SI4112G [SILICON]

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS; 集成VCO用于GSM和GPRS无线通讯双频RF合成器
SI4112G
型号: SI4112G
厂家: SILICON    SILICON
描述:

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
集成VCO用于GSM和GPRS无线通讯双频RF合成器

GSM 无线
文件: 总32页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4133G  
Si4123G/22G/13G/12G  
DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS  
FOR GSM AND GPRS WIRELESS COMMUNICATIONS  
Features  
Dual-Band RF Synthesizers Fast Settling Time: 140 µs  
RF1: 900 MHz to 1.8 GHz  
RF2: 750 MHz to 1.5 GHz  
IF Synthesizer  
Low Phase Noise  
Programmable Power Down Modes  
1 µA Standby Current  
Si4133G-BT  
IF: 500 MHz to 1000 MHz  
18 mA Typical Supply Current  
Integrated VCOs, Loop Filters, 2.7 V to 3.6 V Operation  
Varactors, and Resonators Packages: 24-Pin TSSOP and  
Minimal External Components  
Required  
Ordering Information:  
28-Pin MLP  
See page 28.  
Applications  
Pin Assignments  
GSM, DCS1800, and PCS1900 GPRS Data Terminals  
Cellular Telephones HSCSD Data Terminals  
Si4133G-BT  
Description  
SCLK  
SDATA  
GNDR  
RFLD  
SENB  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VDDI  
2
The Si4133G is a monolithic integrated circuit that performs both IF and  
dual-band RF synthesis for GSM and GPRS wireless communications  
applications. The Si4133G includes three VCOs, loop filters, reference and  
VCO dividers, and phase detectors. Divider and power down settings are  
programmable through a three-wire serial interface.  
IFOUT  
GNDI  
IFLB  
3
4
RFLC  
5
IFLA  
GNDR  
RFLB  
6
GNDD  
VDDD  
GNDD  
XIN  
7
RFLA  
8
Functional Block Diagram  
GNDR  
GNDR  
RFOUT  
VDDR  
9
10  
11  
12  
Reference  
Amplifier  
÷ 65  
XIN  
RFLA  
RFLB  
PWDNB  
AUXOUT  
Phase  
Detector  
RF1  
RF2  
IF  
Power  
Down  
PW DNB  
RFOUT  
÷ N  
÷ N  
÷ N  
Control  
Si4133G-BM  
SDATA  
SCLK  
RFLC  
RFLD  
Phase  
Serial  
Interface  
Detector  
22-bit  
Data  
SENB  
28  
27  
26  
25  
24  
23  
22  
Register  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
G NDR  
RFLD  
RFLC  
G NDR  
RFLB  
RFLA  
G NDR  
G NDI  
IFLB  
Phase  
Test  
Mux  
AUXOUT  
IFOUT  
Detector  
IFLA  
IFLA  
IFLB  
G NDD  
VDDD  
G NDD  
XIN  
8
9
10  
11  
12  
13  
14  
Patents pending  
Rev. 1.1 4/01  
Copyright © 2001 by Silicon Laboratories  
Si4133G-DS11  
Si4133G  
2
Rev. 1.1  
Si4133G  
TABLE OF CONTENTS  
Section  
Page  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Setting the VCO Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Self-Tuning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PLL Loop Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
RF and IF Outputs (RFOUT and IFOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reference Frequency Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Auxiliary Output (AUXOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Descriptions: Si4133G-BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Pin Descriptions: Si4133G-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Si4133G Derivative Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package Outline: Si4133G-BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package Outline: Si4133G-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Rev. 1.1  
3
Si4133G  
Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Temperature  
Symbol  
TA  
Test Condition  
Min  
–20  
2.7  
Typ  
25  
Max  
85  
Unit  
°C  
V
Supply Voltage  
VDD  
3.0  
3.6  
0.3  
Supply Voltages Difference  
V∆  
(VDDR – VDDD),  
–0.3  
V
(VDDI – VDDD  
)
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at 3.0 V and an operating temperature of 25°C unless otherwise stated.  
1,2  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
IIN  
Value  
–0.5 to 4.0  
±10  
Unit  
V
DC Supply Voltage  
Input Current3  
mA  
V
Input Voltage3  
VIN  
–0.3 to VDD+0.3  
–55 to 150  
oC  
Storage Temperature Range  
TSTG  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. This device is a high performance RF integrated circuit with an ESD rating of < 2 kV. Handling and assembly of  
this device should only be done at ESD-protected workstations.  
3. For signals SCLK, SDATA, SENB, PWDNB and XIN.  
4
Rev. 1.1  
Si4133G  
Table 3. DC Characteristics  
(VDD = 2.7 to 3.6 V, TA = –20 to 85°C  
Parameter  
Typical Supply Current1  
RF1 Mode Supply Current1  
RF2 Mode Supply Current1  
IF Mode Supply Current1  
Standby Current  
Symbol  
Test Condition  
Min  
Typ  
18  
13  
12  
10  
1
Max  
31  
Unit  
mA  
mA  
mA  
mA  
µA  
V
RF1 and IF Operating  
17  
17  
14  
PWDNB = 0  
VIH = 3.6 V,  
High Level Input Voltage2  
Low Level Input Voltage2  
High Level Input Current2  
VIH  
VIL  
IIH  
0.7 VDD  
0.3 VDD  
10  
V
–10  
µA  
V
DD = 3.6 V  
Low Level Input Current2  
IIL  
VIL = 0 V,  
–10  
10  
µA  
VDD= 3.6 V  
High Level Output Voltage3  
Low Level Output Voltage3  
Notes:  
VOH  
VOL  
IOH = –500 µA  
IOH = 500 µA  
VDD–0.4  
V
V
0.4  
1. RF1 = 1.55 GHz, RF2 = 1.2 GHz, IF = 800 MHz  
2. For signals SCLK, SDATA, SENB, and PWDNB.  
3. For signal AUXOUT.  
Rev. 1.1  
5
Si4133G  
Table 4. Serial Interface Timing  
(VDD = 2.7 to 3.6 V, TA = –20 to 85°C)  
Parameter1  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK Cycle Time  
tclk  
tr  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
40  
10  
10  
5
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Rise Time  
SCLK Fall Time  
tf  
SCLK High Time  
th  
SCLK Low Time  
tl  
SDATA Setup Time to SCLK2  
SDATA Hold Time from SCLK2  
SENBto SCLKDelay Time2  
SCLKto SENBDelay Time2  
SENBto SCLKDelay Time2  
SENB Pulse Width  
tsu  
thold  
ten1  
ten2  
ten3  
tw  
0
10  
12  
12  
10  
Notes:  
1. All timing is referenced to the 50% level of the waveform, unless otherwise noted.  
2. Timing is not referenced to 50% level of waveform. See Figure 2.  
tr  
tf  
80%  
50%  
20%  
SCLK  
th  
tl  
tclk  
Figure 1. SCLK Timing Diagram  
6
Rev. 1.1  
 
Si4133G  
tsu  
thold  
SCLK  
SDATA  
SENB  
D17  
D16  
D15  
A1  
A0  
ten3  
ten1  
ten2  
tw  
Figure 2. Serial Interface Timing Diagram  
First bit  
Last bit  
clocked in  
clocked in  
D
D
D
D
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
3
A
2
A
1
A
0
17 16 15 14 13 12 11 10  
data  
field  
address  
field  
Figure 3. Serial Word Format  
Rev. 1.1  
7
 
 
Si4133G  
Table 5. RF and IF Synthesizer Characteristics  
(VDD = 2.7 to 3.6 V, TA = –20 to 85°C)  
Parameter1  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
XIN Input Frequency  
fREF  
13  
MHz  
VPP  
Reference Amplifier Sensitivity  
VREF  
0.5  
VDD  
+0.3  
Phase Detector Update Frequency  
fφ  
fφ = fREF/R  
200  
KHz  
MHz  
fCEN  
947  
1720  
RF1 Center Frequency Range  
RF2 Center Frequency Range  
IF VCO Center Frequency  
Tuning Range from fCEN  
RF1 VCO Pushing  
fCEN  
fCEN  
789  
526  
–5  
–7  
–8  
1429  
952  
5
MHz  
MHz  
Note: LEXT ±10%  
Open loop  
%
0.5  
1
MHz/V  
MHz/V  
MHz/V  
MHzPP  
MHzPP  
MHzPP  
dBc/Hz  
dBc/Hz  
deg rms  
dBc/Hz  
dBc/Hz  
deg rms  
dBc/Hz  
deg rms  
dBc  
RF2 VCO Pushing  
0.4  
IF VCO Pushing  
0.3  
RF1 VCO Pulling  
VSWR = 2:1, all  
phases, open loop  
0.4  
RF2 VCO Pulling  
0.1  
IF VCO Pulling  
0.1  
RF1 Phase Noise  
1 MHz offset  
3 MHz offset  
–132  
–142  
0.9  
RF1 Integrated Phase Error  
RF2 Phase Noise  
100 Hz to 100 kHz  
1 MHz offset  
–134  
–144  
0.7  
3 MHz offset  
RF2 Integrated Phase Error  
IF Phase Noise  
100 Hz to 100 kHz  
100 kHz offset  
100 Hz to 100 kHz  
Second Harmonic  
–117  
0.4  
IF Integrated Phase Error  
RF1 Harmonic Suppression  
RF2 Harmonic Suppression  
IF Harmonic Suppression  
RFOUT Power Level  
–26  
–26  
–26  
–2  
dBc  
dBc  
ZL = 50 Ω  
dBm  
IFOUT Power Level  
ZL = 50 Ω  
–6  
–1  
dBm  
RF1 Reference Spurs  
Offset = 200 kHz  
Offset = 400 kHz  
Offset = 600 kHz  
Offset = 200 kHz  
Offset = 400 kHz  
Offset = 600 kHz  
Figures 4, 5  
–70  
–75  
–80  
–75  
–80  
–80  
140  
dBc  
dBc  
dBc  
RF2 Reference Spurs  
dBc  
dBc  
dBc  
Power Up Request to Synthesizer  
Ready Time, RF1, RF2, IF2  
tpup  
tpdn  
µs  
Power Down Request to Synthesizer Off  
Figures 4, 5  
100  
ns  
Time3  
Notes:  
1. RF1 = 1.55 GHz, RF2 = 1.2 GHz, IF = 550 MHz for all parameters unless otherwise noted.  
2. From power up request (PWDNBor SENBduring a write of 1 to bits PDIB and PDRB in Register 2) to RF and IF  
synthesizers ready (settled to within 0.1 ppm frequency error). Typical settling time to 5 degrees phase error is 120 µs.  
3. From power down request (PWDNB, or SENBduring a write of 0 to bits PDIB and PDRB in Register 2) to supply  
current equal to IPWDN  
.
8
Rev. 1.1  
Si4133G  
RF and IF synthesizers settled to  
within 0.1 ppm frequency error.  
RF and IF synthesizers settled to  
w ithin 0.1 ppm frequency error.  
tpup  
tpdn  
t
t
pup  
pdn  
IT  
IT  
IPW DN  
IPW D N  
PW DNB  
SENB  
PDIB =  
PDRB = 1  
1
PDIB =  
PDRB = 0  
0
SDATA  
Figure 5. Hardware Power Management Timing  
Diagram  
Figure 4. Software Power Management Timing  
Diagram  
Rev. 1.1  
9
Si4133G  
TRACE A: Ch1 FM Gate Time  
A Offset  
133.59375  
us  
800  
Hz  
Real  
160  
Hz  
/div  
-800  
Hz  
Stop: 299.21875 us  
Start: 0 s  
Figure 6. Typical Transient Response RF1 at 1.6 GHz  
with 200 kHz Phase Detector Update Frequency  
10  
Rev. 1.1  
Si4133G  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
102  
103  
104  
105  
106  
Offset Frequency (Hz)  
Figure 7. Typical RF1 Phase Noise at 1.6 GHz  
with 200 kHz Phase Detector Update Frequency  
Figure 8. Typical RF1 Spurious Response at 1.6 GHz  
with 200 kHz Phase Detector Update Frequency  
Rev. 1.1  
11  
Si4133G  
60  
70  
80  
90  
100  
110  
120  
130  
140  
102  
103  
104  
105  
106  
Offset Frequency (Hz)  
Figure 9. Typical RF2 Phase Noise at 1.2 GHz  
with 200 kHz Phase Detector Update Frequency  
Figure 10. Typical RF2 Spurious Response at 1.2 GHz  
with 200 kHz Phase Detector Update Frequency  
12  
Rev. 1.1  
Si4133G  
70  
80  
90  
100  
110  
120  
130  
140  
150  
102  
103  
104  
105  
106  
Offset Frequency (Hz)  
Figure 11. Typical IF Phase Noise at 550 MHz  
with 200 kHz Phase Detector Update Frequency  
Figure 12. IF Spurious Response at 550 MHz  
with 200 kHz Phase Detector Update Frequency  
Rev. 1.1  
13  
Si4133G  
Si4133G-BT  
From  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
System  
SENB  
VDDI  
SCLK  
0.022µ F  
VDD  
Controller  
SDATA  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDR  
RFOUT  
VDDR  
10nH 560pF  
3
IFOUT  
GNDI  
IFOUT  
4
Printed Trace  
Inductor or  
5
IFLB  
Chip Inductor  
6
Printed Trace  
Inductors  
IFLA  
7
GNDD  
VDDD  
GNDD  
XIN  
VDD  
0.022µ F  
8
9
560 pF  
10  
11  
12  
External Clock  
PDWNB  
560pF 2nH  
RFOUT  
PW DNB  
AUXOUT  
0.022µ F  
VDD  
AUXOUT  
Figure 13. Typical Application Circuit: Si4133G-BT  
VDD  
From  
0.022µ F  
System  
10nH 560pF  
Controller  
IFOUT  
28  
27  
26  
25  
24  
23  
22  
Printed Trace  
Inductor or  
Chip Inductor  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
GNDR  
GNDI  
IFLB  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
IFLA  
Printed Trace  
Inductors  
GNDD  
VDDD  
GNDD  
XIN  
VDD  
Si4133G-BM  
0.022µF  
560pF  
External Clock  
8
9
10  
11  
12  
13  
14  
VDD  
0.022µF  
AUXOUT  
RFOUT  
PW DNB  
2nH 560pF  
Figure 14. Typical Application Circuit: Si4133G-BM  
14  
Rev. 1.1  
Si4133G  
The Si4133G is programmed serially with 22-bit words  
comprised of 18-bit data fields and 4-bit address fields.  
Functional Description  
The Si4133G is a monolithic integrated circuit that When the serial interface is enabled (i.e., when SENB is  
performs IF and dual-band RF synthesis for many low) data and address bits on the SDATA pin are  
wireless applications such as GSM, DCS1800, and clocked into an internal shift register on the rising edge  
PCS1900. Its fast transient response also makes the of SCLK. Data in the shift register is then transferred on  
Si4133G especially well suited to GPRS and HSCSD the rising edge of SENB into the internal data register  
multislot applications where channel switching and addressed in the address field. The serial interface is  
settling times are critical. This integrated circuit (IC), disabled when SENB is high.  
with a minimum number of external components, is all  
that is necessary to implement the frequency synthesis  
functions and addresses. The internal shift register will  
function.  
Table 10 on page 20 summarizes the data register  
ignore any leading bits before the 22 required bits.  
The Si4133G has three complete phase-locked loops  
(PLLs) with integrated voltage-controlled oscillators  
Setting the VCO Center Frequencies  
(VCOs). The low phase noise of the VCOs makes the The PLLs can adjust the IF and RF output frequencies  
Si4133G suitable for use in demanding wireless ±5% with respect to their VCO center frequencies. Each  
communications applications. Also integrated are phase center frequency is established by the value of an  
detectors, loop filters, and reference dividers. The IC is external inductance connected to the respective VCO.  
programmed through a three-wire serial interface.  
Manufacturing tolerances of ±10% for the external  
inductances are acceptable. The Si4133G will  
compensate for inaccuracies in each inductance by  
executing a self-tuning algorithm following PLL power-  
up or following a change in the programmed output  
frequency.  
One PLL is provided for IF synthesis, and two PLLs are  
provided for dual-band RF synthesis. One RF VCO is  
optimized to have its center frequency set between  
947 MHz and 1720 MHz, while the second RF VCO is  
optimized to have its center frequency set between  
789 MHz and 1429 MHz. The IF VCO is optimized to Because the total tank inductance is in the low nH  
have its center frequency set between 526 MHz and range, the inductance of the package needs to be  
952 MHz. Each PLL can adjust its output frequency by considered in determining the correct external  
±5% relative to its VCO center frequency.  
inductance. The total inductance (LTOT) presented to  
each VCO is the sum of the external inductance (LEXT  
and the package inductance (LPKG). Each VCO has a  
nominal capacitance (CNOM) in parallel with the total  
inductance, and the center frequency is as follows:  
)
The center frequency of each of the three VCOs is set  
by connection of an external inductance. Inaccuracies in  
the value of the inductance are compensated for by the  
Si4133G’s proprietary self-tuning algorithm. This  
algorithm is initiated each time the PLL is powered-up  
(by either the PWDNB pin or by software) and/or each  
time a new output frequency is programmed.  
1
fCEN = ---------------------------------------------  
2π LTOT CNOM  
or  
The two RF PLLs share a common output pin, so only  
one PLL is active at a given time. Because the two  
VCOs can be set to have widely separated center  
frequencies, the RF output can be programmed to  
service different frequency bands, thus making the  
Si4133G ideal for use in dual-band cellular handsets.  
1
fCEN = ----------------------------------------------------------------------  
2π (LPKG + LEXT) CNOM  
Tables 6 and 7 summarize these characteristics for  
each VCO.  
The unique PLL architecture used in the Si4133G  
produces a transient response that is superior in speed  
to fractional-N architectures without suffering the high  
phase noise or spurious modulation effects often  
associated with those designs.  
Serial Interface  
A timing diagram for the serial interface is shown in  
Figure 2 on page 7. Figure 3 on page 7 shows the  
format of the serial word.  
Rev. 1.1  
15  
Si4133G  
in addition to 2.3 nH of LPKG (Si4133G-BT), will present  
the correct total inductance to the VCO. In  
manufacturing, the external inductance can vary ±10%  
of its nominal value and the Si4133G will correct for the  
variation with the self-tuning algorithm.  
Table 6. Si4133G-BT VCO Characteristics  
VCO Fcen Range Cnom Lpkg  
Lext Range  
(nH)  
(MHz)  
(pF)  
(nH)  
Min Max  
Min  
0.0  
0.3  
2.2  
Max  
4.6  
In most cases, particularly for the RF VCOs, the  
requisite value of the external inductance is small  
enough to allow a PC board trace to be utilized. During  
initial board layout, a length of trace approximating the  
desired inductance can be used. For more information,  
please refer to Application Note 31.  
RF1 947 1720 4.3  
RF2 789 1429 4.8  
2.0  
2.3  
2.1  
6.2  
IF  
526 952  
6.5  
12.0  
Self-Tuning Algorithm  
Table 7. Si4133G-BM VCO Characteristics  
The self-tuning algorithm is initiated immediately  
following power-up of a PLL or, if the PLL is already  
powered, following a change in its programmed output  
frequency. This algorithm attempts to tune the VCO so  
that its free-running frequency is near the desired output  
frequency. In so doing, the algorithm will compensate  
for manufacturing tolerance errors in the value of the  
external inductance connected to the VCO. It will also  
reduce the frequency error for which the PLL must  
correct to get the precise desired output frequency. The  
self-tuning algorithm will leave the VCO oscillating at a  
frequency in error by somewhat less than 1% of the  
desired output frequency.  
VCO Fcen Range Cnom Lpkg  
Lext Range  
(nH)  
(MHz)  
(pF)  
(nH)  
Min Max  
Min  
0.5  
1.1  
2.7  
Max  
5.1  
RF1 947 1720 4.3  
RF2 789 1429 4.8  
1.5  
1.5  
1.6  
7.0  
IF  
526 952  
6.5  
12.5  
After self-tuning, the PLL controls the VCO oscillation  
frequency. The PLL will complete frequency locking,  
eliminating any remaining frequency error. Thereafter, it  
will maintain frequency-lock, compensating for effects  
caused by temperature and supply voltage variations.  
LPKG  
2
LEXT  
The Si4133G’s self-tuning algorithm will compensate for  
component value errors at any temperature within the  
specified temperature range. However, the ability of the  
PLL to compensate for drift in component values that  
occur after self-tuning is limited. For external  
inductances with temperature coefficients around  
±150 ppm/oC, the PLL will be able to maintain lock for  
changes in temperature of approximately ±30oC.  
LPKG  
2
Figure 15. External Inductance Connection  
Applications where the PLL is regularly powered down  
(such as GSM) or switched between channels minimize  
or eliminate the potential effects of temperature drift  
because the VCO is re-tuned when it is powered up or  
when a new frequency is programmed. In applications  
where the ambient temperature can drift substantially  
after self-tuning, it may be necessary to monitor the  
LDETB (lock-detect bar) signal on the AUXOUT pin to  
determine the locking state of the PLL. (See "Auxiliary  
Output (AUXOUT)" on page 18 for how to select  
LDETB.)  
As a design example, suppose it is desired to  
synthesize frequencies in a 25 MHz band between  
1120 MHz and 1145 MHz. The center frequency should  
be defined as midway between the two extremes, or  
1132.5 MHz. The PLL will be able to adjust the VCO  
output frequency ±5% of the center frequency, or  
±56.6 MHz of 1132.5 MHz (i.e., from approximately  
1076 MHz to 1189 MHz, more than enough for this  
example). The RF2 VCO has a CNOM of 4.8 pF, and a  
4.1 nH inductance (correct to two digits) in parallel with  
this capacitance will yield the desired center frequency.  
An external inductance of 1.8 nH should be connected  
between RFLC and RFLD as shown in Figure 15. This,  
The LDETB signal is normally low after self-tuning is  
completed but will rise to a logic high condition when  
16  
Rev. 1.1  
 
Si4133G  
either the IF or RF PLL nears the limit of its the RF and IF PLLs Tφ = 5 µS. During the first 6.5  
compensation range (LDETB will also be high when update periods, the Si4133G executes the self-tuning  
either PLL is executing the self-tuning algorithm). The algorithm. Thereafter the PLL controls the output  
output frequency will still be locked when LDETB goes frequency. Because of the unique architecture of the  
high, but the PLL will eventually lose lock if the Si4133G PLLs, the time required to settle the output  
temperature continues to drift in the same direction. frequency to 0.1 ppm error is approximately 21 update  
Therefore, if LDETB goes high both the IF and RF PLLs periods. Thus, the total time after power-up or a change  
should promptly be re-tuned by initiating the self-tuning in programmed frequency until the synthesized  
algorithm.  
frequency is well settled (including time for self-tuning)  
is around 28 update periods or 140 µS.  
Output Frequencies  
RF and IF Outputs (RFOUT and IFOUT)  
The IF and RF output frequencies are set by  
programming the N-Divider registers. Each RF PLL has The RFOUT pin is driven by an amplifier that buffers the  
its own register and can be programmed output pin from the RF VCOs, and must be coupled to  
N
independently. All three PLL R dividers are fixed at its load through an AC coupling capacitor. The amplifier  
R = 65 to yield a 200 kHz phase detector update rate receives its input from either the RF1 or RF2 VCO,  
from a 13 MHz reference frequency. Programming the depending upon which N-Divider register was last  
N-Divider register for either RF1 or RF2 automatically written. For example, programming the N-Divider  
selects the associated output.  
register for RF1 automatically selects the RF1 VCO  
output.  
The reference frequency on the XIN pin is divided by R  
and this signal is the input to the PLL’s phase detector. A matching network is required to maximize power  
The other input to the phase detector is the PLL’s VCO delivered into a 50 load. The network consists of a 2  
output frequency divided by N. The PLL works to make nH series inductance, which may be realized with a PC  
these frequencies equal. That is, after an initial transient board trace, connected between the RFOUT pin and  
the AC coupling capacitor. The network is made to  
f
fREF  
--O----U----T- = -----------  
65  
provide an adequate match for both the RF1 and RF2  
frequency bands, and also filters the output signal to  
reduce harmonic distortion. A 50 load is not required  
for proper operation of the Si4133G. Depending on  
transceiver requirements, the matching network may  
not be needed. See Figure 16.  
N
or  
N
------  
fOUT  
=
fREF  
65  
For XIN = 13 MHz this simplifies to  
560 pF  
fOUT = N 200 kHz  
RFOUT  
2 nH  
The integer N is set by programming the RF1 N-Divider  
register (Register 3), the RF2 N-Divider register  
(Register 4), and the IF N-Divider register (Register 5).  
50 Ω  
Each N divider is implemented as a conventional high  
speed divider. That is, it consists of a dual-modulus  
prescaler, a swallow counter, and a lower speed  
synchronous counter. However, the calculation of these  
values is done automatically. Only the appropriate N  
value needs to be programmed.  
Figure 16. RFOUT 50 Test Circuit  
The IFOUT pin is driven by an amplifier that buffers the  
output pin from the IF VCO. The IFOUT pin must be  
coupled to its load through an AC coupling capacitor. A  
matching network is required to maximize power  
delivered into a 50 load. See Figure 17.  
PLL Loop Dynamics  
The transient response for each PLL has been  
optimized for a GSM application. VCO gain, phase  
detector gain, and loop filter characteristics are not  
programmable.  
The settling time for each PLL is directly proportional to  
its phase detector update period Tφ (Tφ equals 1/fφ). For  
a GSM application with a 13 MHz reference frequency,  
Rev. 1.1  
17  
 
Si4133G  
Reference Frequency Amplifier  
560 pF  
The Si4133G provides a reference frequency amplifier.  
If the driving signal has CMOS levels it can be  
connected directly to the XIN pin. Otherwise, the  
reference frequency signal should be AC coupled to the  
XIN pin through a 560 pF capacitor.  
IFOUT  
LMATCH  
50 Ω  
Power Down Modes  
Table 9 summarizes the power down functionality. The  
Si4133G can be powered down by taking the PWDNB  
pin low or by setting bits in the Power Down register  
(Register 1). When the PWDNB pin is low, the Si4133G  
will be powered down regardless of the Power Down  
register settings. When the PWDNB pin is high, power  
management is under control of the Power Down  
register bits.  
Figure 17. IFOUT 50 Test Circuit  
Table 8. L  
Values  
LMATCH  
MATCH  
Frequency  
500–600 MHz  
600–800 MHz  
800–1 GHz  
40 nH  
27 nH  
18 nH  
The reference frequency amplifier, IF, and RF sections  
of the Si4133G circuitry can be individually powered  
down by setting the Power Down register bits PDIB and  
PDRB low, respectively. The reference frequency  
amplifier will also be powered up if either of the PDRB  
or PDIB bits are high. Also, setting the AUTOPDB bit to  
1 in the Main Configuration register (Register 0) is  
equivalent to setting both bits in the Power Down  
register to 1. The serial interface remains available and  
can be written in all power down modes.  
The IF output level is dependent upon the load.  
Figure 18 displays the output level versus load  
resistance for a variety of output frequencies.  
450  
400  
350  
Auxiliary Output (AUXOUT)  
LPWR=1  
LPWR=0  
300  
The signal appearing on AUXOUT is selected by setting  
the AUXSEL bits in the Main Configuration register  
(Register 0).  
250  
200  
150  
100  
50  
The LDETB signal can be selected by setting the  
AUXSEL bits to 11. As discussed previously, this signal  
can be used to indicate that the IF or RF PLL is about to  
lose lock due to excessive ambient temperature drift and  
should be re-tuned.  
0
0
200  
400  
600  
800  
1000  
1200  
Load Resistance ()  
Figure 18. Typical IF Output Voltage vs. Load  
Resistance at 550 MHz  
For resistive loads greater than 500 the output level  
saturates and the bias currents in the IF output amplifier  
are higher than they need be. The LPWR bit in the Main  
Configuration register (Register 0) can be set to 1 to  
reduce the bias currents and therefore reduce the  
power dissipated by the IF amplifier. For loads less than  
500 LPWR should be set to 0 to maximize the output  
level.  
18  
Rev. 1.1  
 
Si4133G  
Table 9. Power Down Configuration  
PWDNB Pin  
AUTOPDB  
PDIB  
PDRB  
IF Circuitry RF Circuitry  
x
0
0
0
0
1
x
0
0
1
1
x
x
0
1
0
1
x
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
PWDNB = 0  
OFF  
ON  
PWDNB = 1  
ON  
ON  
ON  
Rev. 1.1  
19  
Si4133G  
Control Registers  
Table 10. Register Summary  
Register Name  
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit  
17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
LPWR  
AUTO  
PDB  
AUXSEL  
[1:0]  
0
Main  
Configuration  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
2
3
4
5
6
Reserved  
PDIB PDRB  
Power Down  
RF1 N Divider  
RF2 N Divider  
IF N Divider  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NRF1[17:0]  
0
0
N
RF[16:0]  
0
NIF[15:0]  
.
.
.
15  
Reserved  
Note: Registers 1 and 6–15 are reserved. Writes to these registers may result in unpredictable behavior. Any register not listed  
here is reserved and should not be written.  
20  
Rev. 1.1  
Si4133G  
Register 0. Main Configuration Address Field = A[3:0] = 0000  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5  
D4  
D3 D2 D1 D0  
LPWR  
AUTO  
PDB  
Name  
0
0
0
0
AUXSEL  
[1:0]  
0
0
0
0
0
0
0
0
1
0
Bit  
Name  
Function  
17:14  
13:12  
Reserved  
Program to zero.  
AUXSEL  
[1:0]  
Auxiliary Output Pin Definition.  
00 = Reserved.  
01 = Force output low.  
10 = Reserved.  
11 = Lock Detect—LDETB.  
11:6  
5
Reserved  
LPWR  
Program to zero.  
Output Power-Level Settings for IF Synthesizer Circuit.  
0 = RLOAD < 500 —normal power mode.  
1 = RLOAD 500 —low power mode.  
4
3
Reserved  
Program to zero.  
AUTOPDB  
Auto Power Down  
0 = Software powerdown is controlled by Register 2.  
1 = Equivalent to setting all bits in Register 2 = 1.  
2
1
0
Reserved  
Reserved  
Reserved  
Program to zero.  
Program to one.  
Program to zero.  
Rev. 1.1  
21  
Si4133G  
Register 2. Power Down Address Field (A[3:0]) = 0010  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2  
D1  
D0  
PDIB  
PDRB  
Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
17:2  
1
Name  
Reserved  
PDIB  
Function  
Program to zero.  
Power Down IF Synthesizer.  
0 = IF synthesizer powered down.  
1 = IF synthesizer on.  
Note: Always program to 0 for Si4113G.  
0
PDRB  
Power Down RF Synthesizer.  
0 = RF synthesizer powered down.  
1 = RF synthesizer on.  
Note: Always program to 0 for Si4112G.  
Register 3. RF1 N Divider Address Field (A[3:0]) = 0011  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
RF1[17:0]  
Name  
N
Bit  
Name  
Function  
17:0  
NRF1[17:0]  
N Divider for RF1 Synthesizer.  
Register reserved for Si4112G, Si4122G. Writes to this register may result in unpre-  
dictable behavior.  
22  
Rev. 1.1  
Si4133G  
Register 4. RF2 N Divider Address Field = A[3:0] = 0100  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
RF2[16:0]  
Name  
0
N
Bit  
17  
Name  
Function  
Reserved  
Program to zero.  
N Divider for RF2 Synthesizer.  
16:0  
NRF2[16:0]  
Register reserved for Si4112G, Si4123G. Writes to this register may result in  
unpredictable behavior.  
Register 5. IF N Divider Address Field (A[3:0]) = 0101  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
NIF[15:0]  
Name  
0
0
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
NIF[15:0]  
Program to zero.  
N Divider for IF Synthesizer.  
Register reserved for Si4113G. Writes to this register may result in  
unpredictable behavior.  
Rev. 1.1  
23  
Si4133G  
Pin Descriptions: Si4133G-BT  
SENB  
VDDI  
SCLK  
SDATA  
GNDR  
RFLD  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
IFOUT  
GNDI  
IFLB  
3
4
RFLC  
5
IFLA  
GNDR  
RFLB  
6
GNDD  
VDDD  
GNDD  
XIN  
7
RFLA  
8
GNDR  
GNDR  
RFOUT  
VDDR  
9
10  
11  
12  
PWDNB  
AUXOUT  
Pin Number(s) Name  
Description  
1
SCLK  
Serial clock input  
Serial data input  
2
SDATA  
GNDR  
3, 6, 9, 10  
4, 5  
7, 8  
11  
Common ground for RF analog circuitry  
RFLC, RFLD Pins for inductor connection to RF2 VCO  
RFLA, RFLB  
RFOUT  
VDDR  
Pins for inductor connection to RF1 VCO  
Radio frequency (RF) output of the selected RF VCO  
Supply voltage for the RF analog circuitry  
Auxiliary output  
12  
13  
AUXOUT  
PWDNB  
XIN  
14  
Power down input pin  
15  
Reference frequency amplifier input  
Common ground for digital circuitry  
Supply voltage for digital circuitry  
Pins for inductor connection to IF VCO  
Common ground for IF analog circuitry  
Intermediate frequency (IF) output of the IF VCO  
Supply voltage for IF analog circuitry  
Enable serial port input  
16, 18  
17  
GNDD  
VDDD  
19, 20  
21  
IFLA, IFLB  
GNDI  
22  
IFOUT  
VDDI  
23  
24  
SENB  
24  
Rev. 1.1  
Si4133G  
Table 11. Pin Descriptions for Si4133G Derivatives—TSSOP  
Pin Number Si4133G-BT Si4123G-BT Si4122G-BT Si4113G-BT Si4112G-BT  
1
SCLK  
SDATA  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
SCLK  
SDATA  
GNDR  
GNDR  
GNDR  
GNDR  
RFLB  
SCLK  
SDATA  
GNDR  
RFLD  
SCLK  
SDATA  
GNDR  
RFLD  
SCLK  
SDATA  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
AUXOUT  
PWDNB  
XIN  
2
3
4
5
RFLC  
RFLC  
6
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
XIN  
GNDR  
RFLB  
7
8
RFLA  
RFLA  
RFLA  
9
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
XIN  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
XIN  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
XIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
SENB  
GNDD  
VDDD  
GNDD  
IFLA  
IFLB  
IFLB  
IFLB  
IFLB  
GNDI  
GNDI  
GNDI  
GNDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
SENB  
SENB  
SENB  
SENB  
Rev. 1.1  
25  
Si4133G  
Pin Descriptions: Si4133G-BM  
28  
27  
26  
25  
24  
23  
22  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDI  
IFLB  
IFLA  
GNDD  
VDDD  
GNDD  
XIN  
8
9
10  
11  
12  
13  
14  
Pin Number(s) Name  
Description  
Common ground for RF analog circuitry  
RFLC, RFLD Pins for inductor connection to RF2 VCO  
1, 4, 7–9, 28  
GNDR  
2, 3  
5,6  
RFLA, RFLB  
RFOUT  
VDDR  
Pins for inductor connection to RF1 VCO  
10  
Radio frequency (RF) output of the selected RF VCO  
Supply voltage for the RF analog circuitry  
Auxiliary output  
11  
12  
AUXOUT  
PWDNB  
GNDD  
XIN  
13  
Power down input pin  
14, 16, 18  
15  
Common ground for digital circuitry  
Reference frequency amplifier input  
Supply voltage for digital circuitry  
Pins for inductor connection to IF VCO  
Common ground for IF analog circuitry  
Intermediate frequency (IF) output of the IF VCO  
Supply voltage for IF analog circuitry  
Enable serial port input  
17  
VDDD  
19, 20  
21, 22  
23  
IFLA, IFLB  
GNDI  
IFOUT  
VDDI  
24  
25  
SENB  
26  
SCLK  
Serial clock input  
27  
SDATA  
Serial data input  
26  
Rev. 1.1  
Si4133G  
Table 12. Pin Descriptions for Si4133G Derivatives—MLP  
Pin Number Si4133G-BM Si4123G-BM Si4122G-BM Si4113G-BM Si4112G-BM  
1
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
GNDR  
GNDR  
GNDR  
GNDR  
RFLB  
GNDR  
RFLD  
RFLC  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
GNDD  
XIN  
GNDR  
RFLD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
AUXOUT  
PWDNB  
GNDD  
XIN  
2
3
RFLC  
4
GNDR  
RFLB  
5
6
RFLA  
RFLA  
RFLA  
7
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
GNDD  
XIN  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
GNDD  
XIN  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDNB  
GNDD  
XIN  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
SENB  
SCLK  
GNDD  
VDDD  
GNDD  
IFLA  
IFLB  
IFLB  
IFLB  
IFLB  
GNDI  
GNDI  
GNDI  
GNDI  
GNDI  
GNDI  
GNDI  
GNDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
SENB  
SCLK  
SDATA  
GNDR  
SENB  
SCLK  
SDATA  
GNDR  
SENB  
SCLK  
SDATA  
GNDR  
SENB  
SCLK  
SDATA  
GNDD  
SDATA  
GNDR  
Rev. 1.1  
27  
Si4133G  
Ordering Guide  
Ordering Part  
Number  
Description  
RF1/RF2/IF  
RF1/IF  
Operating  
Temperature  
Si4133G-BT*  
Si4133G-BM  
–20 to 85oC  
–20 to 85oC  
–20 to 85oC  
–20 to 85oC  
–20 to 85oC  
Si4123G-BT*  
Si4123G-BM  
Si4122G-BT*  
Si4122G-BM  
RF2/IF  
Si4113G-BT*  
Si4113G-BM  
RF1/RF2  
IF  
Si4112G-BT*  
Si4112G-BM  
*Note: TSSOP not recommended for new designs.  
Si4133G Derivative Devices  
The Si4133G performs both IF and dual-band RF frequency synthesis. The Si4112G, Si4113G, Si4122G, and the  
Si4123G are derivatives of this device. Table 13 outlines which synthesizers each derivative device features as  
well as which pins and registers coincide with each synthesizer.  
Table 13. Si4133G Derivatives  
Name  
Synthesizer  
Pins  
Registers  
Si4112G  
IF  
IFLA, IFLB  
NIF, RIF, PDIB, IFDIV, LPWR, AUTOPDB = 0,  
PDRB = 0  
Si4113G  
RF1, RF2  
RFLA, RFLB, RFLC, RFLD  
N
RF1, NRF2, RRF1, RRF2, PDRB, AUTOPDB = 0,  
PDIB = 0  
Si4122G  
Si4123G  
Si4133G  
RF2, IF  
RF1, IF  
RFLC, RFLD, IFLA, IFLB  
RFLA, RFLB, IFLA, IFLB  
N
N
RF2, RRF2, PDRB, NIF, RIF, PDIB, LPWR  
RF1, RRF1, PDRB, NIF, RIF, PDIB, LPWR  
RF1, RF2, IF  
RFLA, RFLB, RFLC, RFLD,  
IFLA, IFLB  
N
RF1, NRF2, RRF1, RRF2, PDRB, NIF, RIF,  
PDIB, LPWR  
28  
Rev. 1.1  
 
Si4133G  
Package Outline: Si4133G-BT  
θ 2  
E1  
E
S
R1  
R
θ 1  
L
e
L1  
θ 3  
D
c
A2  
A
b
A1  
Figure 19. 24-pin Thin Small Shrink Outline Package (TSSOP)  
Table 14. Package Diagram Dimensions  
Symbol  
Millimeters  
Nom  
1.10  
Min  
Max  
1.20  
0.15  
1.05  
0.30  
0.20  
7.90  
A
A1  
A2  
b
c
D
0.05  
0.80  
0.19  
0.09  
7.70  
1.00  
7.80  
e
E
E1  
L
0.65 BSC  
6.40 BSC  
4.40  
4.30  
0.45  
4.50  
0.75  
0.60  
L1  
R
R1  
S
θ1  
θ2  
θ3  
1.00 REF  
0.09  
0.09  
0.20  
0
8
12 REF  
12 REF  
Rev. 1.1  
29  
Si4133G  
Package Outline: Si4133G-BM  
Figure 20. 28-Pin Micro Leadframe Package (MLP)  
Table 15. Package Dimensions  
Controlling Dimension: mm  
Symbol  
Millimeters  
Nom  
Min  
Max  
1.00  
0.05  
0.30  
A
A1  
b
0.90  
0.00  
0.18  
0.01  
0.23  
D
5.00 BSC  
4.75 BSC  
5.00 BSC  
4.75 BSC  
28  
D1  
E
E1  
N
Nd  
Ne  
e
7
7
0.50 BSC  
0.60  
L
0.50  
0.75  
12°  
θ
30  
Rev. 1.1  
Si4133G  
NOTES:  
Rev. 1.1  
31  
Si4133G  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, Texas 78735  
Tel:1+ (512) 416-8500  
Fax:1+ (512) 416-9669  
Toll Free:1+ (877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no war-  
ranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applica-  
tions intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holders.  
32  
Rev. 1.1  

相关型号:

SI4112G-BM

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
SILICON

SI4112G-BT

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
SILICON

SI4112G-BT*

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
ETC

SI4113

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4113-BM

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
ETC

SI4113-BT

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
ETC

SI4113-BTR

Clock Generator, PDSO24
SILICON

SI4113-D-GM

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4113-D-GMR

RF and Baseband Circuit, ROHS COMPLIANT, MS-220VHHD-1, QFN-28
SILICON

SI4113-D-GT

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4113-D-GTR

RF and Baseband Circuit, CMOS, PDSO24, ROHS COMPLIANT, TSSOP-24
SILICON

SI4113-D-ZT1

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON