

EFM32TG110F32-QFN24

RISC Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 24MHz, CMOS, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, QFN-24
SILICON

EFM32TG110F32-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32TG110F4-QFN24

Updated specifications based on the results of additional silicon characterization.
SILICON

EFM32TG110F4-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32TG110F8-QFN24

Updated specifications based on the results of additional silicon characterization.
SILICON

EFM32TG110F8-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON