EFM8BB10F8G-A-QFN20 [SILICON]

Microcontroller, CMOS,;
EFM8BB10F8G-A-QFN20
型号: EFM8BB10F8G-A-QFN20
厂家: SILICON    SILICON
描述:

Microcontroller, CMOS,

时钟 微控制器 外围集成电路
文件: 总57页 (文件大小:1063K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM8 Busy Bee Family  
EFM8BB1 Data Sheet  
The EFM8BB1, part of the Busy Bee family of MCUs, is a multi-  
purpose line of 8-bit microcontrollers with a comprehensive feature  
set in small packages.  
KEY FEATURES  
• Pipelined 8-bit C8051 core with 25 MHz  
maximum operating frequency  
These devices offer high-value by integrating advanced analog and communication pe-  
ripherals into small packages, making them ideal for space-constrained applications.  
With an efficient 8051 core, enhanced pulse-width modulation, and precision analog, the  
EFM8BB1 family is also optimal for embedded applications.  
• Up to 18 multifunction, 5 V tolerant I/O  
pins  
• One 12-bit Analog to Digital converter  
(ADC)  
• Two low-current analog comparators  
• Integrated temperature sensor  
• 3-channel enhanced PWM / PCA  
• Four 16-bit timers  
EFM8BB1 applications include the following:  
• Medical equipment  
• Motor control  
• Lighting systems  
• Consumer electronics  
• I/O port expander  
• Sensor controllers  
• UART, SPI and SMBus/I2C  
• Priority crossbar for flexible pin mapping  
Core / Memory  
Clock Management  
Energy Management  
CIP-51 8051 Core  
(25 MHz)  
External CMOS  
Oscillator  
High Frequency  
RC Oscillator  
Internal LDO  
Power-On Reset  
Regulator  
Flash Program  
Memory  
(up to 8 KB)  
RAM Memory  
(up to 512 bytes)  
Debug Interface  
with C2  
Low Frequency  
RC Oscillator  
Brown-Out Detector  
8-bit SFR bus  
Serial Interfaces  
I/O Ports  
Timers and Triggers  
Analog Interfaces  
Security  
16-bit CRC  
External  
Interrupts  
16-bit  
Analog  
ADC  
UART  
SPI  
Pin Reset  
PCA/PWM  
Timers  
Comparators  
I2C / SMBus  
Watchdog Timer  
General Purpose I/O  
Internal Voltage Reference  
Lowest power mode with peripheral operational:  
Normal Idle Shutdown  
silabs.com | Building a more connected world.  
Rev. 1.6  
EFM8BB1 Data Sheet  
Feature List  
1. Feature List  
The EFM8BB1 highlighted features are listed below.  
• Core:  
• Timers/Counters and PWM:  
• Pipelined CIP-51 Core  
• 3-channel programmable counter array (PCA) supporting  
PWM, capture/compare, and frequency output modes  
• Fully compatible with standard 8051 instruction set  
• 70% of instructions execute in 1-2 clock cycles  
• 25 MHz maximum operating frequency  
• Memory:  
• 4 x 16-bit general-purpose timers  
• Independent watchdog timer, clocked from the low frequen-  
cy oscillator  
• Communications and Digital Peripherals:  
• UART  
• Up to 8 kB flash memory, in-system re-programmable  
from firmware.  
• Up to 512 bytes RAM (including 256 bytes standard 8051  
RAM and 256 bytes on-chip XRAM)  
• SPI™ Master / Slave  
• SMBus™/I2C™ Master / Slave  
• Power:  
• 16-bit CRC unit, supporting automatic CRC of flash at 256-  
byte boundaries  
• Internal LDO regulator for CPU core voltage  
• Power-on reset circuit and brownout detectors  
• I/O: Up to 18 total multifunction I/O pins:  
• All pins 5 V tolerant under bias  
• Analog:  
• 12-Bit Analog-to-Digital Converter (ADC)  
• 2 x Low-current analog comparators with adjustable refer-  
ence  
• Flexible peripheral crossbar for peripheral routing  
• 5 mA source, 12.5 mA sink allows direct drive of LEDs  
• Clock Sources:  
• On-Chip, Non-Intrusive Debugging  
• Full memory and register inspection  
• Four hardware breakpoints, single-stepping  
• Pre-loaded UART bootloader  
• Internal 24.5 MHz oscillator with ±2% accuracy  
• Internal 80 kHz low-frequency oscillator  
• External CMOS clock option  
• Temperature range -40 to 85 ºC or -40 to 125 ºC  
• Single power supply 2.2 to 3.6 V  
• QSOP24, SOIC16, and QFN20 packages  
With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8BB1 devices are truly standalone  
system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field up-  
grades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit  
debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory  
and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional  
while debugging. Each device is specified for 2.2 to 3.6 V operation and is AEC-Q100 qualified. Both the G-grade and I-grade devices  
are available in 20-pin QFN, 16-pin SOIC or 24-pin QSOP packages, and A-grade devices are available in the 20-pin QFN package. All  
package options are lead-free and RoHS compliant.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 2  
 
EFM8BB1 Data Sheet  
Ordering Information  
2. Ordering Information  
EFM8 BB1 0 F 8 G A QSOP24 R  
Tape and Reel (Optional)  
Package Type  
Revision  
Temperature Grade G (-40 to +85), I (-40 to +125), A (-40 to +125, Automotive Grade)  
Flash Memory Size – 8 KB  
Memory Type (Flash)  
Family Feature Set  
Busy Bee 1 Family  
Silicon Labs EFM8 Product Line  
Figure 2.1. EFM8BB1 Part Numbering  
All EFM8BB1 family members have the following features:  
• CIP-51 Core running up to 25 MHz  
• Two Internal Oscillators (24.5 MHz and 80 kHz)  
• SMBus / I2C  
• SPI  
• UART  
• 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)  
• 4 16-bit Timers  
• 2 Analog Comparators  
• 12-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor  
• 16-bit CRC Unit  
• AEC-Q100 qualified  
• Pre-loaded UART bootloader  
In addition to these features, each part number in the EFM8BB1 family has a set of features that vary across the product line. The  
product selection guide shows the features available on each family member.  
Table 2.1. Product Selection Guide  
EFM8BB10F8G-A-QSOP24  
EFM8BB10F8G-A-QFN20  
EFM8BB10F8G-A-SOIC16  
EFM8BB10F4G-A-QFN20  
EFM8BB10F2G-A-QFN20  
8
8
8
4
2
512  
512  
512  
512  
256  
18  
16  
13  
16  
16  
16  
15  
12  
15  
15  
8
8
6
8
8
8
7
6
7
7
Yes  
Yes  
Yes  
Yes  
Yes  
-40 to +85 C QSOP24  
-40 to +85 C QFN20  
-40 to +85 C SOIC16  
-40 to +85 C QFN20  
-40 to +85 C QFN20  
silabs.com | Building a more connected world.  
Rev. 1.6 | 3  
 
EFM8BB1 Data Sheet  
Ordering Information  
EFM8BB10F8I-A-QSOP24  
EFM8BB10F8I-A-QFN20  
EFM8BB10F8I-A-SOIC16  
EFM8BB10F4I-A-QFN20  
EFM8BB10F2I-A-QFN20  
EFM8BB10F8A-A-QFN20  
EFM8BB10F4A-A-QFN20  
EFM8BB10F2A-A-QFN20  
8
8
8
4
2
8
4
2
512  
512  
512  
512  
256  
512  
512  
256  
18  
16  
13  
16  
16  
16  
16  
16  
16  
15  
12  
15  
15  
15  
15  
15  
8
8
6
8
8
8
8
8
8
7
6
7
7
7
7
7
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40 to +125 C QSOP24  
-40 to +125 C QFN20  
-40 to +125 C SOIC16  
-40 to +125 C QFN20  
-40 to +125 C QFN20  
-40 to +125 C QFN20  
-40 to +125 C QFN20  
-40 to +125 C QFN20  
The A-grade (i.e. EFM8BB10F8A-A-QFN20) devices receive full automotive quality production status, including AEC-Q100 qualifica-  
tion, registration with International Material Data System (IMDS), and Part Production Approval Process (PPAP) documentation. PPAP  
documentation is available at www.silabs.com with a registered and NDA approved user account.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 4  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4 Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.5 Counters/Timers and PWM . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.6 Communications and Other Digital Peripherals . . . . . . . . . . . . . . . . . . .10  
3.7 Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.9 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.10 Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.1.1 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . .15  
4.1.2 Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.1.3 Reset and Supply Monitor. . . . . . . . . . . . . . . . . . . . . . . .18  
4.1.4 Flash Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1.5 Internal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1.6 External Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1.7 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.1.8 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.1.9 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.1.10 1.8 V Internal LDO Voltage Regulator . . . . . . . . . . . . . . . . . . .23  
4.1.11 Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.1.12 Port I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.1.13 SMBus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.2 Thermal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.4 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . .30  
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.2 Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.3 Other Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.1 EFM8BB1x-QSOP24 Pin Definitions . . . . . . . . . . . . . . . . . . . . . .36  
6.2 EFM8BB1x-QFN20 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . .39  
silabs.com | Building a more connected world.  
Rev. 1.6 | 5  
6.3 EFM8BB1x-SOIC16 Pin Definitions . . . . . . . . . . . . . . . . . . . . . .42  
7. QSOP24 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 44  
7.1 QSOP24 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .44  
7.2 QSOP24 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .46  
7.3 QSOP24 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . .47  
8. QFN20 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 48  
8.1 QFN20 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .48  
8.2 QFN20 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .50  
8.3 QFN20 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .51  
9. SOIC16 Package Specifications  
. . . . . . . . . . . . . . . . . . . . . . . 52  
9.1 SOIC16 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .52  
9.2 SOIC16 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .54  
9.3 SOIC16 Package Marking. . . . . . . . . . . . . . . . . . . . . . . . . .55  
10. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.1 Revision 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
10.2 Revision 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
10.3 Revision 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
10.4 Revision 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
10.5 Revision 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
10.6 Revision 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
silabs.com | Building a more connected world.  
Rev. 1.6 | 6  
EFM8BB1 Data Sheet  
System Overview  
3. System Overview  
3.1 Introduction  
Port I/O Configuration  
Digital Peripherals  
Power On  
Reset  
CIP-51 8051 Controller  
Core  
Reset  
8/4/2 KB ISP Flash  
Program Memory  
UART  
C2CK/RSTb  
Debug /  
Programming  
Hardware  
Timers 0,  
1, 2, 3  
Port 0  
Drivers  
P0.n  
P1.n  
P2.n  
256 Byte SRAM  
256 Byte XRAM  
Priority  
Crossbar  
Decoder  
3-ch PCA  
C2D  
I2C /  
SMBus  
Port 1  
Drivers  
Power Nets  
SPI  
CRC  
Internal 1.8 V  
LDO  
VDD  
GND  
Independent  
Watchdog Timer  
Port 2  
Driver  
Crossbar Control  
SFR  
Bus  
SYSCLK  
Analog Peripherals  
System Clock  
Configuration  
Internal  
Reference  
VDD  
VREF  
24.5 MHz  
2%  
Oscillator  
VDD  
12/10 bit  
ADC  
Temp  
Sensor  
Low-Freq.  
Oscillator  
CMOS  
Oscillator  
Input  
+
EXTCLK  
+
-
2 Comparators  
Figure 3.1. Detailed EFM8BB1 Block Diagram  
This section describes the EFM8BB1 family at a high level. For more information on each module including register definitions, see the  
EFM8BB1 Reference Manual.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 7  
 
 
EFM8BB1 Data Sheet  
System Overview  
3.2 Power  
All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devi-  
ces without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the  
device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when  
not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little  
power when they are not in use.  
Table 3.1. Power Modes  
Power Mode  
Normal  
Details  
Mode Entry  
Wake-Up Sources  
Core and all peripherals clocked and fully operational  
Idle  
• Core halted  
Set IDLE bit in PCON0  
Any interrupt  
• All peripherals clocked and fully operational  
• Code resumes execution on wake event  
Stop  
• All internal power nets shut down  
• Pins retain state  
1. Clear STOPCF bit in  
REG0CN  
Any reset source  
2. Set STOP bit in  
PCON0  
• Exit on any reset source  
Shutdown  
• All internal power nets shut down  
• Pins retain state  
1. Set STOPCF bit in  
REG0CN  
• RSTb pin reset  
• Power-on reset  
2. Set STOP bit in  
PCON0  
• Exit on pin or power-on reset  
3.3 I/O  
Digital and analog resources are externally available on the device’s multi-purpose I/O pins. Port pins P0.0-P1.7 can be defined as gen-  
eral-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an  
analog function. Port pins P2.0 and P2.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P2.0.  
• Up to 18 multi-functions I/O pins, supporting digital and analog functions.  
• Flexible priority crossbar decoder for digital peripheral assignment.  
• Two drive strength settings for each port.  
• Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).  
• Up to 16 direct-pin interrupt sources with shared interrupt vector (Port Match).  
3.4 Clocking  
The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system  
clock comes up running from the 24.5 MHz oscillator divided by 8.  
• Provides clock to core and peripherals.  
• 24.5 MHz internal oscillator (HFOSC0), accurate to ±2% over supply and temperature corners.  
• 80 kHz low-frequency oscillator (LFOSC0).  
• External CMOS clock input (EXTCLK).  
• Clock divider with eight settings for flexible clock scaling: Divide the selected clock source by 1, 2, 4, 8, 16, 32, 64, or 128.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 8  
 
 
 
EFM8BB1 Data Sheet  
System Overview  
3.5 Counters/Timers and PWM  
Programmable Counter Array (PCA0)  
The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU  
intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare mod-  
ule for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options.  
Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software  
Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own  
associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.  
• 16-bit time base  
• Programmable clock divisor and clock source selection  
• Up to three independently-configurable channels  
• 8, 9, 10, 11 and 16-bit PWM modes (center or edge-aligned operation)  
• Output polarity control  
• Frequency output mode  
• Capture on rising, falling or any edge  
• Compare function for arbitrary waveform generation  
• Software timer (internal compare) mode  
• Can accept hardware “kill” signal from comparator 0  
Timers (Timer 0, Timer 1, Timer 2, and Timer 3)  
Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and  
the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time inter-  
vals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary  
modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.  
Timer 0 and Timer 1 include the following features:  
• Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.  
• Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.  
• 8-bit auto-reload counter/timer mode  
• 13-bit counter/timer mode  
• 16-bit counter/timer mode  
• Dual 8-bit counter/timer mode (Timer 0)  
Timer 2 and Timer 3 are 16-bit timers including the following features:  
• Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.  
• 16-bit auto-reload timer mode  
• Dual 8-bit auto-reload timer mode  
• External pin capture (Timer 2)  
• LFOSC0 capture (Timer 3)  
Watchdog Timer (WDT0)  
The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU  
into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences  
a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following  
a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by  
system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset.  
The state of the RST pin is unaffected by this reset.  
The Watchdog Timer has the following features:  
• Programmable timeout interval  
• Runs from the low-frequency oscillator  
• Lock-out feature to prevent any modification until a system reset  
silabs.com | Building a more connected world.  
Rev. 1.6 | 9  
 
EFM8BB1 Data Sheet  
System Overview  
3.6 Communications and Other Digital Peripherals  
Universal Asynchronous Receiver/Transmitter (UART0)  
UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support  
allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a  
second incoming data byte before software has finished reading the previous data byte.  
The UART module provides the following features:  
• Asynchronous transmissions and receptions.  
• Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).  
• 8- or 9-bit data.  
• Automatic start and stop generation.  
• Single-byte FIFO on transmit and receive.  
Serial Peripheral Interface (SPI0)  
The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a  
master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select  
(NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master  
environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be  
configured as a firmware-controlled chip-select output in master mode, or disabled to reduce the number of pins required. Additional  
general purpose port I/O pins can be used to select multiple slave devices in master mode.  
The SPI module includes the following features:  
• Supports 3- or 4-wire operation in master or slave modes.  
• Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.  
• Support for four clock phase and polarity options.  
• 8-bit dedicated clock clock rate generator.  
• Support for multiple masters on the same data lines.  
System Management Bus / I2C (SMB0)  
The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specifica-  
tion, version 1.1, and compatible with the I2C serial bus.  
The SMBus module includes the following features:  
• Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.  
• Support for master, slave, and multi-master modes.  
• Hardware synchronization and arbitration for multi-master mode.  
• Clock low extending (clock stretching) to interface with faster masters.  
• Hardware support for 7-bit slave and general call address recognition.  
• Firmware support for 10-bit slave address decoding.  
• Ability to inhibit all slave states.  
• Programmable data setup/hold times.  
16-bit CRC (CRC0)  
The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts  
the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the  
flash contents of the device.  
The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC  
module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:  
• Support for CCITT-16 polynomial  
• Byte-level bit reversal  
• Automatic CRC of flash contents on one or more 256-byte blocks  
• Initial seed selection of 0x0000 or 0xFFFF  
silabs.com | Building a more connected world.  
Rev. 1.6 | 10  
 
EFM8BB1 Data Sheet  
System Overview  
3.7 Analog  
12-Bit Analog-to-Digital Converter (ADC0)  
The ADC is a successive-approximation-register (SAR) ADC with 12-, 10-, and 8-bit modes, integrated track-and hold and a program-  
mable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to  
measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external  
reference sources.  
• Up to 16 external inputs.  
• Single-ended 12-bit and 10-bit modes.  
• Supports an output update rate of 200 ksps samples per second in 12-bit mode or 800 ksps samples per second in 10-bit mode.  
• Operation in low power modes at lower conversion speeds.  
• Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.  
• Output data window comparator allows automatic range checking.  
• Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on set-  
tling and tracking time.  
• Conversion complete and window compare interrupts supported.  
• Flexible output data formatting.  
• Includes an internal fast-settling reference with two levels (1.65 V and 2.4 V) and support for external reference and signal ground.  
• Integrated temperature sensor.  
Low Current Comparators (CMP0, CMP1)  
Analog comparators are used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher.  
External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and  
negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.  
The comparator module includes the following features:  
• Up to 8 external positive inputs.  
• Up to 8 external negative inputs.  
• Additional input options:  
• Internal connection to LDO output.  
• Direct connection to GND.  
• Synchronous and asynchronous outputs can be routed to pins via crossbar.  
• Programmable hysteresis between 0 and ±20 mV  
• Programmable response time.  
• Interrupts generated on rising, falling, or both edges.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 11  
 
EFM8BB1 Data Sheet  
System Overview  
3.8 Reset Sources  
Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:  
• The core halts program execution.  
• Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.  
• External port pins are forced to a known state.  
• Interrupts and timers are disabled.  
All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The  
contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost. The Port I/O latch-  
es are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For Supply Monitor and power-on resets,  
the RSTb pin is driven low until the device exits the reset state. On exit from the reset state, the program counter (PC) is reset, and the  
system clock defaults to an internal oscillator. The Watchdog Timer is enabled, and program execution begins at location 0x0000.  
Reset sources on the device include the following:  
• Power-on reset  
• External reset pin  
• Comparator reset  
• Software-triggered reset  
• Supply monitor reset (monitors VDD supply)  
• Watchdog timer reset  
• Missing clock detector reset  
• Flash error reset  
3.9 Debugging  
The EFM8BB1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow flash programming and in-system debug-  
ging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data  
signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2  
protocol.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 12  
 
 
EFM8BB1 Data Sheet  
System Overview  
3.10 Bootloader  
All devices come pre-programmed with a UART bootloader. This bootloader resides in the code security page, which is the last last  
page of code flash; it can be erased if it is not needed.  
The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the boot-  
loader in the system. Any other value in this location indicates that the bootloader is not present in flash.  
When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The boot-  
loader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader  
is not present, the device will jump to the reset vector of 0x0000 after any reset.  
More information about the bootloader protocol and usage can be found in AN945: EFM8 Factory Bootloader User Guide. Application  
notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application  
Notes] tile.  
0xFFFF  
Reserved  
0x2000  
0x1FFF  
0x1FFE  
0x1FFD  
Lock Byte  
Bootloader Signature Byte  
Security Page  
512 Bytes  
0x1E00  
Bootloader Vector  
8 KB Flash  
(16 x 512 Byte pages)  
0x0000  
Reset Vector  
Figure 3.2. Flash Memory Map with Bootloader—8 KB Devices  
Table 3.2. Summary of Pins for Bootloader Communication  
Bootloader  
Pins for Bootload Communication  
UART  
TX – P0.4  
RX – P0.5  
silabs.com | Building a more connected world.  
Rev. 1.6 | 13  
 
EFM8BB1 Data Sheet  
System Overview  
Table 3.3. Summary of Pins for Bootload Mode Entry  
Device Package  
Pin for Bootload Mode Entry  
QSOP24  
QFN20  
P2.0 / C2D  
P2.0 / C2D  
P2.0 / C2D  
SOIC16  
silabs.com | Building a more connected world.  
Rev. 1.6 | 14  
EFM8BB1 Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
4.1 Electrical Characteristics  
All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page  
15, unless stated otherwise.  
4.1.1 Recommended Operating Conditions  
Table 4.1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
2.2  
0
Typ  
Max  
3.6  
25  
Unit  
V
Operating Supply Voltage on VDD VDD  
System Clock Frequency  
fSYSCLK  
TA  
MHz  
°C  
Operating Ambient Temperature  
G-grade devices  
–40  
-40  
85  
I-grade or A-grade devices  
125  
°C  
Note:  
1. All voltages with respect to GND  
2. GPIO levels are undefined whenever VDD is less than 1 V.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 15  
 
 
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.2 Power Consumption  
Table 4.2. Power Consumption  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Digital Core Supply Current (G-grade devices, -40 °C to +85 °C)  
FSYSCLK = 24.5 MHz2  
Normal Mode—Full speed with  
code executing from flash  
IDD  
IDD  
IDD  
4.45  
915  
250  
250  
2.05  
550  
125  
125  
4.85  
1150  
290  
380  
2.3  
mA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
FSYSCLK = 1.53 MHz2  
FSYSCLK = 80 kHz3 , TA = 25 °C  
FSYSCLK = 80 kHz3  
FSYSCLK = 24.5 MHz2  
Idle Mode—Core halted with pe-  
ripherals running  
FSYSCLK = 1.53 MHz2  
700  
130  
200  
FSYSCLK = 80 kHz3 , TA = 25 °C  
FSYSCLK = 80 kHz3  
TA = 25 °C  
Stop Mode—Core halted and all  
clocks stopped,Internal LDO On,  
Supply monitor off.  
105  
105  
0.2  
120  
170  
μA  
μA  
μA  
TA = -40 to +85 °C  
Shutdown Mode—Core halted and IDD  
all clocks stopped,Internal LDO  
Off, Supply monitor off.  
Digital Core Supply Current (I-grade or A-grade devices, -40 °C to +125 °C)  
FSYSCLK = 24.5 MHz2  
Normal Mode—Full speed with  
code executing from flash  
IDD  
IDD  
IDD  
4.45  
915  
250  
250  
2.05  
550  
125  
125  
5.25  
1600  
290  
725  
2.6  
mA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
FSYSCLK = 1.53 MHz2  
FSYSCLK = 80 kHz3 , TA = 25 °C  
FSYSCLK = 80 kHz3  
FSYSCLK = 24.5 MHz2  
Idle Mode—Core halted with pe-  
ripherals running  
FSYSCLK = 1.53 MHz2  
1000  
130  
550  
FSYSCLK = 80 kHz3 , TA = 25 °C  
FSYSCLK = 80 kHz3  
TA = 25 °C  
Stop Mode—Core halted and all  
clocks stopped,Internal LDO On,  
Supply monitor off.  
105  
105  
0.2  
120  
270  
μA  
μA  
μA  
TA = -40 to +125 °C  
Shutdown Mode—Core halted and IDD  
all clocks stopped,Internal LDO  
Off, Supply monitor off.  
Analog Peripheral Supply Currents (-40 °C to +125 °C)  
High-Frequency Oscillator  
Low-Frequency Oscillator  
IHFOSC  
Operating at 24.5 MHz,  
TA = 25 °C  
155  
3.5  
µA  
µA  
ILFOSC  
Operating at 80 kHz,  
TA = 25 °C  
silabs.com | Building a more connected world.  
Rev. 1.6 | 16  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
ADC0 Always-on4  
IADC  
800 ksps, 10-bit conversions or  
200 ksps, 12-bit conversions  
Normal bias settings  
VDD = 3.0 V  
845  
1200  
µA  
250 ksps, 10-bit conversions or  
62.5 ksps 12-bit conversions  
Low power bias settings  
VDD = 3.0 V  
425  
580  
µA  
ADC0 Burst Mode, 10-bit single  
conversions, external reference  
IADC  
IADC  
IADC  
IADC  
200 ksps, VDD = 3.0 V  
100 ksps, VDD = 3.0 V  
10 ksps, VDD = 3.0 V  
200 ksps, VDD = 3.0 V  
100 ksps, VDD = 3.0 V  
10 ksps, VDD = 3.0 V  
100 ksps, VDD = 3.0 V  
50 ksps, VDD = 3.0 V  
10 ksps, VDD = 3.0 V  
100 ksps, VDD = 3.0 V,  
370  
185  
19  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
ADC0 Burst Mode, 10-bit single  
conversions, internal reference,  
Low power bias settings  
490  
245  
23  
ADC0 Burst Mode, 12-bit single  
conversions, external reference  
530  
265  
53  
ADC0 Burst Mode, 12-bit single  
conversions, internal reference  
950  
Normal bias  
50 ksps, VDD = 3.0 V,  
420  
85  
µA  
µA  
Low power bias  
10 ksps, VDD = 3.0 V,  
Low power bias  
Internal ADC0 Reference, Always- IVREFFS  
on5  
Normal Power Mode  
Low Power Mode  
680  
160  
75  
0.5  
3
790  
210  
120  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Temperature Sensor  
Comparator 0 (CMP0),  
Comparator 1 (CMP1)  
ITSENSE  
ICMP  
CPMD = 11  
CPMD = 10  
CPMD = 01  
CPMD = 00  
10  
25  
15  
Voltage Supply Monitor (VMON0)  
IVMON  
20  
silabs.com | Building a more connected world.  
Rev. 1.6 | 17  
EFM8BB1 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Currents are additive. For example, where IDD is specified and the mode is not mutually exclusive, enabling the functions increa-  
ses supply current by the specified amount.  
2. Includes supply current from internal regulator, supply monitor, and High Frequency Oscillator.  
3. Includes supply current from internal regulator, supply monitor, and Low Frequency Oscillator.  
4. ADC0 always-on power excludes internal reference supply current.  
5. The internal reference is enabled as-needed when operating the ADC in burst mode to save power.  
4.1.3 Reset and Supply Monitor  
Table 4.3. Reset and Supply Monitor  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1.851  
VDD Supply Monitor Threshold  
VVDDM  
1.95  
2.1  
V
Power-On Reset (POR) Threshold VPOR  
Rising Voltage on VDD  
Falling Voltage on VDD  
Time to VDD ≥ 2.2 V  
1.4  
1.36  
V
V
0.75  
10  
VDD Ramp Time  
tRMP  
tPOR  
µs  
ms  
µs  
Reset Delay from POR  
Relative to VDD ≥ VPOR  
3
10  
39  
31  
Reset Delay from non-POR source tRST  
RST Low Time to Generate Reset tRSTL  
Time between release of reset  
source and code execution  
15  
µs  
Missing Clock Detector Response tMCD  
Time (final rising edge to reset)  
FSYSCLK > 1 MHz  
0.625  
1.2  
ms  
Missing Clock Detector Trigger  
Frequency  
FMCD  
7.5  
2
13.5  
kHz  
µs  
VDD Supply Monitor Turn-On Time tMON  
Note:  
1. MCU core, digital logic, flash memory, and RAM operation is guaranteed down to the minimum VDD Supply Monitor Threshold.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 18  
 
 
 
 
 
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.4 Flash Memory  
Table 4.4. Flash Memory  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Write Time1 ,2  
tWRITE  
One Byte,  
19  
20  
21  
µs  
FSYSCLK = 24.5 MHz  
One Page,  
Erase Time1 ,2  
tERASE  
5.2  
5.35  
5.5  
ms  
FSYSCLK = 24.5 MHz  
VDD Voltage During Programming3  
Endurance (Write/Erase Cycles)  
CRC Calculation Time  
VPROG  
NWE  
tCRC  
2.2  
3.6  
V
20k  
100k  
11  
Cycles  
µs  
One 256-Byte Block  
SYSCLK = 24.5 MHz  
Note:  
1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.  
2. The internal High-Frequency Oscillator has a programmable output frequency using the HFO0CAL register, which is factory pro-  
grammed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or  
erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.  
3. Flash can be safely programmed at any voltage above the supply monitor threshold (VVDDM).  
4. Data Retention Information is published in the Quarterly Quality and Reliability Report.  
4.1.5 Internal Oscillators  
Table 4.5. Internal Oscillators  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
High Frequency Oscillator 0 (24.5 MHz)  
Oscillator Frequency  
fHFOSC0  
Full Temperature and Supply  
Range  
24  
24.5  
0.5  
25  
MHz  
%/V  
Power Supply Sensitivity  
PSSHFOS TA = 25 °C  
C0  
Temperature Sensitivity  
TSHFOSC0 VDD = 3.0 V  
40  
80  
ppm/°C  
kHz  
Low Frequency Oscillator (80 kHz)  
Oscillator Frequency  
fLFOSC  
Full Temperature and Supply  
Range  
75  
85  
Power Supply Sensitivity  
Temperature Sensitivity  
PSSLFOSC TA = 25 °C  
TSLFOSC VDD = 3.0 V  
0.05  
65  
%/V  
ppm/°C  
silabs.com | Building a more connected world.  
Rev. 1.6 | 19  
 
 
 
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.6 External Clock Input  
Table 4.6. External Clock Input  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
External Input CMOS Clock  
Frequency (at EXTCLK pin)  
fCMOS  
0
25  
MHz  
External Input CMOS Clock High  
Time  
tCMOSH  
18  
18  
ns  
ns  
External Input CMOS Clock Low  
Time  
tCMOSL  
silabs.com | Building a more connected world.  
Rev. 1.6 | 20  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.7 ADC  
Table 4.7. ADC  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
12  
10  
Max  
Unit  
Bits  
Bits  
ksps  
ksps  
ksps  
ksps  
ns  
Resolution  
Nbits  
12 Bit Mode  
10 Bit Mode  
Throughput Rate  
(High Speed Mode)  
Throughput Rate  
(Low Power Mode)  
Tracking Time  
fS  
12 Bit Mode  
200  
800  
62.5  
250  
10 Bit Mode  
fS  
12 Bit Mode  
10 Bit Mode  
tTRK  
High Speed Mode  
Low Power Mode  
230  
450  
1.2  
ns  
Power-On Time  
tPWR  
fSAR  
µs  
SAR Clock Frequency  
High Speed Mode,  
Reference is 2.4 V internal  
High Speed Mode,  
Reference is not 2.4 V internal  
Low Power Mode  
6.25  
MHz  
12.5  
4
MHz  
MHz  
µs  
Conversion Time  
tCNV  
10-Bit Conversion,  
SAR Clock = 12.25 MHz,  
System Clock = 24.5 MHz.  
Gain = 1  
1.1  
Sample/Hold Capacitor  
CSAR  
1
5
2.5  
20  
550  
pF  
pF  
pF  
Ω
Gain = 0.5  
Input Pin Capacitance  
Input Mux Impedance  
Voltage Reference Range  
Input Voltage Range*  
CIN  
RMUX  
VREF  
VIN  
VDD  
VREF  
2xVREF  
V
Gain = 1  
0
V
Gain = 0.5  
0
V
Power Supply Rejection Ratio  
DC Performance  
PSRRADC  
INL  
70  
dB  
Integral Nonlinearity  
12 Bit Mode  
–1  
–3  
–2  
±1  
±0.2  
±0.7  
±0.2  
0
±2.3  
±0.6  
1.9  
±0.6  
3
LSB  
LSB  
10 Bit Mode  
Differential Nonlinearity (Guaran-  
teed Monotonic)  
DNL  
12 Bit Mode  
LSB  
10 Bit Mode  
LSB  
Offset Error  
EOFF  
12 Bit Mode, VREF = 1.65 V  
10 Bit Mode, VREF = 1.65 V  
LSB  
0
2
LSB  
Offset Temperature Coefficient  
TCOFF  
0.004  
LSB/°C  
silabs.com | Building a more connected world.  
Rev. 1.6 | 21  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
12 Bit Mode  
Min  
Typ  
Max  
±0.1  
Unit  
%
Slope Error  
EM  
±0.02  
±0.06  
10 Bit Mode  
±0.24  
%
Dynamic Performance 10 kHz Sine Wave Input 1dB below full scale, Max throughput, using AGND pin  
Signal-to-Noise  
SNR  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
61  
53  
61  
53  
66  
60  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Plus Distortion  
SNDR  
THD  
66  
60  
Total Harmonic Distortion (Up to  
5th Harmonic)  
71  
70  
Spurious-Free Dynamic Range  
SFDR  
–79  
–74  
Note:  
1. Absolute input pin voltage is limited by the VDD supply.  
4.1.8 Voltage Reference  
Table 4.8. Voltage Reference  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Internal Fast Settling Reference  
Output Voltage  
VREFFS  
1.65 V Setting  
1.62  
2.35  
1.65  
2.4  
1.68  
2.45  
V
V
2.4 V Setting, VDD ≥ 2.6 V  
(Full Temperature and Supply  
Range)  
Temperature Coefficient  
Turn-on Time  
TCREFFS  
tREFFS  
50  
1.5  
ppm/°C  
µs  
Power Supply Rejection  
PSRRREF  
400  
ppm/V  
FS  
External Reference  
Input Current  
IEXTREF  
Sample Rate = 800 ksps; VREF =  
3.0 V  
5
µA  
silabs.com | Building a more connected world.  
Rev. 1.6 | 22  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.9 Temperature Sensor  
Table 4.9. Temperature Sensor  
Parameter  
Symbol  
VOFF  
Test Condition  
TA = 0 °C  
Min  
Typ  
757  
17  
Max  
Unit  
mV  
mV  
Offset  
Offset Error1  
Slope  
EOFF  
TA = 0 °C  
M
2.85  
70  
mV/°C  
µV/°C  
Slope Error1  
Linearity  
EM  
0.5  
1.8  
°C  
µs  
Turn-on Time  
Note:  
1. Represents one standard deviation from the mean.  
4.1.10 1.8 V Internal LDO Voltage Regulator  
Table 4.10. 1.8V Internal LDO Voltage Regulator  
Parameter  
Output Voltage  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VOUT_1.8V  
1.74  
1.8  
1.85  
V
silabs.com | Building a more connected world.  
Rev. 1.6 | 23  
 
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.11 Comparators  
Parameter  
Table 4.11. Comparators  
Symbol  
Test Condition  
Min  
Typ  
100  
150  
1.5  
3.5  
0.4  
8
Max  
Unit  
ns  
Response Time, CPMD = 00  
(Highest Speed)  
tRESP0  
+100 mV Differential  
–100 mV Differential  
+100 mV Differential  
–100 mV Differential  
CPHYP = 00  
CPHYP = 01  
CPHYP = 10  
CPHYP = 11  
CPHYN = 00  
CPHYN = 01  
CPHYN = 10  
CPHYN = 11  
CPHYP = 00  
CPHYP = 01  
CPHYP = 10  
CPHYP = 11  
CPHYN = 00  
CPHYN = 01  
CPHYN = 10  
CPHYN = 11  
CPHYP = 00  
CPHYP = 01  
CPHYP = 10  
CPHYP = 11  
CPHYN = 00  
CPHYN = 01  
CPHYN = 10  
CPHYN = 11  
CPHYP = 00  
CPHYP = 01  
CPHYP = 10  
CPHYP = 11  
ns  
Response Time, CPMD = 11 (Low- tRESP3  
est Power)  
µs  
µs  
Positive Hysterisis  
HYSCP+  
HYSCP-  
HYSCP+  
HYSCP-  
HYSCP+  
HYSCP-  
HYSCP+  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Mode 0 (CPMD = 00)  
16  
32  
Negative Hysterisis  
-0.4  
–8  
Mode 0 (CPMD = 00)  
–16  
–32  
0.5  
6
Positive Hysterisis  
Mode 1 (CPMD = 01)  
12  
24  
Negative Hysterisis  
-0.5  
–6  
Mode 1 (CPMD = 01)  
–12  
–24  
0.7  
4.5  
9
Positive Hysterisis  
Mode 2 (CPMD = 10)  
18  
Negative Hysterisis  
-0.6  
–4.5  
–9  
Mode 2 (CPMD = 10)  
–18  
1.5  
4
Positive Hysteresis  
Mode 3 (CPMD = 11)  
8
16  
silabs.com | Building a more connected world.  
Rev. 1.6 | 24  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
CPHYN = 00  
CPHYN = 01  
CPHYN = 10  
CPHYN = 11  
Min  
Typ  
-1.5  
–4  
Max  
Unit  
mV  
mV  
mV  
mV  
V
Negative Hysteresis  
Mode 3 (CPMD = 11)  
HYSCP-  
–8  
–16  
Input Range (CP+ or CP–)  
Input Pin Capacitance  
VIN  
-0.25  
VDD+0.25  
CCP  
7.5  
70  
10  
pF  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Offset Voltage  
CMRRCP  
PSRRCP  
VOFF  
dB  
72  
dB  
TA = 25 °C  
-10  
0
mV  
µV/°C  
Input Offset Tempco  
TCOFF  
3.5  
silabs.com | Building a more connected world.  
Rev. 1.6 | 25  
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.12 Port I/O  
Table 4.12. Port I/O  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output High Voltage (Low Drive)1  
Output High Voltage (High Drive)1  
Output Low Voltage (Low Drive)1  
Output Low Voltage (High Drive)1  
Output Low Voltage (High Drive)1  
VOH  
IOH = –1 mA  
IOH = –3 mA  
IOL = 1.4 mA  
IOL = 8.5 mA  
IOL = 10 mA  
VDD – 0.7  
V
VOH  
VOL  
VOL  
VOL  
VDD – 0.7  
0.6  
V
V
V
V
0.6  
0.25  
0.33  
-10 °C ≤ TA ≤ 60 °C  
VDD = 3.0 V  
Guaranteed by characterization  
IOL = 10 mA  
Output Low Voltage (High Drive)1  
VOL  
0.23  
0.31  
V
-10 °C ≤ TA ≤ 60 °C  
VDD = 3.6 V  
Guaranteed by characterization  
Input High Voltage  
Input Low Voltage  
Pin Capacitance  
Weak Pull-Up Current  
(VIN = 0 V)  
VIH  
VIL  
CIO  
IPU  
VDD – 0.6  
0.6  
V
V
7
pF  
µA  
VDD = 3.6  
–30  
–20  
–10  
Input Leakage (Pullups off or Ana- ILK  
log)  
GND < VIN < VDD  
–1.1  
0
5
1.1  
µA  
µA  
Input Leakage Current with VIN  
above VDD  
ILK  
VDD < VIN < VDD+2.0 V  
150  
Note:  
1. See Figure 4.6 Typical VOH Curves on page 33 and Figure 4.7 Typical VOL Curves on page 33 for more information.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 26  
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.1.13 SMBus  
Table 4.13. SMBus Peripheral Timing Performance (Master Mode)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Mode (100 kHz Class)  
I2C Operating Frequency  
702  
fI2C  
0
kHz  
kHz  
µs  
401  
9.4  
702  
SMBus Operating Frequency  
fSMB  
Bus Free Time Between STOP and tBUF  
START Conditions  
Hold Time After (Repeated)  
START Condition  
tHD:STA  
4.7  
9.4  
µs  
µs  
Repeated START Condition Setup tSU:STA  
Time  
STOP Condition Setup Time  
Data Hold Time  
tSU:STO  
tHD:DAT  
tSU:DAT  
tTIMEOUT  
tLOW  
9.4  
µs  
ns  
ns  
ms  
µs  
µs  
4893  
4483  
25  
Data Setup Time  
Detect Clock Low Timeout  
Clock Low Period  
4.7  
9.4  
504  
Clock High Period  
tHIGH  
Fast Mode (400 kHz Class)  
2552  
I2C Operating Frequency  
fI2C  
0
kHz  
kHz  
µs  
401  
2.6  
2552  
SMBus Operating Frequency  
fSMB  
Bus Free Time Between STOP and tBUF  
START Conditions  
Hold Time After (Repeated)  
START Condition  
tHD:STA  
1.3  
2.6  
µs  
µs  
Repeated START Condition Setup tSU:STA  
Time  
STOP Condition Setup Time  
Data Hold Time  
tSU:STO  
tHD:DAT  
tSU:DAT  
tTIMEOUT  
tLOW  
2.6  
µs  
ns  
ns  
ms  
µs  
µs  
4893  
4483  
25  
Data Setup Time  
Detect Clock Low Timeout  
Clock Low Period  
1.3  
2.6  
504  
Clock High Period  
tHIGH  
silabs.com | Building a more connected world.  
Rev. 1.6 | 27  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. The minimum SMBus frequency is limited by the maximum Clock High Period requirement of the SMBus specification.  
2. The maximum I2C and SMBus frequencies are limited by the minimum Clock Low Period requirements of their respective specifi-  
cations. The maximum frequency cannot be achieved with all combinations of oscillators and dividers available, but the effective  
frequency must not exceed 256 kHz.  
3. Data setup and hold timing at 25 MHz or lower with EXTHOLD set to 1.  
4. SMBus has a maximum requirement of 50 µs for Clock High Period. Operating frequencies lower than 40 kHz will be longer than  
50 µs. I2C can support periods longer than 50 µs.  
Table 4.14. SMBus Peripheral Timing Formulas (Master Mode)  
Parameter  
Symbol  
fSMB  
Clocks  
fCSO / 3  
2 / fCSO  
1 / fCSO  
2 / fCSO  
2 / fCSO  
1 / fCSO  
2 / fCSO  
SMBus Operating Frequency  
Bus Free Time Between STOP and START Conditions  
Hold Time After (Repeated) START Condition  
Repeated START Condition Setup Time  
STOP Condition Setup Time  
Clock Low Period  
tBUF  
tHD:STA  
tSU:STA  
tSU:STO  
tLOW  
Clock High Period  
tHIGH  
Note:  
1. fCSO is the SMBus peripheral clock source overflow frequency.  
tLOW  
VIH  
SCL  
VIL  
tHIGH  
tHD:DAT  
tHD:STA  
tSU:STA  
tSU:STO  
tSU:DAT  
VIH  
VIL  
SDA  
tBUF  
P
S
S
P
Figure 4.1. SMBus Peripheral Timing Diagram (Master Mode)  
silabs.com | Building a more connected world.  
Rev. 1.6 | 28  
 
 
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.2 Thermal Conditions  
Table 4.15. Thermal Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
70  
Max  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance (Junction to  
Ambient)  
θJA  
SOIC-16 Packages  
QFN-20 Packages  
QSOP-24 Packages  
QFN-20 Packages  
60  
65  
Thermal Resistance (Junction to  
Case)  
θJC  
28.86  
Note:  
1. Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.  
4.3 Absolute Maximum Ratings  
Stresses above those listed in Table 4.16 Absolute Maximum Ratings on page 29 may cause permanent damage to the device. This  
is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation  
listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For  
more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/  
support/quality/pages/default.aspx.  
Table 4.16. Absolute Maximum Ratings  
Parameter  
Symbol  
TBIAS  
TSTG  
VDD  
Test Condition  
Min  
–55  
Max  
125  
Unit  
°C  
°C  
V
Ambient Temperature Under Bias  
Storage Temperature  
Voltage on VDD  
–65  
150  
GND–0.3  
GND–0.3  
GND–0.3  
4.2  
Voltage on I/O pins or RST  
VIN  
VDD ≥ 3.3 V  
V < 3.3 V  
5.8  
V
VDD+2.5  
200  
V
Total Current Sunk into Supply Pin  
IVDD  
IGND  
IIO  
mA  
DD  
Total Current Sourced out of Ground  
Pin  
200  
mA  
mA  
Current Sourced or Sunk by Any I/O  
Pin or RSTb  
-100  
100  
Operating Junction Temperature  
TJ  
TA = -40 °C to 85 °C  
–40  
-40  
105  
130  
°C  
°C  
TA = -40 °C to 125 °C (I-grade or A-  
grade parts only)  
Exposure to maximum rating conditions for extended periods may affect device reliability.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 29  
 
 
 
EFM8BB1 Data Sheet  
Electrical Specifications  
4.4 Typical Performance Curves  
Figure 4.2. Typical Operating Supply Current using HFOSC0  
Figure 4.3. Typical Operating Supply Current using LFOSC  
silabs.com | Building a more connected world.  
Rev. 1.6 | 30  
 
EFM8BB1 Data Sheet  
Electrical Specifications  
Figure 4.4. Typical ADC0 and Internal Reference Supply Current in Burst Mode  
silabs.com | Building a more connected world.  
Rev. 1.6 | 31  
EFM8BB1 Data Sheet  
Electrical Specifications  
Figure 4.5. Typical ADC0 Supply Current in Normal (always-on) Mode  
silabs.com | Building a more connected world.  
Rev. 1.6 | 32  
EFM8BB1 Data Sheet  
Electrical Specifications  
Figure 4.6. Typical VOH Curves  
Figure 4.7. Typical VOL Curves  
silabs.com | Building a more connected world.  
Rev. 1.6 | 33  
 
 
EFM8BB1 Data Sheet  
Typical Connection Diagrams  
5. Typical Connection Diagrams  
5.1 Power  
Figure 5.1 Power Connection Diagram on page 34 shows a typical connection diagram for the power pins of the EFM8BB1 devices.  
2.2-3.6 V (in)  
EFM8BB1  
Device  
VDD  
1 µF and 0.1 µF bypass  
capacitors required for  
the power pins placed  
as close to the pins as  
possible.  
GND  
Figure 5.1. Power Connection Diagram  
5.2 Debug  
The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if  
the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connec-  
ted to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin shar-  
ing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections  
can be omitted.  
For more information on debug connections, see the example schematics and information available in application note, AN124: Pin  
Sharing Techniques for the C2 Interface. Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-app-  
notes) or in Simplicity Studio.  
VDD  
External  
System  
EFM8BB1 Device  
1 k  
C2CK  
1 k  
1 k  
1 k  
(if pin sharing)  
(if pin sharing)  
C2D  
1 k  
GND  
Debug Adapter  
Figure 5.2. Debug Connection Diagram  
silabs.com | Building a more connected world.  
Rev. 1.6 | 34  
 
 
 
 
EFM8BB1 Data Sheet  
Typical Connection Diagrams  
5.3 Other Connections  
Other components or connections may be required to meet the system-level requirements. Application note, "AN203: 8-bit MCU Printed  
Circuit Board Design Notes", contains detailed information on these connections. Application Notes can be accessed on the Silicon  
Labs website (www.silabs.com/8bit-appnotes).  
silabs.com | Building a more connected world.  
Rev. 1.6 | 35  
 
EFM8BB1 Data Sheet  
Pin Definitions  
6. Pin Definitions  
6.1 EFM8BB1x-QSOP24 Pin Definitions  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
N/C  
P0.2  
P0.1  
P0.0  
GND  
N/C  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P1.3  
3
4
5
6
24 pin QSOP  
VDD  
(Top View)  
7
RSTb / C2CK  
8
C2D / P2.0  
P1.7  
9
10  
11  
12  
P1.6  
P1.5  
P1.4  
N/C  
P2.1  
Figure 6.1. EFM8BB1x-QSOP24 Pinout  
Table 6.1. Pin Definitions for EFM8BB1x-QSOP24  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
1
2
N/C  
No Connection  
Multifunction I/O  
P0.2  
Yes  
P0MAT.2  
INT0.2  
ADC0.2  
CMP0P.2  
CMP0N.2  
INT1.2  
silabs.com | Building a more connected world.  
Rev. 1.6 | 36  
 
 
EFM8BB1 Data Sheet  
Pin Definitions  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
3
P0.1  
Multifunction I/O  
Yes  
P0MAT.1  
INT0.1  
ADC0.1  
CMP0P.1  
CMP0N.1  
AGND  
INT1.1  
4
P0.0  
Multifunction I/O  
Yes  
P0MAT.0  
INT0.0  
ADC0.0  
CMP0P.0  
CMP0N.0  
VREF  
INT1.0  
5
6
7
GND  
VDD  
Ground  
Supply Power Input  
Active-low Reset /  
C2 Debug Clock  
Multifunction I/O /  
C2 Debug Data  
Multifunction I/O  
RSTb /  
C2CK  
P2.0 /  
C2D  
8
9
P1.7  
Yes  
Yes  
Yes  
P1MAT.7  
P1MAT.6  
P1MAT.5  
ADC0.15  
CMP1P.7  
CMP1N.7  
ADC0.14  
CMP1P.6  
CMP1N.6  
ADC0.13  
CMP1P.5  
CMP1N.5  
10  
11  
P1.6  
P1.5  
Multifunction I/O  
Multifunction I/O  
12  
13  
14  
P2.1  
N/C  
Multifunction I/O  
No Connection  
Multifunction I/O  
P1.4  
Yes  
Yes  
Yes  
P1MAT.4  
P1MAT.3  
P1MAT.2  
ADC0.12  
CMP1P.4  
CMP1N.4  
ADC0.11  
CMP1P.3  
CMP1N.3  
ADC0.10  
CMP1P.2  
CMP1N.2  
15  
16  
P1.3  
P1.2  
Multifunction I/O  
Multifunction I/O  
silabs.com | Building a more connected world.  
Rev. 1.6 | 37  
EFM8BB1 Data Sheet  
Pin Definitions  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
17  
P1.1  
Multifunction I/O  
Yes  
P1MAT.1  
ADC0.9  
CMP1P.1  
CMP1N.1  
ADC0.8  
18  
19  
20  
P1.0  
P0.7  
P0.6  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
Yes  
Yes  
Yes  
P1MAT.0  
CMP1P.0  
CMP1N.0  
ADC0.7  
P0MAT.7  
INT0.7  
CMP0P.7  
CMP0N.7  
ADC0.6  
INT1.7  
P0MAT.6  
CNVSTR  
INT0.6  
CMP0P.6  
CMP0N.6  
INT1.6  
21  
22  
23  
P0.5  
P0.4  
P0.3  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
Yes  
Yes  
Yes  
P0MAT.5  
INT0.5  
ADC0.5  
CMP0P.5  
CMP0N.5  
ADC0.4  
INT1.5  
P0MAT.4  
INT0.4  
CMP0P.4  
CMP0N.4  
ADC0.3  
INT1.4  
P0MAT.3  
EXTCLK  
INT0.3  
CMP0P.3  
CMP0N.3  
INT1.3  
24  
N/C  
No Connection  
silabs.com | Building a more connected world.  
Rev. 1.6 | 38  
EFM8BB1 Data Sheet  
Pin Definitions  
6.2 EFM8BB1x-QFN20 Pin Definitions  
1
16  
P0.1  
P0.0  
P0.6  
P0.7  
P1.0  
P1.1  
GND  
P1.2  
2
3
4
5
15  
14  
13  
12  
GND  
20 pin QFN  
(Top View)  
VDD  
GND  
RSTb / C2CK  
P2.0 / C2D  
6
11  
Figure 6.2. EFM8BB1x-QFN20 Pinout  
Table 6.2. Pin Definitions for EFM8BB1x-QFN20  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Analog Functions  
Functions  
Number  
1
P0.1  
Multifunction I/O  
Multifunction I/O  
Yes  
P0MAT.1  
INT0.1  
ADC0.1  
CMP0P.1  
CMP0N.1  
AGND  
INT1.1  
2
P0.0  
Yes  
P0MAT.0  
INT0.0  
ADC0.0  
CMP0P.0  
CMP0N.0  
VREF  
INT1.0  
silabs.com | Building a more connected world.  
Rev. 1.6 | 39  
 
EFM8BB1 Data Sheet  
Pin Definitions  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
3
4
5
GND  
VDD  
Ground  
Supply Power Input  
Active-low Reset /  
C2 Debug Clock  
Multifunction I/O /  
C2 Debug Data  
Multifunction I/O  
RSTb /  
C2CK  
P2.0 /  
C2D  
6
7
P1.6  
Yes  
Yes  
Yes  
Yes  
Yes  
P1MAT.6  
P1MAT.5  
P1MAT.4  
P1MAT.3  
P1MAT.2  
ADC0.14  
CMP1P.6  
CMP1N.6  
ADC0.13  
CMP1P.5  
CMP1N.5  
ADC0.12  
CMP1P.4  
CMP1N.4  
ADC0.11  
CMP1P.3  
CMP1N.3  
ADC0.10  
CMP1P.2  
CMP1N.2  
8
P1.5  
P1.4  
P1.3  
P1.2  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
9
10  
11  
12  
13  
GND  
P1.1  
Ground  
Multifunction I/O  
Yes  
Yes  
Yes  
Yes  
P1MAT.1  
P1MAT.0  
ADC0.9  
CMP1P.1  
CMP1N.1  
ADC0.8  
14  
15  
16  
P1.0  
P0.7  
P0.6  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
CMP1P.0  
CMP1N.0  
ADC0.7  
P0MAT.7  
INT0.7  
CMP0P.7  
CMP0N.7  
ADC0.6  
INT1.7  
P0MAT.6  
CNVSTR  
INT0.6  
CMP0P.6  
CMP0N.6  
INT1.6  
silabs.com | Building a more connected world.  
Rev. 1.6 | 40  
EFM8BB1 Data Sheet  
Pin Definitions  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
17  
P0.5  
Multifunction I/O  
Yes  
P0MAT.5  
INT0.5  
ADC0.5  
CMP0P.5  
CMP0N.5  
ADC0.4  
INT1.5  
18  
19  
P0.4  
P0.3  
Multifunction I/O  
Multifunction I/O  
Yes  
Yes  
P0MAT.4  
INT0.4  
CMP0P.4  
CMP0N.4  
ADC0.3  
INT1.4  
P0MAT.3  
EXTCLK  
INT0.3  
CMP0P.3  
CMP0N.3  
INT1.3  
20  
P0.2  
GND  
Multifunction I/O  
Ground  
Yes  
P0MAT.2  
INT0.2  
ADC0.2  
CMP0P.2  
CMP0N.2  
INT1.2  
Center  
silabs.com | Building a more connected world.  
Rev. 1.6 | 41  
EFM8BB1 Data Sheet  
Pin Definitions  
6.3 EFM8BB1x-SOIC16 Pin Definitions  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0.2  
P0.1  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P1.0  
P1.1  
P1.2  
P0.0  
GND  
16 pin SOIC  
(Top View)  
VDD  
RSTb / C2CK  
P2.0 / C2D  
P1.3  
Figure 6.3. EFM8BB1x-SOIC16 Pinout  
Table 6.3. Pin Definitions for EFM8BB1x-SOIC16  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
1
P0.2  
Multifunction I/O  
Yes  
P0MAT.2  
INT0.2  
ADC0.2  
CMP0P.2  
CMP0N.2  
ADC0.1  
INT1.2  
2
3
P0.1  
P0.0  
Multifunction I/O  
Multifunction I/O  
Yes  
Yes  
P0MAT.1  
INT0.1  
CMP0P.1  
CMP0N.1  
ADC0.0  
INT1.1  
P0MAT.0  
INT0.0  
CMP0P.0  
CMP0N.0  
INT1.0  
silabs.com | Building a more connected world.  
Rev. 1.6 | 42  
 
EFM8BB1 Data Sheet  
Pin Definitions  
Pin  
Pin Name  
Description  
Crossbar Capability  
Additional Digital  
Functions  
Analog Functions  
Number  
4
5
6
GND  
VDD  
Ground  
Supply Power Input  
Active-low Reset /  
C2 Debug Clock  
Multifunction I/O /  
C2 Debug Data  
Multifunction I/O  
RSTb /  
C2CK  
P2.0 /  
C2D  
7
8
P1.3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
P1MAT.3  
P1MAT.2  
P1MAT.1  
P1MAT.0  
ADC0.11  
CMP1P.5  
CMP1N.5  
ADC0.10  
CMP1P.4  
CMP1N.4  
ADC0.9  
9
P1.2  
P1.1  
P1.0  
P0.7  
P0.6  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
10  
11  
12  
13  
CMP1P.3  
CMP1N.3  
ADC0.8  
CMP1P.2  
CMP1N.2  
ADC0.7  
P0MAT.7  
INT0.7  
CMP1P.1  
CMP1N.1  
ADC0.6  
INT1.7  
P0MAT.6  
CNVSTR  
INT0.6  
CMP1P.0  
CMP1N.0  
INT1.6  
14  
15  
16  
P0.5  
P0.4  
P0.3  
Multifunction I/O  
Multifunction I/O  
Multifunction I/O  
Yes  
Yes  
Yes  
P0MAT.5  
INT0.5  
ADC0.5  
CMP0P.5  
CMP0N.5  
ADC0.4  
INT1.5  
P0MAT.4  
INT0.4  
CMP0P.4  
CMP0N.4  
ADC0.3  
INT1.4  
P0MAT.3  
EXTCLK  
INT0.3  
CMP0P.3  
CMP0N.3  
INT1.3  
silabs.com | Building a more connected world.  
Rev. 1.6 | 43  
EFM8BB1 Data Sheet  
QSOP24 Package Specifications  
7. QSOP24 Package Specifications  
7.1 QSOP24 Package Dimensions  
Figure 7.1. QSOP24 Package Drawing  
Table 7.1. QSOP24 Package Dimensions  
Dimension  
Min  
Typ  
Max  
1.75  
0.25  
0.30  
0.25  
A
A1  
b
0.10  
0.20  
0.10  
c
D
E
8.65 BSC  
6.00 BSC  
3.90 BSC  
0.635 BSC  
E1  
e
L
0.40  
1.27  
silabs.com | Building a more connected world.  
Rev. 1.6 | 44  
 
 
EFM8BB1 Data Sheet  
QSOP24 Package Specifications  
Dimension  
theta  
aaa  
Min  
Typ  
Max  
0º  
8º  
0.20  
0.18  
0.10  
0.10  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-137, variation AE.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 45  
EFM8BB1 Data Sheet  
QSOP24 Package Specifications  
7.2 QSOP24 PCB Land Pattern  
Figure 7.2. QSOP24 PCB Land Pattern Drawing  
Table 7.2. QSOP24 PCB Land Pattern Dimensions  
Dimension  
Min  
Max  
C
5.20  
5.30  
E
0.635 BSC  
X
0.30  
0.40  
1.60  
Y
1.50  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
7. A No-Clean, Type-3 solder paste is recommended.  
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 46  
 
EFM8BB1 Data Sheet  
QSOP24 Package Specifications  
7.3 QSOP24 Package Marking  
EFM8  
PPPPPPPP #  
TTTTTTYYWW  
Figure 7.3. QSOP24 Package Marking  
The package marking consists of:  
• PPPPPPPP – The part number designation.  
• TTTTTT – A trace or manufacturing code.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
• # – The device revision (A, B, etc.).  
silabs.com | Building a more connected world.  
Rev. 1.6 | 47  
 
EFM8BB1 Data Sheet  
QFN20 Package Specifications  
8. QFN20 Package Specifications  
8.1 QFN20 Package Dimensions  
Figure 8.1. QFN20 Package Drawing  
Table 8.1. QFN20 Package Dimensions  
Dimension  
Min  
0.70  
0.00  
Typ  
0.75  
Max  
0.80  
0.05  
A
A1  
A3  
b
0.02  
0.20 REF  
0.25  
0.18  
0.25  
0.30  
0.35  
c
0.30  
D
3.00 BSC  
1.70  
D2  
e
1.6  
1.80  
0.50 BSC  
3.00 BSC  
E
silabs.com | Building a more connected world.  
Rev. 1.6 | 48  
 
 
EFM8BB1 Data Sheet  
QFN20 Package Specifications  
Dimension  
Min  
Typ  
1.70  
Max  
E2  
f
1.60  
1.80  
2.50 BSC  
0.40  
L
0.30  
0.09  
0.50  
0.15  
K
0.25 REF  
0.125  
0.15  
R
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. The drawing complies with JEDEC MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 49  
EFM8BB1 Data Sheet  
QFN20 Package Specifications  
8.2 QFN20 PCB Land Pattern  
Figure 8.2. QFN20 PCB Land Pattern Drawing  
Table 8.2. QFN20 PCB Land Pattern Dimensions  
Dimension  
Min  
3.10  
3.10  
2.50  
2.50  
0.50  
0.30  
0.25  
1.80  
0.90  
0.25  
1.80  
Max  
C1  
C2  
C3  
C4  
E
X1  
X2  
X3  
Y1  
Y2  
Y3  
0.35  
0.35  
silabs.com | Building a more connected world.  
Rev. 1.6 | 50  
 
EFM8BB1 Data Sheet  
QFN20 Package Specifications  
Dimension  
Note:  
Min  
Max  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
8. A 2 x 2 array of 0.75 mm openings on a 0.95 mm pitch should be used for the center pad to assure proper paste volume.  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
8.3 QFN20 Package Marking  
PPPP  
PPPP  
TTTTTT  
YYWW #  
Figure 8.3. QFN20 Package Marking  
The package marking consists of:  
• PPPPPPPP – The part number designation.  
• TTTTTT – A trace or manufacturing code.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
• # – The device revision (A, B, etc.).  
silabs.com | Building a more connected world.  
Rev. 1.6 | 51  
 
EFM8BB1 Data Sheet  
SOIC16 Package Specifications  
9. SOIC16 Package Specifications  
9.1 SOIC16 Package Dimensions  
Figure 9.1. SOIC16 Package Drawing  
Table 9.1. SOIC16 Package Dimensions  
Dimension  
Min  
Typ  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
E
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E1  
e
L
0.40  
1.27  
silabs.com | Building a more connected world.  
Rev. 1.6 | 52  
 
 
EFM8BB1 Data Sheet  
SOIC16 Package Specifications  
Dimension  
Min  
Typ  
0.25 BSC  
Max  
L2  
h
0.25  
0º  
0.50  
8º  
θ
aaa  
bbb  
ccc  
ddd  
Note:  
0.10  
0.20  
0.10  
0.25  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 53  
EFM8BB1 Data Sheet  
SOIC16 Package Specifications  
9.2 SOIC16 PCB Land Pattern  
Figure 9.2. SOIC16 PCB Land Pattern Drawing  
Table 9.2. SOIC16 PCB Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).  
3. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 54  
 
EFM8BB1 Data Sheet  
SOIC16 Package Specifications  
9.3 SOIC16 Package Marking  
EFM8  
PPPPPPPP #  
TTTTTTYYWW  
Figure 9.3. SOIC16 Package Marking  
The package marking consists of:  
• PPPPPPPP – The part number designation.  
• TTTTTT – A trace or manufacturing code.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
• # – The device revision (A, B, etc.).  
silabs.com | Building a more connected world.  
Rev. 1.6 | 55  
 
EFM8BB1 Data Sheet  
Revision History  
10. Revision History  
10.1 Revision 1.6  
March 13th, 2017  
Updated the language in 1. Feature List to clarify the package offerings for each of the different temperature grades.  
Corrected the application note number for AN124: Pin Sharing Techniques for the C2 Interface in 5.2 Debug.  
10.2 Revision 1.5  
October 7th, 2016  
Added A-grade parts.  
Added specifications for 4.1.13 SMBus.  
Added bootloader pinout information to 3.10 Bootloader.  
Added CRC Calculation Time to 4.1.4 Flash Memory.  
Added Thermal Resistance (Junction to Case) for QFN20 packages to 4.2 Thermal Conditions.  
Added a note linking to the Typical VOH and VOL Performance graphs in 4.1.12 Port I/O.  
Added 4.1.10 1.8 V Internal LDO Voltage Regulator.  
Added a note to 3.1 Introduction referencing the Reference Manual.  
10.3 Revision 1.4  
April 22nd, 2016  
Added a reference to AN945: EFM8 Factory Bootloader User Guide in 3.10 Bootloader.  
Added I-grade devices.  
Added a note that all GPIO values are undefined when VDD is below 1 V to 4.1.1 Recommended Operating Conditions.  
Adjusted the Total Current Sunk into Supply Pin and Total Current Sourced out of Ground Pin specifications in 4.3 Absolute Maximum  
Ratings.  
10.4 Revision 1.3  
January 7th, 2016  
Added 5.2 Debug.  
Updated 3.10 Bootloader to include information about the bootloader implementation.  
10.5 Revision 1.2  
Updated Port I/O specifications in 4.1.12 Port I/O to include new VOL specifications.  
Added a note to Table 4.3 Reset and Supply Monitor on page 18 regarding guaranteed operation.  
Updated package diagram and landing diagram specifications for the QFN20 package.  
10.6 Revision 1.1  
Initial release.  
silabs.com | Building a more connected world.  
Rev. 1.6 | 56  
 
 
 
 
 
 
 
Simplicity Studio  
One-click access to MCU and  
wireless tools, documentation,  
software, source code libraries &  
more. Available for Windows,  
Mac and Linux!  
IoT Portfolio  
www.silabs.com/IoT  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal  
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All  
other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

EFM8BB10F8G-A-QFN20R

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8G-A-QSOP24

The EFM8BB1 highlighted features are listed below
SILICON

EFM8BB10F8G-A-QSOP24R

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8G-A-SOIC16

The EFM8BB1 highlighted features are listed below
SILICON

EFM8BB10F8G-A-SOIC16R

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8I-A-QFN20

Microcontroller, CMOS
SILICON

EFM8BB10F8I-A-QFN20R

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8I-A-QSOP24

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8I-A-QSOP24R

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8I-A-SOIC16

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8I-A-SOIC16R

Addition of AEC-Q100 under the key features and specifications
SILICON

EFM8BB10F8Y-A-QFN20

Addition of AEC-Q100 under the key features and specifications
SILICON