SI32170-B-FM1R [SILICON]

Telecom Circuit,;
SI32170-B-FM1R
型号: SI32170-B-FM1R
厂家: SILICON    SILICON
描述:

Telecom Circuit,

电信 电信集成电路
文件: 总64页 (文件大小:1212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3217x  
Si3291x  
PROSLIC® SINGLE-CHIP FXS SOLUTION WITH FXO OPTION  
Si3217x Features  
Performs all BORSCHT functions  
Ideal for short to medium loops  
Global programmability  
Tracking dc-dc controller  
Patented low-power ringing  
Wideband voice support  
Simplified configuration and diagnosticsDTMF detection  
Supported by ProSLIC API  
Low power standby operation  
Pulse metering  
3.3 V operation  
Pb-free/RoHS-compliant packaging  
Si3291x Features  
Greater than 5 kV isolation  
Global programmability  
Up to +6 dBm TX/RX level  
Parallel handset detection  
Type I and II caller ID support  
Integrated ring detector  
Programmable digital hybrid  
Applications  
Ordering Information  
See page 48.  
Customer Premise Equipment (CPE)  
VoIP DSL Gateways and Routers  
Wireless Local Loop (WLL)  
Integrated Access Devices (IAD)  
Analog Terminal Adapters (ATA)  
Small Office/Home Office (SOHO)  
PBX  
Pin Assignments  
Si3217x  
Description  
The Si3217x is a family of pin-compatible single-channel ProSLIC products that  
implement a complete foreign exchange station (FXS) telephony interface solution in  
accordance with all relevant LSSGR, ITU, and ETSI specifications. Select parts in  
the series also implement Silicon Laboratories' patented capacitive isolation  
technology to enable seamless connection to Si3291x series foreign exchange office  
(FXO) line-side devices. The Si3217x ProSLIC ICs operate from a 3.3 V supply and  
interface to standard PCM/SPI digital interfaces. The Si3217x integrated dc-dc  
controller automatically generates the optimal battery voltages required for each line-  
state. Si3217x ICs are available with voltage ratings of –110 V or –135 V to support a  
wide range of ringing voltages. See the Ordering Guide for the voltage rating of each  
Si3217x version. The Si3217x is available in a 5 x 7 mm 42-pin QFN package. The  
Si3291x is available in a 16-pin SOIC package.  
42  
VDDHV  
SDI  
41 40 39 38 37 36  
EPAD2  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
NC  
1
2
3
4
GPIO1/STIPC  
GPIO2/SRINGC  
SRINGDC  
SRINGAC  
STIPAC  
SDO  
SCLK  
SDITHRU  
5
6
CS  
FSYNC  
PCLK  
7
STIPDC  
VDDA  
QGND  
IREF  
8
9
INT  
EPAD1  
C2A/NC  
C1A/NC  
10  
11  
12  
13  
14  
CAPM  
DTX  
DRX  
CAPP  
CAPLB  
SVBAT  
15 16 17 18 19 20 21  
DCFF  
Functional Block Diagram  
Si3291x  
1
16  
15  
14  
13  
12  
11  
10  
9
DCT2  
IGND  
DCT3  
QB  
QE  
DCT  
RX  
CODEC  
ADC  
SLIC  
Linefeed  
Control  
PCM/  
GCI  
Interface  
FSYNC  
DRX  
DTMF &  
Tone Gen  
TIP  
2
3
4
5
6
7
8
DTX  
FXS  
FXO  
RING  
Caller ID  
Linefeed  
Monitor  
CS  
SDI  
DAC  
IB  
SPI  
Control  
Interface  
Ringing  
Generator  
SDO  
SCLK  
INT  
TIP  
RX  
Optional FXO  
Hybrid and  
dc  
Termination  
C1B  
C2B  
VREG  
RNG1  
QE2  
DCT  
VREG  
IGND  
C1A C1B  
C2A C2B  
DSP  
Isolation  
Interface  
Isolation  
Interface  
Line Diagnostics  
SC  
RST  
CID  
QB  
QE  
VREG2  
RNG2  
Control  
Ring Detect  
Off-Hook  
RING  
PCLK  
DC-DC Controller  
PLL  
Si3217x  
Si3291x  
Patents pending  
Rev. 1.4 3/13  
Copyright © 2013 by Silicon Laboratories  
Si3217x/3291x  
Si3217x/3291x  
2
Rev. 1.4  
Si3217x/3291x  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5. FXS Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.1. DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.2. Linefeed Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.3. Line Voltage and Current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.4. Power Monitoring and Power Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5.5. Thermal Overload Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5.6. Loop Closure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.7. Ground Key Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.8. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.9. Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.10. Two-Wire Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.11. Transhybrid Balance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.12. Tone Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.13. DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.14. Pulse Metering (Si32170/1 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.15. DC-DC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.16. Wideband Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.17. In-Circuit and Metallic Loop Testing (MLT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
6. FXO Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.1. Isolation Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.2. Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.3. In-Circuit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.4. Transmit/Receive Full-Scale Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.5. Line Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.6. Loop Current Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.7. Parallel Handset Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.8. DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.9. AC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
6.10. Ring Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
6.11. Ring Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6.12. Ringer Impedance and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6.13. Pulse Dialing and Spark Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6.14. Receive Overload Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6.15. On-Hook Line Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6.16. Transhybrid Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
7. System Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
7.1. SPI Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Rev. 1.4  
3
Si3217x/3291x  
7.2. PCM Interface and Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
8. Pin Descriptions: Si3217x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
9. Pin Descriptions: Si3291x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
10. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
11. Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
12. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
12.1. 42-Pin QFN/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
12.2. 42-Pin QFN/NBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
13. PCB Land Pattern Si3217x QFN (LGA or NBA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
13.1. QFN PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
13.2. QFN Solder Mask Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
13.3. QFN Stencil Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
13.4. QFN Card Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
14. Package Outline: 16-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
15. PCB Land Pattern Si3291x SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
16. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
16.1. Si3217x LGA Package Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
16.2. Si3217x LGA Package Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . .59  
16.3. Si3217x NBA Package Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
16.4. Si3217x NBA Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
16.5. Si32919 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
16.6. Si3291x Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
4
Rev. 1.4  
Si3217x/3291x  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Symbol  
Test Condition  
Min*  
Typ  
Max*  
Unit  
Parameter  
Ambient Temperature  
T
F-grade  
G-grade  
0
25  
25  
70  
85  
°C  
°C  
°C  
A
–40  
Silicon Junction Temperature,  
QFN-42  
T
Linefeed Die  
145  
JHV  
Supply Voltage, Si3217x  
V
, V  
,
3.13  
3.3  
3.47  
V
DDD DDA  
V
DDHV  
2
Battery Voltage, Si32171/6/8  
V
–110  
–136  
–95  
–15  
–15  
V
V
BAT  
BAT  
2
Battery Voltage, Si32170/7/9  
V
–130  
Notes:  
1. All minimum and maximum specifications apply across the recommended operating conditions. Typical values apply at  
nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. Operation at minimum voltage dependent upon loop conditions and dc-dc converter configuration.  
Table 2. Power Supply Characteristics for Si3217x  
(VDD = 3.3 V, TA = 0 to 70 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
9.7  
0.0  
Max  
Unit  
mA  
mA  
I
DD  
Supply Currents:  
Reset  
V and V = Hi-Z , RST = 0  
T
R
I
I
VBAT  
Supply Currents:  
High Impedance, Open  
I
V and V = Hi-Z, FXO disabled  
13.2  
0.47  
mA  
mA  
DD  
T
R
VBAT  
Supply Currents:  
I
V
= –48 V, FXO disabled, Auto-  
11.2  
mA  
DD  
TR  
Forward/Reverse, On-hook  
matic Power Save Mode enabled  
I
I
I
0.44  
27.2  
mA  
mA  
VBAT  
Supply Currents:  
Forward/Reverse, On-hook  
I
V
= –48 V, FXO disabled, Auto-  
TR  
DD  
matic Power Save Mode  
disabled  
1.4  
mA  
mA  
VBAT  
Supply Currents:  
Tip/Ring Open, On-hook  
I
V or V = –48 V,  
V or V = Hi-Z,  
FXO disabled, Automatic  
Power Save Mode enabled  
12.5  
DD  
T
R
R T  
0.4  
mA  
mA  
VBAT  
Supply Currents:  
I
V or V = –48 V,  
26.3  
DD  
T
R
Tip/Ring Open, On-hook  
V or V = Hi-Z,  
R
T
FXO disabled, Automatic  
I
0.95  
mA  
Power Save Mode disabled  
VBAT  
Notes:  
1. ILOOP is the dc current in the subscriber loop during the off-hook state.  
2. IDD = IDDD + IDDA + IDDC  
.
3. Refer to AN340 for power supply consumption of the recommended applications circuit, including dc-dc converter.  
Rev. 1.4  
5
Si3217x/3291x  
Table 2. Power Supply Characteristics for Si3217x (Continued)  
(VDD = 3.3 V, TA = 0 to 70 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply Currents:  
Forward/Reverse OHT,  
On-hook  
I
V
=48 V, FXO disabled  
40.6  
mA  
DD  
TR  
I
I
I
2.3  
mA  
mA  
VBAT  
Supply Currents:  
Forward/Reverse Active,  
Off-hook  
I
I
= 20 mA R = 200 ,  
LOAD  
44.2  
DD  
LOOP  
FXO disabled  
22.0  
28  
mA  
mA  
VBAT  
Supply Currents:  
Ringing  
I
V
=55V  
+ 0 VDC, balanced,  
RMS  
DD  
TR  
FXO disabled  
sinusoidal, f = 20 Hz, R  
REN = 1400 Ω  
= 5  
38.2  
10.0  
6.3  
0
mA  
mA  
mA  
mA  
mA  
LOAD  
VBAT  
System Side FXO Supply  
Current  
I
I
I
I
FXO enabled  
DD  
DD  
DD  
DD  
System Side FXO Supply  
Current  
FXO enabled, FXO in Sleep Mode  
System Side FXO Supply  
Current  
FXO enabled, FXO in Full Power  
Down Mode  
0.1  
System Side FXO Supply  
Current  
FXO disabled  
Notes:  
1. ILOOP is the dc current in the subscriber loop during the off-hook state.  
2. IDD = IDDD + IDDA + IDDC  
.
3. Refer to AN340 for power supply consumption of the recommended applications circuit, including dc-dc converter.  
Table 3. AC Characteristics for FXS  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
TX/RX Performance  
Overload Level  
2.5  
V
PK  
Overload Compression  
2-Wire – PCM  
Figure 15  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. VDDD, VDDA, VDDHV = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 , ZS = 600 synthesized using RS register  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
6. 0 dBm 0 is equal to 0 dBm into 600 .  
6
Rev. 1.4  
Si3217x/3291x  
Table 3. AC Characteristics for FXS (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Single Frequency Distortion  
2-Wire – PCM or PCM – 2-Wire:  
200 Hz to 3.4 kHz  
+35  
40  
dB  
PCM – 2-Wire – PCM:  
200 Hz – 3.4 kHz,  
16-bit Linear mode  
–63  
dB  
Signal-to-(Noise + Distortion)  
200 Hz to 3.4 kHz  
D/A or A/D 8-bit  
Figure 14  
2
Ratio  
Active off-hook, and OHT, any Z  
T
Audio Tone Generator Signal-to-  
Distortion Ratio  
0 dBm0, Active off-hook, and  
46  
dB  
dB  
2
OHT, any Z  
T
Intermodulation Distortion  
–41  
2
Gain Accuracy  
2-Wire to PCM or PCM to 2-Wire  
1014 Hz, Any gain setting  
–0.2  
0.2  
dB  
6
Attenuation Distortion vs.  
Frequency  
0 dBm 0  
See Figure 16 and 17  
Group Delay vs. Frequency  
See Figure 18 and 19  
3
Gain Tracking  
1014 Hz sine wave,  
reference level –10 dBm  
Signal level:  
3 dB to –37 dB  
–37 dB to –50 dB  
26  
26  
0.25  
0.5  
1.0  
500  
dB  
dB  
dB  
µs  
–50 dB to –60 dB  
Round-Trip Group Delay  
1014 Hz, Within same time-slot  
200 Hz to 3.4 kHz  
450  
30  
30  
4
2-Wire Return Loss  
dB  
dB  
4
Transhybrid Balance  
300 Hz to 3.4 kHz  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. VDDD, VDDA, VDDHV = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 , ZS = 600 synthesized using RS register  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
6. 0 dBm 0 is equal to 0 dBm into 600 .  
Rev. 1.4  
7
Si3217x/3291x  
Table 3. AC Characteristics for FXS (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Noise Performance  
C-Message weighted  
5
Idle Channel Noise  
8
12  
–78  
dBrnC  
dBmP  
dB  
Psophometric weighted  
RX and TX, 200 Hz to 3.4 kHz  
–82  
55  
PSRR from V  
, V  
,
DDA  
DDD  
V
@ 3.3 V  
DDHV  
Longitudinal Performance  
200 Hz to 1 kHz  
Longitudinal to Metallic/PCM  
Balance (forward or reverse)  
58  
53  
40  
60  
58  
dB  
dB  
dB  
1 kHz to 3.4 kHz  
Metallic/PCM to  
200 Hz to 3.4 kHz  
Longitudinal Balance  
Longitudinal Impedance  
200 Hz to 3.4 kHz at TIP or RING  
50  
25  
Longitudinal Current Capability  
Active off-hook 60 Hz  
Reg 73 = 0x0B  
mA  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. VDDD, VDDA, VDDHV = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 , ZS = 600 synthesized using RS register  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
6. 0 dBm 0 is equal to 0 dBm into 600 .  
8
Rev. 1.4  
Si3217x/3291x  
Table 4. Linefeed Characteristics for FXS  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Symbol  
Test Condition  
= 430  
Min  
Typ  
Max  
Unit  
Parameter  
Maximum Loop Resistance  
R
R
2000  
LOOP  
DC,MAX  
I
= 18 mA, V  
= –52 V,  
LOOP  
BAT  
R
= 0   
PROT  
DC Feed Current  
Differential  
Common Mode  
Differential + Common Mode  
= 18 mA  
45  
30  
45  
10  
4
mA  
mA  
mA  
%
DC Loop Current Accuracy  
I
LIM  
DC Open Circuit Voltage  
Accuracy  
Active Mode; V = 48 V,  
V
OC  
V
– V  
TIP  
RING  
DC Differential Output  
Resistance  
R
I
< I  
160  
640  
4
DO  
LOOP  
LIM  
DC On-Hook Voltage  
Accuracy—Ground Start  
V
R
I
<I ; V wrt ground,  
RING  
V
OHTO  
ROTO  
RING LIM  
V
= –51 V  
RING  
DC Output  
Resistance—Ground Start  
I
<I ; RING to ground  
160  
400  
640  
10  
10  
4
k  
%
RING LIM  
DC Output Resistance—  
Ground Start  
R
TIP to ground  
TOTO  
Loop Closure Detect  
Threshold Accuracy  
I
I
= 13 mA  
= 13 mA  
THR  
THR  
Ground Key Detect  
Threshold Accuracy  
%
Ring Trip  
AC detection,  
mA  
Threshold Accuracy  
V
= 70 Vpk, no offset,  
RING  
I
= 80mA  
TH  
DC detection,  
1
1
mA  
mA  
20 V dc offset, I = 13 mA  
TH  
DC Detection,  
3
48 V DC offset, R  
= 1500   
loop  
Ringing Amplitude*  
V
Si32171/6/8 Open circuit,  
= –110 V  
108  
132  
V
V
RINGING  
PK  
PK  
V
BAT  
Si32170/7/9 Open circuit,  
= –136 V  
V
BAT  
Sinusoidal Ringing Total  
Harmonic Distortion  
R
Si32171/6/8 : 60 V  
,
%
THD  
RMS  
15 V  
, 0–5 REN  
OFFSET  
Si32170/7/9 : 55 V  
,
RMS  
48 V  
, 0–5 REN  
OFFSET  
Ringing Frequency Accuracy  
Ringing Cadence Accuracy  
f = 16 Hz to 60 Hz  
Accuracy of ON/OFF times  
– V = 48 V  
2
1
50  
4
%
ms  
%
Loop Voltage Sense  
Accuracy  
V
TIP  
RING  
Rev. 1.4  
9
Si3217x/3291x  
Table 4. Linefeed Characteristics for FXS (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Symbol  
Test Condition  
= 18 mA  
Min  
Typ  
Max  
Unit  
Parameter  
Loop Current  
I
7
10  
%
LOOP  
Sense Accuracy  
Power Alarm  
Threshold Accuracy  
Power Threshold = 1.0 W  
= –56 V, I = 40 mA,  
15  
%
V
BAT  
LDDD  
R
= 600   
LOAD  
Test Load Impedance  
Test Load Voltage  
R
HVIC_STATE_SPARE[23] = 1;  
3.6  
±5  
5.3  
7.7  
k  
TEST  
V  50 V  
T/R  
V
HVIC_STATE_SPARE[23] = 1  
±50  
V
TL  
*Note: Ringing amplitude is set for 108 or 128 V peak and measured at TIP-RING using no series protection resistance.  
Table 5. Monitor ADC Characteristics for FXS  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Differential Nonlinearity  
DNLE  
INLE  
1
1
LSB  
LSB  
Integral Nonlinearity  
(8-bit resolution)  
Gain Error  
5
%
Table 6. Loop Characteristics for FXO  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Termination Voltage  
V
V
V
V
V
V
V
I = 20 mA, ILIM = 0  
DCV = 00, MINI = 11, DCR = 0  
6.0  
V
TR  
TR  
TR  
TR  
TR  
TR  
TR  
L
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
I = 120 mA, ILIM = 0  
9
7.5  
V
V
V
V
V
V
L
DCV = 00, MINI = 11, DCR = 0  
I = 20 mA, ILIM = 0  
9
L
DCV = 11, MINI = 00, DCR = 0  
I = 120 mA, ILIM = 0  
L
DCV = 11, MINI = 00, DCR = 0  
I = 20 mA, ILIM = 1  
40  
7.5  
L
DCV = 11, MINI = 00, DCR = 0  
I = 60 mA, ILIM = 1  
L
DCV = 11, MINI = 00, DCR = 0  
I = 50 mA, ILIM = 1  
40  
L
DCV = 11, MINI = 00, DCR = 0  
On-Hook Leakage Current  
Operating Loop Current  
Operating Loop Current  
I
I
I
V
= –48 V  
TR  
10  
10  
5
µA  
mA  
mA  
LK  
LP  
LP  
MINI = 00, ILIM = 0  
MINI = 00, ILIM = 1  
120  
60  
*Note: The ring signal will not be detected below the minimum. The ring signal will be detected above the maximum.  
10  
Rev. 1.4  
Si3217x/3291x  
Table 6. Loop Characteristics for FXO (Continued)  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Ring Current  
dc current flowing through ring  
detection circuitry  
1.5  
3
µA  
*
*
*
Ring Detect Voltage  
Ring Detect Voltage  
Ring Detect Voltage  
Ring Frequency  
V
V
V
RT2 = 0, RT = 0  
RT2 = 0, RT = 1  
RT2 = 1, RT = 1  
13.5  
19.35  
40.5  
13  
15  
21.5  
45  
16.5  
23.65  
49.5  
68  
V
V
V
RD  
RD  
RD  
rms  
rms  
rms  
F
Hz  
R
Ringer Equivalence Number  
REN  
0.2  
*Note: The ring signal will not be detected below the minimum. The ring signal will be detected above the maximum.  
Table 7. AC Characteristics for FXO  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C, Fs = 8000 Hz)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
5
Max  
Unit  
Hz  
Receive Frequency Response  
Receive Frequency Response  
Low –3 dBFS Corner, FILT = 0  
Low –3 dBFS Corner, FILT = 1  
FULL = 0 (0 dBm)  
200  
1.1  
Hz  
1
Transmit Full-Scale Level  
V
V
V
FS  
FS  
PEAK  
PEAK  
PEAK  
PEAK  
PEAK  
Note 2  
FULL = 1 (+3.2 dBm)  
1.58  
2.16  
1.1  
V
V
V
V
V
Note 2  
FULL2 = 1 (+6.0 dBm)  
1,3  
Receive Full-Scale Level  
FULL = 0 (0 dBm)  
Note 2  
FULL = 1 (+3.2 dBm)  
1.58  
2.16  
80  
Note 2  
FULL2 = 1 (+6.0 dBm)  
PEAK  
4,5,6  
Dynamic Range  
DR  
DR  
DR  
ILIM = 0, DCV = 11, MINI=00  
dB  
DCR = 0, I = 100 mA  
L
4,5,6  
Dynamic Range  
ILIM = 0, DCV = 00, MINI=11  
80  
80  
dB  
dB  
DCR = 0, I = 20 mA  
L
4,5,6  
Dynamic Range  
ILIM = 1, DCV = 11, MINI=00  
DCR = 0, I = 50 mA  
L
Notes:  
1. Measured at TIP and RING with 600 termination at 1 kHz, as shown in Figure 1 on page 13.  
2. With FULL = 1, the transmit and receive full-scale level of +3.2 dBm can be achieved with a 600 ac termination. While  
the transmit and receive level in dBm varies with reference impedance, the DAA will transmit and receive 1 dBV into all  
reference impedances. With FULL2 = 1, the transmit and receive full-scale level of +6.0 dBm can be achieved with a  
600 termination. In this mode, the DAA will transmit and receive +1.5 dBV into all reference impedances.  
3. Receive full-scale level produces –0.9 dBFS at DTX.  
4. DR = 20 x log (RMS VFS/RMS Vin) + 20 x log (RMS Vin/RMS noise). The RMS noise measurement excludes harmonics.  
Here, VFS is the 0 dBm full-scale level per Note 1 above.  
5. Measurement is 300 to 3400 Hz. Applies to both transmit and receive paths.  
6. Vin = 1 kHz, –3 dBFS.  
7. THD = 20 x log (RMS distortion/RMS signal).  
8. DRCID = 20 x log (RMS VCID/RMS VIN) + 20 x log (RMS VIN/RMS noise). VCID is the 1.5 V full-scale level with the  
enhanced caller ID circuit. With the typical CID circuit, the VCID full-scale level is 6 V peak, and the DRCID decreases to  
50 dB.  
9. Refer to Tables 8–9 for relative gain accuracy characteristics (passband ripple).  
10. Analog hybrid only. ZACIM controlled by ACIM in Register 30.  
Rev. 1.4  
11  
Si3217x/3291x  
Table 7. AC Characteristics for FXO (Continued)  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C, Fs = 8000 Hz)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Transmit Total Harmonic Distor-  
tion  
THD  
ILIM = 0, DCV = 11, MINI=00  
–72  
dB  
6,7  
DCR = 0, I = 100 mA  
L
Transmit Total Harmonic Distor-  
tion  
THD  
THD  
THD  
ILIM = 0, DCV = 00, MINI=11  
–78  
–78  
–78  
dB  
dB  
dB  
dB  
6,7  
DCR = 0, I = 20 mA  
L
Receive Total Harmonic Distor-  
ILIM = 0, DCV = 00, MINI=11  
6,7  
tion  
DCR = 0, I = 20 mA  
L
Receive Total Harmonic Distor-  
ILIM = 1,DCV = 11, MINI=00  
6,7  
tion  
DCR = 0, I = 50 mA  
L
8
Dynamic Range (Caller ID mode)  
DR  
VIN = 1 kHz, –13 dBFS  
62  
1.5  
0
CID  
8
Caller ID Full-Scale Level  
V
V
PEAK  
CID  
6,9  
Gain Accuracy  
2-W to DTX,  
–0.5  
0.5  
dB  
TXG2, RXG2, TXG3,  
and RXG3 = 0000  
10  
Transhybrid Balance  
300–3.4 kHz, ZACIM = ZLINE  
1 kHz, ZACIM = ZLINE  
20  
25  
30  
dB  
dB  
dB  
10  
Transhybrid Balance  
Two-Wire Return Loss  
300–3.4 kHz, all ac  
terminations  
Two-Wire Return Loss  
1 kHz, all ac terminations  
32  
dB  
Notes:  
1. Measured at TIP and RING with 600 termination at 1 kHz, as shown in Figure 1 on page 13.  
2. With FULL = 1, the transmit and receive full-scale level of +3.2 dBm can be achieved with a 600 ac termination. While  
the transmit and receive level in dBm varies with reference impedance, the DAA will transmit and receive 1 dBV into all  
reference impedances. With FULL2 = 1, the transmit and receive full-scale level of +6.0 dBm can be achieved with a  
600 termination. In this mode, the DAA will transmit and receive +1.5 dBV into all reference impedances.  
3. Receive full-scale level produces –0.9 dBFS at DTX.  
4. DR = 20 x log (RMS VFS/RMS Vin) + 20 x log (RMS Vin/RMS noise). The RMS noise measurement excludes harmonics.  
Here, VFS is the 0 dBm full-scale level per Note 1 above.  
5. Measurement is 300 to 3400 Hz. Applies to both transmit and receive paths.  
6. Vin = 1 kHz, –3 dBFS.  
7. THD = 20 x log (RMS distortion/RMS signal).  
8. DRCID = 20 x log (RMS VCID/RMS VIN) + 20 x log (RMS VIN/RMS noise). VCID is the 1.5 V full-scale level with the  
enhanced caller ID circuit. With the typical CID circuit, the VCID full-scale level is 6 V peak, and the DRCID decreases to  
50 dB.  
9. Refer to Tables 8–9 for relative gain accuracy characteristics (passband ripple).  
10. Analog hybrid only. ZACIM controlled by ACIM in Register 30.  
12  
Rev. 1.4  
Si3217x/3291x  
TIP  
+
600  
10F  
IL  
Si3291x  
VTR  
RING  
Figure 1. Test Circuit for Loop Characteristics  
Table 8. Digital FIR Filter Characteristics for FXO—Transmit and Receive  
(VD = 3.0 to 3.6 V, Sample Rate = 8 kHz, TA = 0 to 70 °C)  
Parameter  
Symbol  
Min  
0
Typ  
Max  
3.3  
3.6  
0.1  
Unit  
kHz  
kHz  
dB  
Passband (0.1 dB)  
Passband (3 dB)  
Passband Ripple Peak-to-Peak  
Stopband  
F
(0.1 dB)  
F
0
(3 dB)  
–0.1  
4.4  
kHz  
dB  
Stopband Attenuation  
Group Delay  
–74  
t
12/Fs  
s
gd  
Note: Typical FIR filter characteristics for Fs = 8000 Hz are shown in Figures 2, 3, 4, and 5.  
Table 9. Digital IIR Filter Characteristics for FXO—Transmit and Receive  
(VD = 3.0 to 3.6 V, Sample Rate = 8 kHz, TA = 0 to 70 °C)  
Parameter  
Symbol  
Min  
0
Typ  
Max  
3.6  
0.2  
Unit  
kHz  
dB  
Passband (3 dB)  
Passband Ripple Peak-to-Peak  
Stopband  
F
(3 dB)  
–0.2  
4.4  
kHz  
dB  
Stopband Attenuation  
Group Delay  
–40  
t
1.6/Fs  
s
gd  
Note: Typical IIR filter characteristics for Fs = 8000 Hz are shown in Figures 6, 7, 8, and 9. Figures 10 and 11 show group  
delay versus input frequency.  
Rev. 1.4  
13  
Si3217x/3291x  
Figure 2. FIR Receive Filter Response  
Figure 4. FIR Transmit Filter Response  
Figure 3. FIR Receive Filter Passband Ripple  
Figure 5. FIR Transmit Filter Passband Ripple  
For Figures 1–5, all filter plots apply to a sample rate of  
Fs = 8 kHz.  
For Figures 6–9, all filter plots apply to a sample rate of  
Fs = 8 kHz.  
14  
Rev. 1.4  
Si3217x/3291x  
Figure 6. IIR Receive Filter Response  
Figure 7. IIR Receive Filter Passband Ripple  
Figure 8. IIR Transmit Filter Response  
Figure 9. IIR Transmit Filter Passband Ripple  
Figure 10. IIR Receive Group Delay  
Figure 11. IIR Transmit Group Delay  
Rev. 1.4  
15  
Si3217x/3291x  
Table 10. Digital I/O Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
0.7 x V  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
V
V
DD  
IH  
DD  
V
0.3 x V  
V
IL  
DD  
High Level Output  
Voltage*  
V
DTX, SDO, SDITHRU,  
GPIO1/STIPC, GPIO2/SRINGC:  
V
– 0.6  
DD  
V
OH  
I = –4 mA  
O
C1A, C2A:  
I = –2 mA  
O
Low Level Output  
Voltage*  
V
DTX, SDO, INT,  
SDITHRU,  
0.4  
V
OL  
GPIO1/STIPC, GPIO2/SRINGC:  
I = 4 mA  
O
C1A, C2A:  
I = 2 mA  
O
SDITHRU and RST  
33  
42  
65  
10  
µA  
µA  
Internal Pullup Current  
Input Leakage Current  
I
L
*Note: VIH/VIL, VOH/VOL do not apply to C1A/C2A.  
Table 11. Switching Characteristics—General Inputs1  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C, CL = 20 pF)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Rise Time, RST  
t
5
ns  
µs  
r
3
RST Pulse Width, SPI Daisy Chain Mode  
t
33/PCLK  
rl  
Notes:  
1. All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are  
VIH = VDD – 0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
2. The minimum RST pulse width assumes the SDITHRU pin is tied to ground via a pulldown resistor no greater than  
10 kper device.  
3. The minimum RST pulse width is 33/PCLK frequency (i.e. 33/8.192 MHz = 4 µs).  
16  
Rev. 1.4  
Si3217x/3291x  
Table 12. Switching Characteristics—SPI  
(VDDA = 3.13 to 3.47 V, TA = 0 to 70 °C, CL = 20 pF)  
Parameter  
Symbol  
Test Conditions  
Min  
62  
Typ  
Max  
Unit  
ns  
Cycle Time SCLK  
t
c
Rise Time, SCLK  
t
25  
ns  
r
Fall Time, SCLK  
t
25  
ns  
f
Delay Time, SCLK Fall to SDO Active  
t
20  
ns  
d1  
d2  
Delay Time, SCLK Fall to SDO  
Transition  
t
t
20  
ns  
Delay Time, CS Rise to SDO Tri-state  
Setup Time, CS to SCLK Fall  
25  
20  
25  
20  
220  
4
20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
Hold Time, CS to SCLK Rise  
t
h1  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time between Chip Selects  
SDI to SDITHRU Propagation Delay  
t
su2  
t
h2  
t
cs  
t
d4  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V  
tc  
tr  
tf  
SCLK  
CS  
tsu1  
th1  
tcs  
tsu2  
th2  
SDI  
td1  
td3  
td2  
SDO  
td4  
SDITHRU  
Figure 12. SPI Timing Diagram  
Rev. 1.4  
17  
Si3217x/3291x  
Table 13. Switching Characteristics—PCM Highway Interface  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C, CL = 20 pF)  
1
1
1
Parameter  
Symbol  
Test  
Conditions  
Units  
Min  
Typ  
Max  
PCLK Period (–40 to +85 °C)  
PCLK Period (0 to +70 °C)  
PCLK Jitter Tolerance for FXS  
PCLK Jitter Tolerance for FXO  
t
122  
122  
1953  
3906  
8
ns  
ns  
p(industrial)  
t
p(commercial)  
t
ns  
RMS  
jitter(FXS)  
t
2
ns  
jitter(FXO)  
2
Valid PCLK Inputs  
512  
768  
kHz  
kHz  
1.024  
1.536  
1.544  
2.048  
4.096  
8.192  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
3
FSYNC Period  
t
40  
125  
50  
60  
µs  
%
fs  
PCLK Duty Cycle Tolerance  
t
dty  
4
FSYNC Jitter Tolerance  
t
±120  
25  
ns  
ns  
ns  
ns  
ns  
jitter  
Rise Time, PCLK  
t
r
Fall Time, PCLK  
t
25  
f
Delay Time, PCLK Rise to DTX Active  
t
t
20  
d1  
d2  
Delay Time, PCLK Rise to DTX  
Transition  
20  
Delay Time, PCLK Rise to DTX Tri-  
state  
t
20  
ns  
d3  
6
Setup Time, FSYNC to PCLK Fall  
Hold Time, FSYNC to PCLK Fall  
Setup Time, DRX to PCLK Fall  
Hold Time, DRX to PCLK Fall  
FSYNC Pulse Width  
t
25  
20  
25  
20  
ns  
ns  
ns  
ns  
su1  
t
h1  
t
su2  
t
h2  
t
t
125 µs–t  
p
wfs  
p
Notes:  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O – 0.4 V, VIL = 0.4 V.  
2. A constant PCLK and FSYNC are required.  
3. FSYNC source is assumed to be 8 kHz under all operating conditions.  
4. FSYNC Jitter Tolerance relative to PCLK.  
5. 256 kHz PCLK is only valid for 0 to 70 °C operation.  
6. Specification applies to PCLK fall to DTX tristate when that mode is selected.  
18  
Rev. 1.4  
Si3217x/3291x  
Table 14. Absolute Maximum Ratings and Thermal Information1  
Symbol  
Test Condition  
Value  
Unit  
Parameter  
Storage Temperature Range  
T
–55 to 150  
°C  
STG  
2
Thermal Resistance, Typical  
QFN-42 (LGA & NBA)  
53  
33  
°C/W  
JA  
JB  
JC  
39  
3,4  
Continuous Power Dissipation  
QFN-42 (LGA & NBA)  
P
T = 85 °C  
0.75  
W
°C  
D
A
Maximum Junction Temperature,  
QFN-42 (Linefeed Die)  
T
Continuous  
145  
125  
85  
JHV  
Maximum Junction Temperature  
QFN-42 (Low Voltage Die)  
T
°C  
JLV  
2
Thermal Resistance, Typical  
°C/W  
W
JA  
SOIC-16  
3
Continuous Power Dissipation  
SOIC-16  
P
T = 85 °C  
0.47  
125  
D
A
Maximum Junction Temperature  
SOIC-16  
T
°C  
J
Si3217x  
Supply Voltage  
V
V
–0.5 to 4.0  
V
DDD, DDA,  
V
DDHV  
Digital Input Voltage  
V
–0.3 to 3.6  
+0.4 to –115  
+0.4 to –140  
–130  
V
V
IND  
BAT  
BAT  
5
Battery Supply Voltage , Si32171/6/8  
V
5
Battery Supply Voltage , Si32170/7/9  
V
V
6
Tip or Ring Voltage, Si32171/6/8  
V
, V  
V
TIP RING  
6
Tip or Ring Voltage, Si32170/7/9  
V
I
, V  
–140  
V
TIP RING  
TIP, RING Current  
, I  
±100  
mA  
TIP RING  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet.  
2. The thermal resistance of an exposed pad package is assured when the recommended printed circuit board layout  
guidelines are followed correctly. The specified performance requires that the exposed pad be soldered to an exposed  
copper surface of at least equal size and that multiple vias are added to enable heat transfer between the top-side  
copper surface and a large internal/bottom copper plane.  
3. Operation of the Si3217x or Si3291x above 125 °C junction temperature may degrade device reliability.  
4. Si3217x linefeed is equipped with on-chip thermal limiting circuitry that shuts down the circuit when the junction  
temperature exceeds the thermal shutdown threshold. The thermal shutdown threshold should normally be set to 145  
°C; when in the ringing state with cadence the thermal shutdown may be set to 200 °C. For optimal reliability long term  
operation of the Si3217x linefeed above 150 °C junction temperature should be avoided.  
5. The dv/dt of the voltage applied to the VBAT pins must be limited to 10 V/µs.  
6. Specification requires circuit for surge event as shown in typical application circuit.  
Rev. 1.4  
19  
Si3217x/3291x  
tr  
tf  
tp  
PCLK  
th1  
twfs  
tsu1  
tfs  
FSYNC  
tsu2  
th2  
DRX  
td2  
td1  
td3  
DTX  
Figure 13. PCM Highway Interface Timing Diagram  
Acceptable Region  
Figure 14. Transmit and Receive Path SNDR  
20  
Rev. 1.4  
Si3217x/3291x  
9
8
7
6
5
4
Fundamental  
Output Power  
(dBm0)  
Acceptable  
Region  
3
2.6  
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)  
Figure 15. Overload Compression Performance  
Rev. 1.4  
21  
Si3217x/3291x  
RX Attenuation Distortion  
5
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
RX Pass−Band Detail  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
Figure 16. Receive Path Frequency Response  
22  
Rev. 1.4  
Si3217x/3291x  
TX Attenuation Distortion  
5
0
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
TX Pass−Band Detail  
0.4  
0.2  
0
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 5000  
Frequency (Hz)  
Figure 17. Transmit Path Frequency Response  
Rev. 1.4  
23  
Si3217x/3291x  
TX Group Delay Distortion  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400  
Frequency (Hz)  
Figure 18. Transmit Group Delay Distortion  
RX Group Delay Distortion  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Typical Response  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400  
Frequency (Hz)  
Figure 19. Receive Group Delay Distortion  
24  
Rev. 1.4  
Si3217x/3291x  
2. Schematics  
V B A T  
D N E G  
C
V D  
D
G N  
D V D H V  
V D D H V  
1
V B A T  
3 6  
G
D V D R E  
B I W A H S  
B I W A H S  
HW  
4 2  
2
1 9  
E P A D  
E P A D  
D V D A  
D V D D  
N D G D  
V D D A  
V D D D  
2 8  
1 8  
1
D
G N  
Rev. 1.4  
25  
Si3217x/3291x  
- 7 - F  
D 3 0 0 M 4 S M B  
- 7 - F  
D 3 0 0 M 4 S M B  
26  
Rev. 1.4  
Si3217x/3291x  
Q122  
Q121  
Rev. 1.4  
27  
Si3217x/3291x  
R 1 2 8  
R 1 2 7  
R 1 2 6  
R 1 2 0  
28  
Rev. 1.4  
Si3217x/3291x  
F
R E - V  
A
A
2
7
6
t
t
Rev. 1.4  
29  
Si3217x/3291x  
3. Bill of Materials  
Table 15. Si3217x/Si3291x Bill of Materials (Excluding DC-DC)  
Reference  
Description  
Mfr Part Number  
Mfr  
C1  
CAP, 10uF, 6.3V, ±20%, X5R, 0603  
C0603X5R6R3-106M  
Venkel  
(Not Installed)  
D1  
DIO, SINGLE, 250V, 200mA, SOT323  
RES, 590K, 1/10W, ±1%, ThickFilm, 0805  
CAP, 0.1uF, 10V, ±10%, X7R, 0402  
BAS21HT1  
On Semi  
Venkel  
Venkel  
(Not Installed)  
R105  
(Not Installed)  
CR0805-10W-5903F  
C0402X7R100-104K  
C2 C4 C7 C100  
C107  
C6  
C8  
CAP, 10uF, 6.3V, ±20%, X5R, 0603  
CAP, 4.7nF, 16V, ±10%, X7R, 0402  
CAP, 0.01uF, 200V, ±10%, X7R, 0805  
C0603X5R6R3-106M  
C0402X7R160-472K  
C0805X7R201-103K  
Venkel  
Venkel  
Venkel  
C101 C102  
C103 C104  
C105  
J1  
CAP, 0.1uF, 200V, ±20%, X7R, 1206  
1 Port SMT RJ11  
C1206X7R201-104M  
5555077-2  
Venkel  
AMP  
R1  
RES, 15 Ohm, 1/10W, ±1%, ThickFilm, 0805  
RES, 49.9K, 1/16W, ±0.5%, ThickFilm, 0603  
RES, 137K, 1/16W, ±1%, ThickFilm, 0402  
RES, 10K, 1/16W, ±5%, ThickFilm, 0402  
RES, 681K, 1/10W, ±1%, ThickFilm, 0805  
RES, 1K, 1/10W, ±1%, ThickFilm, 0603  
RES, 1.47M, 1/8W, ±1%, ThickFilm, 1206  
RES, 110K, 1/16W, ±1%, ThickFilm, 0402  
RES, 0 Ohm, 2A, ThickFilm, 0805  
CR0805-10W-15R0F  
CR0603-16W-4992D  
CR0402-16W-1373F  
CR0402-16W-103J  
CR0805-10W-6813F  
CR0603-10W-1001F  
CR1206-8W-1474F  
CR0402-16W-1103F  
CR0805-10W-000  
Si32178/9-B-FM1  
C0805X7R201-103K  
C1206X7R201-104M  
MF-SM013/250-2  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
SiLabs  
Venkel  
Venkel  
Bourns  
R2  
R17  
R19  
R101 R102  
R103 R104  
R106 R107  
R108 R109  
R110  
U1  
Single SLIC Integrated HV Interface, wideband, DAA  
CAP, 0.01uF, 200V, ±10%, X7R, 0805  
CAP, 0.1uF, 200V, ±20%, X7R, 1206  
C108  
C150  
RT150 RT151  
PTC, Telecom PTC Resettable Fuses, SMT  
R150 R151  
U151  
RES, 15 Ohm, 1/10W, ±1%, ThickFilm, 0805  
SLIC Protector  
CR0805-10W-15R0F  
TISP61089BDR  
Venkel  
Bourns  
Venkel  
C230 C231  
CAP, 120pF, 250V, ±10%, X7R, 0805  
C0805X7R251-121K  
(Not Installed)  
C232  
(Not Installed)  
CAP, 68pF, 250VRMS, ±10%, Y2, 1808  
RES, 15M, 1/8W, ±5%, ThickFilm, 0805  
GA342D1XGF680JY02L  
CR0805-8W-156J  
MuRata  
Venkel  
R230 R232  
(Not Installed)  
30  
Rev. 1.4  
Si3217x/3291x  
Table 15. Si3217x/Si3291x Bill of Materials (Excluding DC-DC) (Continued)  
Reference  
Description  
Mfr Part Number  
Mfr  
R231 R233  
RES, 5.1M, 1/8W, ±5%, ThickFilm, 0805  
CR0805-8W-515J  
Venkel  
(Not Installed)  
R236 R237  
RES, 20M, 1/8W, ±5%, ThickFilm, 0805  
CR0805-8W-206J  
Venkel  
(Not Installed)  
C201 C202  
C203  
CAP, 33pF, 250VRMS, ±5%, Y2, 1808  
CAP, 3900pF, 250V, ±20%, X7R, 0805  
CAP, 1uF, 100V, ±10%, X7R, 1210  
CAP, 0.1uF, 10V, ±10%, X7R, 0402  
CAP, 2.7nF, 50V, ±20%, X7R, 0603  
CAP, 680pF, 250VRMS, ±10%, Y2, 1808  
CAP, 0.01uF, 10V, ±20%, X7R, 0402  
DIO, DUAL Series, 300V, 225mA, SOT23  
FERRITE BEAD, 600 @100MHZ  
GA342D1XGF330JY02L  
C0805X7R251-392M  
C1210X7R101-105K  
C0402X7R100-104K  
C0603X7R500-272M  
SCC1808X681K502T  
C0402X7R100-103M  
MMBD3004S-7-F  
MuRata  
Venkel  
C204  
Venkel  
C205 C206  
C207  
Venkel  
Venkel  
C208 C209  
C210  
Holy Stone  
Venkel  
D201 D202  
Diodes Inc.  
MuRata  
FB201 FB202  
FB203 FB204  
BLM18AG601SN1  
J2  
Q201 Q203  
Q202  
1 Port SMT RJ11  
5555077-2  
AMP  
On Semi  
On Semi  
On Semi  
Littelfuse  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
SiLabs  
TRANSISTOR, NPN, High Voltage, SOT23  
TRANSISTOR, PNP, High Voltage, SOT23  
TRANSISTOR, NPN, DRIVER, SOT23  
SIDACTOR BI 275V 250A DO-214AA  
RES, 1.07K, 1/2W, ±1%, ThickFilm, 2010  
RES, 150 Ohm, 1/16W, ±1%, ThickFilm, 0402  
RES, 3.65K, 1/2W, ±1%, ThickFilm, 2010  
RES, 2.49K, 1/2W, ±1%, ThickFilm, 2010  
RES, 100K, 1/16W, ±5%, ThickFilm, 0402  
RES, 20M, 1/8W, ±5%, ThickFilm, 0805  
RES, 1M, 1/16W, ±1%, ThickFilm, 0402  
RES, 536 Ohm, 1/4W, ±1%, ThickFilm, 1206  
RES, 73.2 Ohm, 1/2W, ±1%, ThickFilm, 2010  
RES, 56.2 Ohm, 1/16W, ±1%, ThickFilm, 0402  
MMBTA42LT1  
MMBTA92LT1  
Q204 Q205  
RV201  
R201  
MMBTA06LT1  
P3100SBL  
CR2010-2W-1071F  
CR0402-16W-1500F  
CR2010-2W-3651F  
CR2010-2W-2491F  
CR0402-16W-104J  
CR0805-8W-206J  
CR0402-16W-1004F  
CR1206-4W-5360F  
CR2010-2W-73R2F  
CR0402-16W-56R2F  
Si32919-A-FS  
R202  
R203  
R204  
R205 R206  
R207 R208  
R209  
R210  
R211  
R212 R213  
U202  
IC, Global DAA Line Side w/Voice features attaches to  
the Si3217x SLIC  
Z201  
DIO, ZENER, 43V, 500 mW, SOD123  
BZT52C43-7-F  
Diodes Inc.  
Rev. 1.4  
31  
Si3217x/3291x  
Table 16. Si3217x Flyback DC-DC Bill of Materials  
Reference  
Description  
Mfr Part Number  
Mfr  
C124 C125  
CAP, 0.1uF, 200V, ±20%, X7R, 1206  
C1206X7R201-104M  
Venkel  
(Not Installed)  
C128  
(Not Installed)  
CAP, 470pF, 50V, ±20%, X7R, 0402  
CAP, 68pF, 200V, ±5%, COG, 0805  
C0402X7R500-471M  
C0805C0G201-680J  
C0603X7R101-471K  
BAS16XV2T1G  
Venkel  
Venkel  
Venkel  
On Semi  
Vishay  
Venkel  
Venkel  
C133  
(Not Installed)  
C134  
(Not Installed  
CAP, 470pF, 100V, ±10%, X7R, 0603  
DIO, SWITCH, 200mA, 75V, SOD523  
DIO, ZENER, 75V, 200 mW, SOD323  
RES, 150 Ohm, 1/4W, ±1%, ThickFilm, 1206  
RES, 15 Ohm, 1/4W, ±5%, ThickFilm, 1206  
D125  
(Not Installed)  
D126  
(Not Installed)  
BZX384C75-V  
R130  
(Not Installed)  
CR1206-4W-1500F  
CR1206-4W-150J  
R139  
(Not Installed)  
C121 C126  
C122 C123  
C127  
CAP, 0.1uF, 25V, ±20%, X7R, 0603  
CAP, 0.1uF, 200V, ±20%, X7R, 1206  
CAP, 470pF, 50V, ±20%, X7R, 0402  
C0603X7R250-104M  
C1206X7R201-104M  
C0402X7R500-471M  
EEUFC1J680  
Venkel  
Venkel  
Venkel  
C130  
CAP, 68uF, 63V, ±20%, AL, 8X11.5MM,  
Low Impedance  
Panasonic  
D120  
Q120  
DIO, FAST, 300V, 1A, SMA  
ES1F  
Fairchild  
Zetex  
TRANSISTOR, MOSFET, N-CHNL,  
2.0W Switching, SOT223  
ZXMN10A11G  
Q121  
Q122  
TRANSISTOR, PNP, SOT23  
MMBT3906-7-F  
BSS138  
Diodes Inc.  
Zetex  
TRANSISTOR, MOSFET, N-CHNL,  
360mW Small signal, SOT23  
Q123  
R100  
TRANSISTOR, NPN, GP, SOT23  
RES, 1.65M, 1/10W, ±1%, ThickFilm, 0805  
RES, 0.1 Ohm, 1/2W, ±1%, ThickFilm, 1210  
RES, 15 Ohm, 1/4W, ±5%, ThickFilm, 1206  
RES, 220 Ohm, 1/16W, ±5%, ThickFilm, 0402  
RES, 0 Ohm, 1A, ThickFilm, 0402  
MMBT3904  
Fairchild  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
Venkel  
CR0805-10W-1654F  
LCR1210-R100F  
CR1206-4W-150J  
CR0402-16W-221J  
CR0402-16W-000  
CR0805-10W-6813F  
CR0402-16W-683J  
CR0402-16W-000  
R121  
R122  
R123  
R124 R140  
R125  
RES, 681K, 1/10W, ±1%, ThickFilm, 0805  
RES, 68K, 1/16W, ±5%, ThickFilm, 0402  
RES, 0 Ohm, 1A, ThickFilm, 0402  
R126  
R141 R142  
T120  
TRANSFORMER, Flyback, 8.0uH Primary, 100nH  
Leakage, 1:3, 1 Tap, SMT  
UTB01890s  
UTB01701s  
UMEC  
UMEC  
XF0086-EP7S  
XFMRS Inc  
32  
Rev. 1.4  
Si3217x/3291x  
Table 17. Si3217x Buck Boost DC-DC Bill of Materials  
Reference  
C122  
Description  
Mfr Part Number  
C0603X7R101-104M  
ECA2AM100  
Manufacturer  
Venkel  
CAP, 0.1uF, 100V, ±20%, X7R, 0603  
CAP, 10uF, 100V, ±20%, AL, 5X11MM  
CAP, 0.1uF, 25V, ±20%, X7R, 0603  
CAP, 0.01uF, 10V, ±20%, X7R, 0402  
DIO, FAST, 200V, 1A SMA  
C120 C123  
C121 C125  
C126  
Panasonic  
Venkel  
C0603X7R250-104M  
C0402X7R100-103M  
ES1D  
Venkel  
D120  
Diodes Inc.  
Diodes Inc.  
Cooper Bussman  
Zetex  
D121  
DIO, SWITCH, 75V, 300mA, SOT23  
Power Inductor, Shielded  
BAS16-7-F  
L120  
DR127-101-R  
Q120  
TRANSISTOR, PNP, 140V,  
ZXTP2014G  
MEDIUM POWER LOW SAT, SOT223  
Q121  
R100  
TRANSISTOR, NPN, SOT23  
MMBT2222LT1  
CR0805-10W-1654F  
CR0402-16W-1R00F  
On Semi  
Venkel  
Venkel  
RES, 1.65M, 1/10W, ±1%, ThickFilm, 0805  
RES, 1.0 Ohm, 1/16W, ±1%, ThickFilm, 0402  
R120 R126  
R127 R128  
R122  
R124  
RES, 15 Ohm, 1/10W, ±1%, ThickFilm, 0805  
RES, 120 Ohm, 1/10W, ±1%, ThickFilm, 0603  
RES, 200 Ohm, 1/10W, ±1%, ThickFilm, 0603  
RES, 47K, 1/16W, ±1%, ThickFilm, 0402  
CR0805-10W-15R0F  
CR0603-10W-1200F  
CR0603-10W-2000F  
CR0402-16W-4702F  
Venkel  
Venkel  
Venkel  
Venkel  
R125  
R129 R130  
Rev. 1.4  
33  
Si3217x/3291x  
4. Overview  
5. FXS Features  
The Si3217x series provides all SLIC, codec, DTMF  
detection, and signal generation functions needed for  
one complete analog telephone interface. The Si3217x  
performs all battery, over-voltage, ringing, supervision,  
codec, hybrid, and test (BORSCHT) functions; it also  
supports extensive metallic loop testing capabilities.  
5.1. DC Feed Characteristics  
ProSLIC internal linefeed circuitry provides completely  
programmable dc feed characteristics.  
When in the active state, the ProSLIC operates in one of  
three dc linefeed operating regions: a constant-voltage  
region, a constant-current region, or a resistive region,  
as shown in Figure 25. The constant-voltage region has  
a low resistance, typically 160 . The constant-current  
region approximates infinite resistance.  
The Si3217x provides a standard voice-band (200 Hz–  
3.4 kHz) audio codec and, optionally, an audio codec  
with both wideband (50 Hz–7 kHz) and standard voice-  
band modes. The wideband mode provides an  
expanded audio band with a 16 kHz sample rate for  
enhanced audio quality while the standard voice-band  
mode provides standard telephony audio bandwidth.  
The Si3217x incorporates a programmable dc-dc  
converter controller that reacts to line conditions to  
provide the optimal battery voltage required for each  
line-state. Si3217x ICs are available with voltage ratings  
of –110 V or –135 V to support a wide range of ringing  
voltages; see "10. Ordering Guide‚" on page 48 for the  
voltage rating of each Si3217x version.  
I_ILIM  
I_RFEED  
I_VLIM  
ILOOP (mA)  
V_ILIM  
Programmable on-hook voltage, programmable off-  
hook loop current, reverse battery operation, loop or  
ground start operation, and on-hook transmission are  
supported. Loop current and voltage are continuously  
monitored by an integrated monitoring ADC.  
Resistive Region  
V_RFEED  
V_VLIM  
Constant V Region  
V
TR(V)  
Figure 25. Dual ProSLIC DC Feed  
Characteristics  
The Si3217x supports balanced 5 REN ringing with or  
without a programmable dc offset. The available voltage  
offset, frequency, waveshape, and cadence options are  
designed to ring the widest variety of terminal devices  
and to reduce external controller requirements.  
5.2. Linefeed Operating States  
The linefeed interface includes eight different register-  
programmable operating states as listed in Table 18.  
The Open state is the default condition in the absence  
of any preloaded register settings. The device may also  
automatically enter the open state in the event of a  
linefeed fault condition.  
A complete audio transmit and receive path is  
integrated, including ac impedance and hybrid gain.  
These features are software-programmable, allowing a  
single hardware design to meet global requirements.  
Select part numbers in the series also implement Silicon  
Laboratories’ capacitive isolation technology to enable a  
seamless connection to Si3291x DAA ICs. Digital voice  
data transfer occurs over a standard PCM bus. Control  
data is transferred using a standard SPI. Si3217x ICs  
are available in a 42-pin QFN package. The Si3291x  
devices are available in a 16-pin SOIC.  
5.3. Line Voltage and Current Monitoring  
The ProSLIC continuously monitors the TIP, RING, and  
battery voltages and currents via an on-chip ADC and  
stores the resulting values in individual RAM locations.  
Additionally, the loop voltage (V –V  
), loop current,  
TIP  
RING  
and longitudinal current values are calculated based on  
the TIP and RING measurements and are stored in  
unique register locations for further processing. The  
ADC updates all registers at a rate of 2 kHz or greater.  
34  
Rev. 1.4  
Si3217x/3291x  
The various power alarms and linefeed faults supporting  
automatic intervention are described below.  
5.4. Power Monitoring and Power Fault  
Detection  
1. Total power exceeded.  
The Si3217x line monitoring functions are used to  
continuously protect against excessive power  
conditions. The Si3217x contains an on-chip, analog  
sensing diode that provides real-time temperature data  
and turns off the device when a preset threshold is  
exceeded.  
2. Excessive foreign current or voltage on TIP and/or  
RING.  
3. Thermal shutdown event.  
5.5. Thermal Overload Shutdown  
If the die temperature exceeds the maximum junction  
temperature threshold, TJmax, of 145 °C or 200 °C, the  
device has the ability to shut itself down to a low-power  
state without user intervention. The thermal shutdown  
circuit contains a sufficient amount of hysteresis and/or  
turn-on delay time so as to remain shut down during a  
power cross event, where 50 Hz or 60 Hz, 600 V, is  
connected to TIP and/or RING.  
If the Si3217x detects a fault condition or overpower  
condition, it automatically sets that device to the open  
state and generates a "power alarm" interrupt.  
The interrupt can be masked, but masking the  
automatic transition to open is not recommended since  
it is used to protect the Si3217 HVIC under excessive  
power conditions.  
Table 18. Linefeed Operating States  
Linefeed State  
Description  
Open  
Output is high-impedance, and all line supervision functions are powered down. Audio is  
powered down. This is the default state after powerup or following a hardware reset. This  
state can also be used in the presence of line fault conditions and to generate open switch  
intervals (OSIs). This state is used in line diagnostics mode as a high impedance state  
during linefeed testing. A power fault condition may also force the device into the open  
state.  
Forward Active  
Reverse Active  
Linefeed circuitry and audio are active. In Forward Active state, the TIP lead is more posi-  
tive than the RING lead; in Reverse Active state, the RING lead is more positive than the  
TIP lead. Loop closure and ground key detect circuitry are active.  
Forward OHT  
Reverse OHT  
Provides data transmission during an on-hook loop condition (e.g., transmitting caller ID  
data between ringing bursts). Linefeed circuitry and audio are active. In Forward OHT  
state, the TIP lead is more positive than the RING lead; in Reverse OHT state, the RING  
lead is more positive than the TIP lead.  
TIP Open  
Provides an active linefeed on the RING lead and sets the TIP lead to high impedance  
(>400 k) for ground start operation in forward polarity. Loop closure and ground key  
detect circuitry are active.  
RING Open  
Provides an active linefeed on the TIP lead and sets the RING lead to high impedance  
(>400 k) for ground start operation in reverse polarity. Loop closure and ground key  
detect circuitry are active.  
Ringing  
Drives programmable ringing signal onto TIP and RING leads with or without dc offset.  
Line Diagnostics  
The channel is put into diagnostic mode. In this mode, the channel has special diagnostic  
resources available.  
Rev. 1.4  
35  
Si3217x/3291x  
5.6. Loop Closure Detection  
5.10. Two-Wire Impedance Synthesis  
The Si3217x provides a completely programmable loop The ac two-wire impedance synthesis is generated on-  
closure detection mechanism. The loop closure chip using a DSP-based scheme to optimally match the  
detection scheme provides two unique thresholds to output impedance of the Si3217x to the reference  
allow hysteresis, and also includes a programmable impedance. Most real or complex two-wire impedances  
debounce filter to eliminate false detection. A loop can be generated with appropriate register coefficients.  
closure detect status bit provides continuous status, and  
5.11. Transhybrid Balance Filter  
a maskable interrupt bit is also provided.  
The trans-hybrid balance function is implemented on-  
chip using a DSP-based scheme to effectively cancel  
5.7. Ground Key Detection  
The Si3217x provides a ground key detect mechanism the reflected receive path signal from the transmit path.  
using a programmable architecture similar to the loop  
5.12. Tone Generators  
closure scheme. The ground key detect scheme  
provides two unique thresholds to allow hysteresis and The Si3217x includes two digital tone generators that  
also includes a programmable debounce filter to allow a wide variety of single- or dual-tone frequency  
eliminate false detection. A ground key detect status bit and amplitude combinations. Each tone generator has  
provides continuous status, and a maskable interrupt bit its own set of registers that hold the desired frequency,  
is also provided.  
amplitude, and cadence to allow generation of DTMF  
and call progress tones for different requirements. The  
tones can be directed to either receive or transmit paths.  
5.8. Ringing Generation  
The Si3217x provides the ability to generate a  
programmable sinusoidal or trapezoidal ringing  
waveform, with or without dc offset. The ringing  
frequency, wave shape, cadence, and offset are all  
register-programmable. Three ringing modes are  
supported: balanced, unbalanced, and low-power  
ringing (LPR). Figure 26 illustrates the fundamental  
differences between the three ringing modes.  
5.9. Polarity Reversal  
The Si3217x supports polarity reversal for message  
waiting and various other signaling modes. The ramp  
rate can be programmed for a smooth or abrupt  
transition to accommodate different application  
requirements.  
Balanced  
Unbalanced  
LPR  
GND  
GND  
TIP  
GND  
TIP  
RING  
VBAT  
TIP  
RING  
VBAT  
RING  
VBAT  
Figure 26. Ringing Modes  
36  
Rev. 1.4  
Si3217x/3291x  
5.13. DTMF Detection  
5.17. In-Circuit and Metallic Loop Testing  
(MLT)  
In DTMF, two tones generate a DTMF digit. One tone is  
chosen from four possible row tones, and one tone is  
chosen from four possible column tones. The sum of  
these tones constitutes one of 16 possible DTMF digits.  
Select Si3217x ICs support DTMF detection as outlined  
in "10. Ordering Guide‚" on page 48. The DTMF  
detector can be utilized by the FXS or FXO interface.  
A rich set of features is provided for in-circuit testing of  
the FXS system and the connected telephone line  
(MLT):  
Tone generators  
Audio diagnostic filters  
Digital and analog loop-back modes  
Internal test load  
5.14. Pulse Metering (Si32170/1 Only)  
The pulse metering system for the Si32170/1 is  
designed to inject a 12 or 16 kHz billing tone into the  
Monitor ADC  
DSP algorithms  
audio path with maximum amplitude of 2.5 V  
at TIP  
RMS  
Using these facilities, it is possible to test the Si3217x’s  
dc-dc converter, codec, line-feed, PCM bus interface,  
DSP, SPI bus interface, and call progress state-machine  
as well as testing the connected telephone line and  
external protection circuitry.  
and RING into a 200 ac load impedance. The tone is  
generated in the DSP via a table lookup that guarantees  
spectral purity by not allowing drift. The tone will ramp  
up until it reaches a host-programmed threshold, at  
which point it will maintain that level until instructed to  
ramp down, thus creating a trapezoidal envelope.  
The audio diagnostic filters on the FXS are intended to  
provide programmable filtering of the TX digital audio  
signal and calculate the peak and/or average signal  
power of the filters’ outputs. The signal powers are then  
The amplitude is controlled by an automatic gain control  
circuit (AGC). While the tone is ramping up, the AGC  
takes the feedback audio and applies it to a band pass  
filter, which is programmed for the 12 or 16 kHz  
frequency of interest. When the peak is detected, the  
ramp is stopped.  
compared  
to  
programmable  
thresholds.  
The  
programmable filters can be used to band-pass filter a  
certain tone or notch out certain tones, so that the signal  
power measurements are frequency selective. This  
filtering is useful in a telephony system because it can  
measure harmonic distortion, intermodulation, noise,  
etc.  
See AN340 section 2.3.9 for additional details and  
considerations on Pulse Metering.  
5.15. DC-DC Controller  
The Si3217x incorporates an internal test load with a  
5 knominal value that can be connected across Tip/  
Ring (Figure 27). The audio diagnostics system and  
built-in test load can be used to test the FXS interface  
(Si3217x) itself without requiring an external load, a  
connected line, or any relays. This facility can be used  
for production and in-service testing of such things as:  
The Si3217x integrates a dc-dc controller that operates  
from  
a single positive dc input. The controller  
dynamically manages an external dc-dc converter  
circuit to generate the optimal battery voltage for each  
operating state.  
5.16. Wideband Audio  
Select Si3217x ICs support a software-selectable  
wideband (50 Hz–7 kHz) and narrowband (200 Hz–  
3.4 kHz) audio codec. The wideband mode provides an  
expanded audio band at a 16-bit, 16 kHz sample rate  
for enhanced audio quality while maintaining standard  
telephony audio compatibility. Wideband audio samples  
are transmitted and received on the PCM interface  
using two consecutive 8 kHz frames.  
Dial tone draw/break  
Audio quality measurements  
Pulse digit detection  
DC feed  
Ringtrip  
Polarity reversal  
Transmission loss  
Rev. 1.4  
37  
Si3217x/3291x  
MLT, e.g., GR-909, is facilitated by the built-in DSP, Ringers Test – Measures the magnitude of the  
monitor ADC, and test load. They provide the ability to  
detect multiple fault conditions within the CPE as well as  
on the Tip/Ring pair (T-R). Thirteen different measured  
and/or calculated parameters are reported by the  
Monitor ADC. Host software for use in conjunction with  
the ProSLIC API is available from Silicon Labs. Typical  
MLT tests include:  
connected ring load (REN) across T-R. Results are  
> 0.175 REN and < 5 REN for a valid load  
AC Line Impedance (line length) – T-R, T-G, and R-  
G. Generates a tone at several specific frequencies  
(audio band) and measures the reflected signal  
amplitude (complex spectrum) that comes back (with  
transhybrid balance filter disabled). The reflected  
signal is then used to calculate the line impedance  
based on certain assumptions of wire gauge, etc.  
Hazardous Potential Test – This checks for ac  
voltage > 50 V  
or dc voltage > 135 V between  
RMS  
Line Capacitance – T-R, T-G, R-G. Generates a  
linear ramp function with polarity reversal, and  
measures the time constant.  
Tip and Ground (T-G) or Ring and Ground (R-G).  
Foreign Electromotive Force Test – Checks T-G or  
R-G for ac voltage > 10 V  
or dc voltage > 6 V.  
RMS  
Diagnostic information is available even in the presence  
of fault conditions that cause the system’s protection  
devices (fuses, PTCs, etc.) to open. A high-impedance  
sensing path (pins SRINGC and STIPC) can be used to  
measure the conditions on Tip/Ring even when the FXS  
system is effectively disconnected from the line. No  
relay is required and this sensing path inherently meets  
Dielectric Withstand per GR-49 (> 1000 V).  
Uses same threshold as for hazardous voltage test.  
Resistive Faults Test – Checks for dc resistance  
from T-R, T-G or R-G. Any measurement < 150 kis  
considered a resistive fault.  
Receiver-Off-Hook Test – Distinguishes between a  
T-R resistive fault and an off-hook condition.  
Test Load  
TIP  
RTL = 5.3 k(typical)  
RING  
HVIC_STATE_SPARE[23]  
0 = Test Load OFF  
1 = Test Load ON  
Figure 27. Si3217x Internal Test Load Circuit  
38  
Rev. 1.4  
Si3217x/3291x  
6.5. Line Voltage Measurement  
6. FXO Features  
Line voltage can be measured in both on-hook and off-  
hook states with a resolution of 1V per bit and a range of  
6.1. Isolation Barrier  
The Si32178/9 and Si3291x achieve an isolation barrier -128 to 127V. Values between –3 to 3 V can, optionally,  
through low-cost, high-voltage capacitors in conjunction be forced to zero to mask measurements between –2 to  
with Silicon Laboratories’ patented signal processing 2 V, which may be unpredictable.  
techniques.  
Polarity reversal detection is triggered whenever the  
The isolation barrier provides greater than 5 kV sign of the measured value changes between positive  
isolation.  
and negative states.  
6.2. Power Management  
6.6. Loop Current Measurement  
The Si32178/9 FXO circuitry supports four power Loop current sensing is available in the off-hook state.  
management modes: reset mode, normal mode, sleep Loop currents are measurable down to the minimum  
mode and powerdown mode. When in reset mode, the operating loop current of the DAA, which is  
Si32178/9 FXO is operational, except for the programmable to 10, 12, 14 or 16mA. Currents can be  
communication link to the line-side device (Si3291x). In measured with a resolution of 1.1 or 3.3 mA over a  
normal mode, the chipset is fully operational. Sleep range of 0 to 127 mA. If the loop current exceeds the  
mode provides a low-power state that only supports ring programmed current limit of the device (160 mA or  
detection, ring validation and wake-up-on-ring features. 60 mA), an over-current event is reported.  
The powerdown mode puts the chipset in a non-  
6.7. Parallel Handset Detection  
functional state that requires the least power. Normal  
operation can be restored by issuing a reset.  
The integrated line sensing capabilities of the Si32178/9  
can be used to detect a parallel handset going off-hook.  
When off-hook, a significant change in loop current  
6.3. In-Circuit Testing  
Six FXO loopback modes are available to support signals a parallel phone off-hook or on-hook event.  
production line testing and end-user diagnostics. Four When on-hook, a significant drop in line-voltage signals  
of the test modes require a line-side power source.  
a parallel phone off-hook event.  
6.4. Transmit/Receive Full-Scale Level  
6.8. DC Termination  
The Si32178/9 supports programmable maximum The DAA has programmable settings for the dc  
transmit and receive levels. The default signal level impedance, current limiting, minimum operational loop  
supported by the Si32178/9 is 0 dBm into a 600 load. current and TIP/RING voltage. The dc impedance of the  
Two additional modes of operation offer increased DAA is normally represented with a 50 slope as  
transmit and receive level capability to enable use of the shown in Figure 28, but can be changed to an 800   
DAA in applications that require higher signal levels. slope. This higher dc termination presents a higher  
The full-scale mode increases the full-scale signal level resistance to the line as loop current increases.  
to +3.2 dBm into a 600 load or 1 dBV into all  
reference impedances. The enhanced full-scale mode  
increases the full-scale signal level to +6.0 dBm into a  
600 load or 1.5 dBV into all reference impedances.  
The full-scale and enhanced full-scale modes provide  
the ability to trade off TX power and TX distortion for a  
peak signal. By using the programmable digital gain  
registers in conjunction with the enhanced full-scale  
signal level mode, a specific power level (+3.2 dBm for  
example) can be achieved across all ac termination  
settings.  
FCC DCT Mode  
12  
11  
10  
9
8
7
6
.01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11  
Loop Current (A)  
Figure 28. FCC Mode I/V Characteristics  
Rev. 1.4  
39  
Si3217x/3291x  
For applications requiring current limiting per the TBR21  
standard, the ILIM bit may be set to select this mode. In  
this mode, the dc I/V curve is changed to a 2000   
slope above 40 mA, as shown in Figure 29. This allows  
the DAA to operate with a 50 V, 230 feed, which is the  
maximum linefeed specified in the TBR21 standard.  
Table 19. AC Termination Settings for the  
Si3291x Line-Side Devices  
Si32911  
Si32919  
AC Termination  
ü
ü
ü
ü
600   
900   
TBR21 DCT Mode  
45  
ü
270 + (750 || 150 nF)  
275 + (780 || 150 nF)  
40  
35  
30  
25  
20  
15  
10  
ü
220 + (820 || 120 nF)  
220 + (820 || 115 nF)  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
370 + (620 || 310 nF)  
320 + (1050 || 230 nF)  
370 + (820 || 110 nF)  
270 + (750 || 150 nF)  
275 + (780 || 115 nF)  
120 + (820 || 110 nF)  
350 + (1000 || 210 nF)  
200 + (680 || 100 nF)  
600 + 2.16 µF  
5
.015 .02 .025 .03 .035 .04 .045 .05 .055 .06  
Loop Current (A)  
Figure 29. TBR21 Mode I/V Characteristics  
6.9. AC Termination  
900 + 1 µF  
The Si32911 is optimized to support only CTR21/TBR21  
and FCC-compliant countries. The Si32919 is a  
globally-compliant DAA solution. The following table  
highlights the available ac termination settings in each  
device:  
900 + 2.16 µF  
600 + 1 µF  
Global complex impedance  
6.10. Ring Detection  
The Si32178/9 supports either full- or half-wave ring  
detection. With full-wave ring detection, the designer  
can detect a polarity reversal of the ring signal. See  
“Transhybrid Balance” on page 41. The Si32919  
supports three programmable ring thresholds: 15 V  
±10%, 21 V ±10%, and 45 V ±10%. The Si32911  
supports 15 V ±10%.  
40  
Rev. 1.4  
Si3217x/3291x  
6.11. Ring Validation  
6.14. Receive Overload Detection  
Ring validation prevents false triggering of a ring The Voice DAA chipset is capable of monitoring and  
detection by validating the ring parameters. Invalid reporting receive overload conditions on the line. Billing  
signals, such as a line-voltage change when a parallel tones, parallel phone off-hook events, polarity reversals  
handset goes off-hook, pulse dialing, or a high-voltage and other disturbances on the line may trigger multiple  
line test are ignored. Ring validation can be enabled levels of overload detection.  
during normal operation and in sleep mode when a valid  
external PCLK signal is supplied.  
Certain events, such as billing tones, can be sufficiently  
large to disrupt the line-derived power supply of an  
The ring validation circuit calculates the time between Si3291x line side device. The Si3291x devices support  
alternating crossings of positive and negative ring a dynamically-enabled high-impedance mode to ensure  
thresholds for a programmed period of time to validate that they maintain the off-hook line state during these  
that the ring frequency is within tolerance. High and low events.  
frequency tolerances are also programmable.  
6.15. On-Hook Line Monitor  
6.12. Ringer Impedance and Threshold  
The on-hook line monitor mode allows the Si32178/9 to  
The ring detector on the Si3291x device is resistively receive line activity when in an on-hook state. This  
coupled to the line. This coupling produces a high ringer mode is typically used to detect caller ID data (see  
impedance to the line of approximately 20 Mto meet “6.16. Transhybrid Balance” ). Caller ID data can be  
the majority of country PTT specifications including FCC gained up or attenuated in the device.  
and TBR21.  
6.16. Transhybrid Balance  
A synthesized ringer impedance can also be enabled to  
The Si32178/9 contains an on-chip analog hybrid that  
comply with maximum ringer impedance specifications  
performs the 2- to 4-wire conversion and near-end echo  
of several countries including Poland, South Africa, and  
cancellation. This hybrid circuit is adjusted for each ac  
Slovenia.  
termination setting selected to achieve a minimum  
transhybrid balance of 20 dB when the line impedance  
matches the selected ac termination.  
6.13. Pulse Dialing and Spark Quenching  
Pulse dialing is accomplished by going off- and on-hook  
to generate make and break pulses. The nominal rate is The Si3217x also offers a programmable digital hybrid  
10 pulses per second. Some countries have strict stage for additional near-end echo cancellation. For  
specifications for pulse fidelity including make and each ac termination setting, the hybrid can be  
break times, make resistance, and rise and fall times. In programmed with coefficients to increase cancellation of  
a traditional, solid-state dc holding circuit, there are a real-world line impedances. This digital filter can  
number of issues in meeting these requirements. The produce 10 dB or greater of near-end echo cancellation  
Si3217x dc holding circuit has active control of the on- in addition to the trans-hybrid loss from the analog  
and off-hook transients to maintain pulse dialing fidelity. hybrid circuitry.  
Spark quenching requirements in countries, such as  
Italy, the Netherlands, South Africa, and Australia, deal  
with the on-hook transition during pulse dialing. The  
Si32919 supports three distinct on-hook speeds to pass  
spark quenching tests without additional BOM  
components.  
Rev. 1.4  
41  
Si3217x/3291x  
7.2. PCM Interface and Companding  
7. System Interfaces  
The Si3217x contains  
interface for the transmission and reception of digital  
a
flexible, programmable  
7.1. SPI Control Interface  
The controller interface to the Si3217x is a 4-wire PCM samples. PCM data transfer is controlled by the  
interface modeled after microcontroller and serial PCM clock (PCLK) and frame sync (FSYNC) inputs as  
peripheral devices. The interface consists of a clock well as the PCM Mode Select, PCM Transmit Start, and  
(SCLK), chip select (CS), serial data input (SDI), and PCM Receive Start settings.  
serial data output (SDO). In addition, the ProSLIC  
The interface can be configured to support from 8 to  
devices feature a serial data through output (SDITHRU)  
128 8-bit time slots in each 125 µs frame,  
to support operation of up to 16 channels using a single  
corresponding to a PCM clock (PCLK) frequency range  
chip select line. The FXS port and FXO port (if available  
of 256 kHz to 8.192 MHz. 1.544 MHz is also supported.  
and enabled) each occupy one SPI channel. The device  
The Si3217x supports both µ-255 Law (µ-Law) and A-  
operates with both 8-bit and 16-bit SPI controllers.  
law companding formats in addition to 16-bit linear data  
mode with no companding.  
42  
Rev. 1.4  
Si3217x/3291x  
8. Pin Descriptions: Si3217x  
42  
VDDHV  
SDI  
41 40 39 38 37 36  
EPAD2  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
1
2
3
4
GPIO1/STIPC  
GPIO2/SRINGC  
SRINGDC  
SRINGAC  
STIPAC  
STIPDC  
VDDA  
SDO  
SCLK  
SDITHRU  
5
6
CS  
FSYNC  
PCLK  
7
8
9
INT  
QGND  
EPAD1  
C2A/NC  
C1A/NC  
10  
11  
12  
13  
14  
IREF  
CAPM  
DTX  
DRX  
CAPP  
CAPLB  
15 16 17 18 19 20 21 22  
DCFF  
SVBAT  
Pin #  
Pin Name  
Description  
1
VDDHV  
IC Voltage Supply.  
Serial Port Data Input.  
Serial port control data input.  
2
3
SDI  
Serial Port Data Output.  
Serial port control data output.  
SDO  
Serial Port Bit Clock Input.  
4
5
6
SCLK  
SDITHRU  
CS  
Serial port clock input. Controls the serial data on SDO and latches the data on  
SDI.  
SDI Passthrough.  
Cascaded SDI output signal for daisy-chain mode.  
Chip Select Input.  
Active low. When inactive, SCLK and SDI are ignored and SDO is high impedance.  
When active, the serial port is operational.  
Frame Sync Clock Input.  
7
FSYNC  
8 kHz frame synchronization signal for the PCM bus. May be short or long pulse  
format.  
PCM Bus Clock Input.  
Clock input for PCM bus timing.  
8
9
PCLK  
INT  
Interrupt Output.  
Maskable interrupt output. Open drain output for wire-ORed operation.  
Si32178/9 only: Connects to one side of the isolation capacitor C1. Used to com-  
municate with the FXO line-side device. For versions of Si3217x that do not sup-  
port an FXO I/F or if the FXO line-side device is not populated this pin should be left  
unbiased.  
10  
C2A/NC  
Rev. 1.4  
43  
Si3217x/3291x  
Pin #  
Pin Name  
Description  
Si32178/9 only: Connects to one side of the isolation capacitor C2. Used to com-  
municate with the FXO line-side device. For versions of Si3217x that do not sup-  
port an FXO I/F or if the FXO line-side device is not populated this pin should be left  
unbiased.  
11  
C1A/NC  
Transmit PCM Data Output.  
12  
13  
DTX  
DRX  
Output data to PCM bus.  
Transmit PCM Data Input.  
Input data from PCM bus.  
DC Feed-Forward/High Current General Purpose Output.  
14  
15  
DCFF  
SDCH  
Feed-forward drive of external bipolar transistors to improve dc-dc converter effi-  
ciency  
DC Monitor.  
DC-DC converter monitor input used to detect overcurrent situations in the con-  
verter  
DC Monitor.  
16  
17  
SDCL  
DC-DC converter monitor input used to detect overcurrent situations in the con-  
verter.  
DC Drive/Battery Switch.  
DCDRV  
DC-DC converter control signal output which drives external bipolar transistor.  
IC Voltage Supply.  
18  
19  
VDDD  
Digital power supply for internal digital circuitry.  
VDDREG  
Regulated Core Power Supply.  
Reset Input.  
20  
21  
RST  
Active low input. Hardware reset used to place all control registers in the default  
state.  
DC-DC Input Voltage Sensor.  
SVDC  
Serves V input to dc-dc converter.  
DC  
VBAT Sense.  
22  
23  
24  
SVBAT  
CAPLB  
CAPP  
Analog current input used to sense voltage on dc-dc converter output voltage lead.  
Calibration Capacitor.  
SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
SLIC Stabilization Capacitor.  
25  
CAPM  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
Current Reference Input.  
26  
27  
IREF  
Connects to an external resistor used to provide a high accuracy reference current.  
QGND  
Quiet Ground Reference Input.  
44  
Rev. 1.4  
Si3217x/3291x  
Pin #  
Pin Name  
Description  
Analog Supply Voltage.  
28  
VDDA  
Analog power supply for internal analog circuitry.  
TIP DC Sense.  
29  
30  
STIPDC  
STIPAC  
Analog current input used to sense voltage on the TIP lead.  
TIP AC Sense Input.  
Analog ac input used to detect voltage on the TIP lead.  
RING AC Sense Input.  
31  
32  
SRINGAC  
SRINGDC  
Analog ac input used to detect voltage on the RING lead  
RING DC Sense Input.  
Analog current input used to sense voltage on the RING lead.  
General Purpose I/O.  
GPIO2  
SRINGC  
33  
34  
RING Coarse Sense Input.  
Voltage sensing outside protection circuit.  
General Purpose I/O.  
GPIO1  
STIPC  
TIP Coarse Sense Input.  
Voltage sensing outside protection circuit.  
No Connect.  
This pin should be left unbiased.  
35  
36  
37  
38  
NC  
VBAT  
NC  
Battery Voltage Supply.  
Connect to battery supply from dc-dc converter.  
No Connect.  
This pin should be left unbiased.  
RING Terminal.  
RING  
Connect to the RING lead of the subscriber loop.  
No Connect.  
39  
40  
NC  
TIP  
This pin should be left unbiased.  
TIP Terminal.  
Connect to the TIP lead of the subscriber loop.  
No Connect.  
This pin should be left unbiased.  
41  
42  
NC  
NC  
No Connect.  
This pin is internally connected to EPAD2 and should be left unbiased.  
Exposed paddle.  
Connect to ground.  
EPAD1  
Exposed paddle.  
EPAD2  
Connect to electrically-isolated low thermal impedance inner layer and/or backside  
thermal plane using multiple thermal vias.  
Rev. 1.4  
45  
Si3217x/3291x  
9. Pin Descriptions: Si3291x  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DCT2  
IGND  
DCT3  
QB  
QE  
DCT  
RX  
IB  
QE2  
C1B  
C2B  
VREG  
RNG1  
SC  
VREG2  
RNG2  
Pin # Pin Name  
Transistor Emitter.  
Description  
1
2
3
4
QE  
DCT  
RX  
Connects to the emitter of Q3.  
DC Termination.  
Provides dc termination to the telephone network.  
Receive Input.  
Serves as the receive side input from the telephone network.  
Internal Bias.  
IB  
Provides a bias voltage to the device.  
Isolation Capacitor 1B.  
5
C1B  
Connects to one side of isolation capacitor C1. Used to communicate with the  
system-side device (Si32178/9).  
Isolation Capacitor 2B.  
6
7
8
C2B  
Connects to one side of isolation capacitor C2. Used to communicate with the  
system-side device (Si32178/9).  
Voltage Regulator.  
VREG  
RNG1  
Connects to an external capacitor to provide bypassing for an internal power supply.  
Ring 1.  
Connects through a resistor to the TIP lead of the telephone line. Provides the ring and caller  
ID signals to the DAA.  
Ring 2.  
9
RNG2  
Connects through a resistor to the RING lead of the telephone line. Provides the ring and  
caller ID signals to the DAA.  
Voltage Regulator 2.  
10  
11  
VREG2  
SC  
Connects to an external capacitor to provide bypassing for an internal power supply.  
SC Connection.  
Enables external transistor network. Should be tied through a 0 resistor to I  
.
GND  
46  
Rev. 1.4  
Si3217x/3291x  
Pin # Pin Name  
Description  
Transistor Emitter 2.  
12  
13  
14  
15  
16  
QE2  
QB  
Connects to the emitter of Q4.  
Transistor Base.  
Connects to the base of transistor Q4.  
DC Termination 3.  
DCT3  
IGND  
DCT2  
Provides dc termination to the telephone network.  
Isolated Ground.  
Connects to ground on the line-side interface.  
DC Termination 2.  
Provides dc termination to the telephone network.  
Rev. 1.4  
47  
Si3217x/3291x  
10. Ordering Guide  
Table 20. Si3217x-3291x Ordering Guide1  
P/N  
Description  
Package Max V  
Temperature  
BAT  
2
2
2
2
Si32170-B-FM1  
Si32170-B-GM1  
Si32171-B-FM1  
Si32171-B-GM1  
Narrowband FXS, PCM Interface, DTMF detection,  
pulse metering  
LGA  
LGA  
LGA  
LGA  
–136 V  
0 to 70 °C  
Narrowband FXS, PCM Interface, DTMF detection,  
pulse metering  
–136 V  
–110 V  
–110 V  
–40 to 85 °C  
0 to 70 °C  
Narrowband FXS, PCM Interface, DTMF detection,  
pulse metering  
Narrowband FXS, PCM Interface, DTMF detection,  
pulse metering  
–40 to 85 °C  
2
2
2
2
2
Si32176-B-FM1  
Si32176-B-GM1  
Si32177-B-FM1  
Si32177-B-GM1  
Si32178-B-FM1  
Wideband capable FXS, PCM Interface  
Wideband capable FXS, PCM Interface  
Wideband capable FXS, PCM Interface  
Wideband capable FXS, PCM Interface  
LGA  
LGA  
LGA  
LGA  
LGA  
–110 V  
–110 V  
–136 V  
–136 V  
–110 V  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
Wideband capable FXS with FXO support,  
PCM Interface, DTMF detection  
2
2
2
3
Si32178-B-GM1  
Si32179-B-FM1  
Si32179-B-GM1  
Si32171-B-FM  
Si32171-B-GM  
Wideband capable FXS with FXO support,  
PCM Interface, DTMF detection  
LGA  
LGA  
LGA  
–110 V  
–136 V  
–136 V  
–110 V  
–110 V  
–40 to 85 °C  
0 to 70 °C  
Wideband capable FXS with FXO support,  
PCM Interface, DTMF detection  
Wideband capable FXS with FXO support,  
PCM Interface, DTMF detection  
–40 to 85 °C  
0 to 70 °C  
Narrowband FXS, PCM Interface, DTMF detection,  
pulse metering  
NBA  
NBA  
3
Narrowband FXS, PCM Interface, DTMF detection,  
pulse metering  
–40 to 85 °C  
3
3
3
3
3
Si32176-B-FM  
Si32176-B-GM  
Si32177-B-FM  
Si32177-B-GM  
Si32178-B-FM  
Wideband capable FXS, PCM Interface  
Wideband capable FXS, PCM Interface  
Wideband capable FXS, PCM Interface  
Wideband capable FXS, PCM Interface  
NBA  
NBA  
NBA  
NBA  
NBA  
–110 V  
–110 V  
–136 V  
–136 V  
–110 V  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
Wideband capable FXS with FXO support,  
PCM Interface, DTMF detection  
3
Si32178-B-GM  
Wideband capable FXS with FXO support,  
PCM Interface, DTMF detection  
NBA  
–110 V  
–40 to 85 °C  
Notes:  
1. Adding the suffix "R" to the part number (e.g. Si32176-B-FM1R) denotes tape and reel.  
2. LGA – Land Grid Array.  
3. NBA – No Ball Array. Not recommended for new designs. This package must be used only with high Tg PCB material  
(> 170 °C) when using Pb-free solder profiles.  
48  
Rev. 1.4  
Si3217x/3291x  
FXO P/N  
Region  
Ringer  
On-hook  
Temperature  
Thresholds  
Speeds  
Si32911-A-FS  
Si32911-A-GS  
Si32919-A-FS  
Si32919-A-GS  
FCC/CTR21  
FCC/CTR21  
Global  
1
1
3
3
2
2
3
3
0 to 70 °C  
–40 to 85 °C  
0 to 70 C  
Global  
–40 to 85 °C  
Note: Adding the suffix “R” to the part number (e.g., Si32919-A-FSR) denotes tape and reel.  
Table 21. Si3217x Revision C Evaluation Kit Ordering Guide  
Part Number  
Description  
V
Max  
BAT  
Si32171FBMB-EVB  
Wideband capable FXS with DTMF detection and pulse metering,  
110 V Flyback (MOSFET transformer based) dc-dc converter EVB  
–110 V  
–85 V  
Si32176PB10SL0-EVB Wideband FXS, 85 V PMOS buck-boost (PMOS FET and inductor based)  
dc-dc converter EVB for V in the range 3.3 to 5.5 V  
DC  
Si32176PB10SL2-EVB  
Wideband FXS, 110 V PMOS buck-boost (PMOS FET and inductor  
–110 V  
based) dc-dc converter EVB for V nominally 12 V. 1FXS/2FXS dual  
DC  
population board (2FXS version Si32260PB20SL2-EVB)  
Si32176BBMB-EVB  
Si32177FBMB-EVB  
Wideband FXS, 100 V buck-boost (BJT inductor based) dc-dc converter  
EVB  
–100 V  
–136 V  
Wideband FXS, 136 V flyback (MOSFET transformer based) dc-dc  
converter EVB  
Rev. 1.4  
49  
Si3217x/3291x  
11. Product Identification  
The product identification number is a finished goods part number or is specified by a finished goods part number,  
such as a special customer part number.  
Example:  
Si32178-B-FM1R  
Shipping Option  
Blank = Trays  
Product Designator  
R = Tape and Reel  
Product Revision  
Package Type  
M1 = QFN/LGA  
M = QFN/NBA  
S = SOIC  
Part Type / Lead Finish  
F = Commercial / RoHS-Compliant  
G = Industrial / RoHS-Compliant  
50  
Rev. 1.4  
Si3217x/3291x  
12. Package Outline  
12.1. 42-Pin QFN/LGA  
Figure 30 illustrates the package details for the Si3217x. Table 22 lists the values for the dimensions shown in the  
illustration.  
Figure 30. 42-Pin QFN/LGA Package  
Table 22. 42-Pin QFN/LGA Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.20  
Nom  
0.85  
Max  
0.90  
0.30  
A
b
0.25  
D
5.00 BSC  
3.40  
D2  
e
3.35  
3.45  
0.50 BSC  
7.00 BSC  
5.40  
E
E2  
E3  
E4  
L
5.35  
1.65  
3.15  
0.35  
0.05  
5.45  
1.75  
3.25  
0.45  
0.15  
0.10  
0.10  
1.70  
3.20  
0.40  
L1  
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification  
for Small Body Components.  
Rev. 1.4  
51  
Si3217x/3291x  
12.2. 42-Pin QFN/NBA  
Figure 30 illustrates the package details for the Si3217x. Table 22 lists the values for the dimensions shown in the  
illustration.  
Figure 31. 42-Pin QFN/NBA Package  
Table 23. 42-Pin QFN/NBA Package Diagram Dimensions  
Dimension  
Min  
0.60  
0.20  
Nom  
0.65  
Max  
0.70  
0.30  
A
b
0.25  
D
5.00 BSC  
3.40  
D2  
e
3.35  
3.45  
0.50 BSC  
7.00 BSC  
5.40  
E
E2  
E3  
E4  
L
5.35  
1.65  
3.15  
0.35  
0.05  
5.45  
1.75  
3.25  
0.45  
0.15  
0.10  
0.10  
1.70  
3.20  
0.40  
L1  
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification  
for Small Body Components.  
52  
Rev. 1.4  
Si3217x/3291x  
13. PCB Land Pattern Si3217x QFN (LGA or NBA)  
Table 24. PCB Land Pattern  
Dimension  
mm  
C1  
C2  
E
4.60  
6.60  
0.50  
0.30  
3.45  
0.45  
1.75  
3.25  
5.45  
X1  
X2  
Y1  
Y2  
Y3  
Y4  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is  
calculated based on a Fabrication Allowance of 0.05 mm.  
Rev. 1.4  
53  
Si3217x/3291x  
13.1. QFN PCB Design  
1. High-Tg PCB materials (Glass Transition Temperature 170 °C) are recommended for Pb-Free reflow profiles  
per standard industry practice. This is required for reliable board assembly when using the NBA package.  
2. PCB design must ensure sufficient thermal relief for high power operation of the device. See layout guidelines in  
application note AN340 for further details.  
3. A minimum of four vias are required under each E-Pad. Eight or more vias are recommended.  
4. Via diameter should be between 0.20 and 0.31 mm.  
5. Metal-to-Metal distance between outer edge of via diameter and closest edge of device perimeter pad must be  
1.00 mm (dimension "X" below).  
6. Vias may be placed as desired within the non-hatched area of the E-Pads. Final via size and count is  
dependent on the choice of PCB materials and the total thermal relief provided by the internal Cu plane in the  
PCB.  
7. Vias should either be filled or tented on the top side of the board to prevent solder thieving under the device.  
54  
Rev. 1.4  
Si3217x/3291x  
13.2. QFN Solder Mask Design  
All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad  
is to be 60 µm minimum, all the way around the pad.  
13.3. QFN Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good  
solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 1x2 array of 1.40 mm square openings on 1.7 mm pitch should be used for the top center pad and a 2x2 array  
of 1.35 mm square openings on 1.7 mm pitch should be used for the bottom center pad (as shown below).  
13.4. QFN Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020D specification for Small Body  
Components.  
Rev. 1.4  
55  
Si3217x/3291x  
14. Package Outline: 16-Pin SOIC  
Figure 32 illustrates the package details for the Si3291x. Table 25 lists the values for the dimensions shown in the  
illustration.  
Figure 32. 16-Pin Small Outline Integrated Circuit (SOIC) Package  
56  
Rev. 1.4  
Si3217x/3291x  
Table 25. 16-Pin SOIC Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.4  
57  
Si3217x/3291x  
15. PCB Land Pattern Si3291x SOIC  
Table 26. PCB Land Pattern  
Dimension  
Feature  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05mm is assumed.  
58  
Rev. 1.4  
Si3217x/3291x  
16. Top Markings  
16.1. Si3217x LGA Package Top Marking  
16.2. Si3217x LGA Package Top Marking Explanation  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
e.g., 32178-FM1  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to  
the year and work week of the assembly release.  
TTTTTT = Mfg Code  
Manufacturing Code from the Assembly Purchase  
Order form.  
Circle = 0.5 mm Diameter  
Lower Left-Justified  
Pin 1 Identifier  
“e4” Pb-Free Symbol  
e.g., KR  
Line 3 Marking:  
Circle = 1.3 mm Diameter  
Center-Justified  
Country of Origin  
ISO Code Abbreviation  
Rev. 1.4  
59  
Si3217x/3291x  
16.3. Si3217x NBA Package Top Marking  
16.4. Si3217x NBA Top Marking Explanation  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
e.g., Si32178/9-FM  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds  
to the year and work week of the assembly  
release.  
TTTTTT = Mfg Code  
Assembly Lot Manufacturing Code.  
Circle = 0.5 mm Diameter  
Lower Left-Justified  
Pin 1 Identifier  
Line 3 Marking:  
Circle = 1.3 mm Diameter  
Center-Justified  
“e4” Pb-Free Symbol  
e.g., TW  
Country of Origin  
ISO Code Abbreviation  
60  
Rev. 1.4  
Si3217x/3291x  
16.5. Si32919 Top Mark  
16.6. Si3291x Top Mark Explanation  
Line 1 Marking:  
Line 2 Marking:  
Customer Part Number  
Si32919-A-FS  
Circle = 1.3 mm Diameter  
“e3” Pb-Free Symbol  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds  
to the year and work week of the assembly  
release.  
TTTTTT = Mfg Code  
Manufacturing Code  
Rev. 1.4  
61  
Si3217x/3291x  
Revision 0.11 to Revision 0.12  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.11  
Added description of maximum battery ratings to  
front page description.  
Corrected name of pin 34 on Si3217 pin assignment  
Deleted operating temperature range in Table 1.  
diagrams.  
Changed TA from 70°C to 85°C for continuous  
Corrected names and descriptions for Si3217 pins  
power dissipation entries in Table 1.  
numbers 10, 11, 21, and 22.  
Added -130V rated devices to Table 1.  
Expanded descriptions for Si3217 pins numbers 35,  
Replaced TBD for SOIC-16 Continuous Power  
37,39, 41 and 42.  
Dissipation.  
Changed EPAD names to match reference design  
Added Battery Voltage row for Si3217xH to Table 2.  
Updated supply currents in Table 3.  
schematics.  
Removed footnote from Si3217 pin descriptions  
Added Ringing Amplitude information for –130 V  
table.  
rated devices to Table 5.  
Added C1A, C1B, C2A, C2B pin names to  
Edited second and third paragraphs in the Overview  
Functional Block Diagram.  
Section with information about -130V rated ICs.  
Added entries for C1A, and C2A to Table 11, “DC  
Updated the FXS table in the Ordering Guide.  
Characteristics”.  
Added G-grade devices under Product Identification.  
Harmonized IO polarities of for VOH and VOL test  
Added part number information to Package Outline  
conditions for outputs in Table 11.  
descriptions in sections 10 and 11.  
Deleted references to relay drivers in Table 11.  
Revision 0.12 to Revision 1.0  
Corrected GPIO1/STIPC and GPIO2/SRINGC  
entries in Table 11.  
Renamed Si32176H to Si32177.  
Deleted INT entry for V in Table 11.  
OH  
Updated descriptions of voltage ratings in the  
Description section on front page and the Overview  
section.  
Added Si3291x to title.  
Added image and pin assignment diagram for  
Updated Ordering Guide.  
Si3291x to cover page.  
Updated V  
entries in Table 1 and Table 2.  
Deleted VBAT = –135 V and VBAT = –130 V entries  
BAT  
from Ringing Amplitude row of Table 5.  
Added V  
and V  
entries to Table 1.  
TIP  
RING  
Clarified titles of Tables 4 through 8 to indicate FXS  
Updated front page Description section.  
Updated Table 14.  
or FXO.  
Corrected references in footnote 1 of Table 8.  
Added Figures 1 through 11.  
Updated Table 1, 2, 3, 4, 5, 10, and 13.  
Added Typical Applications schematics.  
Added Figure 20, 21, 22, and 19.  
Added Tables 9 and 10.  
Replaced Si32911/19 with Si3291x throughout.  
Replaced Si3217 with Si3217x throughout.  
Replaced Si3291 with Si3291x throughout.  
Deleted G-Grade from Table 2  
Updated section “4. Overview” , “5.4. Power  
Monitoring and Power Fault Detection” , “5.14. Pulse  
Metering (Si32170/1 Only)” , “5.17. In-Circuit and  
Metallic Loop Testing (MLT)” , “8. Pin Descriptions:  
Si3217x” , “9. Pin Descriptions: Si3291x” , and “14.  
Package Outline: 16-Pin SOIC” .  
Removed 3.3 V from title of Table 3.  
Filled-in Typical supply currents in Table 3.  
Added system-side FXO supply current rows to  
Table 3.  
Added reference to AN340 to the Calibration Time  
row in Table 5.  
Corrected footnote in Table 5.  
Deleted Si32175-A-FM and Si32177-A-FM from  
Ordering Guide.  
Added Section 9 Product Identification.  
62  
Rev. 1.4  
Si3217x/3291x  
Revision 1.0 to Revision 1.1  
Removed ringing amplitude with 5 REN load from  
Table 4 because these values were specified with an  
invalid RDO of 100   
Decreased maximum PCLK period to 1953 ns (was  
3906 ns) in Table 13 and added PCLK jitter  
tolerance of ±8 ns  
Updated schematics, BOMs and added buck-boost  
dc-dc converter schematics  
Added package top mark drawings  
Added PCB land patterns and soldering notes  
Revision 1.1 to Revision 1.2  
Added LGA package information.  
Corrected thermal resistance, , to 53°C/W and  
JA  
adjusted maximum continuous power dissipation,  
PD, to 0.75W.  
Added definition of dBm0.  
Added specification for RST (with overbar) internal  
pull up current (same as SDITHRU).  
Added support for PCLK as low as 256kHz (3906ns  
period) for commercial temperature parts only (0°C  
to +70°C).  
Changed PCLK jitter tolerance spec for FXS to  
8nsRMS  
Added PCLK jitter tolerance for FXO devices -  
2nsRMS  
Corrected SDCL connection in top level schematic to  
make it clear that it is not connected directly to  
ground.  
Revision 1.2 to Revision 1.3  
Added industrial temperature (–40 to 85 °C) options  
for the Si32178 and Si3219x devices.  
Revision 1.3 to Revision 1.4  
Added new part numbers Si32170 and Si32179  
Corrected formatting  
Added additional thermal resistance values and  
JB  
JC  
Standardized test condition for supply currents  
measurement and values in Table 2 for Forward/  
Reverse Active, Off-hook state to match data sheets  
of other current ProSLICs  
Rev. 1.4  
63  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI32170-B-GMR

Telecom Circuit,
SILICON

SI32170-C-FM1

Telecom Circuit, 1-Func, 5 X 7 MM, ROHS COMPLIANT, QFN-42
SILICON

SI32170-C-GM1

Telecom Circuit, 1-Func, 5 X 7 MM, ROHS COMPLIANT, QFN-42
SILICON

SI32171-B-FM

ProSLIC Single-Chip FXS Solution with FXO Option
SILICON

Si32171-B-FM

ProSLIC® Single-Chip FXS Solution with FXO Option
SILICONIMAGE

SI32171-B-FM1

IC PROSLIC FXS DTMF -110V 42QFN
SILICON

SI32171-B-FM1R

IC PROSLIC FXS DTMF -110V 42QFN
SILICON

Si32171-B-FMR

Revision 1.1 of the Si3217x datasheet adds manufacturing information
SILICON

SI32171-B-GM

ProSLIC Single-Chip FXS Solution with FXO Option
SILICON

Si32171-B-GM

ProSLIC® Single-Chip FXS Solution with FXO Option
SILICONIMAGE

Si32171-B-GM1

Silicon Laboratories is pleased to announce revision 1.2 of the datasheet
SILICON

Si32171-B-GMR

Revision 1.1 of the Si3217x datasheet adds manufacturing information
SILICON