SI3209-B-FMR [SILICON]

SLIC, ROHS COMPLIANT, MS-220VJJD-2, QFN-40;
SI3209-B-FMR
型号: SI3209-B-FMR
厂家: SILICON    SILICON
描述:

SLIC, ROHS COMPLIANT, MS-220VJJD-2, QFN-40

电信 电信集成电路
文件: 总46页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3226/27 +  
Si3208/09  
DUAL PROSLIC® WITH DC-DC CONTROLLER  
Features  
Performs all BORSCHT functions  
Ideal for short- or long-loop applicationsOn-hook transmission  
Internal balanced or unbalanced ringingLoop or ground start operation  
Low power consumption  
Low-power sleep mode  
Smooth polarity reversal  
DTMF generator/decoder  
A-Law/µ-Law companding,  
linear PCM  
Software-programmable parameters:  
Ringing frequency, amplitude,  
cadence, and waveshape  
Two-wire ac impedance  
PCM and SPI bus digital interfaces  
with programmable interrupts  
GCI/IOM-2 mode support  
3.3 V operation  
GR-909 loop diagnostics  
Audio diagnostics with loopback  
Pb-free/RoHS-compliant packaging  
Transhybrid balance  
DC current loop feed (10–45 mA)  
Loop closure and ring trip thresholds  
Ground key detect threshold  
Integrated dc-dc controller  
Wideband CODEC (Si3227)  
Applications  
Customer Premises Equipment (CPE)  
Optical Network Terminals (ONT)  
Private Branch Exchange (PBX)  
Cable EMTAs, ATAs, VoIP  
Gateways  
Ordering Information  
Description  
See page 38.  
The Si3226/27 Dual ProSLIC® chipsets each consist of a low-voltage CMOS  
device integrating both SLIC and CODEC functionality in combination with a high-  
voltage linefeed IC (LFIC). The chipset provides two complete foreign exchange  
station (FXS) telephony interfaces. The Si3226/27 operate from a single 3.3 V  
supply and interface to standard PCM/SPI or GCI bus digital interfaces. A built-in  
dc-dc controller automatically generates the optimal battery voltage required for  
each line-state, optimizing efficiency and minimizing heat generation. Self-testing  
and metallic loop testing (MLT), e.g., GR-909, is facilitated by the built-in DSP,  
monitor ADC, and test load. The companion Si3208/09 LFICs are available with  
voltage ratings up to –135 V to support high power ringing and the Si3227  
supports wideband audio for better-than-PSTN voice quality (see Ordering Guide  
below). The Si3226/27 are available in a 64-pin thin quad flat package (TQFP);  
the LFICs are available in a 40-pin quad, flat, no-lead package (QFN).  
Patents pending  
Functional Block Diagram  
Si3226/27  
Si3208/09  
CODEC SLIC  
PCM/  
GCI  
Interface  
FSYNC  
DRX  
DTMF &  
Tone Gen  
Linefeed  
TIP  
ADC  
Control  
DTX  
Channel 1  
RING  
Caller ID  
Linefeed  
Monitor  
CS  
SDI  
DAC  
SPI  
Control  
Interface  
Ringing  
Generator  
SDO  
SCLK  
INT  
SLIC  
Linefeed  
Control  
CODEC  
DSP  
TIP  
Line Diagnostics  
ADC  
RST  
Channel 2  
RING  
Linefeed  
Monitor  
DAC  
PCLK  
DC-DC Controllers  
PLL  
VBAT  
DC-DC BOM  
VDC  
Rev. 1.2 10/10  
Copyright © 2010 by Silicon Laboratories  
Si3226/27 + Si3208/09  
Silicon Laboratories Confidential. Information contained herein is covered under non-disclosure agreement (NDA).  
Si3226/27 +  
Si3208/09  
2
Rev. 1.2  
Si3226/27 +  
Si3208/09  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.1. DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.2. Linefeed Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.3. Line Voltage and Current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.4. Power Monitoring and Power Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.5. Thermal Overload Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.6. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.7. Loop Closure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.8. Ground Key Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.9. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.10. Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.11. Two-Wire Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.12. Transhybrid Balance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.13. Tone Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.14. DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.15. DC-DC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.16. Wideband Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.17. SPI Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.18. PCM Interface and Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.19. General Circuit Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.20. Metallic Loop Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5. Pin Descriptions: Si3226/27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
6. Pin Descriptions: Si3226/27 + Si3208/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
8. Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9. Package Outline: 64-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
10. Package Outline: 40-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Rev. 1.2  
3
Si3226/27 +  
Si3208/09  
1. Electrical Specifications  
Table 1. Absolute Maximum Ratings and Thermal Information1  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
°C  
Operating Temperature Range  
Storage Temperature Range  
T
–40 to 85  
–55 to 150  
A
T
°C  
STG  
2
Thermal Resistance, Typical  
45  
.88  
°C/W  
W
JA  
TQFP-64  
3
Continuous Power Dissipation  
TQFP-64  
P
T = 85 °C  
A
D
Maximum Junction Temperature,  
Si3226/27  
T
125  
32  
°C  
J
2
Thermal Resistance, Typical  
°C/W  
W
JA  
QFN-40  
4
Continuous Power Dissipation  
P
T = 85 °C  
1.87  
145  
D
A
QFN-40  
Maximum Junction Temperature,  
T
Continuous  
°C  
4
J
Si3208/09  
Si3226/27  
V
V
, V  
,
DD DDA  
Supply Voltage  
–0.5 to 4.0  
–0.3 to 3.6  
V
V
V
DDC  
DDD  
Digital Input Voltage  
V
IND  
Si3208  
Si3209  
Supply Voltage  
V
–0.5 to 4.0  
+0.4 to –115  
–130  
V
V
DD  
5
Battery Supply Voltage  
V
BAT  
6
V
, V  
V
TIP or RING Voltage  
TIP RING  
TIP, RING Current  
I
, I  
±100  
mA  
TIP RING  
Supply Voltage  
V
–0.5 to 4.0  
+0.4 to –140  
–140  
V
V
DD  
5
High Battery Supply Voltage  
V
BAT  
6
V
I
, V  
V
TIP or RING Voltage  
TIP RING  
TIP, RING Current  
, I  
±100  
mA  
TIP RING  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet.  
2. The thermal resistance of an exposed pad package is assured when the recommended printed circuit board layout  
guidelines are followed correctly. The specified performance requires that the exposed pad be soldered to an exposed  
copper surface of at least equal size and that multiple vias are added to enable heat transfer between the top-side  
copper surface and a large internal/bottom copper plane.  
3. Operation of the Si3226 or Si3227 above 125 °C junction temperature will degrade device reliability.  
4. Si3208 and Si3209 are equipped with on-chip thermal limiting circuitry that shuts down the circuit when the junction  
temperature exceeds the thermal shutdown threshold. The thermal shutdown threshold should normally be set to  
145 °C; when in the ringing state the thermal shutdown may be set to 200 °C. For optimal reliability long term operation  
of the Si3208/Si3209 above 150 °C junction temperature should be avoided.  
5. The dv/dt of the voltage applied to the VBAT pins must be limited to 10 V/µs.  
6. Specification requires protection circuit for surge event as shown in typical application circuit.  
4
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 2. Recommended Operating Conditions1  
1
1
1
Parameter  
Symbol  
Test  
Condition  
Unit  
Min  
Typ  
Max  
o
Ambient Temperature  
T
F-grade  
G-grade  
0
25  
25  
70  
85  
C
A
o
Ambient Temperature  
T
–40  
C
A
Junction Temperature, Si3208/09  
Junction Temperature, Si3226/27  
Supply Voltage, Si3226/27  
T
T
145  
125  
3.47  
°C  
°C  
V
J
J
V
DDC  
V
,
3.13  
3.3  
DDA  
, V  
V
DDD  
Supply Voltage, Si3208/09  
3.13  
–110  
–136  
3.3  
3.47  
–15  
–15  
V
V
V
DD  
2
Battery Voltage, Si3208  
VBAT  
VBAT  
2
Battery Voltage, Si3209  
Notes:  
1. All minimum and maximum specifications apply across the recommended operating conditions. Typical values apply at  
nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. Operation at minimum voltage dependent upon loop conditions and dc-dc converter configurations.  
Rev. 1.2  
5
Si3226/27 +  
Si3208/09  
Table 3. 3.3 V Power Supply Characteristics  
(VDD = 3.3 V, TA = 0 to 70 ºC for F-Grade, –40 to 85 ºC for G-Grade)  
Parameter  
Supply Currents:  
Symbol  
Test Condition  
Min  
Typ  
4.0  
0
Max  
Unit  
mA  
mA  
mA  
mA  
I
V and V = Hi-Z  
DD  
T
R
Reset  
RST = 0  
I
I
VBAT  
Supply Currents:  
High Impedance,  
Open  
I
V and V = Hi-Z  
13.1  
.43  
DD  
VBAT  
T
R
Supply Currents:  
Forward/Reverse,  
On-hook  
I
V
= –48 V  
TR  
18.7  
1.2  
mA  
mA  
DD  
Automatic Power Save Mode  
Enabled  
I
I
I
VBAT  
Supply Currents:  
Forward/Reverse Active,  
On-hook  
I
V
= –48 V  
TR  
27.7  
1.2  
mA  
mA  
DD  
Automatic Power Save Mode  
Disabled  
VBAT  
Supply Currents:  
Forward/Reverse Active,  
Off-hook  
I
I
= 18 mA  
= –12 V  
= 200   
43  
mA  
mA  
DD  
LOOP  
V
BAT  
2.9 +  
VBAT  
R
LOAD  
1.02*I  
LOOP  
Automatic Power Save Mode  
Disabled  
Supply Currents:  
Forward/Reverse OHT,  
On-hook  
I
V
= –48 V  
TR  
40.2  
1.9  
mA  
mA  
DD  
I
I
VBAT  
Supply Currents:  
Tip/Ring Open,  
On-hook  
I
V or V = –48 V  
27  
mA  
mA  
DD  
T
R
V or V = Hi-Z  
R
T
0.43  
VBAT  
Automatic Power Save Mode  
Disabled  
Supply Currents:  
Ringing  
I
V
= 55 V  
+ 0 V  
DC  
27.2  
mA  
mA  
DD  
TR  
RMS  
balanced, sinusoidal, f = 20 Hz  
= –136 V  
I
5.6 + I  
AVE  
VBAT  
V
BAT  
R
= 5 REN = 1400   
LOAD  
Notes:  
1. All specifications are for a single channel of Si3226/27 using Si3208/09 linefeed IC and based on measurements with all  
channels in the same operating state.  
2. ILOOP is the dc current in the subscriber loop during the off-hook state.  
3. IAVE is the average of the full-wave rectified current in the subscriber loop during ringing (IAVE = IPEAK x 2/) = 36 mA  
under the test conditions shown for Ringing Current.  
4. IDD = IDDD + IDDA + IDDC  
.
6
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 4. AC Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Overload Level  
Test Condition  
Min  
Typ  
Max  
Unit  
TX/RX Performance  
2.5  
+35  
V
PK  
Overload Compression  
2-Wire – PCM  
2-Wire – PCM or PCM – 2-Wire:  
200 Hz to 3.4 kHz  
See Figure 12  
1
Single Frequency Distortion  
+40  
dB  
dB  
PCM – 2-Wire – PCM:  
200 Hz – 3.4 kHz,  
16-bit Linear mode  
+63  
Signal-to-(Noise + Distortion)  
Ratio  
200 Hz to 3.4 kHz  
D/A or A/D 8-bit  
Active off-hook, and OHT, any Z  
Figure 11  
46  
2
T
Audio Tone Generator Signal-to-  
0 dBm0, Active off-hook, and  
dB  
2
Distortion Ratio  
OHT, any Z  
T
Intermodulation Distortion  
–41  
0.2  
dB  
dB  
2
Gain Accuracy  
2-Wire to PCM or PCM to 2-Wire  
1014 Hz, Any gain setting  
0 dBm 0  
–0.2  
Attenuation Distortion vs.  
Frequency  
See Figure 5 and 6  
See Figure 7 and 8  
Group Delay vs. Frequency  
3
Gain Tracking  
1014 Hz sine wave,  
reference level –10 dBm  
Signal level:  
3 dB to –37 dB  
–37 dB to –50 dB  
0.25  
0.5  
dB  
dB  
dB  
µs  
–50 dB to –60 dB  
1.0  
Round-Trip Group Delay  
1014 Hz, Within same time-slot  
450  
500  
Crosstalk between channels  
TX or RX to TX  
0 dBm0,  
300 Hz to 3.4 kHz  
300 Hz to 3.4 kHz  
26  
26  
30  
30  
–75  
–75  
dB  
dB  
dB  
dB  
TX or RX to RX  
4
2-Wire Return Loss  
200 Hz to 3.4 kHz  
300 Hz to 3.4 kHz  
4
Transhybrid Balance  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. V  
, V  
, V  
= 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 , ZS = 600 synthesized using RS register  
DDA  
DDC  
DDD  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
Rev. 1.2  
7
Si3226/27 +  
Si3208/09  
Table 4. AC Characteristics (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Noise Performance  
C-Message weighted  
5
Idle Channel Noise  
8
12  
–78  
dBrnC  
dBmP  
dB  
Psophometric weighted  
VDDA, VDDD, VDDC = 3.3 V  
RX and TX, 200 Hz to 3.4 kHz  
Longitudinal Performance  
200 kHz to 3.4 kHz  
–82  
55  
PSRR from  
Longitudinal to Metallic/PCM  
Balance (forward or reverse)  
52  
40  
58  
dB  
dB  
Metallic/PCM to Longitudinal  
Balance  
200 Hz to 3.4 kHz  
Longitudinal Impedance  
200 Hz to 3.4 kHz at TIP or RING  
50  
25  
Longitudinal Current Capability per  
Pin  
Active off-hook  
60 Hz  
mA  
RMS  
REG 73 = 0x0B  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. V  
, V  
, V  
= 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 , ZS = 600 synthesized using RS register  
DDA  
DDC  
DDD  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
8
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 5. Linefeed Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum Loop Resistance  
R
R
= 430 ,R = 0   
PROT  
2000  
LOOP  
DC,MAX  
I
= 18 mA, V  
= –52V  
LOOP  
BAT  
DC Feed Current*  
Differential  
Common Mode  
Differential + Common Mode  
= 18 mA  
45  
30  
45  
10  
4
mA  
mA  
mA  
%
DC Loop Current Accuracy  
I
LIM  
DC Open Circuit Voltage  
Accuracy  
Active Mode; V = 48 V,  
V
OC  
V
– V  
TIP  
RING  
DC Differential Output  
Resistance—Ringing  
R
I
< I  
100  
320  
4
RING  
LOOP  
LIM  
DC On-Hook Voltage  
Accuracy—Ground Start  
V
R
I
<I ; V wrt ground,  
RING  
V
OHTO  
ROTO  
RING LIM  
V
= –51 V  
RING  
DC Output  
Resistance—Ground Start  
I
<I ; RING to ground  
160  
400  
640  
10  
10  
4
k  
%
RING LIM  
DC Output Resistance—  
Ground Start  
R
TIP to ground  
TOTO  
Loop Closure Detect  
Threshold Accuracy  
I
I
= 13 mA  
= 13 mA  
THR  
THR  
Ground Key Detect  
Threshold Accuracy  
%
Ring Trip  
AC detection,  
mA  
Threshold Accuracy  
V
= 70 Vpk, no offset,  
RING  
I
= 80mA  
TH  
DC detection,  
1
mA  
mA  
20 V dc offset, I = 13 mA  
TH  
DC Detection,  
108  
134  
1
3
48 V DC offset, R  
= 1500   
loop  
Maximum Ringing Amplitude  
V
Si3208, Open circuit,  
= –110 V  
V
V
RING  
PK  
PK  
V
BAT  
Si3209, Open Circuit,  
= –136 V  
V
BAT  
Sinusoidal Ringing Total  
Harmonic Distortion  
R
Si3208: 60 V  
, 15 V offset,  
RMS  
%
THD  
0–5 REN  
Si3209: 55V  
, 48 V offset,  
RMS  
0–5 REN  
Ringing Frequency Accuracy  
Ringing Cadence Accuracy  
*Note: Absolute value.  
f = 16 Hz to 100 Hz  
1
%
Accuracy of ON/OFF times  
50  
ms  
Rev. 1.2  
9
Si3226/27 +  
Si3208/09  
Table 5. Linefeed Characteristics (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Loop Voltage Sense  
Accuracy  
Accuracy of boundaries for  
each output code;  
2
4
%
V
– V  
= 48 V  
TIP  
RING  
Loop Current  
Sense Accuracy  
I
= 18 mA  
7
10  
%
%
LOOP  
Power Alarm  
Threshold Accuracy  
Power Threshold = 1.0 W  
= –56 V, I = 40 mA,  
15  
V
BAT  
LOOP  
R
= 600   
LOAD  
*Note: Absolute value.  
Table 6. Monitor ADC Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Nonlinearity  
(8-bit resolution)  
DNLE  
1
1
5
LSB  
Integral Nonlinearity  
(8-bit resolution)  
INLE  
LSB  
%
Gain Error  
10  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 7. Digital/Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
V
0.7 x V  
V
DD  
V
V
V
IH  
DD  
V
0.3 x V  
IL  
DD  
High Level Output  
Voltage  
V
DTX, SDO, SDITHRU,  
GPIO3a/b,GPIO1a/b,  
GPIO2a/b:  
V
– 0.6  
DD  
OH  
I = 4 mA  
O
Low Level Output  
Voltage  
V
DTX, SDO, INT,  
SDITHRU, GPIO3a/b:  
0.4  
V
OL  
I = –4 mA  
O
GPIO1 a/b, GPIO2 a/b:  
33  
42  
0.72  
65  
I = –40 mA  
O
SDITHRU Internal  
Pullup Current  
µA  
µA  
Input Leakage Current  
I
10  
L
Table 8. Switching Characteristics—General Inputs1,2  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)  
Parameter  
Rise Time, RESET  
RESET Pulse Width, GCI Mode  
Symbol  
Min  
Typ  
Max  
Unit  
t
5
ns  
µs  
µs  
r
3,4  
t
33/PCLK  
33/PCLK  
rl  
rl  
4
RESET Pulse Width, SPI Daisy Chain Mode  
t
Notes:  
1. All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are  
VIH = VDD – 0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
2. RESET input capacitance = 0.3 pF.  
3. The minimum RESET pulse width assumes the SDITHRU pin is tied to ground via a pulldown resistor no greater than  
10 kper device.  
4. The minimum RESET pulse width is 33/PCLK frequency (i.e. 33/8.192 MHz = 4 µs).  
Rev. 1.2  
11  
Si3226/27 +  
Si3208/09  
VDD  
2
Min. 33 PCLK’s  
1
RSTB  
Wait time to allow  
PLL to lock  
3
6
MADC  
Offset Cal  
Software steps  
VBAT  
Remaining Cals  
5
4
VDC  
Figure 1. Powerup and Initialization Sequence  
The following Powerup and Initialization Sequence must be followed:  
1. VDD must be brought up while RSTB pin is held low.  
2. Release RSTB at least 33 PCLK cycles after VDD.  
3. Perform on-chip MADC offset calibration from OPEN state.  
4. 10 ms is recommended prior to initializing the dc-dc converter after the MADC offset calibration. The VDC  
supply must be at the minimum valid voltage to ensure proper operation. The minimum valid voltage is shown in  
the application circuit schematic.  
5. Bring up VBAT.  
6. Perform remaining calibrations (except for common mode balance) from OPEN state.  
Note: Repeat from step 3 whenever a hardware reset has been performed.  
Powerdown Sequence:  
1. Powerdown dc-dc converter.  
2. Wait until VBAT is smaller than –10 V.  
3. Turn off VDD.  
PCLK  
Counting of PCLK  
Rising Edges  
31  
30 29 28  
5
4
3
2
1
0
1
2
3
4
5
28 29  
30  
31  
External Reset  
Internal Reset  
Sample Reset  
Note: The count of PCLK rising edges during reset will be skewed by 1-2 clocks based on the internal sampling of reset.  
Figure 2. Reset Timing Diagram  
12  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 9. Switching Characteristics—SPI  
(VDDA = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)  
Parameter  
Cycle Time, SCLK  
Symbol  
Test Conditions  
Min  
62  
Typ  
Max  
Unit  
ns  
t
c
Rise Time, SCLK  
t
25  
ns  
r
Fall Time, SCLK  
t
25  
ns  
f
Delay Time, SCLK Fall to SDO Active  
t
20  
ns  
d1  
d2  
Delay Time, SCLK Fall to SDO  
Transition  
t
t
20  
ns  
Delay Time, CS Rise to SDO Tri-state  
Setup Time, CS to SCLK Fall  
25  
20  
25  
20  
220  
4
20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
Hold Time, CS to SCLK Rise  
t
h1  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time between Chip Selects  
SDI to SDITHRU Propagation Delay  
t
su2  
t
h2  
t
cs  
t
d4  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V  
tc  
tr  
tf  
SCLK  
CS  
tsu1  
th1  
tcs  
tsu2  
th2  
SDI  
td1  
td3  
td2  
SDO  
td4  
SDITHRU  
Figure 3. SPI Timing Diagram  
Rev. 1.2  
13  
Si3226/27 +  
Si3208/09  
Table 10. Switching Characteristics—PCM Highway Interface  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)  
1
1
1
Parameter  
Symbol  
Test  
Conditions  
Units  
Min  
Typ  
Max  
PCLK Period  
t
122  
3906  
ns  
ns  
p
PCLK Jitter Tolerance  
t
±8  
jitter  
2
Valid PCLK Inputs  
512  
768  
kHz  
kHz  
1.024  
1.536  
1.544  
2.048  
4.096  
8.192  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
3
FSYNC Period  
t
40  
125  
50  
60  
µs  
%
fs  
PCLK Duty Cycle Tolerance  
FSYNC Jitter Tolerance  
Rise Time, PCLK  
t
dty  
t
±120  
25  
ns  
ns  
ns  
ns  
ns  
jitter  
t
r
Fall Time, PCLK  
t
25  
f
Delay Time, PCLK Rise to DTX Active  
t
t
20  
d1  
d2  
Delay Time, PCLK Rise to DTX  
Transition  
20  
Delay Time, PCLK Rise to DTX Tri-  
state  
t
20  
ns  
d3  
4
Setup Time, FSYNC to PCLK Fall  
Hold Time, FSYNC to PCLK Fall  
Setup Time, DRX to PCLK Fall  
Hold Time, DRX to PCLK Fall  
FSYNC Pulse Width  
t
25  
20  
25  
20  
ns  
ns  
ns  
ns  
su1  
t
h1  
t
su2  
t
h2  
t
t
125 µs–t  
p
wfs  
p
Notes:  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O – 0.4 V, VIL = 0.4 V.  
2. A constant PCLK and FSYNC are required.  
3. FSYNC source is assumed to be 8 kHz under all operating conditions.  
4. Spec applies to PCLK fall to DTX tristate when that mode is selected.  
14  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
tr  
tf  
tp  
PCLK  
th1  
twfs  
tsu1  
tfs  
FSYNC  
tsu2  
th2  
DRX  
DTX  
td2  
td1  
td3  
Figure 4. PCM Highway Interface Timing Diagram  
Table 11. Switching Characteristics—GCI Highway Serial Interface  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
1
Symbol  
Test  
Conditions  
Min  
Typ  
Max  
Units  
Parameter  
PCLK Period (2.048 MHz PCLK Mode)  
PCLK Period (4.096 MHz PCLK Mode)  
t
t
40  
25  
20  
25  
20  
488  
244  
125  
50  
±8  
ns  
ns  
µs  
%
p
p
2
FSYNC Period  
t
fs  
PCLK Duty Cycle Tolerance  
PCLK Jitter Tolerance  
t
60  
dty  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
jitter  
jitter  
FSYNC Jitter Tolerance  
±120  
25  
25  
20  
20  
20  
Rise Time, PCLK  
t
r
Fall Time, PCLK  
t
f
Delay Time, PCLK Rise to DTX Active  
t
t
t
d1  
d2  
d3  
Delay Time, PCLK Rise to DTX Transition  
3
Delay Time, PCLK Rise to DTX Tristate  
Setup Time, FSYNC Rise to PCLK Fall  
Hold Time, PCLK Fall to FSYNC Fall  
Setup Time, DRX Transition to PCLK Fall  
Hold Time, PCLK Falling to DRX Transition  
FSYNC Pulse Width  
t
su1  
t
h1  
t
su2  
t
h2  
t
t /2  
wfs  
p
Notes:  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VO – 0.4 V and VIL = 0.4 V.  
Rise and fall times are referenced to the 20% and 80% levels of the waveform.  
2. FSYNC source is assumed to be 8 kHz under all operating conditions.  
3. Specification applies to PCLK fall to DTX tristate when that mode is selected.  
Rev. 1.2  
15  
Si3226/27 +  
Si3208/09  
tr  
tf  
tp  
PCLK  
th1  
tsu1  
tfs  
FSYNC  
tsu2  
th2  
Frame 0,  
Bit 0  
DRX  
DTX  
td1  
td2  
td3  
Frame 0,  
Bit 0  
Figure 5. GCI Highway Interface Timing Diagram (2.048 MHz PCLK Mode)  
tr  
tf  
tc  
PCLK  
th1  
tfs  
tsu1  
FSYNC  
tsu2  
th2  
Frame 0,  
Bit 0  
DRX  
DTX  
td1  
td3  
td2  
Frame 0,  
Bit 0  
Figure 6. GCI Highway Interface Timing Diagram (4.096 MHz PCLK Mode)  
16  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
RX Attenuation Distortion  
5
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
RX Pass−Band Detail  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
Figure 7. RX Attenuation Distortion  
Rev. 1.2  
17  
Si3226/27 +  
Si3208/09  
TX Attenuation Distortion  
5
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
TX Pass−Band Detail  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
Figure 8. TX Attenuation Distortion  
18  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
TX Group Delay Distortion  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400  
Frequency (Hz)  
Figure 9. Transmit Group Delay Distortion  
RX Group Delay Distortion  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400  
Frequency (Hz)  
Figure 10. Receive Group Delay Distortion  
Rev. 1.2  
19  
Si3226/27 +  
Si3208/09  
Acceptable  
Figure 11. Transmit and Receive Path SNDR  
9
8
7
6
5
4
Fundamental  
Output Power  
(dBm0)  
Acceptable  
Region  
3
2.6  
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)  
Figure 12. Overload Compression Performance  
20  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
2. Typical Application Circuits  
V D C  
D
G N  
R B N V G  
V B A T b  
V B R N G  
V B A T  
R B N V G  
V B A T a  
V B R N G  
V B A T  
E G N D  
E G N D  
V D C  
D
G N  
R 2 1 0  
R 1 1 0  
b
a
V B A T  
V B A T  
V B A T b  
V B A T a  
V C C  
D G N  
3
+ 3 V  
V D D R E G  
3 8  
V D D A  
N D G D  
2 9  
5 8  
3 0  
D V D A  
V D D D  
V D D C  
S V D C  
D V D D  
N D G A  
5 7  
2 4  
8
D V D C  
Rev. 1.2  
21  
Si3226/27 +  
Si3208/09  
Kelvin Connect Jumper  
to Resistor  
J120, R133  
J123, R132  
J124, R122  
Can be used to measure the input and output power  
J123  
2
1
VDC  
IDcDcA  
R132  
0.05  
VDC  
VDC  
GND  
This design is optimized for VDC=7V-20V  
Snubber  
C133 68pF  
C120  
10uF  
C121  
0.1uF  
NI  
VDC  
R130  
150  
C120 is an  
optional input  
decoupling cap  
In place of C130  
Kelvin Connect Jumper  
to Resistor  
R138  
0
J124 IVbatA  
2
T120  
8
1
N=3  
R137 15  
NI  
D120  
R122  
1
7
5.11  
ES1F  
*2  
VOUT  
N=2  
R122 forms a LPF with  
the decoupling cap of  
the linefeed  
R136  
0
4
6
N=1  
NI  
MOSFET DRIVER  
8uH  
R123  
220  
*3  
Iripple  
>
105mA  
C132  
0.1uF  
C126  
0.1uF  
C122  
0.1uF  
C131  
10uF  
R125  
681K  
5
+
C127  
Q121  
470pF  
For 7V-20V, 0C-85C  
200V FET  
25V  
*4  
MMBT3906-7-F  
Q120  
FQT7N10  
*1  
DCDRV  
Q120B  
FQD7N20L  
NI  
*1  
Fet must have Qgate <=10nC  
NI  
Icontinuous  
> 1A;  
C128  
470pF  
Fairchild FQT7N10  
Zetex ZXMN10A11G  
Vishay IRFL110  
Q122  
R126  
68K  
25V  
R124  
0
BSS138  
C123  
0.22uF  
Zetex ZXMN10A08G  
Fet must have  
Qgate <=10nC  
Icontinuous  
>
1A  
Fairchild FQT7N20L  
IRF IRFL4315  
SDCH  
SDCL  
STMICRO STD5N20L  
JUMPER  
J125  
Q123  
MMBT3904  
R121  
0.1  
Route as  
a differnetial pair  
IR121  
C124  
0.22uF  
C125  
0.22uF  
Load for Ambient -40C-85C  
LAYOUT NOTES  
-------------------------------------------------------------------------------------------  
1) Dual Layout with Q120, Q120B DPAK and SOT-223  
2) Minimize loop C121, T120, Q120, and R121  
NOTES  
*1. Voltage Rating FET:  
Voltage Rating of C122, C123,  
C124, C125, and C131  
3) Place C130/C120 close to C121  
(Vringrms*CrestFactor+VringOffset +Overhead)  
4) Minimize loop C122, D120, T120, and R121  
--------------------------------------------  
N
+
VDC  
+
Margin  
Margin  
should be  
>
5) Place C123, C124,C15 and C131 close to C122  
6) Minimize loop C126, Q121, Q120, R121, and SDCL  
7) SDCL Connects to GND only at R121.  
VringRMS*CrestFactor  
+
VRingOffset  
+
Overhead  
*2. Voltage Rating D120:  
peak POUT (Vringrms*CrestFactor  
=
+
VringOffset  
+
Overhead)  
*
(Vringrms*CrestFactor)  
------------------------  
RenLoad (ohms)  
(Vringrms*CrestFactor+VringOffset +Overhead)  
*3. High Voltage inputs 20V-50 Require 25uH and N=2  
+
N*VDC  
+
8) Localize switcher gnd, attach to gnd plane at single point  
*4. 5V VDC will require  
a
logic level FET such as the FQT7n10L  
9) VOUT nets should be routed with  
a trace no less than 30mils. This is a high voltage net.  
Keep these nets isolated from other nets.  
10) Minimize loop T120, R130, C133, R127/R128  
Figure 14. DC-DC Converter (A)  
Kelvin Connect Jumper  
J120, R133  
J123, R132  
J124, R122  
Can be used to measure the input and output power  
to Resistor  
J223  
2
1
VDC  
IDcDcB  
R232  
0.05  
VDC  
VDC  
GND  
This design is optimized for VDC=7V-20V  
Snubber  
C233 68pF  
C220  
10uF  
C221  
0.1uF  
NI  
VDC  
R230  
150  
C120 is an  
optional input  
decoupling cap  
In place of C130  
Kelvin Connect Jumper  
to Resistor  
R238  
0
J224 IVbatB  
2
T220  
8
1
N=3  
R237 15  
NI  
D220  
R222  
1
7
5.11  
ES1F  
*2  
VOUT  
N=2  
R122 forms a LPF with  
the decoupling cap of  
the linefeed  
R236  
0
4
6
N=1  
NI  
MOSFET DRIVER  
8uH  
R223  
220  
*3  
Iripple  
>
105mA  
C232  
0.1uF  
C226  
0.1uF  
C222  
0.1uF  
C231  
10uF  
R225  
5
+
C227  
Q221  
681K  
470pF  
For 7V-20V, 0C-85C  
200V FET  
25V  
*4  
MMBT3906-7-F  
Q220  
FQT7N10  
*1  
DCDRV  
Q220B  
FQD7N20L  
NI  
*1  
Fet must have Qgate <=10nC  
NI  
Icontinuous  
> 1A;  
C228  
470pF  
Fairchild FQT7N10  
Zetex ZXMN10A11G  
Vishay IRFL110  
Q222  
R226  
68K  
25V  
R224  
0
BSS138  
C223  
0.22uF  
Zetex ZXMN10A08G  
Fet must have  
Qgate <=10nC  
Icontinuous  
>
1A  
Fairchild FQT7N20L  
IRF IRFL4315  
SDCH  
SDCL  
STMICRO STD5N20L  
JUMPER  
J225  
Q223  
MMBT3904  
R221  
0.1  
Route as  
a
differnetial pair  
IR121  
C224  
0.22uF  
C225  
0.22uF  
Load for Ambient -40C-85C  
LAYOUT NOTES  
-------------------------------------------------------------------------------------------  
1) Dual Layout with Q120, Q120B DPAK and SOT-223  
2) Minimize loop C121, T120, Q120, and R121  
NOTES  
*1. Voltage Rating FET:  
Voltage Rating of C122, C123,  
C124, C125, and C131  
3) Place C130/C120 close to C121  
(Vringrms*CrestFactor+VringOffset +Overhead)  
4) Minimize loop C122, D120, T120, and R121  
--------------------------------------------  
N
+
VDC  
+
Margin  
Margin  
should be  
>
5) Place C123, C124,C15 and C131 close to C122  
6) Minimize loop C126, Q121, Q120, R121, and SDCL  
7) SDCL Connects to GND only at R121.  
VringRMS*CrestFactor  
+
VRingOffset  
+
Overhead  
*2. Voltage Rating D120:  
peak POUT (Vringrms*CrestFactor  
=
+
VringOffset  
+
Overhead)  
*
(Vringrms*CrestFactor)  
------------------------  
RenLoad (ohms)  
(Vringrms*CrestFactor+VringOffset +Overhead)  
*3. High Voltage inputs 20V-50 Require 25uH and N=2  
+
N*VDC  
+
8) Localize switcher gnd, attach to gnd plane at single point  
*4. 5V VDC will require  
a
logic level FET such as the FQT7n10L  
9) VOUT nets should be routed with  
a trace no less than 30mils. This is a high voltage net.  
Keep these nets isolated from other nets.  
10) Minimize loop T120, R130, C133, R127/R128  
Figure 15. DC-DC Converter (B)  
22  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
VBAT_REF  
VBAT_REF  
VBAT  
VBAT_REF  
R156  
0
This Connection Forces VBAT_REF  
to be local to this page  
D154  
C150  
0.22uF  
NI D153  
ES1D  
140V  
NI  
RT150  
PTC  
J150  
Load  
1
2
Option  
ITipA  
RF150  
R150  
1
2
NI  
Load  
15  
Option  
TIP_ext  
1250T  
TIP  
Optional Cap:  
Improves noise  
performance  
Current Limiting Resistors  
for the LineFeed  
Load  
VBAT_REF  
D150  
Load  
Option  
Load  
Load  
Option  
Option  
Option  
P1101SC  
They provide Protection  
during Surge and  
Recommended  
D155  
for Australia  
VBAT_REF  
U151  
PowerCross  
NI  
4
5
K2  
K2  
C108  
NI  
3
NC  
0.01uF  
200V  
1
8
BAV23A  
NI  
K1  
K1  
D151  
P1101SC  
D152  
P1101CA2  
TISP61089BDR  
NI  
RF151  
1250T  
R151  
15  
1
2
NI  
Load  
RING_ext  
Option  
RING  
J151  
PROTECTION LOAD OPTIONS  
Long Loop >500ft  
RT151  
PTC  
1
2
Short Loop  
< 500ft  
IRngA  
Load  
Option  
Option 1: (Recommended)  
Option 1: VBAT  
< 95V  
Ux51: BOURNS TISP61089BDR  
Dx50, Dx51: Littelfuse P1101SC  
RFx50, RFx51: Littelfuse F1250T  
RTx50, RTx51: BOURNS MF-SM013/250 PPTC  
Rx55, Rx56, Cx50  
Option 2: VBAT <95V  
Dx52: LittelFuse P1101CA2  
RFx50, RFx51: Littelfuse F1250T  
Option 3:  
Ux51: ST LCP1521S  
RFx50, RFx51: BOURNS B0500T  
Rx55, Rx56, Cx50  
VBAT  
LAYOUT NOTES  
VBAT  
----------------------------  
1) Place Cx50 as close as possible to pin  
G
(pin 2) of Ux50 and pin -Vref (pin 2) of Ux51.  
2) OverLay the pads of RTX50 and RFX50. Also RTX51 and RFX51  
3) Connect K1 pins of Ux51 together under package.  
4) Connect K2 pins of Ux51 together under package.  
5) Dual layout Ux51 for TISP61089HDM  
EGND  
6) Tip and Ring Traces should be 20mil from the connector to the line feed.  
a very low impedance path to Chassis GND. This GND will experiance >100A surges.  
7) Protection GND should be be  
Figure 16. Protection (A)  
VBAT_REF  
VBAT_REF  
VBAT  
VBAT_REF  
R256  
0
This Connection Forces VBAT_REF  
to be local to this page  
D254  
C250  
0.22uF  
NI D253  
ES1D  
140V  
NI  
RT250  
PTC  
J250  
Load  
1
2
Option  
ITipB  
RF250  
R250  
1
2
NI  
Load  
15  
Option  
TIP_ext  
1250T  
TIP  
Optional Cap:  
Improves noise  
performance  
Current Limiting Resistors  
for the LineFeed  
Load  
VBAT_REF  
D250  
Load  
Option  
Load  
Load  
Option  
Option  
Option  
P1101SC  
They provide Protection  
during Surge and  
Recommended  
D255  
for Australia  
VBAT_REF  
U251  
PowerCross  
NI  
4
5
K2  
K2  
C208  
NI  
3
NC  
0.01uF  
200V  
1
8
BAV23A  
NI  
K1  
K1  
D251  
P1101SC  
D252  
P1101CA2  
TISP61089BDR  
NI  
RF251  
1250T  
R251  
15  
1
2
NI  
Load  
RING_ext  
Option  
RING  
J251  
PROTECTION LOAD OPTIONS  
Long Loop >500ft  
RT251  
PTC  
1
2
Short Loop  
< 500ft  
IRngB  
Load  
Option  
Option 1: (Recommended)  
Option 1: VBAT  
< 95V  
Ux51: BOURNS TISP61089BDR  
Dx50, Dx51: Littelfuse P1101SC  
RFx50, RFx51: Littelfuse F1250T  
RTx50, RTx51: BOURNS MF-SM013/250 PPTC  
Rx55, Rx56, Cx50  
Option 2: VBAT <95V  
Dx52: LittelFuse P1101CA2  
RFx50, RFx51: Littelfuse F1250T  
Option 3:  
Ux51: ST LCP1521S  
RFx50, RFx51: BOURNS B0500T  
Rx55, Rx56, Cx50  
VBAT  
LAYOUT NOTES  
VBAT  
----------------------------  
1) Place Cx50 as close as possible to pin  
G
(pin 2) of Ux50 and pin -Vref (pin 2) of Ux51.  
2) OverLay the pads of RTX50 and RFX50. Also RTX51 and RFX51  
3) Connect K1 pins of Ux51 together under package.  
4) Connect K2 pins of Ux51 together under package.  
5) Dual layout Ux51 for TISP61089HDM  
EGND  
6) Tip and Ring Traces should be 20mil from the connector to the line feed.  
7) Protection GND should be be  
a very low impedance path to Chassis GND. This GND will experiance >100A surges.  
Figure 17. Protection (B)  
Rev. 1.2  
23  
Si3226/27 +  
Si3208/09  
V D D  
1 4  
3 4  
3 7  
3 8  
3 9  
3 2  
I C  
I C  
I C  
N D D G  
1 8  
A G N D  
3 6  
V B A T a  
V B A T b  
_ 1  
_ 2  
V B A T  
V B A T  
24  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
3. Bill of Materials  
Table 12. Si3226/7 Bill of Materials  
Qty  
1
Reference  
C3  
Value  
10uF  
Rating  
Volt  
6.3V  
50V  
25V  
50V  
-95V  
Tol  
±20%  
±0.25pF  
±20%  
±20%  
Type  
X5R  
PCB Footprint  
C0603  
Mfr Part #  
Mfr  
C0603X5R6R3-106M  
C0402HQN500-5R6C  
C1210X7R250-106M  
C0402X7R500-471M  
P1101SCL  
Venkel  
Venkel  
Venkel  
Venkel  
Littelfuse  
2
C109 C110  
C120 C220  
C128 C228  
5.6pF  
NPO  
C0402  
2
10uF  
X7R  
C1210  
2
470pF  
P1101SC  
X7R  
C0402  
4
D150 D151  
D250 D251  
Thyristors  
DO-214AA  
2
2
2
D152 D252 P1101CA2  
-95V  
200V  
140V  
Thyristors  
Single  
DO-214AA-3  
DO-214AC  
DO-35  
P1101CA2L  
ES1D  
Littelfuse  
D153 D253  
D154 D254  
ES1D  
140V  
1.0A  
Diodes Inc.  
500mW  
Zener  
1N5275B  
Micro Com-  
mercial Co  
2
2
D155 D255  
BAV23A  
400mA  
5.5A  
200V  
200V  
DUAL  
Nchan  
SOT23-KKA  
DPAK-G2SD  
BAV23A  
Diodes Inc.  
Fairchild  
Q120B  
Q220B  
FQD7N20  
L
FQD7N20L  
4
RF150RF151  
RF250 RF251  
1250T  
1.25A  
600V  
TelCom  
FUSE-F1250T  
F1250T  
Littelfuse  
3
5
R4 R5 R6  
0
1A  
ThickFilm  
ThickFilm  
R0402  
R0402  
CR0402-16W-000  
CR0402-16W-103J  
Venkel  
Venkel  
R15 R16 R20  
R21 R22  
10K  
1/16W  
±5%  
±5%  
2
2
3
R136 R236  
R137 R237  
0
2A  
ThickFilm  
ThickFilm  
Loop  
R1206  
R1206  
CR1206-4W-000  
CR1206-4W-150J  
151-201-RC  
Venkel  
Venkel  
15  
1/4W  
TP14 TP20  
TP21  
WHITE  
TESTPOINT  
Kobiconn  
4
TP15 TP16  
TP18 TP19  
BLACK  
Loop  
TESTPOINT  
151-203-RC  
Kobiconn  
2
2
8
U152 U252 LCP1521S  
-150V  
6.3V  
10V  
SLIC  
X5R  
X7R  
SO8N6.0P1.27  
C0603  
LCP1521S  
ST  
C1 C6  
10uF  
±20%  
±10%  
C0603X5R6R3-106M  
C0402X7R100-104K  
Venkel  
Venkel  
C2 C4 C5 C7  
C60 C100  
0.1uF  
C0402  
C107 C200  
1
C8  
4.7nF  
16V  
±10%  
±10%  
X7R  
X7R  
C0402  
C0805  
C0402X7R160-472K  
C0805X7R201-103K  
Venkel  
Venkel  
10  
C101 C102  
C103 C104  
C108 C201  
C202 C203  
C204 C208  
0.01uF  
200V  
6
C105 C122  
C132 C205  
C222 C232  
0.1uF  
200V  
±20%  
X7R  
C1206  
C1206X7R201-104M  
Venkel  
Rev. 1.2  
25  
Si3226/27 +  
Si3208/09  
Table 12. Si3226/7 Bill of Materials  
Qty  
2
Reference  
Value  
100pF  
0.1uF  
Rating  
Volt  
6V  
Tol  
Type  
X7R  
X7R  
PCB Footprint  
C0402  
Mfr Part #  
Mfr  
C111 C211  
±10%  
±10%  
C0402X7R6R0-101K  
C0603X7R250-104K  
Venkel  
Venkel  
4
C121 C126  
C221 C226  
25V  
C0603  
8
C123 C124  
C125 C150  
C223 C224  
C225 C250  
0.22uF  
250V  
±20%  
X7R  
C1812  
C1812X7R251-224M  
Venkel  
2
1
2
2
2
4
C127 C227  
C130  
470pF  
220uF  
10uF  
50V  
25V  
±20%  
±20%  
±20%  
±5%  
X7R  
C0402  
C0402X7R500-471M  
EEUFC1E221  
Venkel  
Panasonic  
Nichicon  
Venkel  
555mA  
1.0A  
Alum_Elec C3.5X8MM-RAD  
C131 C231  
C133 C233  
D120 D220  
200V  
200V  
300V  
Alum_Elec  
COG  
C5X10MM-RAD  
C0805  
UVZ2D100MPD  
C0805C0G201-680J  
ES1F  
68pF  
ES1F  
Single  
DO-214AC  
Fairchild  
Samtec  
JS1 JS4 JS5  
JS6  
CONN  
SOCKET  
5x2  
Socket  
CONN2X5-SSQ  
SSQ-105-24-F-D  
1
JS2  
CONN  
SOCKET  
2x2/SM  
Socket  
Header  
CONN-2X2-SSM  
CONN-2X2-TSM  
SSM-102-L-DV  
Samtec  
Samtec  
1
2
JS3  
HEADER  
2x2/SM  
TSM-102-02-T-DV  
J1 J2  
RJ-11  
RJ-11  
RJ11-6-SMT  
CONN-1X2  
5555077-2  
AMP  
11 J5 J123 J124 JUMPER  
J125 J150  
Header  
TSW-102-07-T-S  
Samtec  
J151 J223  
J224 J225  
J250 J251  
2
2
Q120 Q220  
FQT7N10  
1.7A  
100V  
40V  
Nchan  
PNP  
SOT223-GDS  
SOT23-BEC  
FQT7N10  
Fairchild  
Q121 Q221 MMBT390 200mA  
6-7-F  
MMBT3906-7-F  
Diodes Inc.  
2
2
Q122 Q222  
BSS138  
200mA  
50V  
40V  
Nchan  
NPN  
SOT23-GSD  
SOT23-BEC  
BSS138  
Zetex  
Q123 Q223 MMBT390 200mA  
4
MMBT3904  
Fairchild  
4
RT150RT151  
RT250 RT251  
PTC  
3A  
250V  
TelCom  
PTC-MF-SM013  
MF-SM013/250-2  
Bourns  
1
6
R2  
49.9K  
0
1/16W  
1A  
±0.5%  
±1%  
ThickFilm  
ThickFilm  
R0603  
R0402  
CR0603-16W-4992D  
CR0402-16W-000  
Venkel  
Venkel  
R3 R7 R8  
R64 R124  
R224  
3
R11 R121  
R221  
0.1  
1/2W  
ThickFilm  
R1210  
LCR1210-R100F  
Venkel  
26  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 12. Si3226/7 Bill of Materials  
Qty  
Reference  
Value  
Rating  
Volt  
Tol  
Type  
PCB Footprint  
Mfr Part #  
Mfr  
5
R13 R19 R60  
R61 R62  
10K  
1/16W  
±5%  
ThickFilm  
R0402  
CR0402-16W-103J  
Venkel  
1
2
6
R17  
137K  
825K  
681K  
1/16W  
1/10W  
1/10W  
±1%  
±1%  
±1%  
ThickFilm  
ThickFilm  
ThickFilm  
R0402  
R0805  
R0805  
CR0402-16W-1373F  
CR0805-10W-8253F  
CR0805-10W-6813F  
Venkel  
Venkel  
Venkel  
R100 R200  
R101 R102  
R125 R201  
R202 R225  
4
R103 R104  
R203 R204  
301K  
1/16W  
±1%  
ThickFilm  
R0603  
CR0603-16W-3013F  
Venkel  
2
4
R105 R205  
590K  
1/10W  
1/8W  
±1%  
±1%  
ThickFilm  
ThickFilm  
R0805  
R1206  
CR0805-10W-5903F  
CR1206-8W-1474F  
Venkel  
Venkel  
R106 R107  
R206 R207  
1.47M  
4
R108 R109  
R208 R209  
110K  
1/16W  
±1%  
±1%  
ThickFilm  
R0402  
CR0402-16W-1103F  
Venkel  
2
5
R110 R210  
0
2A  
ThickFilm  
ThickFilm  
R0805  
R0805  
CR0805-10W-000  
Venkel  
Venkel  
R111 R150  
R151 R250  
R251  
15  
1/10W  
CR0805-10W-15R0F  
2
2
2
2
2
4
R122 R222  
R123 R223  
R126 R226  
R130 R230  
R132 R232  
5.11  
220  
68K  
150  
0.05  
0
1/10W  
1/16W  
1/16W  
1/4W  
1/2W  
2A  
±1%  
±5%  
±1%  
±1%  
±1%  
ThickFilm  
ThickFilm  
ThickFilm  
ThickFilm  
ThickFilm  
ThickFilm  
R0805  
R0402  
R0402  
R1206  
R1210  
R1206  
CR0805-10W-5R11F  
CR0402-16W-221J  
CR0402-16W-6802F  
CR1206-4W-1500F  
LCR1210-R050F  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
R138 R156  
R238 R256  
CR1206-4W-000  
6
TP1 TP2 TP3  
TP4 TP9  
TP10  
WHITE  
Loop  
TESTPOINT  
151-201-RC  
Kobiconn  
1
2
1
TP17  
T120 T220  
U1  
BLACK  
8uH  
Loop  
SLIC  
TESTPOINT  
151-203-RC  
UTB01701s  
Si3227-D-FQ  
Kobiconn  
UMEC  
5A, 25W  
XFMR-UTB01701s  
Si3227  
3.3V  
QFP64N12X12P0.  
5
SiLabs  
1
1
U60  
AT25010A  
5V  
Serial  
SLIC  
SO8N6.0P1.27  
AT25010A  
ATMEL  
SiLabs  
U100  
Si3209/  
QFN40  
–135V  
QFN40N6X6P0.5  
Si3209-B-FM  
2
U151 U251  
TISP6108  
9BDR  
–150V  
SLIC  
SO8N6.0P1.27  
TISP61089BDR  
Bourns  
Rev. 1.2  
27  
Si3226/27 +  
Si3208/09  
4. Functional Description  
Si3208/09  
Si3226/27  
SLIC  
Linefeed  
Control  
CODEC  
PCM/  
GCI  
Interface  
FSYNC  
DTMF &  
Tone Gen  
DRX  
DTX  
TIP  
ADC  
Channel 1  
RING  
Caller ID  
Linefeed  
Monitor  
CS  
SDI  
DAC  
SPI  
Control  
Interface  
Ringing  
Generator  
SDO  
SCLK  
INT  
SLIC  
Linefeed  
Control  
CODEC  
DSP  
TIP  
Line Diagnostics  
ADC  
RST  
Channel 2  
RING  
Linefeed  
Monitor  
DAC  
PCLK  
DC-DC Controllers  
PLL  
VBAT  
DC-DC BOM  
VDC  
®
The Dual ProSLIC chipset includes the Si3226/27 low- The linefeed ICs (Si3208/09) provide programmable on-  
voltage IC and the Si3208/09 high-voltage linefeed IC. hook voltage, programmable off-hook loop current,  
The Dual ProSLIC provides all SLIC, codec, DTMF reverse battery operation, loop or ground start  
detection, and signal generation functions needed for operation, and on-hook transmission. Loop current and  
two complete analog telephone interfaces. The Dual voltage are continuously monitored using an A/D  
ProSLIC performs all battery, over-voltage, ringing, converter in the Si3226/27. The Si3208 supports battery  
supervision, codec, hybrid, and test (BORSCHT) voltages up to 110 V, sufficient for most ringing signals.  
functions; it also supports extensive metallic loop testing The Si3209 supports battery voltages up to 135 V for  
capabilities.  
higher-voltage ringing applications.  
The Si3226 provides a standard voice-band (200 Hz– The Dual ProSLIC supports balanced 5 REN ringing  
3.4 kHz) audio codec. The Si3227 provides an audio with or without a programmable dc offset. The available  
codec with both wideband (50 Hz–7 kHz) and standard offset, frequency, waveshape, and cadence options are  
voice-band (200 Hz–3.4 kHz) modes. The wideband designed to ring the widest variety of terminal devices  
mode provides an expanded audio band with a 16 kHz and to reduce external controller requirements.  
sample rate for enhanced audio quality while the  
A complete audio transmit and receive path is  
standard voice-band mode provides standard telephony  
integrated, including ac impedance and hybrid gain.  
audio. The Si3226/27 provides two independent,  
These features are software-programmable, allowing a  
programmable, dc-dc converter controllers, each of  
single hardware design to meet global requirements.  
which reacts to line conditions to provide the optimal  
Digital voice data transfer occurs over a standard PCM  
battery voltage required for each line-state.  
bus. Control data is transferred using a standard SPI.  
The Si3226/27 is available in a 64-pin TQFP; the  
Si3208/09 are available in a 40-pin QFN.  
28  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
4.1. DC Feed Characteristics  
4.4. Power Monitoring and Power Fault  
Detection  
Dual ProSLIC internal linefeed circuitry provides  
completely programmable dc feed characteristics.  
Linefeed characteristics for each channel are  
independently configurable.  
The Dual ProSLIC's line monitoring functions are used  
to continuously protect the linefeed IC (LFIC) against  
excessive power conditions. The LFIC contains an on-  
chip, analog sensing diode that provides real-time  
temperature data to the Si3226/27 and turns off the  
LFIC when a preset threshold is exceeded. The LFIC  
status is reflected in a Si3226/27 register bit.  
When in the active state, each ProSLIC channel  
operates in one of three dc linefeed operating regions: a  
constant-voltage region, a constant-current region, or a  
resistive region, as shown in Figure 19. The constant-  
voltage region has a low resistance, typically 160 .  
The constant-current region approximates infinite  
resistance.  
If the Si3226/27 detects a fault condition or overpower  
condition on any channel, it automatically sets that  
channel to the open state and generates a "power  
alarm" interrupt. The interrupt can be masked, but the  
automatic transition to open is not recommended to be  
masked. The various power alarms and linefeed faults  
supporting automatic intervention are described below.  
I_ILIM  
I_RFEED  
I_VLIM  
ILOOP (mA)  
1. LFIC total power exceeded.  
2. Excessive foreign current or voltage on TIP and/or  
RING.  
3. LFIC thermal shutdown event; this event is  
automatically performed, and no intervention by the  
V_ILIM  
4. Si3226/27 is required.  
Resistive Region  
V_RFEED  
V_VLIM  
4.5. Thermal Overload Shutdown  
Constant V Region  
If the LFIC die temperature exceeds the programmed  
junction temperature threshold, the LFIC will go to an  
open state without any assistance from the Si3226/27.  
VTR(V)  
Figure 19. Dual ProSLIC DC Feed  
Characteristics  
4.2. Linefeed Operating States  
The linefeed interface includes eight different register-  
programmable operating states as listed in Table 13.  
The Open state is the default condition in the absence  
of any preloaded register settings. The device may also  
automatically enter the open state in the event of a  
linefeed fault condition.  
4.3. Line Voltage and Current Monitoring  
The Dual ProSLIC continuously monitors the TIP, RING,  
and battery voltages and currents via an on-chip ADC  
and stores the resulting values in individual register  
addresses. Additionally, the loop voltage (V –V  
),  
TIP  
RING  
loop current, and longitudinal current values are  
calculated based on the TIP and RING measurements  
and are stored in unique register locations for further  
processing. The ADC updates all registers at a rate of  
2 kHz or greater.  
Rev. 1.2  
29  
Si3226/27 +  
Si3208/09  
Table 13. Linefeed Operating States  
Description  
Linefeed State  
Open  
Output is high-impedance, and all line supervision functions are powered down. Audio is  
powered down. This is the default state after powerup or following a hardware reset. This  
state can also be used in the presence of line fault conditions and to generate open switch  
intervals (OSIs). This state is used in line diagnostics mode as a high-Z state during line-  
feed testing. A power fault condition may also force the device into the open state.  
Forward Active  
Reverse Active  
Linefeed circuitry and audio are active. In Forward Active state, the TIP lead is more posi-  
tive than the RING lead; in Reverse Active state, the RING lead is more positive than the  
TIP lead. Loop closure and ground key detect circuitry are active.  
Forward OHT  
Reverse OHT  
Provides data transmission during an on-hook loop condition (e.g., transmitting caller ID  
data between ringing bursts). Linefeed circuitry and audio are active. In Forward OHT  
state, the TIP lead is more positive than the RING lead; in Reverse OHT state, the RING  
lead is more positive than the TIP lead.  
TIP Open  
Provides an active linefeed on the RING lead and sets the TIP lead to high impedance  
(>400 k) for ground start operation in forward polarity. Loop closure and ground key  
detect circuitry are active.  
RING Open  
Provides an active linefeed on the TIP lead and sets the RING lead to high impedance  
(>400 k) for ground start operation in reverse polarity. Loop closure and ground key  
detect circuitry are active.  
Ringing  
Drives programmable ringing signal onto TIP and RING leads with or without dc offset.  
Line Diagnostics  
The channel selected is put into diagnostic mode. In this mode, the selected channel has  
special diagnostic resources available.  
30  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
4.6. Power Dissipation Considerations  
4.10. Polarity Reversal  
The Dual ProSLIC is designed to source loops up to The Dual ProSLIC supports polarity reversal for  
20 kft as well as short loop applications. The LFIC message waiting and various other signaling modes.  
provides all battery sourcing functions and is, therefore, The ramp rate can be programmed for a smooth or  
the determining factor regarding power dissipation in a abrupt transition to accommodate different application  
specific application. The Dual ProSLIC provides an on- requirements.  
chip dc-dc controller that can dynamically reduce the  
battery supply to ideally match the required line feed  
4.11. Two-Wire Impedance Synthesis  
voltage.  
The ac two-wire impedance synthesis is generated on-  
chip using a DSP-based scheme to optimally match the  
output impedance of the Dual ProSLIC to the  
4.7. Loop Closure Detection  
The Dual ProSLIC provides a completely programmable impedance of the subscriber loop and minimize the  
loop closure detection mechanism. The loop closure receive path signal reflected back onto the transmit  
detection scheme provides two unique thresholds to path. Most real or complex two-wire impedances can be  
allow hysteresis, and also includes a programmable generated by using the coefficient generator software to  
debounce filter to eliminate false detection. A loop simulate the desired line conditions and generate the  
closure detect status bit provides continuous status, and required register coefficients.  
a maskable interrupt bit is also provided.  
4.12. Transhybrid Balance Filter  
4.8. Ground Key Detection  
The transhybrid balance function is implemented on-  
The Dual ProSLIC provides a ground key detect chip using a DSP-based scheme to effectively cancel  
mechanism using a programmable architecture similar the reflected receive path signal from the transmit path.  
to the loop closure scheme. The ground key detect The coefficient generator software is used to optimize  
scheme provides two unique thresholds to allow the filter coefficients.  
hysteresis and also includes a programmable debounce  
filter to eliminate false detection. A ground key detect  
4.13. Tone Generators  
status bit provides continuous status, and a maskable The Dual ProSLIC includes two digital tone generators  
interrupt bit is also provided.  
that allow a wide variety of single- or dual-tone  
frequency and amplitude combinations. Each tone  
generator has its own set of registers that hold the  
4.9. Ringing Generation  
The Dual ProSLIC provides the ability to generate a desired frequency, amplitude, and cadence to allow  
programmable sinusoidal or trapezoidal ringing generation of DTMF and call progress tones for different  
waveform, with or without dc offset. The ringing requirements. The tones can be directed to either  
frequency, wave shape, cadence, and offset are all receive or transmit paths.  
register-programmable. Using  
scheme, the ringing signal is applied to both the TIP and  
a
balanced ringing  
4.14. DTMF Detection  
RING leads using dual ringing waveforms that are 180° In DTMF, two tones generate a DTMF digit. One tone is  
out of phase with each other. The resulting ringing chosen from the four possible row tones, and one tone  
signal seen across TIP-RING is twice the amplitude of is chosen from the four possible column tones. The sum  
the ringing waveform on either the TIP or RING lead, of these tones constitutes one of 16 possible DTMF  
which allows the ringing circuitry to be forced to digits. The Dual ProSLIC performs DTMF detection  
withstand only half the total ringing amplitude seen using an algorithm to compute the DFT for each of the  
across TIP-RING.  
eight DTMF frequencies and their second harmonics. At  
the end of the DFT computation, the squared  
magnitudes of the DFT results for the 8 DTMF  
fundamental tones are computed. The row and column  
results are sorted to determine the strongest tones, and  
checks are made to determine if the strongest row and  
column tones constitute a DTMF digit.  
Rev. 1.2  
31  
Si3226/27 +  
Si3208/09  
4.15. DC-DC Controller  
4.19. General Circuit Interface  
The controller operates a dc-dc converter circuit that The  
Dual  
ProSLIC  
supports  
an  
alternative  
converts a single positive dc input voltage into an communication interface to the SPI and PCM control  
independent negative battery voltage for each channel. and data interface. The General Circuit Interface (GCI)  
In addition to eliminating external high-voltage power is used for transmission and reception of both control  
supplies, the dc-dc controller allows the Dual ProSLIC and data information onto a GCI bus. The PCM and GCI  
to dynamically control the battery voltage to the interfaces are both 4-wire interfaces and share the  
minimum required for any given operating state same pins. In GCI mode, the four-wire SPI control  
according to the programmed linefeed parameters.  
interface is used as hard-wired channel selector pins.  
The selection between PCM and GCI modes is  
performed when coming out of reset using the  
4.16. Wideband Audio  
The Si3226 supports a narrowband (200 Hz–3.4 kHz) SDITHRU pin.  
audio codec. The Si3227 supports software-  
selectable wideband (50 Hz–7 kHz) and narrowband  
a
4.20. Metallic Loop Testing  
(200 Hz–3.4 kHz) audio codec. The Si3227 wideband The Dual ProSLIC includes the ability to detect multiple  
mode provides an expanded audio band at a 16-bit, fault conditions within the line card as well as on the T/R  
16 kHz sample rate for enhanced audio quality while pair.  
maintaining standard telephony audio compatibility. In  
wideband operation, two time slots are used to transmit  
the wideband signal and each slot contains 8-bits of the  
16-bit sample. These two time slots are transmitted and  
received half a frame apart, but within the same 8 kHz  
frame.  
1. Hazardous Potential Test—This test checks for ac  
voltage >50 V  
or dc voltage >135 V on T-G or R-  
rms  
G. If a hazardous voltage is encountered, test access  
MUST release within two seconds of the time when it  
was initiated using a preset threshold.  
2. Foreign ElectroMotive Force Test—Checks T-G or  
R-G for ac voltage >10 V , dc voltage >6 V. Uses  
same threshold as for hazardous voltage test.  
4.17. SPI Control Interface  
rms  
The controller interface to the Dual ProSLIC is a 4-wire  
interface modeled after microcontroller and serial  
peripheral devices. The interface consists of a clock  
(SCLK), chip select (CS), serial data input (SDI), and  
3. Resistive Faults Test—Checks for dc resistance from  
T-R, T-G or R-G. Any measurement <150 kis  
considered a resistive fault.  
serial data output (SDO). In addition, the Dual ProSLIC 4. Receiver-Off-Hook Test—Distinguishes between a  
devices feature a serial data through output (SDITHRU)  
to support operation of up to 16 devices (up to 32  
channels) using a single chip select line. The device  
operates with both 8-bit and 16-bit SPI controllers.  
T-R resistive fault and an off-hook condition.  
5. Ringers Test—Checks for the presence of REN  
across T-R. Result are >0.175REN and <5REN for a  
valid load.  
4.18. PCM Interface and Companding  
The Dual ProSLIC contains a flexible, programmable  
6. Ringing Voltage Verification—Uses current voltage  
sensing capability.  
interface for the transmission and reception of digital 7. Test-In Diagnostics—The Dual ProSLIC can switch  
PCM samples. PCM data transfer is controlled by the  
PCM clock (PCLK) and frame sync (FSYNC) inputs as  
well as the PCM Mode Select, PCM Transmit Start, and  
PCM Receive Start settings.  
in a preset load impedance to test the SLIC/codec  
functionality using a known set of conditions.  
The interface can be configured to support from 8 to  
128 8-bit time slots in each 125 µs frame,  
corresponding to a PCM clock (PCLK) frequency range  
of 512 kHz to 8.192 MHz. 1.544 MHz is also supported.  
The Dual ProSLIC supports both µ-255 Law (µ-Law)  
and A-law companding formats in addition to 16-bit  
linear data mode with no companding.  
32  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
5. Pin Descriptions: Si3226/27  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
HVCLKb  
PCLK  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
DRINGb  
URINGb  
DTIPb  
UTIPb  
IBIASb  
CAPLB  
IREF  
VDDD  
GNDD  
DCFFb  
SDCHb  
SDCLb  
DCDRVb  
VDDC  
Si3226/27  
64-Lead TQFP  
Top VIew  
QGND  
GNDA  
VDDA  
DCDRVa  
SDCLa  
SDCHa  
DCFFa  
SDO  
ISNS  
IBIASa  
UTIPa  
DTIPa  
URINGa  
DRINGa  
SDITHRU  
HVDATA  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Rev. 1.2  
33  
Si3226/27 +  
Si3208/09  
Table 14. Si3226/27 Pin Descriptions  
Pin #  
Symbol  
Description  
1
2
SRINGDCa  
SRINGACa  
STIPACa  
RING DC Sense Input.  
RING AC Sense Input.  
3
TIP AC Sense Input.  
4
STIPDCa  
CAPPa  
TIP DC Sense Input.  
5
Metallic Loop Filter Capacitor-Positive Terminal.  
Metallic Loop Filter Capacitor-Negative Terminal.  
Battery Sensing Input.  
6
CAPMa  
7
SVBATa  
8
SVDC  
DC-DC Input Power Rail Sensor.  
General Purpose I/O / Power Offloading Output.  
9
GPIO3a / PWROa  
10  
GPIO2a / SRINGCa /  
TRD2a  
5 V tolerant I/O  
General Purpose I/O / RING Coarse Sense Input / Test Relay  
Driver.  
11  
GPIO1a / STIPCa / TRD1a  
5 V tolerant I/O  
General Purpose I/O / TIP Coarse Sense Input / Test Relay  
Driver.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CS  
Chip Select Input.  
FSYNC  
SDI  
Frame Sync Clock Input.  
Serial Port Data Input.  
HVCLKa  
SCLK  
Line-Driver IC Clock Output.  
Serial Port Bit Clock Input.  
Line-Driver IC Data Output  
Serial Data Daisy Chain Output.  
Serial Port Data Output.  
HVDATA  
SDITHRU  
SDO  
DCFFa  
SDCHa  
SDCLa  
DCDRVa  
VDDC  
DC Flexible Function I/O A.  
DC-DC Current Monitor Input-High Terminal.  
DC-DC Current Monitor Input-Low Terminal.  
DC-DC Drive Output.  
DC-DC Switch Driver Power Supply.  
DC-DC Drive Output.  
DCDRVb  
SDCLb  
SDCHb  
DCFFb  
GNDD  
VDDD  
DC-DC Current Monitor Input-Low Terminal.  
DC-DC Current Monitor Input-High Terminal.  
DC Flexible Function I/O B  
Digital Ground.  
Digital Supply Voltage.  
PCLK  
PCM Bus Clock Input.  
HVCLKb  
Line-Driver IC Clock Output.  
34  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 14. Si3226/27 Pin Descriptions (Continued)  
Pin #  
Symbol  
Description  
33  
34  
35  
36  
37  
38  
39  
DTXEN  
Transmit PCM Enable Output.  
Transmit PCM Data Output.  
Receive PCM Data Input.  
Interrupt Output.  
DTX  
DRX  
INT  
RST  
Reset Input.  
VDDREG  
Regulated Core Power Supply.  
GPIO1b / STIPCb / TRD1b  
5 V tolerant I/O  
General Purpose I/O / TIP Coarse Sense Input / Test Relay  
Driver.  
40  
GPIO2b / SRINGCb /  
TRD2b  
5 V tolerant I/O  
General Purpose I/O / RING Coarse Sense Input / Test Relay  
Driver.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GPIO3b / PWROb  
SVBATb  
CAPMb  
CAPPb  
STIPDCb  
STIPACb  
SRINGACb  
SRINGDCb  
DRINGb  
URINGb  
DTIPb  
General Purpose I/O / Power Offloading Output.  
Battery Sensing Input.  
Differential Loop Filter Capacitor-Negative Term.  
Differential Loop Filter Capacitor-Positive Term.  
TIP DC Sense Input.  
TIP AC Sense Input.  
RING AC Sense Input.  
RING DC Sense Input.  
RING Pull-Down Current Driver Output.  
RING Pull-Up Current Driver Output.  
TIP Pull-Down Current Driver Output.  
TIP Pull-Up Current Driver Output.  
Line Driver IC Bias Current Output.  
Longitudinal Balance Calibration Capacitor.  
Current Reference Input.  
UTIPb  
IBIASb  
CAPLB  
IREF  
QGND  
Quiet Ground Reference Input.  
Analog Ground.  
GNDA  
VDDA  
Analog Supply Voltage.  
ISNS  
Line Current Sense Input.  
IBIASa  
Line Driver IC Bias Current Output.  
TIP Pull-Up Current Driver Output.  
TIP Pull-Down Current Driver Output.  
RING Pull-Up Current Driver Output.  
RING Pull-Down Current Driver Output.  
UTIPa  
DTIPa  
URINGa  
DRINGa  
Rev. 1.2  
35  
Si3226/27 +  
Si3208/09  
6. Pin Descriptions: Si3226/27 + Si3208/09  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
IC  
NC  
IC  
NC  
3
RING_1  
NC  
RING_2  
NC  
Si3208/09  
4
40-Lead QFN  
(epad)  
5
TIP_2  
NC  
TIP_1  
NC  
6
7
Top View  
IC  
IC  
8
IRINGN_2  
IRINGP_2  
ITIPN_2  
IRINGN_1  
IRINGP_1  
ITIPN_1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Table 15. Si3208/09 Pin Descriptions  
QFN Pin #  
Symbol  
IC  
Description  
1
2
Internal connection; leave unbiased.  
No Connect. Leave unbiased.  
Ring Channel 1 Input/Output.  
No Connect. Leave unbiased.  
Tip Channel 1 Input/Output.  
NC  
3
RING_1  
NC  
4
5
TIP_1  
NC  
6
No Connect. Leave unbiased.  
Internal connection; leave unbiased.  
7
IC  
8
IRINGN_1  
IRINGP_1  
ITIPN_1  
ITIPP_1  
IBIAS_1  
ISNS  
Negative Ring Current Control Channel 1 Input.  
Positive Ring Current Control Channel 1 Input.  
Negative Tip Current Control Channel 1 Input.  
Positive Tip Current Control Channel 1 Input.  
Current Bias Channel 1 Input.  
9
10  
11  
12  
13  
Current Sense Output.  
36  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Table 15. Si3208/09 Pin Descriptions (Continued)  
QFN Pin #  
14  
Symbol  
Description  
VDD  
HVCLK_1  
HVDATA  
HVCLK_2  
DGND  
IBIAS_2  
ITIPP_2  
ITIPN_2  
IRINGP_2  
IRINGN_2  
IC  
IC Supply Voltage Input.  
15  
High-Voltage IC Clock Channel 1 Input.  
High-Voltage IC Data Input/Output.  
High-Voltage IC Clock Channel 2 Input.  
Digital Ground.  
16  
17  
18  
19  
Current Bias Channel 2 Input.  
20  
Positive Tip Current Control Channel 1 Input.  
Negative Tip Current Control Channel 2 Input.  
Positive Ring Current Control Channel 2 Input.  
21  
22  
23  
Negative Ring Current Control Channel 2 Input.  
Internal connection; leave unbiased.  
No Connect. Leave unbiased.  
24  
25  
NC  
26  
TIP_2  
NC  
Tip Channel 2 Input/Output.  
27  
No Connect. Leave unbiased.  
28  
RING_2  
NC  
Ring Channel 2 Input/Output.  
29  
No Connect. Leave unbiased.  
30  
IC  
Internal connection; leave unbiased.  
Internal connection; leave unbiased.  
Operating Battery Voltage Channel 2 Input.  
No Connect. Leave unbiased.  
31  
IC  
32  
VBAT_2  
NC  
33  
34  
IC  
Internal connection; leave unbiased.  
No Connect. Leave unbiased.  
35  
NC  
36  
AGND  
IC  
Analog Ground.  
37  
Internal connection; leave unbiased.  
Internal connection; leave unbiased.  
Operating Battery Voltage Channel 1 Input.  
Internal connection; leave unbiased.  
38  
IC  
39  
VBAT_1  
IC  
40  
epad  
Exposed Die Attach Paddle.  
For adequate thermal management, the exposed die paddle should be  
soldered to a printed circuit board pad that is connected to an electri-  
cally-isolated low-impedance inner layer and/or backside thermal  
plane(s) using multiple thermal vias. Do not connect this pad to ground.  
Rev. 1.2  
37  
Si3226/27 +  
Si3208/09  
7. Ordering Guide  
1
2
Description  
Temperature  
Range  
Part Number  
Package  
Si3226-E-FQ  
Si3226-E-GQ  
Si3227-E-FQ  
Si3227-E-GQ  
Si3208-B-FM  
Si3208-B-GM  
Si3209-B-FM  
Si3209-B-GM  
Notes:  
Dual ProSLIC  
Dual ProSLIC  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
0 to 70C  
–40 to 85C  
0 to 70C  
Dual ProSLIC, wideband  
Dual ProSLIC, wideband  
–110 V line-feed IC  
–110 V line-feed IC  
–135 V line-feed IC  
–135 V line-feed IC  
–40 to 85C  
0 to 70C  
–40 to 85C  
0 to 70C  
–40 to 85C  
1. Adding the suffix “R” to the end of the part number (e.g., Si3226-E-FQR) denotes tape-and-reel packaging.  
2. All packages are RoHS-compliant.  
38  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
8. Product Identification  
The product identification number is a finished goods part number or is specified by a finished goods part number,  
such as a special customer part number.  
Example:  
Si3227-E-FQR  
Shipping Option  
Blank = Trays  
Product Designator  
R = Tape and Reel  
Product Revision  
Package Type  
Q = TQFP-64  
Part Type / Lead Finish  
F = Commercial / RoHS-Compliant  
G = Industrial / RoHS-Compliant  
Si3208-B-FMR  
Shipping Option  
Blank = Trays  
R = Tape and Reel  
Product Designator  
Product Revision  
Package Type  
M = QFN-40  
Part Type / Lead Finish  
F = Commercial / RoHS-Compliant  
G = Industrial / RoHS-Compliant  
Rev. 1.2  
39  
Si3226/27 +  
Si3208/09  
9. Package Outline: 64-Pin TQFP  
Figure 20 illustrates the package details for the Si3226/27. Table 16 lists the values for the dimensions shown in  
the illustration.  
Figure 20. 64-pin Thin Quad Flat Package (TQFP)  
Table 16. 64-pin TQFP Dimensions  
Dimension  
Min  
Nom  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
Dimension  
Min  
Nom  
Max  
A
E
E1  
L
12.00 BSC.  
A1  
0.05  
0.95  
0.17  
0.09  
10.00 BSC.  
A2  
1.00  
0.45  
0.60  
0.75  
0.20  
0.20  
0.08  
0.08  
7  
b
0.22  
aaa  
bbb  
ccc  
ddd  
c
D
D1  
12.00 BSC.  
10.00 BSC.  
0.50 BSC.  
e
0  
3.5  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MS-026, variant ACD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
40  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Figure 21. 64-pin TQFP Land Pattern  
Table 17. 64-pin TQFP Land Pattern Dimensions  
Dimension  
MIN  
MAX  
11.40  
11.40  
C1  
C2  
E
11.30  
11.30  
0.50 BSC  
0.20  
X
0.30  
1.50  
Y
1.40  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
Solder Mask Design  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to  
be 60 µm minimum, all the way around the pad.  
Stencil Design  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder  
paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
Card Assembly  
7. A No-Clean, Type-3 solder paste is recommended.  
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.2  
41  
Si3226/27 +  
Si3208/09  
10. Package Outline: 40-Pin QFN  
Figure 22 illustrates the package details for the Si3208/09. Table 18 lists the values for the dimensions shown in  
the illustration.  
Figure 22. 40-pin QFN Package  
Table 18. 40-pin QFN Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Dimension  
Min  
4.00  
0.30  
0.03  
Nom  
4.10  
0.40  
0.05  
Max  
4.20  
0.50  
0.08  
0.10  
0.10  
0.08  
0.10  
A
E2  
L
A1  
0.02  
b
0.25  
L1  
D
6.00 BSC.  
4.10  
aaa  
bbb  
ccc  
ddd  
D2  
4.00  
4.20  
e
E
0.50 BSC.  
6.00 BSC.  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VJJD-2.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for small body components.  
42  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Figure 23. 40-Pin QFN Land Pattern  
Rev. 1.2  
43  
Si3226/27 +  
Si3208/09  
Table 19. 40-pin QFN Land Pattern Dimensions  
Dimension  
MIN  
MAX  
e
0.50 BSC.  
C1  
C2  
X1  
X2  
Y1  
Y2  
5.80  
5.80  
0.15  
4.10  
0.75  
4.10  
5.90  
5.90  
0.25  
4.20  
0.85  
4.20  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication Allowance of  
0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all the  
way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter  
pads.  
9. A 4x4 array of 0.80 mm square openings on 1.05 mm pitch should be used for  
the center ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
44  
Rev. 1.2  
Si3226/27 +  
Si3208/09  
Revision 1.0 to Revision 1.1  
DOCUMENT CHANGE LIST  
Revision 0.2 to Revision 0.32  
Updated Ordering Guide for revision E silicon.  
Updated Maximum Ringing Amplitude values and  
DC Differential Output Resistance in Table 5  
Linefeed Characteristics.  
Added Si3208 and Si3209.  
Removed Si3203, Si3205, and Si3206.  
Added Powerup and Initialization Sequence diagram  
to section 1.  
Added pin-outs and package drawings for Si3208  
and Si3209.  
Added Reset timing diagram to section 1.  
Updated pin-out for Si3226.  
Updated bill of materials.  
Added PCKLK Jitter tolerance to Table 10,  
“Switching Characteristics—PCM Highway  
Interface,” on page 14.  
Updated “2. Typical Application Circuits” and added  
dc-dc converter schematics.  
Added PCKLK Jitter tolerance to Table 11,  
“Switching Characteristics—GCI Highway Serial  
Interface,” on page 15.  
Updated tables.  
Revision 0.32 to Revision 0.33  
Updated the number of devices that can be daisy  
chained in section "4.17. SPI Control Interface‚" on  
page 32.  
Changed package type for Si3208.  
Deleted QFN-32 drawing.  
Updated dc-dc converter schematic.  
Updated bills of materials.  
Added land pattern, solder mask, stencil and card  
assembly guidelines.  
Updated max V  
values.  
BAT  
Updated Application Circuit and Bill of Materials in  
sections 2 and 3.  
Updated thermal shutdown thresholds.  
Updated Si3208/09 pin descriptions.  
Revision 1.1 to Revision 1.2  
Revision 0.33 to Revision 1.0  
Updated schematics in “2. Typical Application  
Circuits”  
Added pin-out diagrams for Si3226/27 and Si3208/  
09  
Updated Bill of Materials in “3. Bill of Materials”.  
Updated schematic and BOM in section “3. Bill of  
Materials”.  
Updated power up sequence diagram in “1.  
Electrical Specifications”  
Updated former Tables 1-9. Removed former Table  
7. See AN317 Section 2.2.1 for DC Feed  
characteristics detail.  
Updated section “4.16. Wideband Audio”  
Added powerdown sequence  
Added Figure 7, “RX Attenuation  
Distortion.”Figure 8, “TX Attenuation  
Distortion.”Figure 9, “Transmit Group Delay  
Distortion.”Figure 10, “Receive Group Delay  
Distortion.”.  
Updated section “4. Functional Description”.  
Updated section “5. Pin Descriptions: Si3226/27”  
and section “6. Pin Descriptions: Si3226/27 +  
Si3208/09”.  
Updated section “9. Package Outline: 64-Pin TQFP”  
and section “10. Package Outline: 40-Pin QFN”.  
Deleted LFIC 48-pin eTQFP and 32-pin QFN  
package references.  
Added REG 73 = 0x0B to Longitudinal test  
conditions  
Rev. 1.2  
45  
Si3226/27 +  
Si3208/09  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ProSLIC are trademarks of Silicon Laboratories Inc.  
Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holders.  
46  
Rev. 1.2  

相关型号:

SI3209-B-GM

暂无描述
SILICON

SI3209-B-GMR

SLIC, ROHS COMPLIANT, MS-220VJJD-2, QFN-40
SILICON

SI3209-C-FM

SLIC, ROHS COMPLIANT, MS-220VJJD-2, QFN-40
SILICON

SI3209-C-FMR

SLIC, ROHS COMPLIANT, MS-220VJJD-2, QFN-40
SILICON

SI3209-C-GMR

暂无描述
SILICON

SI3209-F

Analog Transmission Interface
SILICON

SI3209-G

Analog Transmission Interface
SILICON

SI3209-X-FM

SLIC, ROHS COMPLIANT, MS-220VJJD-2, QFN-40
SILICON

SI3210

Broadband AND Voice Telephony Solutions
SILICON

SI3210-BT

PROSLIC PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
ETC

SI3210-BTR

SLIC, CMOS, PDSO38, TSSOP-38
SILICON

SI3210-E-FM

Perfroms all BORSCHT functions DC-DC controller provides tracking battery fromm a 3.3-35V input
SILICON