MGM12P02F1024GA-V2 [SILICON]

Telecom IC,;
MGM12P02F1024GA-V2
型号: MGM12P02F1024GA-V2
厂家: SILICON    SILICON
描述:

Telecom IC,

电信 电信集成电路
文件: 总99页 (文件大小:3155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MGM12P Mighty Gecko Multi-Protocol  
Wireless Mesh Module Data Sheet  
The Silicon Labs Mighty Gecko Module (MGM12P) is a fully-inte-  
grated, certified module, enabling rapid development of wireless  
KEY FEATURES  
mesh networking solutions.  
®
®
32-bit ARM Cortex -M4 core with 40  
MHz maximum operating frequency  
Based on the Silicon Labs EFR32MG12 Mighty Gecko SoC, the MGM12P combines an  
energy- efficient, multi-protocol wireless SoC with a proven RF/antenna design and in-  
dustry leading wireless software stacks. This integration accelerates time-to-market and  
saves months of engineering effort and development costs.  
• 1 MB of flash and 256 kB of RAM  
• ZigBee, Thread, BLE, and multi-protocol  
support  
• Pin-compatible with MGM111 module  
In addition, common software and development tools enable seamless migration from a  
module to discrete SoC-based design when the time is right.  
• 12-channel Peripheral Reflex System,  
Low-Energy Sensor Interface & Multi-  
channel Capacitive Sense Interface  
MGM12P can be used in a wide variety of applications:  
• Integrated PA with up to +17 dBm transmit  
power  
• IoT Multi-Protocol Devices  
• Connected Home  
• Lighting  
• Robust peripheral set and up to 25 GPIO  
• Health and Wellness  
• Metering  
• Building Automation and Security  
Core / Memory  
Clock Management  
Energy Management  
Other  
CRYPTO  
CRC  
High Frequency  
Crystal  
Oscillator  
High Frequency  
RC Oscillator  
Voltage  
Voltage Monitor  
Regulator  
ARM CortexTM M4 processor  
Memory  
with DSP extensions and FPU  
Protection Unit  
Auxiliary High  
Frequency RC  
Oscillator  
Low Frequency  
RC Oscillator  
DC-DC  
Power-On Reset  
Converter  
True Random  
Number Generator  
Low Frequency  
Crystal  
Oscillator  
Ultra Low  
Frequency RC  
Oscillator  
Flash Program  
RAM Memory  
Memory  
Debug Interface  
with ETM  
LDMA  
Controller  
Brown-Out  
Detector  
SMU  
32-bit bus  
Peripheral Reflex System  
Antenna  
Radio Transceiver  
Serial  
I/O Ports  
Timers and Triggers  
Analog I/F  
Interfaces  
Integrated Chip  
Antenna  
ADC  
External  
Interrupts  
DEMOD  
USART  
Timer/Counter  
Protocol Timer  
Analog  
Comparator  
Low Energy  
UARTTM  
General  
Purpose I/O  
Low Energy  
Timer  
IFADC  
AGC  
PGA  
I
Watchdog Timer  
LNA  
External Antenna  
U.FL Connector  
IDAC  
RF Frontend  
Real Time  
Counter and  
Calendar  
Capacitive Sense  
I2C  
Pin Reset  
Pulse Counter  
PA  
Frequency  
Synthesizer  
Q
VDAC  
Matching  
Low Energy  
Sensor Interface  
MOD  
Pin Wakeup  
Cryotimer  
Op-Amp  
Lowest power mode with peripheral operational:  
EM0—Active EM1—Sleep  
EM2—Deep Sleep  
EM3—Stop  
EM4—Hibernate  
EM4—Shutoff  
silabs.com | Building a more connected world.  
Rev. 1.0  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Feature List  
1. Feature List  
The MGM12P highlighted features are listed below.  
Low Power Wireless System-on-Chip.  
Wide selection of MCU peripherals  
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)  
• 2×Analog Comparator (ACMP)  
High Performance 32-bit 40 MHz ARM Cortex®-M4 with  
DSP instruction and floating-point unit for efficient signal  
processing  
• 2×Digital to Analog Converter (VDAC)  
• 3×Operational Amplifier (Opamp)  
• 1024 kB flash program memory  
• 256 kB RAM data memory  
• Digital to Analog Current Converter (IDAC)  
• Low-Energy Sensor Interface (LESENSE)  
• Multi-channel Capacitive Sense Interface (CSEN)  
• 2.4 GHz radio operation  
• TX power up to +17 dBm  
Low Energy Consumption  
• Up to 25 pins connected to analog channels (APORT)  
shared between analog peripherals  
• 10.3 mA RX current at 2.4 GHz (1 Mbps GFSK)  
• 10.8 mA RX current at 2.4 GHz (250 kbps O-QPSK DSSS)  
• 10 mA TX current @ 0 dBm output power at 2.4 GHz  
• 70 μA/MHz in Active Mode (EM0)  
• Up to 25 General Purpose I/O pins with output state reten-  
tion and asynchronous interrupts  
• 8 Channel DMA Controller  
• 12 Channel Peripheral Reflex System (PRS)  
• 2×16-bit Timer/Counter  
• 2.1 μA EM2 DeepSleep current (256 kB RAM retention and  
RTCC running from LFXO)  
High Receiver Performance  
• 3 + 4 Compare/Capture/PWM channels  
• 2×32-bit Timer/Counter  
• -101 dBm sensitivity @ 250 kbps O-QPSK DSSS  
• -105 dBm sensitivity @ 250 kbps O-QPSK DSSS (modules  
with LNA)  
• 3 + 4 Compare/Capture/PWM channels  
• 32-bit Real Time Counter and Calendar  
• 16-bit Low Energy Timer for waveform generation  
• -95 dBm sensitivity @ 1Mbps 2GFSK  
• -101.6 dBm sensitivity @ 1Mbps 2GFSK (modules with  
LNA)  
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up  
from any Energy Mode  
Supported Modulation Format  
• Shaped OQPSK  
• 3×16-bit Pulse Counter with asynchronous operation  
• 2×Watchdog Timer with dedicated RC oscillator  
• 4×Universal Synchronous/Asynchronous Receiver/Trans-  
mitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)  
• 2-FSK / 4-FSK with fully configurable shaping  
Supported Protocols:  
Bluetooth® Low Energy (Bluetooth 5)  
Low Energy UART (LEUART)  
2×I2C interface with SMBus support and address recogni-  
tion in EM3 Stop  
• zigbee  
• Thread  
Support for Internet Security  
• General Purpose CRC  
• True Random Number Generator  
Wide Operating Range  
• 1.8 V to 3.8 V single power supply  
• -40 °C to 85 °C  
• Hardware Cryptographic Acceleration for AES 128/256,  
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC  
WxLxH: 12.9 x 17.8 x 2.3 mm  
silabs.com | Building a more connected world.  
Rev. 1.0 | 2  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Ordering Information  
2. Ordering Information  
Ordering Code  
Description  
Max TX  
Power  
Sensitivity Antenna  
(O-QPSK)  
Packaging Production Status  
MGM12P32F1024GA-V2 Multi-protocol Module +17 dBm -105 dBm  
MGM12P32F1024GA-V2R Multi-protocol Module +17 dBm -105 dBm  
MGM12P32F1024GE-V2 Multi-protocol Module +17 dBm -105 dBm  
MGM12P32F1024GE-V2R Multi-protocol Module +17 dBm -105 dBm  
MGM12P22F1024GA-V2 Multi-protocol Module +10 dBm -105 dBm  
MGM12P22F1024GA-V2R Multi-protocol Module +10 dBm -105 dBm  
MGM12P22F1024GE-V2 Multi-protocol Module +10 dBm -105 dBm  
MGM12P22F1024GE-V2R Multi-protocol Module +10 dBm -105 dBm  
MGM12P02F1024GA-V2 Multi-protocol Module +10 dBm -101 dBm  
MGM12P02F1024GA-V2R Multi-protocol Module +10 dBm -101 dBm  
MGM12P02F1024GE-V2 Multi-protocol Module +10 dBm -101 dBm  
MGM12P02F1024GE-V2R Multi-protocol Module +10 dBm -101 dBm  
Integrated chip an- Cut Reel  
tenna  
Full Production (certi-  
fied)  
(100 pcs)  
Integrated chip an- Reel  
tenna  
Full Production (certi-  
fied)  
(1000 pcs)  
External (U.FL)  
External (U.FL)  
Cut Reel  
(100 pcs)  
Reel  
Full Production (certi-  
fied)  
Full Production (certi-  
fied)  
(1000 pcs)  
Integrated chip an- Cut Reel  
Full Production (certi-  
fied)  
tenna  
(100 pcs)  
Integrated chip an- Reel  
Full Production (certi-  
fied)  
tenna  
(1000 pcs)  
External (U.FL)  
External (U.FL)  
Cut Reel  
(100 pcs)  
Reel  
Full Production (certi-  
fied)  
Full Production (certi-  
fied)  
(1000 pcs)  
Integrated chip an- Cut Reel  
Full Production (certi-  
fied)  
tenna  
(100 pcs)  
Integrated chip an- Reel  
Full Production (certi-  
fied)  
tenna  
(1000 pcs)  
External (U.FL)  
External (U.FL)  
Cut Reel  
(100 pcs)  
Reel  
Full Production (certi-  
fied)  
Full Production (certi-  
fied)  
(1000 pcs)  
SLWRB4304A  
MGM12P Radio  
Board3  
+17 dBm -105 dBm  
Integrated chip an- Single Unit Development Board  
tenna  
Note:  
1. IAR license required for zigbee and Thread software development.  
2. Bluetooth® Low Energy regulatory certification pending. Contact sales for availability and certification time lines.  
3. Requires Mesh Networking kit SLWSTK6000A or SLWSTK6000B  
silabs.com | Building a more connected world.  
Rev. 1.0 | 3  
 
 
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Radio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2.1 Antenna Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2.2 Packet and State Trace . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.3 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.1 Energy Management Unit (EMU) . . . . . . . . . . . . . . . . . . . . .10  
3.3.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4 General Purpose Input/Output (GPIO). . . . . . . . . . . . . . . . . . . . . .11  
3.5 Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.5.1 Clock Management Unit (CMU) . . . . . . . . . . . . . . . . . . . . . .11  
3.5.2 Internal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.6 Counters/Timers and PWM . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.1 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.2 Wide Timer/Counter (WTIMER) . . . . . . . . . . . . . . . . . . . . . .12  
3.6.3 Real Time Counter and Calendar (RTCC) . . . . . . . . . . . . . . . . . .12  
3.6.4 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . . . . . . . . .12  
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) . . . . . . . . . . . . . . . .12  
3.6.6 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.7 Watchdog Timer (WDOG). . . . . . . . . . . . . . . . . . . . . . . .12  
3.7 Communications and Other Digital Peripherals . . . . . . . . . . . . . . . . . . .13  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . . . . . . . . .13  
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . . . . . . . . .13  
2
3.7.3 Inter-Integrated Circuit Interface (I C) . . . . . . . . . . . . . . . . . . . .13  
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . .13  
3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . .13  
3.8 Security Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) . . . . . . . . . . . . . .13  
3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . . . . . . . . . .14  
3.8.3 True Random Number Generator (TRNG) . . . . . . . . . . . . . . . . . .14  
3.8.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . .14  
3.9 Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.1 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.2 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .14  
3.9.4 Capacitive Sense (CSEN). . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.5 Digital to Analog Current Converter (IDAC) . . . . . . . . . . . . . . . . . .15  
3.9.6 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . .15  
silabs.com | Building a more connected world.  
Rev. 1.0 | 4  
3.9.7 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . .15  
3.11 Core and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.11.1 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.11.2 Memory System Controller (MSC) . . . . . . . . . . . . . . . . . . . .15  
3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . .15  
3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.13 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . .19  
4.1.2 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . .20  
4.1.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1.4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.1.5 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.1.6 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . .25  
4.1.7 Frequency Synthesizer. . . . . . . . . . . . . . . . . . . . . . . . .25  
4.1.8 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . .25  
4.1.9 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.1.10 Flash Memory Characteristics . . . . . . . . . . . . . . . . . . . . . .32  
4.1.11 General-Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . .33  
4.1.12 Voltage Monitor (VMON). . . . . . . . . . . . . . . . . . . . . . . .34  
4.1.13 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . .35  
4.1.14 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . .37  
4.1.15 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . .40  
4.1.16 Current Digital to Analog Converter (IDAC) . . . . . . . . . . . . . . . . .43  
4.1.17 Capacitive Sense (CSEN) . . . . . . . . . . . . . . . . . . . . . . .45  
4.1.18 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . .47  
4.1.19 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . .50  
4.1.20 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . .50  
4.1.21 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
4.1.22 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 56  
5.1 Network Co-Processor (NCP) Application with UART Host . . . . . . . . . . . . . . .56  
5.2 Network Co-Processor (NCP) Application with SPI Host. . . . . . . . . . . . . . . .56  
5.3 SoC Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
6. Layout Guidelines  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.1 Module Placement and Application PCB Layout Guidelines . . . . . . . . . . . . . .58  
6.2 Effect of Plastic and Metal Materials . . . . . . . . . . . . . . . . . . . . . .59  
6.3 Locating the Module Close to Human Body . . . . . . . . . . . . . . . . . . . .59  
6.4 2D Radiation Pattern Plots . . . . . . . . . . . . . . . . . . . . . . . . .60  
7. Hardware Design Guidelines  
. . . . . . . . . . . . . . . . . . . . . . . .62  
silabs.com | Building a more connected world.  
Rev. 1.0 | 5  
7.1 Power Supply Requirements . . . . . . . . . . . . . . . . . . . . . . . . .62  
7.2 Reset Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
7.3 Debug and Firmware Updates . . . . . . . . . . . . . . . . . . . . . . . .62  
7.3.1 Programming and Debug Connections . . . . . . . . . . . . . . . . . . .62  
7.3.2 Packet Trace Interface (PTI) . . . . . . . . . . . . . . . . . . . . . . .62  
8. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.1 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
8.1.1 GPIO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
8.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . . .66  
8.3 Analog Port (APORT) Client Maps . . . . . . . . . . . . . . . . . . . . . . .77  
9. Package Specifications  
. . . . . . . . . . . . . . . . . . . . . . . . . .86  
9.1 MGM12P Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
9.2 MGM12P Module Footprint . . . . . . . . . . . . . . . . . . . . . . . . .87  
9.3 MGM12P Recommended PCB Land Pattern . . . . . . . . . . . . . . . . . . .88  
9.4 MGM12P Package Marking . . . . . . . . . . . . . . . . . . . . . . . . .89  
10. Tape and Reel Specifications . . . . . . . . . . . . . . . . . . . . . . . . 90  
10.1 Tape and Reel Specification . . . . . . . . . . . . . . . . . . . . . . . .90  
10.2 Reel Material and Dimensions . . . . . . . . . . . . . . . . . . . . . . . .90  
10.3 Module Orientation and Tap. . . . . . . . . . . . . . . . . . . . . . . . .91  
10.4 Carrier Tape and Cover Tape Information . . . . . . . . . . . . . . . . . . . .92  
11. Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.1 CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
11.2 FCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
11.3 ISEDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
12.1 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
12.2 Revision 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
silabs.com | Building a more connected world.  
Rev. 1.0 | 6  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3. System Overview  
3.1 Introduction  
This section provides a brief overview of the MGM12P module architecture including both MCU and RF sub-systems. A detailed func-  
tional description of the EFR32MG12 SoC used inside the module is available in the EFR32MG12 Mighty Gecko Datasheet and  
EFR32xG12 Wireless Gecko Reference Manual. A block diagram of the EFR32MG12 SoC is shown in the figure below.  
Radio Transceiver  
Port I/O Configuration  
Digital Peripherals  
IOVDD  
DEMOD  
IFADC  
AGC  
RFSENSE  
BALUN  
2.4 GHz RF  
LETIMER  
I
Port A  
Drivers  
PGA  
LNA  
PAn  
TIMER  
CRYOTIMER  
PCNT  
2G4RF_IOP  
2G4RF_ION  
PA  
Frequency  
Synthesizer  
Q
Port B  
Drivers  
PBn  
PCn  
PDn  
PFn  
To RF  
Frontend  
Circuits  
MOD  
RTC / RTCC  
USART  
Port  
Mapper  
Port C  
Drivers  
LEUART  
I2C  
Reset  
Management  
Unit  
ARM Cortex-M4 Core  
RESETn  
Port D  
Serial Wire  
and ETM  
Debug /  
1024 KB ISP Flash  
Program Memory  
CRYPTO  
CRC  
Drivers  
Debug Signals  
(shared w/GPIO)  
Brown Out /  
Power-On  
Reset  
A
H
B
A
P
B
256 KB RAM  
Memory Protection Unit  
Floating Point Unit  
LDMA Controller  
Programming  
Port F  
Drivers  
LESENSE  
Energy Management  
Analog Peripherals  
Port I  
Drivers  
PAVDD  
RFVDD  
IOVDD  
AVDD  
PIn  
IDAC  
Voltage  
Monitor  
Port J  
Drivers  
-
+
Watchdog  
Timer  
PJn  
VDAC  
DVDD  
bypass  
Op-Amp  
VDD  
Internal  
Reference  
Port K  
Drivers  
Clock Management  
PKn  
VREGVDD  
VREGSW  
DC-DC  
Converter  
Voltage  
Regulator  
ULFRCO  
AUXHFRCO  
LFRCO  
12-bit ADC  
DECOUPLE  
Temp  
Sense  
LFXTAL_P  
LFXTAL_N  
HFXTAL_P  
HFXTAL_N  
LFXO  
HFRCO  
HFXO  
Capacitive  
Sense  
+
-
Analog Comparator  
Figure 3.1. Detailed EFR32MG12 Block Diagram  
3.2 Radio  
The MGM12P modules feature a highly configurable radio transceiver that supports a wide range of wireless protocols including zigbee,  
Thread, and Bluetooth Low Energy.  
3.2.1 Antenna Interface  
The MGM12P module family includes options for either a high-performance, integrated chip-antenna (MGM12P-GA) or external anten-  
na (MGM12P-GE) via a U.FL connector. The table below includes performance specifications for the integrated chip antenna.  
Table 3.1. Antenna Efficiency and Peak Gain (MGM12P)  
Parameter  
Efficiency  
Peak gain  
With optimal layout Note  
-4 dB to -5 dB  
1.0 dBi  
Antenna efficiency, gain and radiation pattern are highly depend-  
ent on the application PCB layout and mechanical design. Refer  
to Chapter for PCB layout and antenna integration guidelines for  
optimal performance.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 7  
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.2.2 Packet and State Trace  
The MGM12P Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It  
features:  
• Non-intrusive trace of transmit data, receive data and state information  
• Data observability on a single-pin UART data output, or on a two-pin SPI data output  
• Configurable data output bitrate / baudrate  
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream  
3.2.3 Random Number Generator  
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.  
The data is suitable for use in cryptographic applications.  
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random num-  
ber generator algorithms such as Fortuna.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 8  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.3 Power  
The MGM12P has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a  
single external supply voltage is required, from which all internal voltages are created. An integrated DC-DC buck regulator is utilized to  
further reduce the current consumption.  
Figure 3.2. MGM12P Power Block for Modules (+10 dBm)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 9  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
Figure 3.3. MGM12P Power Block for Modules (+17 dBm)  
3.3.1 Energy Management Unit (EMU)  
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and  
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM  
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multi-  
ple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has  
fallen below a chosen threshold.  
3.3.2 DC-DC Converter  
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2,  
and EM3. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components.  
Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may  
also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally  
connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input  
supply voltage droops due to excessive output current transients.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 10  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.3.3 Power Domains  
The MGM12P has two peripheral power domains for operation in EM2 and lower. If all of the peripherals in a peripheral power domain  
are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current  
consumption of the device.  
Table 3.2. Peripheral Power Subdomains  
Peripheral Power Domain 1  
Peripheral Power Domain 2  
ACMP0  
ACMP1  
PCNT1  
PCNT2  
CSEN  
DAC0  
PCNT0  
ADC0  
LETIMER0  
LESENSE  
APORT  
LEUART0  
I2C0  
-
-
-
I2C1  
IDAC  
3.4 General Purpose Input/Output (GPIO)  
MGM12P has 25 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More  
advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The  
GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several  
GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The  
GPIO subsystem supports asynchronous external pin interrupts.  
3.5 Clocking  
3.5.1 Clock Management Unit (CMU)  
The Clock Management Unit controls oscillators and clocks in the MGM12P. Individual enabling and disabling of clocks to all peripheral  
modules is perfomed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility al-  
lows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and  
oscillators.  
3.5.2 Internal Oscillators  
The MGM12P fully integrates two crystal oscillators and four RC oscillators, listed below.  
• A 38.4MHz high frequency crystal oscillator (HFXO) provides a precise timing reference for the MCU and radio.  
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.  
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The  
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.  
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial  
Wire debug port with a wide frequency range.  
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crys-  
tal accuracy is not required.  
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-  
sumption in low energy modes.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 11  
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.6 Counters/Timers and PWM  
3.6.1 Timer/Counter (TIMER)  
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the  
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one  
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output  
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width  
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional  
dead-time insertion available in timer unit TIMER_0 only.  
3.6.2 Wide Timer/Counter (WTIMER)  
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM  
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to  
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a  
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed thresh-  
old value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by  
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.  
3.6.3 Real Time Counter and Calendar (RTCC)  
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a  
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscilla-  
tors with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving  
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy  
and convenient data storage in all energy modes.  
3.6.4 Low Energy Timer (LETIMER)  
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This  
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed  
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-  
forms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be con-  
figured to start counting on compare matches from the RTCC.  
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)  
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal  
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events  
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of inter-  
rupt periods, facilitating flexible ultra-low energy operation.  
3.6.6 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The  
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from  
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2  
Deep Sleep, and EM3 Stop.  
3.6.7 Watchdog Timer (WDOG)  
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed  
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can  
also monitor autonomous systems driven by PRS.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 12  
 
 
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.7 Communications and Other Digital Peripherals  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)  
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous  
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices  
supporting:  
• ISO7816 SmartCards  
• IrDA  
I2S  
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)  
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow  
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication  
possible with a minimum of software intervention and energy consumption.  
3.7.3 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and  
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10  
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The  
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated trans-  
fers. Automatic recognition of slave addresses is provided in active and low energy modes.  
3.7.4 Peripheral Reflex System (PRS)  
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.  
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer periph-  
erals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)  
can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.  
3.7.5 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configura-  
ble sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and  
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a  
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy  
budget.  
3.8 Security Features  
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)  
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The sup-  
ported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the  
needs of the application.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 13  
 
 
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.8.2 Crypto Accelerator (CRYPTO)  
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices sup-  
port AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and  
SHA-256).  
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.  
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.  
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data  
buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger  
signals for DMA read and write operations.  
3.8.3 True Random Number Generator (TRNG)  
The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with  
NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key genera-  
tion).  
3.8.4 Security Management Unit (SMU)  
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the  
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to  
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and  
can optionally generate an interrupt.  
3.9 Analog  
3.9.1 Analog Port (APORT)  
The Analog Port (APORT) is an analog interconnect matrix allowing access to analog modules on a flexible selection of pins. Each  
APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped  
by X/Y pairs.  
3.9.2 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high-  
er. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption  
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The  
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the  
programmable threshold.  
3.9.3 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output  
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.  
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of  
sources, including pins configurable as either single-ended or differential.  
3.9.4 Capacitive Sense (CSEN)  
The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches  
and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse condi-  
tions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through  
multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined ca-  
pacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter,  
as well as digital threshold comparators to reduce software overhead.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 14  
 
 
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.9.5 Digital to Analog Current Converter (IDAC)  
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin  
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μA and 64 μA with  
several ranges consisting of various step sizes.  
3.9.6 Digital to Analog Converter (VDAC)  
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500  
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per single-  
ended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications  
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low  
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any  
CPU intervention. The VDAC is available in all energy modes down to and including EM3.  
3.9.7 Operational Amplifiers  
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas. With  
flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins  
are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in  
conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with  
standalone opamps because they are integrated on-chip.  
3.10 Reset Management Unit (RMU)  
The RMU is responsible for handling reset of the MGM12P. A wide range of reset sources are available, including several power supply  
monitors, pin reset, software controlled reset, core lockup reset and watchdog reset.  
3.11 Core and Memory  
3.11.1 Processor Core  
The ARM Cortex-M4F processor includes a 32-bit RISC processor integrating the following features and tasks in the system:  
• ARM Cortex-M4F RISC processor achieving 1.25 Dhrystone MIPS/MHz  
• Memory Protection Unit (MPU) supporting up to 8 memory segments  
• 1024 KB flash program memory  
• 256 KB RAM data memory  
• Configuration and event handling of all modules  
• 2-pin Serial-Wire debug interface  
3.11.2 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable  
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code  
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a  
read-only page in the information block containing system and device calibration data. Read and write operations are supported in en-  
ergy modes EM0 Active and EM1 Sleep.  
3.11.3 Linked Direct Memory Access Controller (LDMA)  
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This  
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-  
phisticated operations to be implemented.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 15  
 
 
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.12 Memory Map  
The MGM12P memory map is shown in the figures below.  
Figure 3.4. MGM12P Memory Map — Core Peripherals and Code Space  
silabs.com | Building a more connected world.  
Rev. 1.0 | 16  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
Figure 3.5. MGM12P Memory Map — Peripherals  
silabs.com | Building a more connected world.  
Rev. 1.0 | 17  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
System Overview  
3.13 Configuration Summary  
The features of the MGM12P are a subset of the feature set described in the device reference manual. The table below describes de-  
vice specific implementation of the features. Remaining modules support full configuration.  
Table 3.3. Configuration Summary  
Module  
USART0  
USART1  
Configuration  
Pin Connections  
IrDA SmartCard  
US0_TX, US0_RX, US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
IrDA I2S SmartCard  
IrDA SmartCard  
USART2  
USART3  
US2_TX, US2_RX, US2_CLK, US2_CS  
US3_TX, US3_RX, US3_CLK, US3_CS  
IrDA I2S SmartCard  
TIMER0  
with DTI  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[3:0]  
TIMER1  
-
WTIMER0  
WTIMER1  
with DTI  
-
WTIM0_CC[2:0], WTIM0_CDTI[2:0]  
WTIM1_CC[3:0]  
silabs.com | Building a more connected world.  
Rev. 1.0 | 18  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
4.1 Electrical Characteristics  
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:  
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.  
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-  
er-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.  
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,  
unless stated otherwise.  
Refer to Figure 3.2 MGM12P Power Block for Modules (+10 dBm) on page 9 and Figure 3.3 MGM12P Power Block for Modules (+17  
dBm) on page 10 to see the relation between the modules external VDD pin and internal voltage supplies. The module has only one  
external power supply input (VDD).  
Refer to 4.1.2 General Operating Conditions for more details about operational supply and temperature limits.  
4.1.1 Absolute Maximum Ratings  
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of  
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure  
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and relia-  
bility data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Symbol  
TSTG  
Test Condition  
Min  
-40  
-0.3  
Typ  
Max  
85  
Unit  
°C  
Storage temperature range  
Voltage on any supply pin  
VDDMAX  
VDDRAMPMAX  
3.8  
1
V
Voltage ramp rate on any  
supply pin  
V / μs  
DC Voltage on any over-volt- VDIGPIN  
age tolerant GPIO pin1  
-0.3  
Min of 5.25  
and IOVDD  
+2  
V
-0.3  
IOVDD+0.3  
V
Input RF level  
PRFMAX2G4  
10  
50  
dBm  
mA  
mA  
mA  
mA  
Current per I/O pin  
IIOMAX  
Sink  
Source  
Sink  
50  
Current for all I/O pins  
IIOALLMAX  
200  
200  
Source  
Note:  
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 19  
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.2 General Operating Conditions  
Table 4.2. General Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Operating Ambient tempera- TA  
ture range  
-G temperature grade  
-40  
25  
85  
°C  
VDD supply voltage 1  
VVDD  
DCDC in regulation  
2.4  
1.8  
3.3  
3.3  
3.8  
3.8  
40  
V
DCDC in bypass 50mA load  
FWAIT = 1, VSCALE2  
FWAIT = 0, VSCALE0  
V
Core Clock Frequency  
fCORE  
MHz  
MHz  
20  
Note:  
1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for  
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max  
.
4.1.3 DC-DC Converter  
Table 4.3. DC-DC Converter  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Input voltage range  
VDCDC_I  
Bypass mode, IDCDC_LOAD = 50  
mA  
1.8  
VVREGVDD_  
V
MAX  
Low noise (LN) mode, 1.8 V out-  
put, IDCDC_LOAD = 100 mA, or  
Low power (LP) mode, 1.8 V out-  
put, IDCDC_LOAD = 10 mA  
2.4  
VVREGVDD_  
V
MAX  
Low noise (LN) mode, 1.8 V out-  
put, IDCDC_LOAD = 200 mA  
2.6  
1.8  
VVREGVDD_  
V
MAX  
Output voltage programma- VDCDC_O  
ble range1  
VVREGVDD  
V
Max load current  
ILOAD_MAX  
Low noise (LN) mode, Medium  
Drive2  
100  
50  
mA  
mA  
μA  
mA  
Low noise (LN) mode, Light  
Drive2  
Low power (LP) mode,  
LPCMPBIASEMxx3 = 0  
75  
Low power (LP) mode,  
LPCMPBIASEMxx3 = 3  
10  
Note:  
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVDD  
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medi-  
um Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.  
3. In EMU_DCDCMISCCTRL register  
silabs.com | Building a more connected world.  
Rev. 1.0 | 20  
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.4 Current Consumption  
4.1.4.1 Current Consumption 3.3 V using DC-DC Converter  
Unless otherwise indicated, typical conditions are: VDD = 3.3 V, DC-DC enabled. TOP = 25 °C. Minimum and maximum values in this  
table represent the worst conditions across supply voltage and process variation at TOP = 25 °C.  
Table 4.4. Current Consumption 3.3 V using DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE_DCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
DCM mode2.  
38.4 MHz crystal, CPU running  
while loop from flash4  
88  
μA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
70  
70  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
85  
26 MHz HFRCO, CPU running  
while loop from flash  
77  
1 MHz HFRCO, CPU running  
while loop from flash  
636  
98  
Current consumption in EM0 IACTIVE_CCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
CCM mode1.  
38.4 MHz crystal, CPU running  
while loop from flash4  
38 MHz HFRCO, CPU running  
Prime from flash  
81  
82  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
95  
26 MHz HFRCO, CPU running  
while loop from flash  
95  
1 MHz HFRCO, CPU running  
while loop from flash  
1155  
101  
1155  
Current consumption in EM0 IACTIVE_CCM_VS 19 MHz HFRCO, CPU running  
mode with all peripherals dis-  
abled and voltage scaling  
enabled, DCDC in Low  
Noise CCM mode1.  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
38.4 MHz crystal4  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1_DCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
59  
μA/MHz  
41  
48  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
DCM mode2.  
610  
52  
Current consumption in EM1 IEM1_DCM_VS  
mode with all peripherals dis-  
abled and voltage scaling  
587  
enabled, DCDC in Low  
Noise DCM mode2.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 21  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, with votage scaling  
Full 256 kB RAM retention and  
RTCC running from LFXO  
2.62  
μA  
enabled, DCDC in LP mode.  
3
Full 256 kB RAM retention and  
RTCC running from LFRCO  
2.72  
2.02  
μA  
μA  
16 kB (1 bank) RAM retention and  
RTCC running from LFRCO5  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled.  
Full 256 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
2.33  
μA  
Current consumption in  
EM4H mode, with voltage  
scaling enabled.  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
1.21  
0.91  
μA  
μA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
128 byte RAM retention, no RTCC  
No RAM retention, no RTCC  
0.91  
0.58  
μA  
μA  
Current consumption in  
EM4S mode  
IEM4S  
Note:  
1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.  
2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.  
3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-  
SEL=1, ANASW=DVDD.  
4. CMU_HFXOCTRL_LOWPOWER=0.  
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
silabs.com | Building a more connected world.  
Rev. 1.0 | 22  
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.4.2 Current Consumption Using Radio 3.3 V with DC-DC  
Unless otherwise indicated, typical conditions are: VDD = 3.3 V, DC-DC enabled. TOP = 25 °C. Minimum and maximum values in this  
table represent the worst conditions across supply voltage and process variation at TOP = 25 °C.  
Table 4.5. Current Consumption Using Radio 3.3 V with DC-DC  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, active packet  
reception (MCU in EM1 @  
38.4 MHz, peripheral clocks  
disabled).  
IRX_ACTIVE  
1 Mbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
10.3  
mA  
2 Mbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
11.5  
10.8  
11.6  
12.6  
12.3  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
802.15.4 receiving frame, F = 2.4  
GHz, Radio clock prescaled by 3  
LNA in bypass.  
Current consumption in re-  
ceive mode, listening for  
packet (MCU in EM1 @ 38.4  
MHz, peripheral clocks disa-  
bled)  
IRX_LISTEN  
1 Mbit/s, 2GFSK, F = 2.4 GHz, No  
radio clock prescaling  
2 Mbit/s, 2GFSK, F = 2.4 GHz, No  
radio clock prescaling  
802.15.4, F = 2.4 GHz, No radio  
clock prescaling  
LNA in bypass.  
Current consumption in  
transmit mode (MCU in EM1  
@ 38.4 MHz, peripheral  
clocks disabled)  
ITX  
F = 2.4 GHz, CW, 0 dBm output  
power, Radio clock prescaled by 1  
F = 2.4 GHz, CW, 8 dBm output  
power  
28  
LNA in bypass.  
F = 2.4 GHz, CW, 10.5 dBm out-  
put power  
37.4  
86  
F = 2.4 GHz, CW, 16.5 dBm out-  
put power, PAVDD connected di-  
rectly to VDD  
F = 2.4 GHz, CW, 19.5 dBm out-  
put power, PAVDD connected di-  
rectly to VDD  
131  
mA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 23  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.5 Wake Up Times  
Table 4.6. Wake Up Times  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Wakeup time from EM1  
tEM1_WU  
3
AHB  
Clocks  
Wake up from EM2  
Wake up from EM3  
tEM2_WU  
Code execution from flash  
Code execution from RAM  
Code execution from flash  
Code execution from RAM  
Executing from flash  
10.1  
3.2  
μs  
μs  
μs  
μs  
μs  
tEM3_WU  
10.1  
3.2  
Wake up from EM4H1  
Wake up from EM4S1  
tEM4H_WU  
tEM4S_WU  
tRESET  
80  
Executing from flash  
291  
μs  
Time from release of reset  
source to first instruction ex-  
ectution.  
Soft Pin Reset released  
Any other reset released  
43  
μs  
μs  
350  
Power Mode Scaling time  
tSCALE  
VSCALE0 to VSCALE2, HFCLK =  
19 MHz2, 4  
31.8  
4.3  
μs  
VSCALE2 to VSCALE0, HFCLK =  
19 MHz2, 3  
Note:  
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.  
2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition,  
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA  
(with a 2.7 μF capacitor).  
3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 μs + 29 HFCLKs.  
4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 μs + 28 HFCLKs.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 24  
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.6 Brown Out Detector (BOD)  
Table 4.7. Brown Out Detector (BOD)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
1.62  
Unit  
V
DVDD BOD threshold  
VDVDDBOD  
DVDD rising  
DVDD falling (EM0/EM1)  
DVDD falling (EM2/EM3)  
1.35  
1.3  
V
V
DVDD BOD hysteresis  
DVDD BOD response time  
AVDD BOD threshold  
VDVDDBOD_HYST  
18  
2.4  
mV  
μs  
V
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate  
VAVDDBOD  
AVDD rising  
1.8  
AVDD falling (EM0/EM1)  
AVDD falling (EM2/EM3)  
1.62  
1.53  
V
V
AVDD BOD hysteresis  
AVDD BOD response time  
EM4 BOD threshold  
VAVDDBOD_HYST  
20  
2.4  
mV  
μs  
V
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate  
VEM4DBOD  
AVDD rising  
AVDD falling  
1.7  
1.45  
V
EM4 BOD hysteresis  
VEM4BOD_HYST  
25  
300  
mV  
μs  
EM4 BOD response time  
tEM4BOD_DELAY Supply drops at 0.1V/μs rate  
4.1.7 Frequency Synthesizer  
Table 4.8. Frequency Synthesizer  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RF Synthesizer Frequency  
range  
fRANGE  
2400 - 2483.5 MHz  
2400  
2483.5  
MHz  
LO tuning frequency resolu- fRES  
tion with 38.4 MHz crystal  
2400 - 2483.5 MHz  
2400 - 2483.5 MHz  
2400 - 2483.5 MHz  
73  
73  
Hz  
Hz  
Frequency deviation resolu- dfRES  
tion with 38.4 MHz crystal  
Maximum frequency devia-  
tion with 38.4 MHz crystal  
dfMAX  
1677  
kHz  
4.1.8 2.4 GHz RF Transceiver Characteristics  
silabs.com | Building a more connected world.  
Rev. 1.0 | 25  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.8.1 RF Transmitter General Characteristics for 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TOP = 25 °C, VDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is  
filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.9. RF Transmitter General Characteristics for 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum TX power1  
POUTMAX  
17 dBm-rated part numbers.  
PAVDD connected directly to  
VDD2  
17  
dBm  
10 dBm-rated part numbers  
CW  
10  
-30  
1
dBm  
dBm  
dB  
Minimum active TX Power  
Output power step size  
POUTMIN  
POUTSTEP  
-5 dBm< Output power < 0 dBm  
0 dBm < output power <  
POUTMAX  
0.5  
dB  
Output power variation vs  
supply at POUTMAX  
POUTVAR_V  
1.8 V < VVREGVDD < 3.8 V,  
PAVDD connected directly to  
VDD, for output power > 10 dBm.  
5.7  
dB  
1.8 V < VVREGVDD < 3.8 V using  
DC-DC converter  
3.4  
1.5  
1.5  
0.4  
dB  
dB  
Output power variation vs  
temperature at POUTMAX  
POUTVAR_T  
From -40 to +85 °C, PAVDD con-  
nected to DC-DC output  
From -40 to +85 °C, PAVDD con-  
nected to VDD  
dB  
Output power variation vs RF POUTVAR_F  
frequency at POUTMAX  
Over RF tuning frequency range  
dB  
RF tuning frequency range  
FRANGE  
2400  
2483.5  
MHz  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 26  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.8.2 RF Receiver General Characteristics for 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TOP = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4 MHz. RF center  
frequency 2.45 GHz.  
Table 4.10. RF Receiver General Characteristics for 2.4 GHz Band  
Parameter  
Symbol  
FRANGE  
SPURRX  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
dBm  
dBm  
dBm  
RF tuning frequency range  
Receive mode maximum  
spurious emission  
30 MHz to 1 GHz  
1 GHz to 12 GHz  
-57  
-47  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
216 MHz to 960 MHz, Conducted  
Measurement  
-55.2  
Above 960 MHz, Conducted  
Measurement  
-47.2  
dBm  
4.1.8.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4MHz. RF center  
frequency 2.45 GHz.  
Table 4.11. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-95  
dBm  
Signal is reference signal.1 Using  
DC-DC converter.  
-101.6  
dBm  
Modules with LNA.  
Note:  
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 27  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.8.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4MHz. RF center  
frequency 2.45 GHz.1  
Table 4.12. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-91  
dBm  
Signal is reference signal.1 Using  
DC-DC converter.  
-97  
dBm  
Modules with LNA.  
Note:  
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
4.1.8.5 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TOP = 25 °C, VDD = 3.3 V, DC-DC enabled. Crystal frequency=38.4 MHz. RF center  
frequency 2.45 GHz.  
Table 4.13. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Sensitivity, 1% PER  
SENS  
Signal is reference signal. Packet  
length is 20 octets. Using DC-DC  
converter.  
-101  
dBm  
Signal is reference signal. Packet  
length is 20 octets. Using DC-DC  
converter.  
-105  
dBm  
Modules with LNA.  
Note:  
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksym-  
bols/s.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 28  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.9 Current Consumption  
4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)  
Table 4.14. Low-Frequency Crystal Oscillator (LFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
kHz  
ppm  
Crystal Frequency  
Crystal Frequency Tolerance  
fLFXO  
32.768  
-100  
+100  
4.1.9.2 High-Frequency Crystal Oscillator (HFXO)  
Table 4.15. High-Frequency Crystal Oscillator (HFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
38.4  
Max  
Unit  
MHz  
ppm  
Crystal Frequency  
fHFXO  
Frequency Tolerance for the FTHFXO  
crystal  
-40  
40  
4.1.9.3 Low-Frequency RC Oscillator (LFRCO)  
Table 4.16. Low-Frequency RC Oscillator (LFRCO)  
Parameter  
Symbol  
Test Condition  
ENVREF2 = 1  
ENVREF2 = 0  
Min  
Typ  
Max  
Unit  
Oscillation frequency  
fLFRCO  
31.7  
32.768  
33.3  
kHz  
31.8  
32.768  
500  
33.2  
kHz  
μs  
Startup time  
tLFRCO  
ILFRCO  
Current consumption 1  
ENVREF = 1 in  
CMU_LFRCOCTRL  
370  
nA  
ENVREF = 0 in  
520  
nA  
CMU_LFRCOCTRL  
Note:  
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.  
2. in CMU_LFRCOCTRL register.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 29  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.9.4 High-Freqency RC Oscillator (HFRCO)  
Table 4.17. High-Freqency RC Oscillator (HFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Frequency Accuracy  
fHFRCO_ACC  
At production calibrated frequen-  
cies, across supply voltage and  
temperature  
-2.5  
2.5  
%
Start-up time  
tHFRCO  
fHFRCO ≥ 19 MHz  
4 < fHFRCO < 19 MHz  
fHFRCO ≤ 4 MHz  
fHFRCO = 38 MHz  
fHFRCO = 32 MHz  
fHFRCO = 26 MHz  
fHFRCO = 19 MHz  
fHFRCO = 16 MHz  
fHFRCO = 13 MHz  
fHFRCO = 7 MHz  
fHFRCO = 4 MHz  
fHFRCO = 2 MHz  
fHFRCO = 1 MHz  
300  
1
ns  
μs  
2.5  
244  
204  
173  
143  
123  
110  
85  
μs  
Current consumption on all  
supplies  
IHFRCO  
265  
222  
188  
156  
136  
124  
94  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
32  
37  
28  
34  
26  
31  
Coarse trim step size (% of  
period)  
SSHFRCO_COARS  
0.8  
E
Fine trim step size (% of pe- SSHFRCO_FINE  
riod)  
0.1  
0.2  
%
Period jitter  
PJHFRCO  
% RMS  
silabs.com | Building a more connected world.  
Rev. 1.0 | 30  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.9.5 Auxiliary High-Freqency RC Oscillator (AUXHFRCO)  
Table 4.18. Auxiliary High-Freqency RC Oscillator (AUXHFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
-3  
Typ  
Max  
Unit  
Frequency Accuracy  
fAUXHFRCO_ACC At production calibrated frequen-  
3
%
cies, across supply voltage and  
temperature  
Start-up time  
tAUXHFRCO  
fAUXHFRCO ≥ 19 MHz  
4 < fAUXHFRCO < 19 MHz  
fAUXHFRCO ≤ 4 MHz  
fAUXHFRCO = 38 MHz  
fAUXHFRCO = 32 MHz  
fAUXHFRCO = 26 MHz  
fAUXHFRCO = 19 MHz  
fAUXHFRCO = 16 MHz  
fAUXHFRCO = 13 MHz  
fAUXHFRCO = 7 MHz  
fAUXHFRCO = 4 MHz  
fAUXHFRCO = 2 MHz  
fAUXHFRCO = 1 MHz  
400  
1.4  
2.5  
193  
157  
135  
108  
100  
77  
ns  
μs  
μs  
Current consumption on all  
supplies  
IAUXHFRCO  
213  
175  
151  
122  
113  
88  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
53  
63  
29  
36  
28  
34  
27  
31  
Coarse trim step size (% of  
period)  
SSAUXHFR-  
0.8  
CO_COARSE  
Fine trim step size (% of pe- SSAUXHFR-  
0.1  
0.2  
%
riod)  
CO_FINE  
Period jitter  
PJAUXHFRCO  
% RMS  
4.1.9.6 Ultra-low Frequency RC Oscillator (ULFRCO)  
Table 4.19. Ultra-low Frequency RC Oscillator (ULFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Oscillation frequency  
fULFRCO  
0.95  
1
1.07  
kHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 31  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.10 Flash Memory Characteristics3  
Table 4.20. Flash Memory Characteristics3  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Flash erase cycles before  
failure  
ECFLASH  
10000  
cycles  
Flash data retention  
RETFLASH  
tW_PROG  
10  
20  
years  
μs  
Word (32-bit) programming  
time  
Burst write, 128 words, average  
time per word  
24.4  
30  
Single word  
60  
20  
20  
68.4  
26.4  
26.5  
80  
35  
35  
Page erase time  
Mass erase time1  
Device erase time2  
Page erase current4  
Write current4  
tPERASE  
tMERASE  
tDERASE  
IERASE  
ms  
ms  
ms  
mA  
mA  
V
69  
100  
1.6  
3.8  
3.6  
IWRITE  
Supply voltage during flash  
erase and write  
VFLASH  
1.62  
Note:  
1. Mass erase is issued by the CPU and erases all flash  
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock  
Word (ULW)  
3. Flash data retention information is published in the Quarterly Quality and Reliability Report.  
4. Measured at 25 °C  
silabs.com | Building a more connected world.  
Rev. 1.0 | 32  
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.11 General-Purpose I/O (GPIO)  
Table 4.21. General-Purpose I/O (GPIO)  
Parameter  
Symbol  
Test Condition  
GPIO pins  
Min  
Typ  
Max  
IOVDD*0.3  
Unit  
V
Input low voltage  
Input high voltage  
VIL  
VIH  
GPIO pins  
IOVDD*0.7  
IOVDD*0.8  
V
Output high voltage relative VOH  
to IOVDD  
Sourcing 3 mA, IOVDD ≥ 3 V,  
V
DRIVESTRENGTH1 = WEAK  
Sourcing 1.2 mA, IOVDD ≥ 1.62  
V,  
IOVDD*0.6  
V
DRIVESTRENGTH1 = WEAK  
Sourcing 20 mA, IOVDD ≥ 3 V,  
IOVDD*0.8  
0.1  
V
V
DRIVESTRENGTH1 = STRONG  
Sourcing 8 mA, IOVDD ≥ 1.62 V,  
IOVDD*0.6  
DRIVESTRENGTH1 = STRONG  
Sinking 3 mA, IOVDD ≥ 3 V,  
Output low voltage relative to VOL  
IOVDD  
IOVDD*0.2  
IOVDD*0.4  
IOVDD*0.2  
IOVDD*0.4  
30  
V
DRIVESTRENGTH1 = WEAK  
Sinking 1.2 mA, IOVDD ≥ 1.62 V,  
V
DRIVESTRENGTH1 = WEAK  
Sinking 20 mA, IOVDD ≥ 3 V,  
V
DRIVESTRENGTH1 = STRONG  
Sinking 8 mA, IOVDD ≥ 1.62 V,  
V
DRIVESTRENGTH1 = STRONG  
Input leakage current  
IIOLEAK  
All GPIO except LFXO pins, GPIO  
≤ IOVDD  
nA  
LFXO Pins, GPIO ≤ IOVDD  
0.1  
3.3  
50  
15  
nA  
μA  
Input leakage current on  
I5VTOLLEAK  
IOVDD < GPIO ≤ IOVDD + 2 V  
5VTOL pads above IOVDD  
I/O pin pull-up/pull-down re- RPUD  
sistor  
30  
15  
40  
25  
65  
45  
kΩ  
ns  
Pulse width of pulses re-  
moved by the glitch suppres-  
sion filter  
tIOGLITCH  
Output fall time, From 70%  
to 30% of VIO  
tIOOF  
CL = 50 pF,  
1.8  
4.5  
ns  
ns  
DRIVESTRENGTH1 = STRONG,  
SLEWRATE1 = 0x6  
CL = 50 pF,  
DRIVESTRENGTH1 = WEAK,  
SLEWRATE1 = 0x6  
silabs.com | Building a more connected world.  
Rev. 1.0 | 33  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output rise time, From 30% tIOOR  
to 70% of VIO  
CL = 50 pF,  
2.2  
ns  
DRIVESTRENGTH1 = STRONG,  
SLEWRATE = 0x61  
CL = 50 pF,  
7.4  
ns  
DRIVESTRENGTH1 = WEAK,  
SLEWRATE1 = 0x6  
Note:  
1. In GPIO_Pn_CTRL register  
4.1.12 Voltage Monitor (VMON)  
Table 4.22. Voltage Monitor (VMON)  
Test Condition  
Parameter  
Symbol  
IVMON  
Min  
Typ  
Max  
Unit  
Supply Current (including  
I_SENSE)  
In EM0 or EM1, 1 supply moni-  
tored  
6.3  
10  
μA  
In EM0 or EM1, 4 supplies moni-  
tored  
12.5  
62  
17  
μA  
nA  
nA  
nA  
nA  
In EM2, EM3 or EM4, 1 supply  
monitored and above threshol  
In EM2, EM3 or EM4, 1 supply  
monitored and below threshold  
62  
In EM2, EM3 or EM4, 4 supplies  
monitored and all above threshold  
99  
In EM2, EM3 or EM4, 4 supplies  
monitored and all below threshold  
99  
Loading of Monitored Supply ISENSE  
In EM0 or EM1  
2
2
3.4  
μA  
nA  
V
In EM2, EM3 or EM4  
Threshold range  
VVMON_RANGE  
1.62  
Threshold step size  
NVMON_STESP  
Coarse  
200  
20  
460  
26  
mV  
mV  
ns  
Fine  
Response time  
Hysteresis  
tVMON_RES  
Supply drops at 1V/μs rate  
VVMON_HYST  
mV  
silabs.com | Building a more connected world.  
Rev. 1.0 | 34  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.13 Analog to Digital Converter (ADC)  
Table 4.23. Analog to Digital Converter (ADC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
12  
Unit  
Bits  
V
Resolution  
VRESOLUTION  
VADCIN  
6
Input voltage range  
Single ended  
Differential  
VFS  
-VFS/2  
1
VFS/2  
VAVDD  
V
Input range of external refer- VADCREFIN_P  
ence voltage, single ended  
and differential  
V
Power supply rejection2  
PSRRADC  
At DC  
At DC  
80  
80  
dB  
dB  
Analog input common mode CMRRADC  
rejection ratio  
Current from all supplies, us- IADC_CONTI-  
1 Msps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 3  
270  
125  
80  
315  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
ing internal reference buffer.  
NOUS_LP  
Continous operation. WAR-  
MUPMODE4 = KEEPADC-  
WARM  
250 ksps / 4 MHz ADCCLK, BIA-  
SPROG = 6, GPBIASACC = 1 3  
62.5 ksps / 1 MHz ADCCLK, BIA-  
SPROG = 15, GPBIASACC = 1 3  
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIA-  
45  
SPROG = 0, GPBIASACC = 1 3  
ing internal reference buffer.  
Duty-cycled operation. WAR-  
MUPMODE4 = NORMAL  
5 ksps / 16 MHz ADCCLK BIA-  
SPROG = 0, GPBIASACC = 1 3  
8
Current from all supplies, us- IADC_STAND-  
125 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 3  
105  
70  
ing internal reference buffer.  
BY_LP  
Duty-cycled operation.  
35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 3  
AWARMUPMODE4 = KEEP-  
INSTANDBY or KEEPIN-  
SLOWACC  
Current from all supplies, us- IADC_CONTI-  
1 Msps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
325  
175  
125  
85  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
ing internal reference buffer.  
NOUS_HP  
Continous operation. WAR-  
MUPMODE4 = KEEPADC-  
WARM  
250 ksps / 4 MHz ADCCLK, BIA-  
SPROG = 6, GPBIASACC = 0 3  
62.5 ksps / 1 MHz ADCCLK, BIA-  
SPROG = 15, GPBIASACC = 0 3  
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
ing internal reference buffer.  
Duty-cycled operation. WAR-  
MUPMODE4 = NORMAL  
5 ksps / 16 MHz ADCCLK BIA-  
SPROG = 0, GPBIASACC = 0 3  
16  
Current from all supplies, us- IADC_STAND-  
125 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
160  
125  
ing internal reference buffer.  
BY_HP  
Duty-cycled operation.  
35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
AWARMUPMODE4 = KEEP-  
INSTANDBY or KEEPIN-  
SLOWACC  
Current from HFPERCLK  
IADC_CLK  
HFPERCLK = 16 MHz  
160  
μA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 35  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
fADCCLK  
Test Condition  
Min  
Typ  
7
Max  
16  
1
Unit  
MHz  
ADC clock frequency  
Throughput rate  
fADCRATE  
tADCCONV  
Msps  
cycles  
cycles  
cycles  
μs  
Conversion time1  
6 bit  
8 bit  
12 bit  
5
9
13  
WARMUPMODE4 = NORMAL  
Startup time of reference  
generator and ADC core  
tADCSTART  
WARMUPMODE4 = KEEPIN-  
STANDBY  
58  
67  
2
μs  
μs  
dB  
WARMUPMODE4 = KEEPINSLO-  
WACC  
1
Internal reference6, differential  
measurement  
SNDR at 1Msps and fIN  
10kHz  
=
SNDRADC  
External reference5, differential  
measurement  
68  
dB  
Spurious-free dynamic range SFDRADC  
(SFDR)  
1 MSamples/s, 10 kHz full-scale  
sine wave  
-1  
-6  
75  
2
dB  
Differential non-linearity  
(DNL)  
DNLADC  
12 bit resolution, no missing co-  
des  
LSB  
LSB  
Integral non-linearity (INL),  
End point method  
INLADC  
12 bit resolution  
6
Offset error  
VADCOFFSETERR  
VADCGAIN  
-3  
0
3
LSB  
%
Gain error in ADC  
Using internal reference  
Using external reference  
-0.2  
-1  
3.5  
%
Temperature sensor slope  
VTS_SLOPE  
-1.84  
mV/°C  
Note:  
1. Derived from ADCCLK  
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL  
3. In ADCn_BIASPROG register  
4. In ADCn_CNTL register  
5. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or  
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential  
input range with this configuration is ±1.25 V.  
6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The  
differential input range with this configuration is ±1.25 V. Typical value is characterized using full-scale sine wave input. Minimum  
value is production-tested using sine wave input at 1.5 dB lower than full scale.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 36  
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.14 Analog Comparator (ACMP)  
Table 4.24. Analog Comparator (ACMP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range  
VACMPIN  
ACMPVDD =  
ACMPn_CTRL_PWRSEL 1  
VACMPVDD  
V
BIASPROG4 ≤ 0x10 or FULL-  
BIAS4 = 0  
Supply voltage  
VACMPVDD  
1.8  
2.1  
VVREGVDD_  
V
V
MAX  
0x10 < BIASPROG4 ≤ 0x20 and  
FULLBIAS4 = 1  
VVREGVDD_  
MAX  
BIASPROG4 = 1, FULLBIAS4 = 0  
Active current not including  
voltage reference2  
IACMP  
50  
nA  
nA  
BIASPROG4 = 0x10, FULLBIAS4  
= 0  
306  
BIASPROG4 = 0x02, FULLBIAS4  
= 1  
6.5  
75  
50  
92  
μA  
μA  
nA  
BIASPROG4 = 0x20, FULLBIAS4  
= 1  
Current consumption of inter- IACMPREF  
nal voltage reference2  
VLP selected as input using 2.5 V  
Reference / 4 (0.625 V)  
VLP selected as input using VDD  
20  
nA  
μA  
VBDIV selected as input using  
1.25 V reference / 1  
4.1  
VADIV selected as input using  
VDD/1  
2.4  
μA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 37  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
HYSTSEL5 = HYST0  
HYSTSEL5 = HYST1  
HYSTSEL5 = HYST2  
HYSTSEL5 = HYST3  
HYSTSEL5 = HYST4  
HYSTSEL5 = HYST5  
HYSTSEL5 = HYST6  
HYSTSEL5 = HYST7  
HYSTSEL5 = HYST8  
HYSTSEL5 = HYST9  
HYSTSEL5 = HYST10  
HYSTSEL5 = HYST11  
HYSTSEL5 = HYST12  
HYSTSEL5 = HYST13  
HYSTSEL5 = HYST14  
HYSTSEL5 = HYST15  
BIASPROG4 = 1, FULLBIAS4 = 0  
Hysteresis (VCM = 1.25 V,  
BIASPROG4 = 0x10, FULL-  
BIAS4 = 1)  
VACMPHYST  
-3  
3
mV  
5
12  
18  
33  
27  
50  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
μs  
17  
46  
65  
23  
57  
82  
26  
68  
98  
30  
79  
130  
150  
3
34  
90  
-3  
0
-27  
-50  
-65  
-82  
-98  
-130  
-150  
-18  
-33  
-45  
-57  
-67  
-78  
-88  
30  
-5  
-12  
-17  
-23  
-26  
-30  
-34  
Comparator delay3  
tACMPDELAY  
BIASPROG4 = 0x10, FULLBIAS4  
= 0  
3.7  
μs  
BIASPROG4 = 0x02, FULLBIAS4  
= 1  
360  
35  
35  
ns  
ns  
BIASPROG4 = 0x20, FULLBIAS4  
= 1  
BIASPROG4 =0x10, FULLBIAS4  
= 1  
Offset voltage  
VACMPOFFSET  
-35  
mV  
Reference Voltage  
VACMPREF  
Internal 1.25 V reference  
Internal 2.5 V reference  
1
2
1.25  
2.5  
inf  
1.47  
2.8  
V
V
CSRESSEL6 = 0  
CSRESSEL6 = 1  
CSRESSEL6 = 2  
CSRESSEL6 = 3  
CSRESSEL6 = 4  
CSRESSEL6 = 5  
CSRESSEL6 = 6  
CSRESSEL6 = 7  
Capacitive sense internal re- RCSRES  
sistance  
kΩ  
15  
27  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
39  
51  
100  
162  
235  
silabs.com | Building a more connected world.  
Rev. 1.0 | 38  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD  
2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP  
IACMPREF  
+
3. ± 100 mV differential drive  
4. In ACMPn_CTRL register  
5. In ACMPn_HYSTERESIS register  
6. In ACMPn_INPUTSEL register  
silabs.com | Building a more connected world.  
Rev. 1.0 | 39  
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.15 Digital to Analog Converter (VDAC)  
DRIVESTRENGTH = 2 unless otherwise specified.  
Table 4.25. Digital to Analog Converter (VDAC)  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
Unit  
V
Output voltage  
VDACOUT  
Single-Ended  
VVREF  
VVREF  
Differential2  
-VVREF  
V
Current consumption includ- IDAC  
ing references (2 channels)1  
500 ksps, 12-bit,  
DRIVESTRENGTH = 2,  
REFSEL = 4  
396  
μA  
μA  
μA  
44.1 ksps, 12-bit,  
DRIVESTRENGTH = 1,  
REFSEL = 4  
72  
200 Hz refresh rate, 12-bit Sam-  
ple- Off mode in EM2, DRIVES-  
TRENGTH = 2, BGRREQTIME =  
1, EM2REFENTIME = 9, REFSEL  
= 4, SETTLETIME = 0x0A, WAR-  
MUPTIME = 0x02  
1.2  
Current from HFPERCLK4  
Sample rate  
IDAC_CLK  
2
5.8  
500  
1
μA/MHz  
ksps  
MHz  
μs  
SRDAC  
DAC clock frequency  
Conversion time  
Settling time  
fDAC  
tDACCONV  
tDACSETTLE  
tDACSTARTUP  
fDAC = 1MHz  
50% fs step settling to 2 LSB  
2.5  
μs  
Startup time  
Enable to 90% fs output, settling  
to 10 LSB  
12  
μs  
Output impedance  
ROUT  
DRIVESTRENGTH = 2, 0.4 V ≤  
VOUT ≤ VOPA - 0.4 V, -8 mA <  
IOUT < 8 mA, Full supply range  
2
2
DRIVESTRENGTH = 0 or 1, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -400 μA <  
IOUT < 400 μA, Full supply range  
DRIVESTRENGTH = 2, 0.1 V ≤  
VOUT ≤ VOPA - 0.1 V, -2 mA <  
IOUT < 2 mA, Full supply range  
2
DRIVESTRENGTH = 0 or 1, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -100 μA <  
IOUT < 100 μA  
2
Power supply rejection ratio6  
PSRR  
Vout = 50% fs. DC  
65.5  
dB  
silabs.com | Building a more connected world.  
Rev. 1.0 | 40  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal to noise and distortion SNDRDAC  
ratio (1 kHz sine wave),  
Noise band limited to 250  
kHz  
500 ksps, single-ended, internal  
1.25V reference  
60.4  
dB  
500 ksps, single-ended, internal  
2.5V reference  
61.6  
64.0  
63.3  
64.4  
65.8  
65.3  
66.7  
70.0  
67.8  
69.0  
68.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
500 ksps, single-ended, 3.3V  
VDD reference  
500 ksps, differential, internal  
1.25V reference  
500 ksps, differential, internal  
2.5V reference  
500 ksps, differential, 3.3V VDD  
reference  
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal  
ratio (1 kHz sine wave).  
Noise band limited to 22  
kHz.  
1.25V reference  
500 ksps, single-ended, internal  
2.5V reference  
500 ksps, single-ended, 3.3V  
VDD reference  
500 ksps, differential, internal  
1.25V reference  
500 ksps, differential, internal  
2.5V reference  
500 ksps, differential, 3.3VDD ref-  
erence  
Total harmonic distortion  
THD  
70.2  
1
dB  
Differential non-linearity3  
Intergral non-linearity  
DNLDAC  
-0.99  
LSB  
INLDAC  
-4  
-8  
4
8
LSB  
mV  
mV  
Offset error5  
VOFFSET  
T = 25 °C  
Across operating temperature  
range  
-25  
25  
Gain error5  
VGAIN  
T= 25 °C, Low-noise internal ref-  
erence (REFSEL = 1V25LN or  
2V5LN)  
-1.5  
1.5  
%
T = 25 °C, Internal reference (RE-  
FSEL = 1V25 or 2V5)  
-5  
5
%
%
%
T = 25 °C, External reference  
(REFSEL = VDD or EXT)  
-1.5  
-3.5  
1.5  
3.5  
Across operating temperature  
range, Low-noise internal refer-  
ence (REFSEL = 1V25LN or  
2V5LN)  
Across operating temperature  
range, Internal reference (RE-  
FSEL = 1V25 or 2V5)  
-7.5  
-1.5  
7.5  
1.5  
%
%
Across operating temperature  
range, External reference (RE-  
FSEL = VDD or EXT)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 41  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
External Load Capactiance, CLOAD  
OUTSCALE=0  
75  
pF  
Note:  
1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive  
the load.  
2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is  
limited to the single-ended range.  
3. Entire range is monotonic and has no missing codes.  
4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when  
the clock to the DAC module is enabled in the CMU.  
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at  
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.  
6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 42  
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.16 Current Digital to Analog Converter (IDAC)  
Table 4.26. Current Digital to Analog Converter (IDAC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
4
Max  
Unit  
-
Number of ranges  
Output current  
NIDAC_RANGES  
IIDAC_OUT  
RANGSEL1 = RANGE0  
RANGSEL1 = RANGE1  
RANGSEL1 = RANGE2  
RANGSEL1 = RANGE3  
0.05  
1.6  
μA  
1.6  
0.5  
2
32  
4.7  
16  
64  
μA  
μA  
μA  
Linear steps within each  
range  
NIDAC_STEPS  
RANGSEL1 = RANGE0  
RANGSEL1 = RANGE1  
RANGSEL1 = RANGE2  
RANGSEL1 = RANGE3  
Step size  
SSIDAC  
-3  
50  
100  
500  
2
3
nA  
nA  
nA  
μA  
%
Total accuracy, STEPSEL1 =  
0x80  
ACCIDAC  
EM0 or EM1, AVDD=3.3 V, T = 25  
°C  
EM0 or EM1, Across operating  
temperature range  
-18  
-2  
22  
%
%
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE0,  
AVDD=3.3 V, T = 25 °C  
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE1,  
AVDD=3.3 V, T = 25 °C  
-1.7  
-0.8  
-0.5  
-0.7  
-0.6  
-0.5  
-0.5  
5
%
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE2,  
AVDD=3.3 V, T = 25 °C  
%
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE3,  
AVDD=3.3 V, T = 25 °C  
%
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE0, AVDD=3.3 V, T  
= 25 °C  
%
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE1, AVDD=3.3 V, T  
= 25 °C  
%
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE2, AVDD=3.3 V, T  
= 25 °C  
%
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE3, AVDD=3.3 V, T  
= 25 °C  
%
μs  
Start up time  
tIDAC_SU  
Output within 1% of steady state  
value  
silabs.com | Building a more connected world.  
Rev. 1.0 | 43  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
5
Max  
Unit  
μs  
Settling time, (output settled tIDAC_SETTLE  
within 1% of steady state val-  
ue),  
Range setting is changed  
Step value is changed  
1
μs  
Current consumption2  
IIDAC  
EM0 or EM1 Source mode, ex-  
cluding output current, Across op-  
erating temperature range  
11  
13  
18  
21  
μA  
μA  
EM0 or EM1 Sink mode, exclud-  
ing output current, Across operat-  
ing temperature range  
EM2 or EM3 Source mode, ex-  
cluding output current, T = 25 °C  
0.023  
0.041  
11  
μA  
μA  
μA  
μA  
%
EM2 or EM3 Sink mode, exclud-  
ing output current, T = 25 °C  
EM2 or EM3 Source mode, ex-  
cluding output current, T ≥ 85 °C  
EM2 or EM3 Sink mode, exclud-  
ing output current, T ≥ 85 d °C  
13  
Output voltage compliance in ICOMP_SRC  
source mode, source current  
change relative to current  
sourced at 0 V  
RANGESEL1=0, output voltage =  
min(VIOVDD, VAVDD2-100 mv)  
0.11  
RANGESEL1=1, output voltage =  
min(VIOVDD, VAVDD2-100 mV)  
0.06  
0.04  
0.03  
%
%
%
RANGESEL1=2, output voltage =  
min(VIOVDD, VAVDD2-150 mV)  
RANGESEL1=3, output voltage =  
min(VIOVDD, VAVDD2-250 mV)  
Output voltage compliance in ICOMP_SINK  
sink mode, sink current  
change relative to current  
sunk at IOVDD  
RANGESEL1=0, output voltage =  
100 mV  
0.12  
0.05  
0.04  
0.03  
%
%
%
%
RANGESEL1=1, output voltage =  
100 mV  
RANGESEL1=2, output voltage =  
150 mV  
RANGESEL1=3, output voltage =  
250 mV  
Note:  
1. In IDAC_CURPROG register.  
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and  
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects be-  
tween AVDD (0) and DVDD (1).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 44  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.17 Capacitive Sense (CSEN)  
Table 4.27. Capacitive Sense (CSEN)  
Parameter  
Symbol  
tCNV  
Test Condition  
Min  
Typ  
20.2  
26.4  
1.55  
Max  
Unit  
μs  
Single conversion time (1x  
accumulation)  
12-bit SAR Conversions  
16-bit SAR Conversions  
μs  
Delta Modulation Conversion (sin-  
gle comparison)  
μs  
Maximum external capactive CEXTMAX  
load  
CS0CG=7 (Gain = 1x), including  
routing parasitics  
68  
680  
1
pF  
pF  
kΩ  
nA  
CS0CG=0 (Gain = 10x), including  
routing parasitics  
Maximum external series im- REXTMAX  
pedance  
Supply current, EM2 bonded ICSEN_BOND  
conversions, WARMUP-  
MODE=NORMAL, WAR-  
MUPCNT=0  
12-bit SAR conversions, 20 ms  
conversion rate, CS0CG=7 (Gain  
= 1x), 10 channels bonded (total  
capacitance of 330 pF)1  
326  
Delta Modulation conversions, 20  
ms conversion rate, CS0CG=7  
(Gain = 1x), 10 channels bonded  
226  
33  
nA  
nA  
nA  
(total capacitance of 330 pF)1  
12-bit SAR conversions, 200 ms  
conversion rate, CS0CG=7 (Gain  
= 1x), 10 channels bonded (total  
capacitance of 330 pF)1  
Delta Modulation conversions,  
200 ms conversion rate,  
25  
CS0CG=7 (Gain = 1x), 10 chan-  
nels bonded (total capacitance of  
330 pF)1  
Supply current, EM2 scan  
conversions, WARMUP-  
MODE=NORMAL, WAR-  
MUPCNT=0  
ICSEN_EM2  
12-bit SAR conversions, 20 ms  
scan rate, CS0CG=0 (Gain =  
690  
515  
nA  
nA  
10x), 8 samples per scan1  
Delta Modulation conversions, 20  
ms scan rate, 8 comparisons per  
sample (DMCR = 1, DMR = 2),  
CS0CG=0 (Gain = 10x), 8 sam-  
ples per scan1  
12-bit SAR conversions, 200 ms  
scan rate, CS0CG=0 (Gain =  
79  
57  
nA  
nA  
10x), 8 samples per scan1  
Delta Modulation conversions,  
200 ms scan rate, 8 comparisons  
per sample (DMCR = 1, DMR =  
2), CS0CG=0 (Gain = 10x), 8  
samples per scan1  
silabs.com | Building a more connected world.  
Rev. 1.0 | 45  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply current, continuous  
conversions, WARMUP-  
MODE= KEEPCSENWARM  
ICSEN_ACTIVE  
SAR or Delta Modulation conver-  
sions of 33 pF capacitor,  
CS0CG=0 (Gain = 10x), always  
on  
90.5  
μA  
HFPERCLK supply current  
ICSEN_HFPERCLK Current contribution from  
HFPERCLK when clock to CSEN  
block is enabled.  
2.25  
μA/MHz  
Note:  
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module  
is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specif-  
ic application can be estimated by multiplying the current per sample by the total number of samples per period (total_current =  
single_sample_current * (number_of_channels * accumulation)).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 46  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.18 Operational Amplifier (OPAMP)  
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-  
OUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as  
specified in table footnotes8 1  
.
Table 4.28. Operational Amplifier (OPAMP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply voltage  
VOPA  
HCMDIS = 0, Rail-to-rail input  
range  
2
3.8  
V
HCMDIS = 1  
1.62  
3.8  
V
V
Input voltage  
VIN  
HCMDIS = 0, Rail-to-rail input  
range  
VVSS  
VOPA  
HCMDIS = 1  
VVSS  
100  
VVSS  
VOPA-1.2  
V
MΩ  
V
Input impedance  
Output voltage  
RIN  
VOUT  
CLOAD  
VOPA  
75  
Load capacitance2  
OUTSCALE = 0  
OUTSCALE = 1  
pF  
pF  
37.5  
Output impedance  
ROUT  
DRIVESTRENGTH = 2 or 3, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <  
IOUT < 8 mA, Buffer connection,  
Full supply range  
0.25  
DRIVESTRENGTH = 0 or 1, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -400 μA <  
IOUT < 400 μA, Buffer connection,  
Full supply range  
0.6  
0.4  
1
DRIVESTRENGTH = 2 or 3, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <  
IOUT < 2 mA, Buffer connection,  
Full supply range  
DRIVESTRENGTH = 0 or 1, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -100 μA <  
IOUT < 100 μA, Buffer connection,  
Full supply range  
Internal closed-loop gain  
Active current4  
GCL  
Buffer connection  
3x Gain connection  
16x Gain connection  
0.99  
2.93  
15.07  
1
1.01  
3.05  
16.33  
-
-
2.99  
15.7  
580  
-
IOPA  
DRIVESTRENGTH = 3, OUT-  
SCALE = 0  
μA  
DRIVESTRENGTH = 2, OUT-  
SCALE = 0  
176  
13  
μA  
μA  
μA  
DRIVESTRENGTH = 1, OUT-  
SCALE = 0  
DRIVESTRENGTH = 0, OUT-  
SCALE = 0  
4.7  
silabs.com | Building a more connected world.  
Rev. 1.0 | 47  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
135  
137  
121  
109  
3.38  
Max  
Unit  
dB  
Open-loop gain  
GOL  
DRIVESTRENGTH = 3  
DRIVESTRENGTH = 2  
DRIVESTRENGTH = 1  
DRIVESTRENGTH = 0  
dB  
dB  
dB  
Loop unit-gain frequency7  
UGF  
DRIVESTRENGTH = 3, Buffer  
connection  
MHz  
DRIVESTRENGTH = 2, Buffer  
connection  
0.9  
132  
34  
MHz  
kHz  
DRIVESTRENGTH = 1, Buffer  
connection  
DRIVESTRENGTH = 0, Buffer  
connection  
kHz  
DRIVESTRENGTH = 3, 3x Gain  
connection  
2.57  
0.71  
113  
28  
MHz  
MHz  
kHz  
DRIVESTRENGTH = 2, 3x Gain  
connection  
DRIVESTRENGTH = 1, 3x Gain  
connection  
DRIVESTRENGTH = 0, 3x Gain  
connection  
kHz  
Phase Margin  
PM  
DRIVESTRENGTH = 3, Buffer  
connection  
67  
°
DRIVESTRENGTH = 2, Buffer  
connection  
69  
°
DRIVESTRENGTH = 1, Buffer  
connection  
63  
°
DRIVESTRENGTH = 0, Buffer  
connection  
68  
°
Output voltage noise  
NOUT  
DRIVESTRENGTH = 3, Buffer  
connection, 10 Hz - 10 MHz  
146  
163  
170  
176  
313  
271  
247  
245  
μVrms  
μVrms  
μVrms  
μVrms  
μVrms  
μVrms  
μVrms  
μVrms  
DRIVESTRENGTH = 2, Buffer  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 1, Buffer  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 0, Buffer  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 3, 3x Gain  
connection  
DRIVESTRENGTH = 2, 3x Gain  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 1, 3x Gain  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 0, 3x Gain  
connection, 10 Hz - 10 MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 48  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Slew rate5  
SR  
DRIVESTRENGTH = 3,  
INCBW=13  
4.7  
V/μs  
DRIVESTRENGTH = 3,  
INCBW=0  
1.5  
V/μs  
V/μs  
DRIVESTRENGTH = 2,  
INCBW=13  
1.27  
DRIVESTRENGTH = 2,  
INCBW=0  
0.42  
0.17  
V/μs  
V/μs  
DRIVESTRENGTH = 1,  
INCBW=13  
DRIVESTRENGTH = 1,  
INCBW=0  
0.058  
0.044  
V/μs  
V/μs  
DRIVESTRENGTH = 0,  
INCBW=13  
DRIVESTRENGTH = 0,  
INCBW=0  
0.015  
V/μs  
Startup time6  
TSTART  
VOSI  
DRIVESTRENGTH = 2  
-2  
12  
2
μs  
Input offset voltage  
DRIVESTRENGTH = 2 or 3, TJ =  
25 °C  
mV  
DRIVESTRENGTH = 1 or 0, TJ =  
25 °C  
-2  
2
mV  
mV  
DRIVESTRENGTH = 2 or 3,  
across operating temperature  
range  
-12  
12  
DRIVESTRENGTH = 1 or 0,  
across operating temperature  
range  
-30  
30  
mV  
DC power supply rejection  
ratio9  
PSRRDC  
Input referred  
70  
70  
90  
dB  
dB  
dB  
DC common-mode rejection CMRRDC  
ratio9  
Input referred  
Total harmonic distortion  
THDOPA  
DRIVESTRENGTH = 2, 3x Gain  
connection, 1 kHz, VOUT = 0.1 V  
to VOPA - 0.1 V  
DRIVESTRENGTH = 0, 3x Gain  
connection, 0.01 kHz, VOUT = 0.1  
V to VOPA - 0.1 V  
90  
dB  
silabs.com | Building a more connected world.  
Rev. 1.0 | 49  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5  
V. Nominal voltage gain is 3.  
2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.  
3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,  
or the OPAMP may not be stable.  
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to  
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause  
another ~10 μA current when the OPAMP drives 1.5 V between output and ground.  
5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.  
6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.  
7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth  
product of the OPAMP and 1/3 attenuation of the feedback network.  
8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,  
VOUTPUT = 0.5 V.  
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR  
and CMRR specifications do not apply to this transition region.  
4.1.19 Pulse Counter (PCNT)  
Table 4.29. Pulse Counter (PCNT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input frequency  
FIN  
Asynchronous Single and Quad-  
rature Modes  
20  
MHz  
Sampled Modes with Debounce  
filter set to 0.  
8
kHz  
4.1.20 Analog Port (APORT)  
Table 4.30. Analog Port (APORT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
7
Max  
Unit  
μA  
Supply current1, 2  
IAPORT  
Operation in EM0/EM1  
Operation in EM2/EM3  
915  
nA  
Note:  
1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. peri-  
odic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of  
the requests by the specified continuous current number.  
2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in repor-  
ted module currents. Additional peripherals requesting access to APORT do not incur further current.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 50  
 
 
 
 
 
 
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.21 I2C  
4.1.21.1 I2C Standard-mode (Sm)1  
Table 4.31. I2C Standard-mode (Sm)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
100  
kHz  
tLOW  
4.7  
4
μs  
μs  
ns  
ns  
μs  
tHIGH  
tSU_DAT  
tHD_DAT  
250  
100  
4.7  
SDA hold time3  
3450  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
4
μs  
STOP condition set-up time tSU_STO  
4
μs  
μs  
Bus free time between a  
tBUF  
4.7  
STOP and START condition  
Note:  
1. For CLHR set to 0 in the I2Cn_CTRL register  
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual  
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW  
)
silabs.com | Building a more connected world.  
Rev. 1.0 | 51  
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.21.2 I2C Fast-mode (Fm)1  
Table 4.32. I2C Fast-mode (Fm)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
400  
kHz  
tLOW  
1.3  
0.6  
μs  
μs  
ns  
ns  
μs  
tHIGH  
tSU_DAT  
tHD_DAT  
100  
100  
0.6  
SDA hold time3  
900  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
0.6  
μs  
STOP condition set-up time tSU_STO  
0.6  
1.3  
μs  
μs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. For CLHR set to 1 in the I2Cn_CTRL register  
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual  
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW  
)
silabs.com | Building a more connected world.  
Rev. 1.0 | 52  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.21.3 I2C Fast-mode Plus (Fm+)1  
Table 4.33. I2C Fast-mode Plus (Fm+)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
1000  
kHz  
tLOW  
0.5  
0.26  
50  
μs  
μs  
ns  
ns  
μs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
100  
0.26  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
0.26  
μs  
STOP condition set-up time tSU_STO  
0.26  
0.5  
μs  
μs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register  
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual  
silabs.com | Building a more connected world.  
Rev. 1.0 | 53  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
4.1.22 USART SPI  
SPI Master Timing  
Table 4.34. SPI Master Timing  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 3 2  
tSCLK  
2 *  
tHFPERCLK  
ns  
CS to MOSI 1 3  
tCS_MO  
tSCLK_MO  
tSU_MI  
-14.5  
-8.5  
13.5  
8
ns  
ns  
SCLK to MOSI 1 3  
MISO setup time 1 3  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
92  
42  
ns  
ns  
ns  
MISO hold time 1 3  
tH_MI  
-10  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. tHFPERCLK is one period of the selected HFPERCLK.  
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
tCS_MO  
CS  
tSCKL_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.1. SPI Master Timing Diagram  
silabs.com | Building a more connected world.  
Rev. 1.0 | 54  
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Electrical Specifications  
SPI Slave Timing  
Table 4.35. SPI Slave Timing  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 3 2  
tSCLK  
6 *  
tHFPERCLK  
ns  
SCLK high time1 3 2  
SCLK low time1 3 2  
tSCLK_HI  
2.5 *  
tHFPERCLK  
ns  
ns  
tSCLK_LO  
2.5 *  
tHFPERCLK  
CS active to MISO 1 3  
CS disable to MISO 1 3  
MOSI setup time 1 3  
MOSI hold time 1 3 2  
SCLK to MISO 1 3 2  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
4
4
8
7
70  
50  
ns  
ns  
ns  
ns  
ns  
tH_MO  
tSCLK_MI  
10 + 1.5*  
tHFPERCLK  
65 + 2.5 *  
tHFPERCLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2. tHFPERCLK is one period of the selected HFPERCLK  
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD  
)
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.2. SPI Slave Timing Diagram  
silabs.com | Building a more connected world.  
Rev. 1.0 | 55  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Typical Connection Diagrams  
5. Typical Connection Diagrams  
5.1 Network Co-Processor (NCP) Application with UART Host  
The MGM12P can be controlled over the UART interface as a peripheral to an external host processor. Typical power supply, program-  
ming/debug, and host interface connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for  
Custom Designs for more details.  
Figure 5.1. Connection Diagram: UART NCP Configuration  
5.2 Network Co-Processor (NCP) Application with SPI Host  
The MGM12P can be controlled over the SPI interface as a peripheral to an external host processor. Typical power supply, program-  
ming/debug and host interface connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for  
Custom Designs for more details.  
Figure 5.2. Connection Diagram: SPI NCP Configuration  
silabs.com | Building a more connected world.  
Rev. 1.0 | 56  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Typical Connection Diagrams  
5.3 SoC Application  
The MGM12P can be used in a standalone SoC configuration with no external host processor. Typical power supply and programming/  
debug connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for Custom Designs for  
more details.  
Figure 5.3. Connection Diagram: SoC Configuration  
silabs.com | Building a more connected world.  
Rev. 1.0 | 57  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Layout Guidelines  
6. Layout Guidelines  
For optimal performance of the MGM12P (with integrated antenna), please follow the PCB layout guidelines and ground plane recom-  
mendations indicated in this section.  
6.1 Module Placement and Application PCB Layout Guidelines  
• Place the module at the edge of the PCB, as shown in the figure below.  
• Do not place any metal (traces, components, battery, etc.) within the clearance area of the antenna (shown in the figure below).  
• Connect all ground pads directly to a solid ground plane.  
• Place the ground vias as close to the ground pads as possible.  
• Do not place plastic or any other dielectric material in touch with the antenna.  
Figure 6.1. Recommended Application PCB Layout for MGM12P with Integrated Antenna  
The layouts in the next figure will result in severely degraded RF-performance.  
Figure 6.2. Non-optimal Module Placements for MGM12P with Integrated Antenna  
silabs.com | Building a more connected world.  
Rev. 1.0 | 58  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Layout Guidelines  
Figure 6.3. Impact of GND Plane Size vs. Range for MGM12P  
6.2 Effect of Plastic and Metal Materials  
Do not place plastic or any other dielectric material in closs proximity to the antenna.  
Any metallic objects in close proximity to the antenna will prevent the antenna from radiating freely. The minimum recommended dis-  
tance of metallic and/or conductive objects is 10 mm in any direction from the antenna except in the directions of the application PCB  
ground planes.  
6.3 Locating the Module Close to Human Body  
Placing the module in touch or very close to the human body will negatively impact antenna efficiency and reduce range.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 59  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Layout Guidelines  
6.4 2D Radiation Pattern Plots  
Figure 6.4. Typical 2D Radiation Pattern – Front View  
Figure 6.5. Typical 2D Radiation Pattern – Side View  
silabs.com | Building a more connected world.  
Rev. 1.0 | 60  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Layout Guidelines  
Figure 6.6. Typical 2D Radiation Pattern – Top View  
silabs.com | Building a more connected world.  
Rev. 1.0 | 61  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Hardware Design Guidelines  
7. Hardware Design Guidelines  
The MGM12P is an easy-to-use module with regard to hardware application design but certain design guidelines must be followed to  
guarantee optimal performance. These guidelines are listed in the next sub-sections.  
7.1 Power Supply Requirements  
Coin cell batteries cannot withstand high peak currents (e.g. higher than 15 mA). If the peak current exceeds 15 mA it’s recommended  
to place 47 - 100 µF capacitor in parallel with the coin cell battery to improve the battery life time. Notice that the total current consump-  
tion of your application is a combination of the radio, peripherals and MCU current consumption so you must take all of these into ac-  
count. MGM12P should be powered by a unipolar supply voltage with nominal value of 3.3 V.  
7.2 Reset Functions  
The MGM12P can be reset by three different methods: by pulling the RESET line low, by the internal watchdog timer or software com-  
mand. The reset state in MGM12P does not provide any power saving functionality and thus is not recommended as a means to con-  
serve power. MGM12P has an internal system power-up reset function. The RESET pin includes an on-chip pull-up resistor and can  
therefore be left unconnected if no external reset switch or source is needed.  
7.3 Debug and Firmware Updates  
This section contains information on debug and firmware update methods. For additional information, refer to the following application  
note: AN958: Debugging and Programming Interfaces for Custom Designs.  
7.3.1 Programming and Debug Connections  
It is recommended to expose the debug pins in your own hardware design for firmware update and debug purposes. The following table  
lists the required pins for JTAG connection and SWD connections.  
The debug pins have pull-down and pull-up enabled by default, so leaving them enabled may increase current consumption if left con-  
nected to supply or ground. If enabling the JTAG pins the module must be power cycled to enable a SWD debug session.  
Table 7.1. JTAG Pads  
PAD NAME  
PAD NUMBER  
JTAG SIGNAL NAME  
SWD SIGNAL NAME  
COMMENTS  
PF3  
24  
TDI  
N/A  
This pin is disabled after  
reset. Once enabled the  
pin has a built-in pull-up.  
PF2  
PF1  
PF0  
23  
22  
21  
TDO  
TMS  
TCK  
N/A  
This pin is disabled after  
reset  
SWDIO  
SWCLK  
Pin is enabled after reset  
and has a built-in pull-up  
Pin is enabled after reset  
and has a built-in pull-  
down  
7.3.2 Packet Trace Interface (PTI)  
The MGM12P integrates a true PHY-level PTI with the MAC, allowing complete, non-intrusive capture of all packets to and from the  
EFR32 Wireless STK development tools.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 62  
 
 
 
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
8. Pin Definitions  
8.1 Pin Definitions  
GND  
PD13  
PD14  
PD15  
PA0  
GND  
RESETn  
VDD  
PF7  
1
2
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
MGM12P  
TOP VIEW  
3
4
PF6  
5
PA1  
PF5  
6
PA2  
PF4  
7
PA3  
PF3  
8
PA4  
PF2  
9
PA5  
PF1  
10  
11  
12  
PB11  
GND  
PF0  
GND  
19  
17 18  
13 14 15 16  
Figure 8.1. MGM12P Pinout  
silabs.com | Building a more connected world.  
Rev. 1.0 | 63  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Table 8.1. MGM12P Device Pinout  
Pin Name  
Pin(s) Description  
Pin Name  
Pin(s) Description  
1
12  
GND  
Ground  
20  
PD13  
2
GPIO  
31  
PD14  
PA0  
PA2  
PA4  
PB11  
PC6  
PC8  
PC10  
PF0  
3
GPIO  
PD15  
PA1  
PA3  
PA5  
PB13  
PC7  
PC9  
PC11  
PF1  
4
GPIO  
5
GPIO  
6
GPIO  
7
GPIO  
8
GPIO  
9
GPIO  
10  
13  
15  
17  
19  
22  
24  
26  
28  
GPIO (5V)  
GPIO  
11  
14  
16  
18  
21  
23  
25  
27  
GPIO  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
Reset input, active low. To apply an ex-  
ternal reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
VDD  
29  
Module Power Supply  
RESETn  
30  
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 64  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
8.1.1 GPIO Overview  
The GPIO pins are organized as 16-bit ports indicated by letters A through F, and the individual pins on each port are indicated by a  
number from 15 down to 0.  
Table 8.2. GPIO Pinout  
Port  
Pin  
15  
Pin  
14  
Pin  
13  
Pin  
12  
Pin  
11  
Pin Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0  
10  
PA5  
(5V)  
Port A  
Port B  
Port C  
-
-
-
PB13  
-
-
-
-
-
-
-
-
-
-
-
-
-
PA4 PA3 PA2 PA1 PA0  
PB11  
-
-
-
-
-
-
-
-
-
-
-
PC11 PC10 PC9 PC8 PC7 PC6  
(5V) (5V) (5V) (5V) (5V) (5V)  
-
-
-
-
Port D  
Port E  
PD15 PD14 PD13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0  
(5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V)  
Port F  
-
-
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 65  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
8.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alter-  
nate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 8.3. Alternate Functionality Overview  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Analog comparator  
ACMP0, digital out-  
put.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
ACMP0_O  
ACMP1_O  
ADC0_EXTN  
ADC0_EXTP  
BOOT_RX  
BOOT_TX  
11: PC6  
8: PB13  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Analog comparator  
ACMP1, digital out-  
put.  
11: PC6  
0: PA0  
0: PA1  
0: PF1  
0: PF0  
0: PA1  
Analog to digital  
converter ADC0 ex-  
ternal reference in-  
put negative pin.  
Analog to digital  
converter ADC0 ex-  
ternal reference in-  
put positive pin.  
Bootloader RX.  
Bootloader TX.  
Clock Management  
Unit, clock output  
number 0.  
5: PD14  
6: PF2  
7: PF7  
CMU_CLK0  
CMU_CLK1  
CMU_CLKI0  
2: PC6  
3: PC11  
0: PA0  
Clock Management  
Unit, clock output  
number 1.  
5: PD15  
6: PF3  
7: PF6  
2: PC7  
3: PC10  
0: PB13  
1: PF7  
2: PC6  
4: PA5  
Clock Management  
Unit, clock output  
number I0.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 66  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PF0  
Debug-interface  
Serial Wire clock  
input and JTAG  
Test Clock.  
DBG_SWCLKTCK  
DBG_SWDIOTMS  
DBG_SWO  
Note that this func-  
tion is enabled to  
the pin out of reset,  
and has a built-in  
pull down.  
0: PF1  
Debug-interface  
Serial Wire data in-  
put / output and  
JTAG Test Mode  
Select.  
Note that this func-  
tion is enabled to  
the pin out of reset,  
and has a built-in  
pull up.  
0: PF2  
Debug-interface  
Serial Wire viewer  
Output.  
1: PB13  
2: PD15  
3: PC11  
Note that this func-  
tion is not enabled  
after reset, and  
must be enabled by  
software to be  
used.  
0: PF3  
Debug-interface  
JTAG Test Data In.  
Note that this func-  
tion becomes avail-  
able after the first  
valid JTAG com-  
mand is received,  
and has a built-in  
pull up when JTAG  
is active.  
DBG_TDI  
0: PF2  
Debug-interface  
JTAG Test Data  
Out.  
Note that this func-  
tion becomes avail-  
able after the first  
valid JTAG com-  
mand is received.  
DBG_TDO  
ETM_TCLK  
1: PA5  
3: PC6  
Embedded Trace  
Module ETM clock .  
silabs.com | Building a more connected world.  
Rev. 1.0 | 67  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
3: PC7  
3: PC8  
3: PC9  
3: PC10  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
Embedded Trace  
Module ETM data  
0.  
ETM_TD0  
Embedded Trace  
Module ETM data  
1.  
ETM_TD1  
Embedded Trace  
Module ETM data  
2.  
ETM_TD2  
Embedded Trace  
Module ETM data  
3.  
ETM_TD3  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
Frame Controller,  
Data Sniffer Clock.  
FRC_DCLK  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
6: PB13  
12: PC9  
13: PC10  
14: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Frame Controller,  
Data Sniffer Frame  
active  
9: PC6  
10: PC7  
11: PC8  
FRC_DFRAME  
FRC_DOUT  
22: PF0  
19: PD13 23: PF1  
26: PF4  
27: PF5  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Frame Controller,  
Data Sniffer Out-  
put.  
10: PC6  
11: PC7  
7: PB13  
23: PF0  
27: PF4  
0: PF2  
Pin can be used to  
wake the system  
up from EM4  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU4  
GPIO_EM4WU8  
GPIO_EM4WU9  
GPIO_EM4WU12  
0: PF7  
Pin can be used to  
wake the system  
up from EM4  
0: PD14  
0: PA3  
0: PB13  
0: PC10  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 68  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
I2C0 Serial Clock  
Line input / output.  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
LES_CH5  
LES_CH6  
LES_CH7  
LES_CH8  
LES_CH9  
LES_CH10  
LES_CH11  
LES_CH12  
LES_CH13  
10: PC6  
11: PC7  
7: PB13  
23: PF0  
27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
I2C0 Serial Data in-  
put / output.  
11: PC6  
I2C1 Serial Clock  
Line input / output.  
18: PC10  
19: PC11  
20: PC11  
I2C1 Serial Data in-  
put / output.  
19: PC10  
0: PD13  
0: PD14  
0: PD15  
0: PA0  
0: PA1  
0: PA2  
0: PA3  
0: PA4  
0: PA5  
LESENSE channel  
5.  
LESENSE channel  
6.  
LESENSE channel  
7.  
LESENSE channel  
8.  
LESENSE channel  
9.  
LESENSE channel  
10.  
LESENSE channel  
11.  
LESENSE channel  
12.  
LESENSE channel  
13.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 69  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Low Energy Timer  
LETIM0, output  
channel 0.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Low Energy Timer  
LETIM0, output  
channel 1.  
10: PC6  
11: PC7  
7: PB13  
23: PF0  
27: PF4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
LEUART0 Receive  
input.  
10: PC6  
11: PC7  
7: PB13  
23: PF0  
27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
LEUART0 Transmit  
output. Also used  
as receive input in  
half duplex commu-  
nication.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
LEU0_TX  
11: PC6  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
MODEM antenna  
control output 0,  
used for antenna  
diversity.  
5: PB13  
21: PF0  
18: PD13 22: PF1  
19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
MODEM_ANT0  
MODEM_ANT1  
MODEM_DCLK  
MODEM_DIN  
MODEM_DOUT  
OPA0_N  
0: PA4  
1: PA5  
2: PB11  
4: PB13  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
11: PC10  
12: PC11  
20: PF0  
17: PD13 21: PF1  
18: PD14 22: PF2  
19: PD15 23: PF3  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
MODEM antenna  
control output 1,  
used for antenna  
diversity.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
MODEM data clock  
out.  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
MODEM data in.  
MODEM data out.  
10: PC6  
11: PC7  
7: PB13  
4: PB11  
23: PF0  
27: PF4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
12: PC9  
13: PC10  
14: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
9: PC6  
10: PC7  
11: PC8  
6: PB13  
22: PF0  
19: PD13 23: PF1  
26: PF4  
27: PF5  
0: PA4  
Operational Amplifi-  
er 0 external nega-  
tive input.  
0: PA2  
Operational Amplifi-  
er 0 external posi-  
tive input.  
OPA0_P  
0: PD15  
0: PD13  
Operational Amplifi-  
er 1 external nega-  
tive input.  
OPA1_N  
Operational Amplifi-  
er 1 external posi-  
tive input.  
OPA1_P  
silabs.com | Building a more connected world.  
Rev. 1.0 | 70  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PB13  
Operational Amplifi-  
er 2 external nega-  
tive input.  
OPA2_N  
0: PB11  
Operational Amplifi-  
er 2 external posi-  
tive input.  
OPA2_P  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Pulse Counter  
PCNT0 input num-  
ber 0.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
PCNT0_S0IN  
PCNT0_S1IN  
PCNT1_S0IN  
PCNT1_S1IN  
PCNT2_S0IN  
PCNT2_S1IN  
PRS_CH0  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Pulse Counter  
PCNT0 input num-  
ber 1.  
10: PC6  
11: PC7  
7: PB13  
23: PF0  
27: PF4  
20: PF7  
Pulse Counter  
PCNT1 input num-  
ber 0.  
19: PF6  
Pulse Counter  
PCNT1 input num-  
ber 1.  
18: PF6  
19: PF7  
20: PC11  
Pulse Counter  
PCNT2 input num-  
ber 0.  
19: PC10  
Pulse Counter  
PCNT2 input num-  
ber 1.  
18: PC10  
19: PC11  
0: PF0  
1: PF1  
2: PF2  
3: PF3  
4: PF4  
5: PF5  
6: PF6  
7: PF7  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 0.  
0: PF1  
1: PF2  
2: PF3  
3: PF4  
4: PF5  
5: PF6  
6: PF7  
7: PF0  
Peripheral Reflex  
System PRS, chan-  
nel 1.  
PRS_CH1  
0: PF2  
1: PF3  
2: PF4  
3: PF5  
4: PF6  
5: PF7  
6: PF0  
7: PF1  
Peripheral Reflex  
System PRS, chan-  
nel 2.  
PRS_CH2  
0: PF3  
1: PF4  
2: PF5  
3: PF6  
4: PF7  
5: PF0  
6: PF1  
7: PF2  
12: PD13  
13: PD14  
14: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 3.  
PRS_CH3  
4: PD13  
5: PD14  
6: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 4.  
PRS_CH4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 71  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
4: PD14  
5: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 5.  
PRS_CH5  
PRS_CH6  
PRS_CH7  
PRS_CH8  
PRS_CH9  
PRS_CH10  
PRS_CH11  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
3: PD13  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
16: PD14  
17: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 6.  
15: PD13  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
Peripheral Reflex  
System PRS, chan-  
nel 7.  
10: PA0  
7: PB13  
4: PB11  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
Peripheral Reflex  
System PRS, chan-  
nel 8.  
9: PA0  
10: PA1  
6: PB13  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
8: PA0  
9: PA1  
10: PA2  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 9.  
5: PB13  
0: PC6  
1: PC7  
2: PC8  
3: PC9  
4: PC10  
5: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 10.  
0: PC7  
1: PC8  
2: PC9  
3: PC10  
4: PC11  
5: PC6  
Peripheral Reflex  
System PRS, chan-  
nel 11.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Timer 0 Capture  
Compare input /  
output channel 0.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Timer 0 Capture  
Compare input /  
output channel 1.  
10: PC6  
11: PC7  
7: PB13  
4: PB11  
23: PF0  
27: PF4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
12: PC9  
13: PC10  
14: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Timer 0 Capture  
Compare input /  
output channel 2.  
9: PC6  
10: PC7  
11: PC8  
6: PB13  
22: PF0  
19: PD13 23: PF1  
26: PF4  
27: PF5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 0.  
5: PB13  
21: PF0  
18: PD13 22: PF1  
19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
0: PA4  
1: PA5  
2: PB11  
4: PB13  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
11: PC10  
12: PC11  
20: PF0  
17: PD13 21: PF1  
18: PD14 22: PF2  
19: PD15 23: PF3  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 1.  
0: PA5  
1: PB11  
8: PC8  
9: PC9  
10: PC10  
11: PC11  
16: PD13 20: PF1  
17: PD14 21: PF2  
18: PD15 22: PF3  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 2.  
6: PC6  
7: PC7  
3: PB13  
19: PF0  
23: PF4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 72  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Timer 1 Capture  
Compare input /  
output channel 0.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM1_CC3  
US0_CLK  
US0_CS  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Timer 1 Capture  
Compare input /  
output channel 1.  
10: PC6  
11: PC7  
7: PB13  
4: PB11  
23: PF0  
27: PF4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
12: PC9  
13: PC10  
14: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Timer 1 Capture  
Compare input /  
output channel 2.  
9: PC6  
10: PC7  
11: PC8  
6: PB13  
22: PF0  
19: PD13 23: PF1  
26: PF4  
27: PF5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
Timer 1 Capture  
Compare input /  
output channel 3.  
5: PB13  
21: PF0  
18: PD13 22: PF1  
19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
6: PB13  
12: PC9  
13: PC10  
14: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
9: PC6  
10: PC7  
11: PC8  
USART0 clock in-  
put / output.  
22: PF0  
26: PF4  
27: PF5  
19: PD13 23: PF1  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
5: PB13  
21: PF0  
18: PD13 22: PF1  
19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
USART0 chip se-  
lect input / output.  
0: PA4  
1: PA5  
2: PB11  
4: PB13  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
11: PC10  
12: PC11  
20: PF0  
17: PD13 21: PF1  
18: PD14 22: PF2  
19: PD15 23: PF3  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
USART0 Clear To  
Send hardware  
flow control input.  
US0_CTS  
US0_RTS  
0: PA5  
1: PB11  
8: PC8  
9: PC9  
10: PC10  
11: PC11  
16: PD13 20: PF1  
17: PD14 21: PF2  
18: PD15 22: PF3  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
USART0 Request  
To Send hardware  
flow control output.  
6: PC6  
7: PC7  
3: PB13  
19: PF0  
23: PF4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
USART0 Asynchro-  
nous Receive.  
10: PC6  
11: PC7  
USART0 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US0_RX  
7: PB13  
23: PF0  
27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
USART0 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
US0_TX  
USART0 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
6: PB13  
12: PC9  
13: PC10  
14: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
9: PC6  
10: PC7  
11: PC8  
USART1 clock in-  
put / output.  
US1_CLK  
22: PF0  
19: PD13 23: PF1  
26: PF4  
27: PF5  
silabs.com | Building a more connected world.  
Rev. 1.0 | 73  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
5: PB13  
21: PF0  
25: PF4  
26: PF5  
27: PF6  
USART1 chip se-  
lect input / output.  
US1_CS  
18: PD13 22: PF1  
19: PD14 23: PF2  
0: PA4  
1: PA5  
2: PB11  
4: PB13  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
11: PC10  
12: PC11  
20: PF0  
17: PD13 21: PF1  
18: PD14 22: PF2  
19: PD15 23: PF3  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
USART1 Clear To  
Send hardware  
flow control input.  
US1_CTS  
US1_RTS  
0: PA5  
1: PB11  
8: PC8  
9: PC9  
10: PC10  
11: PC11  
16: PD13 20: PF1  
17: PD14 21: PF2  
18: PD15 22: PF3  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
USART1 Request  
To Send hardware  
flow control output.  
6: PC6  
7: PC7  
3: PB13  
19: PF0  
23: PF4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
5: PB11  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
20: PD13 24: PF1  
21: PD14 25: PF2  
22: PD15 26: PF3  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
USART1 Asynchro-  
nous Receive.  
10: PC6  
11: PC7  
USART1 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US1_RX  
7: PB13  
23: PF0  
27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
8: PB13  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
USART1 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
US1_TX  
USART1 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
12: PF0  
13: PF1  
14: PF3  
15: PF4  
16: PF5  
17: PF6  
18: PF7  
USART2 clock in-  
put / output.  
US2_CLK  
US2_CS  
30: PA5  
29: PA5  
28: PA5  
12: PF1  
13: PF3  
14: PF4  
15: PF5  
16: PF6  
17: PF7  
USART2 chip se-  
lect input / output.  
11: PF0  
12: PF3  
13: PF4  
14: PF5  
15: PF6  
16: PF7  
USART2 Clear To  
Send hardware  
flow control input.  
US2_CTS  
US2_RTS  
10: PF0  
11: PF1  
12: PF4  
13: PF5  
14: PF6  
15: PF7  
USART2 Request  
To Send hardware  
flow control output.  
9: PF0  
10: PF1  
11: PF3  
27: PA5  
16: PF4  
17: PF5  
18: PF6  
19: PF7  
USART2 Asynchro-  
nous Receive.  
13: PF0  
14: PF1  
15: PF3  
USART2 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US2_RX  
31: PA5  
silabs.com | Building a more connected world.  
Rev. 1.0 | 74  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA5  
16: PF3  
17: PF4  
18: PF5  
19: PF6  
20: PF7  
USART2 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
14: PF0  
15: PF1  
US2_TX  
USART2 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
4: PD14  
5: PD15  
13: PB11  
12: PB11  
USART3 clock in-  
put / output.  
US3_CLK  
US3_CS  
3: PD13  
4: PD15  
USART3 chip se-  
lect input / output.  
2: PD13  
3: PD14  
USART3 Clear To  
Send hardware  
flow control input.  
1: PD13  
2: PD14  
3: PD15  
US3_CTS  
US3_RTS  
11: PB11  
10: PB11  
0: PD13  
1: PD14  
2: PD15  
USART3 Request  
To Send hardware  
flow control output.  
4: PD13  
5: PD14  
6: PD15  
USART3 Asynchro-  
nous Receive.  
14: PB11  
USART3 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US3_RX  
USART3 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
5: PD13  
6: PD14  
7: PD15  
15: PB11  
US3_TX  
USART3 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
0: PA1  
0: PA3  
Digital to analog  
converter VDAC0  
external reference  
input pin.  
VDAC0_EXT  
Digital to Analog  
Converter DAC0  
output channel  
number 0.  
VDAC0_OUT0 /  
OPA0_OUT  
0: PA5  
1: PD13  
2: PD15  
Digital to Analog  
Converter DAC0 al-  
ternative output for  
channel 0.  
VDAC0_OUT0AL  
T / OPA0_OUT-  
ALT  
silabs.com | Building a more connected world.  
Rev. 1.0 | 75  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PD14  
Digital to Analog  
Converter DAC0  
output channel  
number 1.  
VDAC0_OUT1 /  
OPA1_OUT  
Digital to Analog  
Converter DAC0 al-  
ternative output for  
channel 1.  
VDAC0_OUT1AL  
T / OPA1_OUT-  
ALT  
1: PA2  
2: PA4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
28: PC8  
29: PC9  
30: PC10 put / output channel  
31: PC11 0.  
Wide timer 0 Cap-  
ture Compare in-  
17: PB13  
WTIM0_CC0  
WTIM0_CC1  
WTIM0_CC2  
WTIM0_CDTI0  
WTIM0_CDTI1  
WTIM0_CDTI2  
WTIM1_CC0  
WTIM1_CC1  
WTIM1_CC2  
WTIM1_CC3  
26: PC6  
27: PC7  
15: PB11  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
24: PC6  
25: PC7  
26: PC8  
27: PC9  
28: PC10 Wide timer 0 Cap-  
29: PC11 ture Compare in-  
put / output channel  
1.  
13: PB11  
15: PB13  
0: PA4  
1: PA5  
24: PC8  
25: PC9  
26: PC10  
27: PC11  
Wide timer 0 Cap-  
ture Compare in-  
put / output channel  
2.  
13: PB13  
22: PC6  
23: PC7  
11: PB11  
9: PB13  
20: PC8  
21: PC9  
22: PC10  
23: PC11  
Wide timer 0 Com-  
29: PD13 plimentary Dead  
30: PD14 Time Insertion  
31: PD15 channel 0.  
18: PC6  
19: PC7  
7: PB11  
16: PC6  
17: PC7  
18: PC8  
19: PC9  
20: PC10  
21: PC11  
28: PD14 Wide timer 0 Com-  
29: PD15 plimentary Dead  
30: PF0  
5: PB11  
7: PB13  
Time Insertion  
channel 1.  
27: PD13 31: PF1  
16: PC8  
17: PC9  
18: PC10  
19: PC11  
28: PF0  
25: PD13 29: PF1  
26: PD14 30: PF2  
27: PD15 31: PF3  
Wide timer 0 Com-  
plimentary Dead  
Time Insertion  
channel 2.  
5: PB13  
14: PC6  
15: PC7  
3: PB11  
1: PB13  
12: PC8  
13: PC9  
14: PC10  
15: PC11  
24: PF0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Wide timer 1 Cap-  
ture Compare in-  
put / output channel  
0.  
21: PD13 25: PF1  
22: PD14 26: PF2  
23: PD15 27: PF3  
10: PC6  
11: PC7  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
20: PD14 24: PF2  
21: PD15 25: PF3  
28: PF6  
29: PF7  
Wide timer 1 Cap-  
ture Compare in-  
put / output channel  
1.  
22: PF0  
26: PF4  
27: PF5  
19: PD13 23: PF1  
8: PC8  
9: PC9  
10: PC10  
11: PC11  
20: PF0  
17: PD13 21: PF1  
18: PD14 22: PF2  
19: PD15 23: PF3  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
Wide timer 1 Cap-  
ture Compare in-  
put / output channel  
2.  
6: PC6  
7: PC7  
4: PC6  
5: PC7  
6: PC8  
7: PC9  
8: PC10  
9: PC11  
16: PD14 20: PF2  
17: PD15 21: PF3  
18: PF0  
15: PD13 19: PF1  
24: PF6  
25: PF7  
Wide timer 1 Cap-  
ture Compare in-  
put / output channel  
3.  
22: PF4  
23: PF5  
silabs.com | Building a more connected world.  
Rev. 1.0 | 76  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
8.3 Analog Port (APORT) Client Maps  
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,  
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal  
routing. Figure 8.2 APORT Connection Diagram on page 77 Shows the APORT routing for this device family. A complete description  
of APORT functionality can be found in the Reference Manual. The APORT information in this section is reflective of the IC used in the  
modules. Not all ports are available on the modules. The module pins available correspond with the pin names in this section.  
1X  
IDAC0  
1Y  
ACMP1X  
ACMP1Y  
PB15  
0X  
1X  
2X  
3X  
4X  
NEXT1  
NEXT0  
PB14  
0X  
1X  
2X  
3X  
4X  
NEXT1  
NEXT0  
POS  
NEG  
PF0  
PF1  
PB13  
POS  
NEG  
OPA2_N  
0Y  
1Y  
2Y  
3Y  
4Y  
PF2  
ACMP0  
PB12  
PB11  
0Y  
1Y  
2Y  
3Y  
PF3  
ACMP1  
OUT2  
PF8  
NEXT1  
4Y  
NEXT1  
NEXT0  
NEXT0  
OPA2_P  
PF9  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PK0  
PK1  
PK2  
PF4  
PB10  
PB9  
VDAC0_OPA2ALT  
VDAC0_OPA2ALT  
0X  
1X  
2X  
3X  
4X  
NEXT0  
NEXT2  
OUT2ALT  
OUT2ALT  
POS  
NEG  
PB8  
PB7  
0Y  
1Y  
2Y  
3Y  
4Y  
NEXT1  
ADC0  
PB6  
PI3  
PI2  
EXTP  
EXTN  
PI1  
OPA1_P  
1X  
2X  
3X  
4X  
PI0  
POS  
OPA0_P  
1X  
2X  
3X  
4X  
PF5  
PA9  
POS  
NEG  
PF6  
PA8  
OPA1_N  
1Y  
2Y  
3Y  
4Y  
PF7  
PA7 LESENSE  
PA6 LESENSE  
NEG  
OUT  
OPA0_N  
1Y  
2Y  
3Y  
4Y  
OPA1  
OPA0  
PA5 LESENSE  
PA4 LESENSE  
PA3 LESENSE  
PA2 LESENSE  
OUT1  
OUT1ALT  
OUT1  
OUT2  
OUT3  
VDAC0_OUT0ALT  
VDAC0_OUT1ALT  
OUT0ALT  
OUT1ALT  
OUT0  
OUT0ALT  
OUT1  
OUT2  
OUT3  
OPA0_INN0  
OUT  
OPA0_N  
OUT4  
NEXT1  
OUT4  
NEXT0  
OPA0_OUT  
OUT0  
VDAC0_OUT1ALT  
OUT1ALT  
OPA2_P  
1X  
POS  
NEG  
OPA0_INP0  
ADC0_EXTP  
2X  
3X  
4X  
OPA0_P  
PA1 LESENSE  
PA0 LESENSE  
ADC_EXTP  
OPA2_N  
1Y  
2Y  
3Y  
4Y  
ADC0_EXTN  
OPA0ALT  
ADC_EXTN  
OUT0ALT  
OPA2  
PD15 LESENSE  
OPA1_INN0  
OUT2  
OUT2ALT  
OUT1  
OPA1N  
OUT  
OUT2  
OUT3  
OUT4  
NEXT2  
1X  
1Y  
3X  
3Y  
CEXT  
CSEN  
2X  
2Y  
nX, nY  
APORTnX, APORTnY  
CEXT_SENSE  
4X  
4Y  
AX, BY, …  
BUSAX, BUSBY, ...  
ADC0X,  
ADC0Y  
BUSADC0X,  
BUSADC0Y  
ACMP0X,  
BUSACMP0X,  
ACMP1Y, … BUSACMP1Y, ...  
Figure 8.2. APORT Connection Diagram  
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the  
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.  
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin con-  
nection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin  
silabs.com | Building a more connected world.  
Rev. 1.0 | 77  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared  
bus used by this connection is indicated in the Bus column.  
Table 8.4. ACMP0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.0 | 78  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Table 8.5. ACMP1 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.0 | 79  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Table 8.6. ADC0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.0 | 80  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Table 8.7. CSEN Bus and Pin Mapping  
CEXT  
CEXT_SENSE  
Table 8.8. IDAC0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.0 | 81  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
Table 8.9. VDAC0 / OPA Bus and Pin Mapping  
OPA0_N  
OPA0_P  
silabs.com | Building a more connected world.  
Rev. 1.0 | 82  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
OPA1_N  
OPA1_P  
OPA2_N  
silabs.com | Building a more connected world.  
Rev. 1.0 | 83  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
OPA2_OUT  
OPA2_P  
VDAC0_OUT0 / OPA0_OUT  
silabs.com | Building a more connected world.  
Rev. 1.0 | 84  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Pin Definitions  
VDAC0_OUT1 / OPA1_OUT  
silabs.com | Building a more connected world.  
Rev. 1.0 | 85  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Package Specifications  
9. Package Specifications  
9.1 MGM12P Dimensions  
Figure 9.1. MGM12P Package Dimensions  
Figure 9.2. MGM12P with U.FL Package Dimensions  
silabs.com | Building a more connected world.  
Rev. 1.0 | 86  
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Package Specifications  
9.2 MGM12P Module Footprint  
The figure below shows the Module footprint and PCB dimensions.  
Figure 9.3. MGM12P Footprint  
silabs.com | Building a more connected world.  
Rev. 1.0 | 87  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Package Specifications  
9.3 MGM12P Recommended PCB Land Pattern  
The figure below shows the recommended land pattern. The antenna clearance section is not required for the MGM12P module version  
with the U.FL connector.  
Figure 9.4. MGM12P Recommended PCB Land Pattern  
silabs.com | Building a more connected world.  
Rev. 1.0 | 88  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Package Specifications  
9.4 MGM12P Package Marking  
The figure below shows the Module markings printed on the RF-shield.  
Figure 9.5. MGM12P Package Marking  
The module marking consists of:  
MGM12Pxxxxxx - Part number designation  
Model: MGM12Pxxxx – Model number designation  
FCC ID: QOQMGM12Px – FCC  
• QOQMGM12P0 for model MGM12P02GA and MGM12P02GE  
• QOQMGM12P2 for model MGM12P22GA and MGM12P22GE  
• QOQMGM12P3 for model MGM12P32GA and MGM12P32GE  
IC: 5123A-MGM12Px – IC  
• 5123A-MGM12P0 for model MGM12P02GA and MGM12P02GE  
• 5123A-MGM12P2 for model MGM12P22GA and MGM12P22GE  
• 5123A-MGM12P3 for model MGM12P32GA and MGM12P32GE  
YYWWXXXX  
• YY – The last 2 digits of the assembly year  
• WW – The 2 digit work week when the device was assembled  
• XXXX – A trace or manufacturing code. The first letter is the device revision.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 89  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Tape and Reel Specifications  
10. Tape and Reel Specifications  
10.1 Tape and Reel Specification  
This section contains information regarding the tape and reel packaging for the MGM12P Mighty Gecko Module.  
10.2 Reel Material and Dimensions  
• Reel material: Polystyrene (PS)  
• Reel diameter: 13 inches (330 mm)  
• Number of modules per reel: 1000 pcs  
• Disk deformation, folding whitening and mold imperfections: Not allowed  
• Disk set: consists of two 13 inch (330 mm) rotary round disks and one central axis (100 mm)  
• Antistatic treatment: Required  
• Surface resistivity: 104 - 109 Ω/sq.  
Figure 10.1. Reel Dimension — Side View  
Symbol  
W0  
Dimensions [mm]  
44.0 +0.5/-.0.0  
48.0  
W1  
silabs.com | Building a more connected world.  
Rev. 1.0 | 90  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Tape and Reel Specifications  
10.3 Module Orientation and Tap  
The user direction of feed, start and end of tape on reel and orientation of the Modules on the tape are shown in the figures below.  
Figure 10.2. Module Orientation and Feed Direction  
silabs.com | Building a more connected world.  
Rev. 1.0 | 91  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Tape and Reel Specifications  
10.4 Carrier Tape and Cover Tape Information  
Figure 10.3. Carrier Tape Information  
Figure 10.4. Cover Tape Information  
Symbol  
Thickness (T)  
Width (W)  
Dimensions [mm]  
0.055 +0.005/-0.003  
37.50 +0.30/-0.10  
silabs.com | Building a more connected world.  
Rev. 1.0 | 92  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Certifications  
11. Certifications  
11.1 CE  
The MGM12P02 and MGM12P22 modules are in conformity with the essential requirements and other relevant requirements of the  
Radio Equipment Directive(RED). Please note that every application using the MGM12P will need to perform the radio EMC tests on  
the end product according toEN 301 489-17. Separate RF testing is not required provided that the customer follows the module manu-  
facturer's recommendations and instructions and does not make modifications, e.g. to the provided antenna solutions or requirements.  
A formal DoC is available via www.silabs.com  
MGM12P32 module is inconformity with the essential requirements and other relevant requirements of the Radio Equipment Direc-  
tive(RED) at nominal 10 dBm transmit power.  
The transmit power of the module is not limited and when an end product is using MGM12P32, the end product manufacturer is respon-  
sible that the end product is in inconformity of all relevant requirements of the RED.  
11.2 FCC  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  
1. This device may not cause harmful interference, and  
2. This device must accept any interference received, including interference that may cause undesirable operation.  
Any changes or modifications not expressly approved by Silicon Labs could void the user’s authority to operate the equipment.  
FCC RF Radiation Exposure Statement:  
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specif-  
ic operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile limits as demonstrated  
in the RF Exposure Analysis. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter  
except in accordance with FCC multi-transmitter product procedures.  
OEM Responsibilities to comply with FCC Regulations  
OEM integrator is responsible for testing their end-product for any additional compliance requirements required with this module instal-  
led (for example, digital device emissions, PC peripheral requirements, etc.).  
• With MGM12P22GA, MGM12P22GE, MGM12P02GA and MGM12P02GE the antenna(s) must be installed such that a minimum  
separation distance of 6.7mm is maintained between the radiator (antenna) and all persons at all times.  
• With MGM12P32GA and MGM12P32GE the antenna(s) must be installed such that a minimum separation distance of 39mm is  
maintained between the radiator (antenna) and all persons at all times.  
• The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accord-  
ance with FCC multi-transmitter product procedures.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 93  
 
 
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Certifications  
IMPORTANT NOTE: In the event that the above conditions cannot be met (for certain configurations or co-location with another trans-  
mitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circum-  
stances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate  
FCC authorization.  
End Product Labeling  
The variants of MGM12P Modules are labeled with their own FCC IDs. If the FCC ID is not visible when the module is installed inside  
another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed  
module. In that case, the final product must be labeled in a visible area with the following  
MODELS MGM12P02GE and MGM12P02GA:  
Contains Transmitter Module FCC ID: QOQMGM12P0”  
or  
Contains FCC ID: QOQMGM12P0  
MODELS MGM12P22GE and MGM12P22GA:  
Contains Transmitter Module FCC ID: QOQMGM12P2”  
or  
Contains FCC ID: QOQMGM12P2  
MODELS MGM12P32GE and MGM12P32GA:  
Contains Transmitter Module FCC ID: QOQMGM12P3”  
or  
Contains FCC ID: QOQMGM12P3  
The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or  
change RF related parameters in the user manual of the end product.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 94  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Certifications  
11.3 ISEDC  
This radio transmitter (IC: 5123A-MGM12P) has been approved by Industry Canada to operate with the embedded chip antenna and a  
standard 2.14 dBi dipole antenna. Other antenna types are strictly prohibited for use with this device.  
This device complies with Industry Canada’s license-exempt RSS standards. Operation is subject to the following two conditions:  
1. This device may not cause interference; and  
2. This device must accept any interference, including interference that may cause undesired operation of the device  
RF Exposure Statemment  
Exception from routine SAR evaluation limits are given in RSS-102 Issue 5.  
MGM12P22GA, MGM12P22GE, MGM12P02GA and MGM12P02GE modules meets the given requirements when the minimum sepa-  
ration distance to human body is 20 mm.  
MGM12P32GA and MGM12P32GA modules meets the given requirements when the minimum separation distance to human body is  
35 mm.  
RF exposure or SAR evaluation is not required when the separation distance is same or more than stated above. If the separation dis-  
tance is less than stated above the OEM integrator is responsible for evaluating the SAR.  
OEM Responsibilities to comply with IC Regulations  
The MGM12P module has been certified for integration into products only by OEM integrators under the following conditions:  
• The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (an-  
tenna) and all persons at all times.  
• The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.  
As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still respon-  
sible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital  
device emissions, PC peripheral requirements, etc.).  
IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with another transmit-  
ter), then the ISEDC authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstan-  
ces, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate ISEDC  
authorization.  
End Product Labeling  
The MGM12P modules are labeled with their own IC ID. If the IC ID is not visible when the module is installed inside another device,  
then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case,  
the final end product must be labeled in a visible area with the following:  
MODELS MGM12P02GE and MGM12P02GA:  
Contains Transmitter Module IC: 5123A-MGM12P0”  
or  
Contains IC: 5123A-MGM12P0  
MODELS MGM12P22GE and MGM12P22GA:  
Contains Transmitter Module IC: 5123A-MGM12P2”  
or  
Contains IC: 5123A-MGM12P2  
MODELS MGM12P32GE and MGM12P32GA:  
Contains Transmitter Module IC: 5123A-MGM12P3”  
or  
Contains IC: 5123A-MGM12P3”  
The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or  
change RF related parameters in the user manual of the end product  
silabs.com | Building a more connected world.  
Rev. 1.0 | 95  
 
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Certifications  
ISEDC (Français)  
Industrie Canada a approuvé l’utilisation de cet émetteur radio (IC: 5123A-MGM12P) en conjonction avec des antennes de type dipo-  
laire à 2.14dBi ou des antennes embarquées, intégrée au produit.  
L’utilisation de tout autre type d’antenne avec ce composant est proscrite.  
Ce composant est conforme aux normes RSS, exonérées de licence d'Industrie Canada. Son mode de fonctionnement est soumis aux  
deux conditions suivantes :  
1. Ce composant ne doit pas générer d’interférences  
2. Ce composant doit pouvoir est soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement.  
Déclaration d'exposition RF  
L'exception tirée des limites courantes d'évaluation SAR est donnée dans le document RSS-102 Issue 5.  
Les modules MGM12P22GA, MGM12P22GE, MGM12P02GA et MGM12P02GE répondent aux exigences requises lorsque la distance  
minimale de séparation avec le corps humain est de 20 mm.  
Les modules MGM12P32GA et MGM12P32GA répondent aux exigences requises lorsque la distance minimale de séparation avec le  
corps humain est de 35 mm.  
La déclaration d’exposition RF ou l'évaluation SAR n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à  
celle indiquée ci-dessus.  
Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de procédé à une évaluation  
SAR.  
Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré  
Le module MGM12P a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les condi-  
tions suivantes:  
• L'antenne (s) doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur  
(antenne) et toutes les personnes avoisinante, ce à tout moment.  
• Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée  
plus haut.  
Tant que les deux conditions ci-dessus sont respectées, il n’est pas nécessaire de tester ce transmetteur de façon plus poussée. Ce-  
pendant, il incombe à l’intégrateur OEM de s’assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pour-  
rait être soumis de fait de l’utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de pé-  
riphériques PC, etc.).  
REMARQUE IMPORTANTE: dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implanta-  
tion avec un autre émetteur), l'autorisation ISEDC n'est plus considérée comme valide et le numéro d’identification ID IC ne peut pas  
être apposé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y comp-  
ris le transmetteur) et de l'obtention d'une autorisation ISEDC distincte.  
Étiquetage des produits finis  
Les modules MGM12P sont étiquetés avec leur propre ID IC. Si l'ID IC n'est pas visible lorsque le module est intégré au sein d'un autre  
produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaitre les référence du module inté-  
gré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes :  
MODÈLES MGM12P02GE et MGM12P02GA:  
"Contient le module transmetteur : 5123A-MGM12P0"  
ou  
"Contient le circuit: 5123A-MGM12P0  
MODÈLES MGM12P22GE et MGM12P22GA:  
"Contient le module transmetteur: 5123A-MGM12P2"  
ou  
"Contient IC: 5123A-MGM12P2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 96  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Certifications  
MODÈLES MGM12P32GE et MGM12P32GA:  
"Contient le module émetteur IC: 5123A-MGM12P3"  
ou  
"Contient IC: 5123A-MGM12P3"  
L'intégrateur OEM doit être conscient qu’il ne doit pas fournir, dans le manuel d’utilisation, d'informations relatives à la façon d'installer  
ou de d’enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 97  
MGM12P Mighty Gecko Multi-Protocol Wireless Mesh Module Data Sheet  
Revision History  
12. Revision History  
12.1 Revision 1.0  
• Minor Updates  
12.2 Revision 0.2  
• Initial Publication  
silabs.com | Building a more connected world.  
Rev. 1.0 | 98  
 
 
 
Simplicity Studio  
One-click access to MCU and  
wireless tools, documentation,  
software, source code libraries &  
more. Available for Windows,  
Mac and Linux!  
IoT Portfolio  
www.silabs.com/IoT  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal  
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All  
other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SILICON

MGM12P02F1024GA-V4

Telecom Circuit,
SILICON

MGM12P02F1024GA-V4R

Telecom Circuit,
SILICON
SILICON

MGM12P02F1024GE-V4

Telecom Circuit,
SILICON

MGM20N45

Insulated Gate Bipolar Transistor, 20A I(C), 450V V(BR)CES, N-Channel, TO-204AA
MOTOROLA

MGM20N50

Insulated Gate Bipolar Transistor, 20A I(C), 500V V(BR)CES, N-Channel, TO-204AA
MOTOROLA

MGM3000X

Video Modulator for FM/AM-Audio
INFINEON

MGM55

High Voltage Metal Glaze Film Resistors
RIEDON

MGM55100KOHMS

High Voltage Metal Glaze Film Resistors
RIEDON

MGM5N45

Insulated Gate Bipolar Transistor, 5A I(C), 450V V(BR)CES, N-Channel, TO-204AA
MOTOROLA

MGM5N50

Insulated Gate Bipolar Transistor, 5A I(C), 500V V(BR)CES, N-Channel, TO-204AA
MOTOROLA