SI4702-B16-GMR [SILICON]

Audio Demodulator, 3 X 3 MM, ROHS COMPLIANT, QFN-20;
SI4702-B16-GMR
型号: SI4702-B16-GMR
厂家: SILICON    SILICON
描述:

Audio Demodulator, 3 X 3 MM, ROHS COMPLIANT, QFN-20

商用集成电路
文件: 总46页 (文件大小:1450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4702/03-C19  
BROADCAST FM RADIO TUNER FOR PORTABLE APPLICATIONS  
Features  
This data sheet applies to  
Si4702/03-C Firmware 19 and  
greater  
Adaptive noise suppression  
Volume control  
Line-level analog output  
32.768 kHz reference clock  
Worldwide FM band support  
(76–108 MHz)  
2-wire and 3-wire control  
interface  
Digital low-IF receiver  
Frequency synthesizer with  
integrated VCO  
2.7 to 5.5 V supply voltage  
Ordering Information:  
Integrated LDO regulator  
allows direct connection to  
battery  
Seek tuning  
See page 38.  
Automatic frequency control (AFC)  
Automatic gain control (AGC)  
Excellent overload immunity  
Signal strength measurement  
3 x 3 mm 20-pin QFN package  
Pb-free/RoHS compliant  
Pin Assignments  
(Top View)  
RDS/RBDS Processor (Si4703)  
Integrated crystal oscillator  
Programmable de-emphasis  
Si4702/03-GM  
(50/75 µs)  
Applications  
Cellular handsets  
MP3 players  
USB FM radio  
Portable navigation  
1
2
20  
19  
18  
17 16  
15 GND  
NC  
PDAs  
Consumer electronics  
FMIP  
Portable radios  
Notebook PCs  
RFGND  
GND  
3
4
14  
13  
LOUT  
ROUT  
GND  
PAD  
Description  
The Si4702/03 integrates the complete tuner function from antenna input  
to stereo audio output for FM broadcast radio reception.  
RST  
5
6
12 GND  
11 VD  
7
8
9
10  
Functional Block Diagram  
Headphone  
Si4702/03  
Cable  
U.S. and International Patents  
pending—Abbreviated U.S. Patent  
List:  
DSP  
I
LOUT  
DAC  
DAC  
GPIO  
ADC  
FMIP  
FILTER  
DEMOD  
MPX  
LNA  
PGA  
RFGND  
Q
ADC  
ROUT  
GPIO  
7272375, 7127217, 7272373,  
7272374, 7321324, 7339503,  
7339504, 7355476, 7426376,  
7436252, 7471940  
AUDIO  
AGC  
TUNE  
REG  
0 / 90  
LOW-IF  
32.768 kHz  
2.7–5.5 V  
VIO  
RST  
RCLK  
RDS  
(Si4703)  
AFC  
SDIO  
SCLK  
SEN  
VA  
VD  
XTAL  
OSC  
RSSI  
Rev. 1.1 7/09  
Copyright © 2009 by Silicon Laboratories  
Si4702/03-C19  
2
Rev. 1.1  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.2. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.3. General Purpose I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.4. RDS/RBDS Processor and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.5. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.6. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.7. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.8. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.9. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.10. Audio Output Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.11. Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.12. Programming Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5. Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
7. Pin Descriptions: Si4702/03-C19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
9. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9.1. Si4702 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9.2. Si4703 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9.3. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
10. Package Outline: Si4702/03-C19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
11. PCB Land Pattern: Si4702/03-C19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Rev. 1.1  
3
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
2.7  
2.7  
1.5  
10  
Typ  
Max  
5.5  
5.5  
3.6  
Unit  
V
Digital Supply Voltage  
Analog Supply Voltage  
Interface Supply Voltage  
V
D
V
V
A
V
V
IO  
Digital Power Supply Power-Up  
Rise Time  
V
µs  
DRISE  
Analog Power Supply Power-Up  
Rise Time  
V
10  
10  
25  
85  
µs  
µs  
°C  
ARISE  
Interface Power Supply Power-Up  
Rise Time  
V
IORISE  
Ambient Temperature  
T
–20  
A
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VD = VA = 3.3 V and 25 °C unless otherwise stated. Parameters are tested in production unless  
otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 5.8  
–0.5 to 3.9  
±10  
Unit  
V
Digital Supply Voltage  
Analog Supply Voltage  
Interface Supply Voltage  
V
D
V
V
A
V
V
IO  
IN  
3
Input Current  
I
mA  
V
3
Input Voltage  
V
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
Storage Temperature  
T
–40 to 95  
–55 to 150  
0.4  
°C  
°C  
OP  
T
STG  
4
RF Input Level  
V
pK  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond  
recommended operating conditions for extended periods may affect device reliability.  
2. The Si4702/03-C19 device is a high-performance RF integrated circuit with an ESD rating of < 2 kV HBM. Handling  
and assembly of this device should only be done at ESD-protected workstations.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, GPIO1, GPIO2, and GPIO3.  
4. At RF input pins.  
4
Rev. 1.1  
Table 3. DC Characteristics1  
(VD = VA = 2.7 to 3.6 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
ENABLE = 1  
ENABLE = 1  
ENABLE = 1  
Min  
Typ  
10.8  
3.3  
Max  
Unit  
mA  
mA  
mA  
2
Analog Operating Supply Current  
I
A
D
2
Digital Operating Supply Current  
I
Interface Operating Supply  
I
0.3  
IO  
2
Current  
Total Operating Supply  
Current  
I
ENABLE = 1  
Low SNR signal  
15.3  
16.8  
mA  
OP  
2,3,4,5  
Total Operating Supply  
Current  
I
I
ENABLE = 1  
14.4  
14.9  
15.9  
16.4  
mA  
mA  
OP  
OP  
2,3,4  
Total Operating Supply  
ENABLE = 1  
RDS = 1  
2,3,4,6  
Current  
Total Operating Supply  
Current  
I
ENABLE = 1  
RDS = 1,  
15.8  
16.8  
mA  
OP  
2,3,4,6  
Low SNR signal  
2,7  
Analog Powerdown Supply Current  
I
ENABLE = 0  
ENABLE = 0  
3.5  
2.5  
2.5  
µA  
µA  
µA  
APD  
2,7  
Digital Powerdown Supply Current  
I
DPD  
Interface Powerdown Supply  
I
ENABLE = 0  
SCLK, RCLK inactive  
IOPD  
2,7  
Current  
2,7  
Total Powerdown Supply Current  
I
ENABLE = 0  
0.7 x V  
–0.3  
8.5  
12.0  
µA  
V
PD  
8
High Level Input Voltage  
V
V
+ 0.3  
IO  
IH  
IO  
8
Low Level Input Voltage  
V
0.3 x V  
10  
V
IL  
IO  
8
High Level Input Current  
I
V
= V = 3.6 V  
–10  
µA  
µA  
IH  
IN  
IO  
8
Low Level Input Current  
I
V
= 0 V,  
IN  
–10  
10  
IL  
V
= 3.6 V  
IO  
9
High Level Output Voltage  
V
I
= 500 µA  
0.8 x V  
V
V
OH  
OUT  
OUT  
IO  
9
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x V  
OL  
IO  
Notes:  
1. All specifications for the Si4702 unless otherwise noted.  
2. Refer to Register 02h, "Power Configuration" on page 24 for ENABLE bit description.  
3. The LNA is automatically switched to higher current mode for optimum sensitivity in low SNR conditions.  
4. Analog and digital supply currents are simultaneously adjusted based on SNR level.  
5. Stereo and RDS functionality are disabled at low SNR levels.  
6. RDS functionality only available for Si4703.  
7. Refer to Section 4.9. "Reset, Powerup, and Powerdown" on page 19.  
8. For input pins SCLK, SEN, SDIO, RST, RCLK, GPIO1, GPIO2, and GPIO3.  
9. For output pins SDIO, GPIO1, GPIO2, and GPIO3.  
Rev. 1.1  
5
Table 4. Reset Timing Characteristics (Busmode Select Method 1)1,2,3  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
4
RSTpulse width and GPIO3 Setup  
to RST  
t
GPIO3 = 0  
100  
µs  
GSRST1  
SEN and SDIO Setup to RST  
t
30  
30  
ns  
ns  
SRST1  
SEN, SDIO, and GPIO3 Hold from  
t
HRST1  
RST  
Notes:  
1. When selecting 2-wire Mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 3-wire Mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the 1st start condition.  
4. If GPIO3 is driven low by the user, then minimum tGSRST1 is only 30 ns. If GPIO3 is hi-Z, then minimum tGSRST1 is  
100 µs, to provide time for an on-chip 1 Mpulldown device (active while RST is low) to discharge the pin.  
tGSRST1  
tHRST1  
70%  
30%  
RST  
70%  
30%  
GPIO3  
tSRST1  
70%  
30%  
SEN,  
SDIO  
Figure 1. Reset Timing Parameters for Busmode Select Method 1 (GPIO3 = 0)  
6
Rev. 1.1  
Table 5. Reset Timing Characteristics (Busmode Select Method 2)1,2,3  
Parameter  
Symbol  
Test Condition  
Min  
30  
Typ  
Max  
Unit  
ns  
GPIO1 and GPIO3 Setup to RST  
GPIO1 and GPIO3 Hold from RST  
Notes:  
t
GPIO3 = 1  
SRST2  
t
30  
ns  
HRST2  
1. When selecting 2-wire Mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 3-wire Mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the 1st start condition.  
tSRST2 tHRST2  
70%  
RST  
30%  
70%  
GPIO3  
30%  
70%  
GPIO1  
30%  
Figure 2. Reset Timing Parameters for Busmode Select Method 2 (GPIO3 = 1)  
Rev. 1.1  
7
Table 6. 3-Wire Control Interface Characteristics  
(VD = VA = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
f
CLK  
SCLK High Time  
t
25  
25  
20  
10  
10  
10  
2
HIGH  
SCLK Low Time  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
t
ns  
S
t
t
ns  
HSDIO  
ns  
HSEN1  
HSEN2  
t
ns  
t
Read  
Read  
25  
25  
ns  
CDV  
t
2
ns  
CDZ  
Note: When selecting 3-wire Mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tHSDIO  
tHIGH  
tLOW  
tHSEN1  
tHSEN2  
tS  
70%  
30%  
tS  
SEN  
A6-A5,  
R/W,  
A4-A1  
70%  
30%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
Address In  
Data In  
Figure 3. 3-Wire Control Interface Write Timing Parameters  
8
Rev. 1.1  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN1  
tHSEN2  
tS  
tCDZ  
70%  
30%  
tS  
80%  
20%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 4. 3-Wire Control Interface Read Timing Parameters  
Rev. 1.1  
9
Table 7. 2-Wire Control Interface Characteristics1,2,3  
(VD = VA = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCLK Frequency  
SCLK Low Time  
SCLK High Time  
f
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIOSetup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIOHold (START)  
SDIO Input to SCLKSetup  
0.6  
100  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
HD:STA  
SU:DAT  
t
t
4,5  
SDIO Input to SCLKHold  
0
900  
HD:DAT  
SU:STO  
SCLK input to SDIOSetup (STOP)  
STOP to START Time  
t
0.6  
t
1.3  
BUF  
SDIO Output Fall Time  
t
20 + 0.1 C  
20 + 0.1 C  
250  
300  
f:OUT  
b
b
SDIO Input, SCLK Rise/Fall Time  
t
t
f:IN  
r:IN  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VIO = 0 V, SCLK and SDIO are low impedance.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the 1st start condition.  
3. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
4. As a 2-wire transmitter, the Si4702/03-C19 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to  
comply with the 0 ns tHD:DAT specification.  
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated so long as all other timing parameters are met.  
10  
Rev. 1.1  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
30%  
SCLK  
SDIO  
70%  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 5. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
SDIO  
A6-A0,  
R/W  
D7-D0  
D7-D0  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 6. 2-Wire Control Interface Read and Write Timing Diagram  
Rev. 1.1  
11  
Table 8. FM Receiver Characteristics1,2  
(V = V = 2.7 to 5.5 V, V = 1.5 to 3.6 V, TA = –20 to 85 °C)  
D
A
IO  
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
Input Frequency  
f
RF  
3,4,5,6,7  
Sensitivity  
(S+N)/N = 26 dB  
(S+N)/N = 26 dB  
1.7  
1.1  
µVEMF  
µVEMF  
Sensitivity (50 matching  
3,4,5,6,8  
network)  
8
RDS Sensitivity  
f = 2 kHz,  
15  
µVEMF  
RDS BLER < 5%  
8,9  
LNA Input Resistance  
3
4
4
5
5
k  
pF  
8,9  
LNA Input Capacitance  
6
8,10  
Input IP3  
104  
40  
35  
60  
35  
106  
55  
dBµVEMF  
dB  
3,4,5,8,9  
AM Suppression  
m = 0.3  
±200 kHz  
±400 kHz  
In-band  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
Spurious Response Rejection  
RCLK Frequency  
50  
dB  
70  
dB  
8
dB  
32.768  
kHz  
11  
RCLK Frequency Tolerance  
Frequency Spacing =  
100 or 200 kHz  
ppm  
–200  
–50  
200  
50  
Frequency Spacing =  
50 kHz  
3,4,5,9  
Audio Output Voltage  
72  
15  
25  
80  
90  
1
mV  
RMS  
3,4,9,12  
Audio Output L/R Imbalance  
dB  
8
–3 dB  
–3 dB  
30  
Hz  
kHz  
dB  
Audio Frequency Response Low  
8
Audio Frequency Response High  
3,9,12  
Audio Stereo Separation  
Notes:  
1. Additional testing information is available in Application Note AN234. Volume = maximum for all tests.  
2. Important Note: To ensure proper operation and FM receiver performance, follow the guidelines in “AN231:  
Si4700/01/02/03 Headphone and Antenna Interface.” Silicon Laboratories will evaluate schematics and layouts for  
qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis  
MOD  
4. MONO = 1, and L = R unless noted otherwise.  
5. f = 22.5 kHz.  
6. B = 300 Hz to 15 kHz, A-weighted.  
AF  
7. Typical sensitivity with headphone matching network.  
8. Guaranteed by characterization.  
9. V  
= 1 mV.  
EMF  
10. |f – f | > 1 MHz, f = 2 x f – f . AGC is disabled by setting AGCD = 1. Refer to "6. Register Descriptions" on page 23.  
2
1
0
1
2
11. The channel spacing is selected with the SPACE[1:0] bits. Refer to "6. Register Descriptions" on page 23. Seek/Tune  
timing is guaranteed for 100 and 200 kHz channel spacing.  
12. f = 75 kHz.  
13. The de-emphasis time constant is selected with the DE bit. Refer to "6. Register Descriptions" on page 23.  
14. At LOUT and ROUT pins.  
15. Do not enable STC interrupts before the powerup time is complete. If STC interrupts are enabled before the powerup  
time is complete, an interrupt will be generated within the powerup interval when the initial default tune operation is  
complete. See "AN230: Si4700/01/02/03 Programmer’s Guide" for more information.  
16. Minimum and maximum at room temperature (25 °C).  
12  
Rev. 1.1  
Table 8. FM Receiver Characteristics1,2 (Continued)  
(V = V = 2.7 to 5.5 V, V = 1.5 to 3.6 V, TA = –20 to 85 °C)  
D
A
IO  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
BLNDADJ = 10  
10 dB stereo separation  
3,8,12  
Mono/Stereo Switching Level  
34  
dBµVEMF  
3,4,5,6,9  
Audio Mono S/N  
55  
60  
58  
dB  
dB  
%
3,5,6,8  
Audio Stereo S/N  
BLNDADJ = 10  
3,4,9,12  
Audio THD  
0.1  
75  
0.5  
80  
54  
0.9  
13  
De-emphasis Time Constant  
DE = 0  
DE = 1  
70  
µs  
µs  
V
45  
50  
14  
Audio Common Mode Voltage  
ENABLE = 1  
0.65  
0.8  
ENABLE = 0  
AHIZEN = 1  
14  
8,14  
Audio Common Mode Voltage  
0.5 x V  
V
IO  
Audio Output Load Resistance  
R
Single-ended  
Single-ended  
10  
50  
60  
k  
L
8,14  
Audio Output Load Capacitance  
C
pF  
L
8,11  
Seek/Tune Time  
SPACE[1:0] = 0x, RCLK  
tolerance = 200 ppm,  
(x = 0 or 1)  
ms/  
channel  
15  
Powerup Time  
From powerdown  
(Write ENABLE bit to 1)  
110  
3
ms  
dB  
16  
RSSI Offset  
Input levels of 8 and  
60 dBµV at RF input  
–3  
Notes:  
1. Additional testing information is available in Application Note AN234. Volume = maximum for all tests.  
2. Important Note: To ensure proper operation and FM receiver performance, follow the guidelines in “AN231:  
Si4700/01/02/03 Headphone and Antenna Interface.” Silicon Laboratories will evaluate schematics and layouts for  
qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis  
MOD  
4. MONO = 1, and L = R unless noted otherwise.  
5. f = 22.5 kHz.  
6. B = 300 Hz to 15 kHz, A-weighted.  
AF  
7. Typical sensitivity with headphone matching network.  
8. Guaranteed by characterization.  
9. V  
= 1 mV.  
EMF  
10. |f – f | > 1 MHz, f = 2 x f – f . AGC is disabled by setting AGCD = 1. Refer to "6. Register Descriptions" on page 23.  
2
1
0
1
2
11. The channel spacing is selected with the SPACE[1:0] bits. Refer to "6. Register Descriptions" on page 23. Seek/Tune  
timing is guaranteed for 100 and 200 kHz channel spacing.  
12. f = 75 kHz.  
13. The de-emphasis time constant is selected with the DE bit. Refer to "6. Register Descriptions" on page 23.  
14. At LOUT and ROUT pins.  
15. Do not enable STC interrupts before the powerup time is complete. If STC interrupts are enabled before the powerup  
time is complete, an interrupt will be generated within the powerup interval when the initial default tune operation is  
complete. See "AN230: Si4700/01/02/03 Programmer’s Guide" for more information.  
16. Minimum and maximum at room temperature (25 °C).  
Rev. 1.1  
13  
2. Typical Application Schematic  
GPIO1  
GPIO2  
GPIO3  
1
15  
14  
13  
12  
11  
GND  
LOUT  
ROUT  
GND  
VD  
NC  
2
FMIP  
LOUT  
ROUT  
FMIP  
RFGND  
GND  
3
4
5
GND  
PAD  
RFGND  
VBATTERY  
2.7 to 5.5 V  
RST  
C1  
RST  
SEN  
X1  
GPIO3  
RCLK  
SCLK  
SDIO  
RCLK  
VIO  
C2  
C3  
Optional: for crystal oscillator option  
1.5 to 3.6 V  
Notes:  
1. Place C1 close to V pin.  
D
2. All grounds connect directly to GND plane on PCB.  
3. Pins 1 and 20 are no connects, leave floating.  
4. Important Note: FM Receiver performance is subject to adherence to antenna design guidelines in “AN231:  
Si4700/01/02/03 Headphone and Antenna Interface.” Failure to use these guidelines will negatively affect the  
performance of the Si4702/03-C19, particularly in weak signal and noisy environments. Silicon Laboratories will evaluate  
schematics and layouts for qualified customers.  
5. Pin 2 connects to the antenna interface, refer to “AN231: Si4700/01/02/03 Headphone and Antenna Interface.”  
6. Place Si4702/03-C19 as close as possible to antenna jack and keep the FMIP trace as short as possible.  
7. Refer to Si4702/03 Internal Crystal Oscillator Errata.  
8. Refer to "AN299: External 32.768 kHz Crystal Oscillator."  
3. Bill of Materials  
Component(s)  
Value/Description  
Supplier(s)  
C1  
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R  
Si4702/03-C19 FM Radio Tuner  
Murata  
U1  
Silicon Laboratories  
Venkel  
C2, C3  
Crystal load capacitors, 22 pF, ±5%, COG (Optional: for  
crystal oscillator option)  
X1  
32.768 kHz crystal (Optional: for crystal oscillator option)  
Epson  
14  
Rev. 1.1  
4. Functional Description  
Headphone  
Cable  
Si4702/03  
DSP  
I
LOUT  
DAC  
DAC  
GPIO  
ADC  
FMIP  
FILTER  
DEMOD  
MPX  
LNA  
PGA  
RFGND  
Q
ADC  
ROUT  
GPIO  
AUDIO  
AGC  
0 / 90  
LOW-IF  
32.768 kHz  
VIO  
RST  
RCLK  
TUNE  
RDS  
(Si4703)  
AFC  
SDIO  
SCLK  
SEN  
2.7 - 5.5 V  
VA  
VD  
XTAL  
OSC  
REG  
RSSI  
Figure 7. Si4702/03-C19 FM Receiver Block Diagram  
by leading cell-phone and MP3 manufacturers  
world-wide.  
4.1. Overview  
The Si4702/03-C19 extends Silicon Laboratories  
Si4700/01 FM tuner family, and further increases the  
ease and attractiveness of adding FM radio reception to  
mobile devices through small size and board area,  
minimum component count, flexible programmability,  
and superior, proven performance. Si4702/03-C19  
software is backwards compatible to existing Si4700/01  
and Si4702/03-B16 FM Tuner designs. The  
Si4702/03-C19 benefits from proven digital integration  
The Si4702/03-C19 is based on the superior, proven  
performance of Silicon Laboratories' Aero architecture  
offering unmatched interference rejection and leading  
sensitivity. The device uses the same programming  
interface as the Si4701 and supports multiple  
bus-modes. Power management is also simplified with  
an integrated regulator allowing direct connection to a  
2.7 to 5.5 V battery.  
and 100% CMOS process technology, resulting in a The Si4702/03-C19 device’s high level of integration  
completely integrated solution. It is the industry's and complete FM system production testing increases  
2
smallest footprint FM tuner IC requiring only 10 mm  
board space and one external bypass capacitor.  
quality to manufacturers, improves device yields, and  
simplifies device manufacturing and final testing.  
The device offers significant programmability, and  
caters to the subjective nature of FM listeners and  
variable FM broadcast environments world-wide  
through a simplified programming interface and mature  
functionality.  
4.2. FM Receiver  
The  
Si4702/03-C19’s  
patented  
digital  
low-IF  
architecture reduces external components and  
eliminates the need for factory adjustments. The receive  
(RX) section integrates a low noise amplifier (LNA)  
supporting the worldwide FM broadcast band (76 to  
108 MHz). An automatic gain control (AGC) circuit  
controls the gain of the LNA to optimize sensitivity and  
rejection of strong interferers. For testing purposes, the  
AGC can be disabled with the AGCD bit. Refer to  
Section 6. "Register Descriptions" on page 23 for  
additional programming and configuration information.  
The Si4703-C incorporates a digital processor for the  
European Radio Data System (RDS) and the US Radio  
Broadcast Data System (RBDS) including all required  
symbol decoding, block synchronization, error  
detection, and error correction functions.  
RDS enables data such as station identification and  
song name to be displayed to the user. The Si4703-C  
offers a detailed RDS view and a standard view,  
allowing adopters to selectively choose granularity of  
RDS status, data, and block errors. Si4703-C software  
is backwards compatible to the proven Si4701, adopted  
The Si4702/03-C19 architecture and antenna design  
increases system performance. To ensure proper  
performance and operation, designers should refer to  
the guidelines in "AN231: Si4700/01/02/03 Headphone  
Rev. 1.1  
15  
and Antenna Interface". Conformance to these (RDSS) and block error rate A, B, C and D (BLERA,  
guidelines will help to ensure excellent performance BLERB, BLERC, and BLERD) are unused and will read  
even in weak signal or noisy environments.  
0. This mode is backward compatible with earlier  
firmware revisions.  
An image-reject mixer downconverts the RF signal to  
low-IF. The quadrature mixer output is amplified, Setting the RDS mode bit high places the device in RDS  
filtered, and digitized with high resolution verbose mode. The device sets RDSS high when  
analog-to-digital converters (ADCs). This advanced synchronized and low when synchronization is lost. If  
architecture achieves superior performance by using the device is synchronized, RDS ready (RDSR) will be  
digital signal processing (DSP) to perform channel set for a minimum of 40 ms when a RDS group has  
selection, FM demodulation, and stereo audio been received. Setting the RDS interrupt enable  
processing  
architectures.  
compared  
to  
traditional  
analog (RDSIEN) bit and GPIO2[1:0] = 01 will configure GPIO2  
to pulse low for a minimum of 5 ms if the device is  
synchronized and an RDS group has been received.  
BLERA, BLERB, BLERC and BLERD provide  
4.3. General Purpose I/O Pins  
The pins GPIO1–3 can serve multiple functions. GPIO1 block-error levels for the RDS group. The number of bit  
and GPIO3 can be used to select between 2-wire and errors in each block within the group is encoded as  
3-wire modes for the control interface as the device is follows: 00 = no errors, 01 = one to two errors,  
brought out of reset. See Section “4.9. Reset, Powerup, 10 = three to five errors, 11 = six or more errors. Six or  
and Powerdown”. After powerup of the device, the more errors in  
a
block indicate the block is  
GPIO1–3 pins can be used as general purpose uncorrectable and should not be used.  
inputs/outputs, and the GPIO2–3 pins can be used as  
interrupt request pins for the seek/tune or RDS ready  
functions and as a stereo/mono indicator respectively.  
See register 04h, bits [5:0] in Section “6. Register  
Descriptions” for information on the control of these  
pins. It is recommended that the GPIO2–3 pins not be  
used as interrupt request outputs until the powerup time  
has completed (see Section “4.9. Reset, Powerup, and  
Powerdown”). The GPIO3 pin has an internal, 1 M,  
±15% pull-down resistor that is only active while RST is  
low. General purpose input/output functionality is  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
4.5. Stereo Audio Processing  
The output of the FM demodulator is a stereo  
multiplexed (MPX) signal. The MPX standard was  
developed in 1961 and is used worldwide. Today's MPX  
signal format consists of left + right (L+R) audio, left –  
right (L–R) audio, a 19 kHz pilot tone, and RDS/RBDS  
data as shown in Figure 8.  
available regardless of the state of the V and V  
A
D
supplies, or the ENABLE and DISABLE bits.  
4.4. RDS/RBDS Processor and  
Functionality  
Mono Audio  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
The Si4703 implements an RDS/RBDS* processor for  
symbol decoding, block synchronization, error  
detection, and error correction. RDS functionality is  
enabled by setting the RDS bit. The device offers two  
RDS modes, a standard mode and a verbose mode.  
The primary difference is increased visibility to RDS  
block-error levels and synchronization status with  
verbose mode.  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
Figure 8. MPX Signal Spectrum  
The Si4702/03-C19's integrated stereo decoder  
automatically decodes the MPX signal. The 0 to 15 kHz  
(L+R) signal is the mono output of the FM tuner. Stereo  
is generated from the (L+R), (L-R), and a 19 kHz pilot  
tone. The pilot tone is used as a reference to recover  
the (L-R) signal. Separate left and right channels are  
obtained by adding and subtracting the (L+R) and (L-R)  
signals, respectively. The Si4703-C uses frequency  
information from the 19 kHz stereo pilot to recover the  
57 kHz RDS/RBDS signal.  
Setting the RDS mode (RDSM) bit low places the  
device in standard RDS mode (default). The device will  
set the RDS ready (RDSR) bit for a minimum of 40 ms  
when a valid RDS group has been received. Setting the  
RDS interrupt enable (RDSIEN) bit and GPIO2[1:0] = 01  
will configure GPIO2 to pulse low for a minimum of 5 ms  
when a valid RDS group has been received. If an invalid  
group is received, RDSR will not be set and GPIO2 will  
not pulse low. In standard mode RDS synchronization  
Adaptive noise suppression is employed to gradually  
16  
Rev. 1.1  
combine the stereo left and right audio channels to a completes, the seek/tune complete (STC) bit will be set  
mono (L+R) audio signal as the signal quality degrades and the RSSI level is available by reading bits  
to maintain optimum sound fidelity under varying RSSI[7:0]. The TUNE bit must be set low after the STC  
reception conditions. The signal level range over which bit is set high in order to complete the tune operation  
the stereo to mono blending occurs can be adjusted by and clear the STC bit.  
setting the BLNDADJ[1:0] register. Stereo/mono status  
can be monitored with the ST register bit and mono  
RSSI greater than or equal to the seek threshold set  
operation can be forced with the MONO register bit.  
Seek tuning searches up or down for a channel with an  
with the SEEKTH[7:0] bits. In addition, optional SNR  
Pre-emphasis and de-emphasis is a technique used by and/or impulse noise detector criteria may be used to  
FM broadcasters to improve the signal-to-noise ratio of qualify valid stations. The SKSNR[3:0] bits set the SNR  
FM receivers by reducing the effects of high frequency threshold required. The SKCNT[3:0] bits set the impulse  
interference and noise. When the FM signal is noise threshold. Using the extra seek qualifiers can  
transmitted,  
a
pre-emphasis filter is applied to reduce false stops and, in combination with lowering the  
accentuate the high audio frequencies. All FM receivers RSSI seek threshold, increase the number of found  
incorporate a de-emphasis filter which attenuates high stations. The SNR and impulse noise detectors are  
frequencies to restore a flat frequency response. Two disabled by default for backwards compatibility.  
time constants, 50 or 75 µs, are used in various regions.  
The de-emphasis time constant is programmable with  
(SKMODE) bit is low and a seek is initiated, the device  
the DE bit.  
Two seek modes are available. When the seek mode  
seeks through the band, wraps from one band edge to  
High-fidelity stereo digital-to-analog converters (DACs) the other, and continues seeking. If the seek operation  
drive analog audio signals onto the LOUT and ROUT is unable to find a valid channel, the seek failure/band  
pins. The audio output may be muted with the DMUTE limit (SF/BL) bit is set high and the device returns to the  
bit. Volume can be adjusted digitally with the channel selected before the seek operation began.  
VOLUME[3:0] bits. The volume dynamic range can be When the SKMODE bit is high and a seek is initiated,  
set to either –28 dBFS (default) or –58 dBFS by setting the device seeks through the band until the band limit is  
VOLEXT=1.  
reached and the SF/BL bit is set high. A seek operation  
is initiated by setting the SEEK and SEEKUP bits. After  
the seek operation completes, the STC bit is set, and  
the RSSI level and tuned channel are available by  
reading bits RSSI[7:0] and bits READCHAN[9:0]. During  
a seek operation READCHAN[9:0] is also updated and  
may be read to determine and report seek progress.  
The STC bit is set after the seek operation completes.  
The channel is valid if the seek operation completes and  
the SF/BL bit is set low. At other times, such as before a  
seek operation or after a seek completes and the SF/BL  
bit is set high, the channel is valid if the AFC Rail  
(AFCRL) bit is set low and the value of RSSI[7:0] is  
greater than or equal to SEEKTH[7:0]. Note that if a  
valid channel is found but the AFCRL bit is set, the  
audio output is muted as in the softmute case discussed  
in Section “4.5. Stereo Audio Processing”. The SEEK bit  
must be set low after the STC bit is set high in order to  
complete the seek operation. Setting the STC bit low  
clears STC status and SF/BL bits. The seek operation  
may be aborted by setting the SEEK bit low at any time.  
The soft mute feature is available to attenuate the audio  
outputs and minimize audible noise in weak signal  
conditions. The soft mute attack and decay rate can be  
adjusted with the SMUTER[1:0] bits where 00 is the  
fastest setting. The soft mute attenuation level can be  
adjusted with the SMUTEA[1:0] bits where 00 is the  
most attenuated. The soft mute disable (DSMUTE) bit  
may be set high to disable this feature.  
4.6. Tuning  
The Si4702/03-C19 uses Silicon Laboratories’ patented  
and proven frequency synthesizer technology including  
a
completely integrated VCO. The frequency  
synthesizer generates the quadrature local oscillator  
signal used to downconvert the RF input to a low  
intermediate frequency. The VCO frequency is locked to  
the reference clock and adjusted with an automatic  
frequency control (AFC) servo loop during reception.  
The tuning frequency is defined as:  
Freq (MHz) = Spacing (kHz) Channel + Bottom of Band (MHz)  
The device can be configured to generate an interrupt  
on GPIO2 when a tune or seek operation completes.  
Setting the seek/tune complete (STCIEN) bit and  
GPIO2[1:0] = 01 will configure GPIO2 for a 5 ms low  
interrupt when the STC bit is set by the device.  
Channel spacing of 50, 100 or 200 kHz is selected with  
bits SPACE[1:0]. The channel is selected with bits  
CHAN[9:0]. Band selection for Japan, Japan wideband,  
or Europe/U.S./Asia is set with BAND[1:0]. The tuning  
operation begins by setting the TUNE bit. After tuning  
Rev. 1.1  
17  
For additional recommendations on optimizing the seek  
function, consult "AN284: Si4700/01/02/03 Seek  
Adjustability and Settings."  
4.8. Control Interface  
Two-wire slave-transceiver and three-wire interfaces  
are provided for the controller IC to read and write the  
control registers. Refer to “4.9. Reset, Powerup, and  
Powerdown” for a description of bus mode selection.  
Registers may be written and read when the V supply  
is applied regardless of the state of the V or V  
4.7. Reference Clock  
The Si4702/03-C19 accepts a 32.768 kHz reference  
clock to the RCLK pin. The reference clock is required  
whenever the ENABLE bit is set high. Refer to Table 3,  
IO  
D
A
supplies. RCLK is not required for proper register  
operation.  
1
“DC Characteristics ,” on page 5 for input switching  
voltage  
levels  
and  
Table 8,  
"FM  
Receiver  
4.8.1. 3-Wire Control Interface  
Characteristics," on page 12 for frequency tolerance  
information.  
For three-wire operation, a transfer begins when the  
SEN pin is sampled low by the device on a rising SCLK  
edge. The control word is latched internally on rising  
SCLK edges and is nine bits in length, comprised of a  
four bit chip address A7:A4 = 0110b, a read/write bit  
(write = 0 and read = 1), and a four bit register address,  
A3:A0. The ordering of the control word is A7:A5, R/W,  
A4:A0. Refer to Section 5. "Register Summary" on page  
22 for a list of all registers and their addresses.  
An onboard crystal oscillator is available to generate the  
32.768 kHz reference when an external crystal and load  
capacitors are provided. Refer to 2. "Typical Application  
Schematic" on page 14. The oscillator must be enabled  
or disabled while in powerdown (ENABLE = 0) as shown  
in Figure 9, “Initialization Sequence,” on page 21.  
Register 07h, bits [13:0], must be preserved as 0x0100  
while in powerdown. Note that RCLK voltage levels are  
not specified. The typical RCLK voltage level, when the For write operations, the serial control word is followed  
crystal oscillator is used, is 0.3 V  
.
by a 16-bit data word and is latched internally on rising  
SCLK edges.  
pk-pk  
4.7.1. Si4702/03-C19 Internal Crystal Oscillator  
Errata  
For read operations, a bus turn-around of half a cycle is  
followed by a 16-bit data word shifted out on rising  
SCLK edges and is clocked into the system controller  
on falling SCLK edges. The transfer ends on the rising  
SCLK edge after SEN is set high. Note that 26 SCLK  
cycles are required for a transfer, however, SCLK may  
run continuously.  
The Si4702/03-C19 seek/tune performance may be  
affected by data activity on the SDIO bus when using  
the integrated internal oscillator. SDIO activity results  
from polling the tuner for status or communicating with  
other devices that share the SDIO bus. If there is SDIO  
bus activity while the Si4702/03-C19 is performing the  
seek/tune function, the crystal oscillator may experience For details on timing specifications and diagrams, refer  
jitter, which may result in mistunes and/or false stops. to Table 6, “3-Wire Control Interface Characteristics,” on  
SDIO activity during all other operational states does page 8, Figure 3, “3-Wire Control Interface Write Timing  
not affect performance.  
Parameters,” on page 8, and Figure 4, “3-Wire Control  
Interface Read Timing Parameters,” on page 9.  
For best seek/tune results, Silicon Laboratories  
recommends that all SDIO data traffic be suspended 4.8.2. 2-wire Control Interface  
during Si4702/03-C19 seek and tune operations. This is  
For two-wire operation, the SCLK and SDIO pins  
achieved by keeping the bus quiet for all other devices  
on the bus, and delaying tuner polling until the tune or  
seek operation is complete. The STC (seek/tune  
complete) interrupt should be used instead of polling to  
determine when a seek/tune operation is complete.  
Please refer to Sections 4.6. "Tuning" on page 17 and 5.  
"Register Summary" on page 22 for specified seek/tune  
times and register use guidelines.  
function in open-drain mode (pull-down only) and must  
be pulled up by an external device. A transfer begins  
with the START condition (falling edge of SDIO while  
SCLK is high). The control word is latched internally on  
rising SCLK edges and is eight bits in length, comprised  
of a seven bit device address equal to 0010000b and a  
read/write bit (write = 0 and read = 1).  
The device acknowledges the address by driving SDIO  
low after the next falling SCLK edge, for 1 cycle. For  
write operations, the device acknowledge is followed by  
an eight bit data word latched internally on rising edges  
of SCLK. The device acknowledges each byte of data  
The layout guidelines in Si4700/01/02/03 Evaluation  
Board User’s Guide, Section 8.3 Si4702/03-C19  
Daughter Card should be followed to help ensure robust  
FM performance.  
Please refer to the posted Si4702/03 Internal Crystal written by driving SDIO low after the next falling SCLK  
Oscillator Errata for more information.  
edge, for 1 cycle. An internal address counter  
automatically increments to allow continuous data byte  
18  
Rev. 1.1  
writes, starting with the upper byte of register 02h,  
followed by the lower byte of register 02h, and onward  
until the lower byte of the last register is reached. The  
internal address counter then automatically wraps  
around to the upper byte of register 00h and proceeds  
from there until continuous writes end. Data transfer  
ends with the STOP condition (rising edge of SDIO  
while SCLK is high). After every STOP condition, the  
internal address counter is reset.  
4.9. Reset, Powerup, and Powerdown  
Driving the RST pin low will disable the Si4702/03-C19  
and its control bus interface, and reset the registers to  
their default settings. Driving the RST pin high will bring  
the device out of reset. As the device is brought out of  
reset, it will sample the state of several pins to select  
between 2-wire and 3-wire control interface operation,  
using one of two busmode selection methods.  
Busmode selection method 1 requires the use of the  
GPIO3, SEN, and SDIO pins. To use this busmode  
selection method, the GPIO3 and SDIO pins must be  
sampled low by the device on the rising edge of RST.  
For read operations, the device acknowledge is  
followed by an eight bit data word shifted out on falling  
SCLK edges. An internal address counter automatically  
increments to allow continuous data byte reads, starting  
with the upper byte of register 0Ah, followed by the  
lower byte of register 0Ah, and onward until the lower  
byte of the last register is reached. The internal address  
counter then automatically wraps around to the upper  
byte of register 00h and proceeds from there until  
continuous reads cease. After each byte of data is read,  
The user may either drive the GPIO3 pin low externally,  
or leave the pin floating. If the pin is not driven by the  
user, it will be pulled low by an internal 1 Mresistor  
which is active only while RST is low. The user must  
drive the SEN and SDIO pins externally to the proper  
state.  
the controller IC must drive an acknowledge (SDIO = 0) To select 2-wire operation, the SEN pin must be  
if an additional byte of data will be requested. Data sampled high by the device on the rising edge of RST.  
transfer ends with the STOP condition. After every  
STOP condition, the internal address counter is reset.  
sampled low by the device on the rising edge of RST.  
To select 3-wire operation, the SEN pin must be  
For details on timing specifications and diagrams, refer  
Refer to Table 4, “Reset Timing Characteristics  
1,2,3  
to  
Table 7,  
“2-Wire  
Control  
Interface  
(Busmode Select Method 1)  
,” on page 6 and  
1,2,3  
Characteristics  
,” on page 10, Figure 5, “2-Wire  
Figure 1, “Reset Timing Parameters for Busmode  
Select Method 1 (GPIO3 = 0),” on page 6.  
Control Interface Read and Write Timing Parameters,”  
on page 11 and Figure 6, “2-Wire Control Interface  
Read and Write Timing Diagram,” on page 11.  
Busmode selection method 2 requires only the use of  
the GPIO3 and GPIO1 pins. This is the recommended  
busmode selection method when not using the internal  
crystal oscillator. To use this busmode selection  
method, the GPIO3 pin must be sampled high on the  
rising edge of RST. The user must drive the GPIO3 pin  
high externally, or pull it up with a resistor of 100 kor  
less. The user must also drive the GPIO1 pin externally  
to the proper state.  
To select 2-wire operation, the GPIO1 pin must be  
sampled high by the device on the rising edge of RST.  
To select 3-wire operation, the GPIO1 pin must be  
sampled low by the device on the rising edge of RST.  
Refer to Table 5, “Reset Timing Characteristics  
1,2,3  
(Busmode Select Method 2)  
,” on page 7 and  
Figure 2, “Reset Timing Parameters for Busmode  
Select Method 2 (GPIO3 = 1),” on page 7.  
Table 9 summarizes the two bus selection methods.  
Rev. 1.1  
19  
4.10. Audio Output Summation  
Table 9. Selecting 2-Wire or 3-Wire Control  
Interface Busmode Operation1,2,3  
The audio outputs LOUT and ROUT may be  
capacitively summed with another device. Setting the  
audio high-Z enable (AHIZEN) bit maintains a dc bias of  
Busmode  
Bus  
2
SEN SDIO GPIO1  
GPIO3  
0.5 x V on the LOUT and ROUT pins to prevent the  
Select Method  
mode  
IO  
ESD diodes from clamping to the V or GND rail in  
response to the output swing of the other device. The  
4
IO  
1
1
0
1
0
0
0
0
X
X
X
0
3-wire  
2-wire  
3-wire  
4
0
bias point is set with a 370 kresistor to V and GND.  
IO  
5
Register 07h containing the AHIZEN bit must not be  
1
0
written during the powerup sequence and only takes  
Xtal Oscillator  
effect when in powerdown and V  
is supplied. In  
5
IO  
1
1
0
X
0
2-wire  
powerup the LOUT and ROUT pins are set to the  
common mode voltage specified in Table 8, “FM  
Xtal Oscillator  
6
1,2  
2
2
X
X
X
X
0
1
1
3-wire  
2-wire  
NA  
Receiver Characteristics ,” on page 12, regardless of  
6
the state of AHIZEN. Bits 13:0 of register 07h must be  
preserved as 0x0100 while in powerdown and as  
0x3C04 while in powerup.  
1
2
NA  
NA  
NA  
NA  
Xtal Oscillator  
4.11. Initialization Sequence  
2
NA  
NA  
NA  
NA  
NA  
Refer to Figure 9, “Initialization Sequence,” on page 21.  
To initialize the device:  
Xtal Oscillator  
Notes:  
1. Supply V and V .  
1. All parameters applied on rising edge of RST.  
A
D
2. When selecting 2-wire mode, the user must ensure  
that SCLK is high during the rising edge of RST, and  
stays high until the 1st start condition.  
2. Supply V while keeping the RST pin low. Note that steps  
IO  
1 and 2 may be reversed. Power supplies may be  
sequenced in any order.  
3. GPIO3 is internally pulled down with a 1 Mresistor.  
4. GPIO3 should be externally driven low, set to high-Z  
(10 Mor greater pull-up) or float.  
5. GPIO3 should be left floating.  
6. GPIO3 should be externally driven high (100 kor  
smaller pull-up).  
3. Select 2-wire or 3-wire control interface bus mode  
operation as described in Section 4.9. "Reset, Powerup,  
and Powerdown" on page 19.  
4. Provide RCLK. Steps 3 and 4 may be reversed when using  
an external oscillator. Refer to AN230 when using internal  
oscillator.  
5. Set the ENABLE bit high and the DISABLE bit low to  
powerup the device. Software should wait for the powerup  
time (as specified by Table 8, “FM Receiver  
When proper voltages are applied to the  
Si4702/03-C19, the ENABLE and DISABLE bits in  
Register 02h can be used to select between powerup  
and powerdown modes. When voltage is first applied to  
the device, ENABLE = 0 and DISABLE = 0. Setting  
ENABLE = 1 and DISABLE = 0 puts the device in  
powerup mode. To power down the device, disable RDS  
to prevent any unpredictable behavior (Si4703 only),  
then write ENABLE and DISABLE bits to 1.  
1,2  
Characteristics ,” on page 12) before continuing with  
normal part operation.  
To power down the device:  
1. (Optional) Set the AHIZEN bit high to maintain a dc bias of  
0.5 x V volts at the LOUT and ROUT pins while in  
IO  
powerdown, but preserve the states of the other bits in  
Register 07h. Note that in powerup the LOUT and ROUT  
pins are set to the common mode voltage specified in  
Table 8 on page 12, regardless of the state of AHIZEN.  
After being written to 1, both bits will be cleared as part  
of the internal device powerdown sequence. To put the  
device back into powerup mode, set ENABLE = 1 and  
DISABLE = 0 as described above. The ENABLE bit  
should never be written to a 0.  
2. Set the ENABLE bit high and the DISABLE bit high to  
place the device in powerdown mode. Note that all register  
states are maintained so long as V is supplied and the  
IO  
RST pin is high.  
3. (Optional) Remove RCLK.  
4. Remove V and V supplies as needed.  
A
D
20  
Rev. 1.1  
To power up the device (after power down):  
1. Note that V is still supplied in this scenario. If V is not  
IO  
IO  
supplied, refer to device initialization procedure above.  
2. (Optional) Set the AHIZEN bit low to disable the dc bias of  
0.5 x V volts at the LOUT and ROUT pins, but preserve  
IO  
the states of the other bits in Register 07h. Note that in  
powerup the LOUT and ROUT pins are set to the common  
mode voltage specified in Table 8 on page 12, regardless  
of the state of AHIZEN.  
3. Supply V and V .  
A
D
4. Provide RCLK. Refer to AN230 when using internal  
oscillator.  
5. Set the ENABLE bit high and the DISABLE bit low to  
powerup the device.  
VA,VD Supply  
VIO Supply  
RST Pin  
RCLK Pin  
ENABLE Bit  
1
2
3
4
5
Figure 9. Initialization Sequence  
4.12. Programming Guide  
Refer to "AN230: Si4700/01 Programming Guide" for  
control interface programming information.  
Rev. 1.1  
21  
22  
Rev. 1.1  
6. Register Descriptions  
Register 00h. Device ID  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PN[3:0]  
R
MFGID[11:0]  
R
Reset value = 0x1242  
Bit  
Name  
Function  
15:12  
PN[3:0]  
Part Number.  
0x01 = Si4702/03  
11:0  
MFGID[11:0]  
Manufacturer ID.  
0x242  
Register 01h. Chip ID  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
REV[5:0]  
R
DEV[3:0]  
R
FIRMWARE[5:0]  
R
Si4702C19 Reset value = 0x1053 if ENABLE = 1  
Si4702C19 Reset value = 0x1000 if ENABLE = 0  
Si4703C19 Reset value = 0x1253 if ENABLE = 1  
Si4703C19 Reset value = 0x1200 if ENABLE = 0  
Bit  
Name  
Function  
15:10  
REV[5:0]  
Chip Version.  
0x04 = Rev C  
9:6  
DEV[3:0]  
Device.  
0 before powerup = Si4702.  
0001 after powerup = Si4702.  
1000 before powerup = Si4703.  
1001 after powerup = Si4703.  
5:0  
FIRMWARE[5:0] Firmware Version.  
0 before powerup.  
Firmware version after powerup = 010011.  
Rev. 1.1  
23  
Register 02h. Power Configuration  
Bit  
D15  
D14 D13 D12 D11  
D10  
D9  
D8 D7  
D6  
DISABLE  
R/W  
D5 D4 D3 D2 D1  
D0  
ENABLE  
R/W  
DSMUTE DMUTE MONO  
0
RDSM SKMODE SEEKUP SEEK  
0
0
0
0
0
0
Name  
Type  
R/W  
R/W  
R/W R/W R/W R/W R/W R/W R/W  
R/W R/W R/W R/W R/W  
Reset value = 0x0000  
Bit  
Name  
Function  
15  
DSMUTE  
Softmute Disable.  
0 = Softmute enable (default).  
1 = Softmute disable.  
14  
13  
DMUTE  
MONO  
Mute Disable.  
0 = Mute enable (default).  
1 = Mute disable.  
Mono Select.  
0 = Stereo (default).  
1 = Force mono.  
12  
11  
Reserved  
RDSM  
Reserved.  
Always write to 0.  
RDS Mode.  
0 = Standard (default).  
1 = Verbose.  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
10  
9
SKMODE  
SEEKUP  
SEEK  
Seek Mode.  
0 = Wrap at the upper or lower band limit and continue seeking (default).  
1 = Stop seeking at the upper or lower band limit.  
Seek Direction.  
0 = Seek down (default).  
1 = Seek up.  
8
Seek.  
0 = Disable (default).  
1 = Enable.  
Notes:  
1. Seek begins at the current channel, and goes in the direction specified with the SEEKUP  
bit. Seek operation stops when a channel is qualified as valid according to the seek  
parameters, the entire band has been searched (SKMODE = 0), or the upper or lower  
band limit has been reached (SKMODE = 1).  
2. The STC bit is set high when the seek operation completes and/or the SF/BL bit is set  
high if the seek operation was unable to find a channel qualified as valid according to the  
seek parameters. The STC and SF/BL bits must be set low by setting the SEEK bit low  
before the next seek or tune may begin.  
3. Seek performance for 50 kHz channel spacing varies according to RCLK tolerance.  
Silicon Laboratories recommends ±50 ppm RCLK crystal tolerance for 50 kHz seek  
performance.  
4. A seek operation may be aborted by setting SEEK = 0.  
24  
Rev. 1.1  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
Always write to 0.  
6
DISABLE  
Powerup Disable.  
Refer to “4.9. Reset, Powerup, and Powerdown”.  
Default = 0.  
5:1  
0
Reserved  
ENABLE  
Reserved.  
Always write to 0.  
Powerup Enable.  
Refer to “4.9. Reset, Powerup, and Powerdown”.  
Default = 0.  
Register 03h. Channel  
Bit  
D15  
D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name TUNE  
0
0
0
0
0
CHANNEL[9:0]  
R/W  
Type R/W R/W R/W R/W R/W R/W  
Reset value = 0x0000  
Bit  
Name  
Function  
15  
TUNE  
Tune.  
0 = Disable (default).  
1 = Enable.  
The tune operation begins when the TUNE bit is set high. The STC bit is set high  
when the tune operation completes. The STC bit must be set low by setting the TUNE  
bit low before the next tune or seek may begin.  
14:10  
9:0  
Reserved  
Reserved.  
Always write to 0.  
CHAN[9:0]  
Channel Select.  
Channel value for tune operation.  
If BAND 05h[7:6] = 00, then Freq (MHz) = Spacing (MHz) x Channel + 87.5 MHz.  
If BAND 05h[7:6] = 01, BAND 05h[7:6] = 10, then  
Freq (MHz) = Spacing (MHz) x Channel + 76 MHz.  
CHAN[9:0] is not updated during a seek operation. READCHAN[9:0] provides the  
current tuned channel and is updated during a seek operation and after a seek or  
tune operation completes. Channel spacing is set with the bits SPACE 05h[5:4].  
Rev. 1.1  
25  
Register 04h. System Configuration 1  
Bit  
D15  
D14  
D13 D12 D11 D10 D9  
D8  
0
D7  
D6  
D5 D4 D3 D2 D1 D0  
RDSIEN STCIEN  
0
RDS  
R/W  
DE  
AGCD  
R/W  
0
BLNDADJ[1:0] GPIO3[1:0]  
GPIO2[1:0]  
R/W  
GPIO1[1:0]  
R/W  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 0x0000  
Bit  
Name  
Function  
15  
RDSIEN  
RDS Interrupt Enable.  
0 = Disable Interrupt (default).  
1 = Enable Interrupt.  
Setting RDSIEN = 1 and GPIO2[1:0] = 01 will generate a 5 ms low pulse on GPIO2 when  
the RDSR 0Ah[15] bit is set.  
14  
STCIEN  
Seek/Tune Complete Interrupt Enable.  
0 = Disable Interrupt (default).  
1 = Enable Interrupt.  
Setting STCIEN = 1 and GPIO2[1:0] = 01 will generate a 5 ms low pulse on GPIO2 when  
the STC 0Ah[14] bit is set.  
13  
12  
Reserved  
RDS  
Reserved.  
Always write to 0.  
RDS Enable.  
0 = Disable (default).  
1 = Enable.  
11  
10  
DE  
De-emphasis.  
0 = 75 µs. Used in USA (default).  
1 = 50 µs. Used in Europe, Australia, Japan.  
AGCD  
AGC Disable.  
0 = AGC enable (default).  
1 = AGC disable.  
9:8  
Reserved  
Reserved.  
Always write to 0.  
6:7 BLNDADJ[1:0] Stereo/Mono Blend Level Adjustment.  
Sets the RSSI range for stereo/mono blend.  
00 = 31–49 RSSI dBµV (default).  
01 = 37–55 RSSI dBµV (+6 dB).  
10 = 19–37 RSSI dBµV (–12 dB).  
11 = 25–43 RSSI dBµV (–6 dB).  
ST bit set for RSSI values greater than low end of range.  
5:4  
GPIO3[1:0] General Purpose I/O 3.  
00 = High impedance (default).  
01 = Mono/Stereo indicator (ST). The GPIO3 will output a logic high when the device is in  
stereo, otherwise the device will output a logic low for mono.  
10 = Low.  
11 = High.  
26  
Rev. 1.1  
Bit  
Name  
Function  
3:2  
GPIO2[1:0] General Purpose I/O 2.  
00 = High impedance (default).  
01 = STC/RDS interrupt. A logic high will be output unless an interrupt occurs as  
described below.  
10 = Low.  
11 = High.  
Setting STCIEN = 1 will generate a 5 ms low pulse on GPIO2 when the STC 0Ah[14] bit is  
set. Setting RDSIEN = 1 will generate a 5 ms low pulse on GPIO2 when the RDSR  
0Ah[15] bit is set.  
1:0  
GPIO1[1:0] General Purpose I/O 1.  
00 = High impedance (default).  
01 = Reserved.  
10 = Low.  
11 = High.  
Rev. 1.1  
27  
Register 05h. System Configuration 2  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SEEKTH[7:0]  
R/W  
BAND[1:0] SPACE[1:0]  
VOLUME[3:0]  
R/W  
R/W  
R/W  
Reset value = 0x0000  
Bit  
Name  
Function  
15:8  
SEEKTH[7:0]  
RSSI Seek Threshold.  
0x00 = min RSSI (default).  
0x7F = max RSSI.  
SEEKTH presents the logarithmic RSSI threshold for the seek operation. The  
Si4702/03-C19 will not validate channels with RSSI below the SEEKTH value.  
SEEKTH is one of multiple parameters that can be used to validate channels. For  
more information, see "AN284: Si4700/01 Firmware 15 Seek Adjustability and Set-  
tings."  
7:6  
BAND[1:0]  
Band Select.  
00 = 87.5–108 MHz (USA, Europe) (Default).  
01 = 76–108 MHz (Japan wide band).  
10 = 76–90 MHz (Japan).  
11 = Reserved.  
5:4  
3:0  
SPACE[1:0]  
Channel Spacing.  
00 = 200 kHz (USA, Australia) (default).  
01 = 100 kHz (Europe, Japan).  
10 = 50 kHz.  
VOLUME[3:0] Volume.  
Relative value of volume is shifted –30 dBFS with the VOLEXT 06h[8] bit.  
VOLEXT = 0 (default).  
0000 = mute (default).  
0001 = –28 dBFS.  
:
:
1110 = –2 dBFS.  
1111 = 0 dBFS.  
VOLEXT = 1.  
0000 = mute.  
0001 = –58 dBFS.  
:
:
1110 = –32 dBFS.  
1111 = –30 dBFS.  
FS = full scale.  
Volume scale is logarithmic.  
28  
Rev. 1.1  
Register 06h. System Configuration 3  
Bit  
Name SMUTER[1:0] SMUTEA[1:0]  
Type R/W R/W  
Reset value = 0x0000  
D15  
D14  
D13 D12  
D11  
D10  
D9  
D8  
VOLEXT  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SKSNR[3:0]  
R/W  
SKCNT[3:0]  
R/W  
R/W R/W R/W  
Bit  
Name  
Function  
15:14  
SMUTER[1:0] Softmute Attack/Recover Rate.  
00 = fastest (default).  
01 = fast.  
10 = slow.  
11 = slowest.  
13:12  
SMUTEA[1:0] Softmute Attenuation.  
00 = 16 dB (default).  
01 = 14 dB.  
10 = 12 dB.  
11 = 10 dB.  
11:9  
8
Reserved  
VOLEXT  
Reserved.  
Always write to zero.  
Extended Volume Range.  
0 = disabled (default).  
1 = enabled.  
This bit attenuates the output by 30 dB. With the bit set to 0, the 15 volume settings  
adjust the volume between 0 and –28 dBFS. With the bit set to 1, the 15 volume set-  
tings adjust the volume between –30 and –58 dBFS.  
Refer to 4.5. "Stereo Audio Processing" on page 16.  
7:4  
3:0  
SKSNR[3:0]  
SKCNT[3:0]  
Seek SNR Threshold.  
0000 = disabled (default).  
0001 = min (most stops).  
0111 = max (fewest stops).  
Required channel SNR for a valid seek channel.  
Seek FM Impulse Detection Threshold.  
0000 = disabled (default).  
0001 = max (most stops).  
1111 = min (fewest stops).  
Allowable number of FM impulses for a valid seek channel.  
Rev. 1.1  
29  
Register 07h. Test 1  
Bit  
Name XOSCEN AHIZEN  
Type R/W R/W  
Reset value = 0x0100  
D15  
D14  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Reserved  
R/W  
Bit  
Name  
XOSCEN  
Function  
15  
Crystal Oscillator Enable.  
0 = Disable (default).  
1 = Enable.  
The internal crystal oscillator requires an external 32.768 kHz crystal as shown in  
2. "Typical Application Schematic" on page 14. The oscillator must be enabled before  
powerup (ENABLE = 1) as shown in Figure 9, “Initialization Sequence,” on page 21. It  
should only be disabled after powerdown (ENABLE = 0). Bits 13:0 of register 07h  
must be preserved as 0x0100 while in powerdown and as 0x3C04 while in powerup.  
Refer to Si4702/03 Internal Crystal Oscillator Errata.  
14  
AHIZEN  
Audio High-Z Enable.  
0 = Disable (default).  
1 = Enable.  
Setting AHIZEN maintains a dc bias of 0.5 x V on the LOUT and ROUT pins to pre-  
IO  
vent the ESD diodes from clamping to the V or GND rail in response to the output  
IO  
swing of another device. Register 07h containing the AHIZEN bit must not be written  
during the powerup sequence and high-Z only takes effect when in powerdown and  
V
is supplied. Bits 13:0 of register 07h must be preserved as 0x0100 while in pow-  
IO  
erdown and as 0x3C04 while in powerup.  
13:0  
Reserved  
Reserved.  
If written, these bits should be read first and then written with their pre-existing val-  
ues. Do not write during powerup.  
30  
Rev. 1.1  
Register 08h. Test 2  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
Reserved  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
Type  
Reset value = 0x0000  
Bit  
Name  
Function  
15:0  
Reserved  
Reserved.  
If written, these bits should be read first and then written with their pre-existing val-  
ues. Do not write during powerup.  
Register 09h. Boot Configuration  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
Reserved  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
Type  
Reset value = 0x0000  
Bit  
Name  
Function  
15:0  
Reserved  
Reserved.  
If written, these bits should be read first and then written with their pre-existing val-  
ues. Do not write during powerup.  
Rev. 1.1  
31  
Register 0Ah. Status RSSI  
Bit  
Name RDSR STC SF/BL AFCRL RDSS BLERA[1:0] ST  
Type  
Reset value = 0x0000  
D15 D14 D13  
D12  
D11 D10 D9  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
RSSI[7:0]  
R
R
R
R
R
R
R
R
Bit  
Name  
Function  
15  
RDSR  
RDS Ready.  
0 = No RDS group ready (default).  
1 = New RDS group ready.  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
14  
13  
STC  
Seek/Tune Complete.  
0 = Not complete (default).  
1 = Complete.  
The seek/tune complete flag is set when the seek or tune operation completes. Setting  
the SEEK 02h[8] or TUNE 03h[15] bit low will clear STC.  
SF/BL  
Seek Fail/Band Limit.  
0 = Seek successful.  
1 = Seek failure/Band limit reached.  
The SF/BL flag is set high when SKMODE 02h[10] = 0 and the seek operation fails to  
find a channel qualified as valid according to the seek parameters.  
The SF/BL flag is set high when SKMODE 02h[10] = 1 and the upper or lower band limit  
has been reached.  
The SEEK 02h[8] bit must be set low to clear SF/BL.  
12  
AFCRL  
RDSS  
AFC Rail.  
0 = AFC not railed.  
1 = AFC railed, indicating an invalid channel. Audio output is softmuted when set.  
AFCRL is updated after a tune or seek operation completes and indicates a valid or  
invalid channel. During normal operation, AFCRL is updated to reflect changing RF envi-  
ronments.  
11  
RDS Synchronized.  
0 = RDS decoder not synchronized (default).  
1 = RDS decoder synchronized.  
Available only in RDS Verbose mode (RDSM 02h[11] = 1).  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
10:9  
BLERA[1:0] RDS Block A Errors.  
00 = 0 errors requiring correction.  
01 = 1–2 errors requiring correction.  
10 = 3–5 errors requiring correction.  
11 = 6+ errors or error in checkword, correction not possible.  
Available only in RDS Verbose mode (RDSM 02h[11] = 1).  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
32  
Rev. 1.1  
Bit  
Name  
Function  
8
ST  
Stereo Indicator.  
0 = Mono.  
1 = Stereo.  
Stereo indication is also available on GPIO3 by setting GPIO3 04h[5:4] = 01.  
7:0  
RSSI[7:0]  
RSSI (Received Signal Strength Indicator).  
RSSI is measured units of dBµV in 1 dB increments with a maximum of approximately  
75 dBµV. Si4702/03-C19 does not report RSSI levels greater than 75 dBuV.  
Rev. 1.1  
33  
Register 0Bh. Read Channel  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name BLERB[1:0] BLERC[1:0] BLERD[1:0]  
READCHAN[9:0]  
R
Type  
R
R
R
Reset value = 0x0000  
Bit  
Name  
Function  
15:14  
BLERB[1:0]  
RDS Block B Errors.  
00 = 0 errors requiring correction.  
01 = 1–2 errors requiring correction.  
10 = 3–5 errors requiring correction.  
11 = 6+ errors or error in checkword, correction not possible.  
Available only in RDS Verbose mode (RDSM = 1).  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
13:12  
11:10  
9:0  
BLERC[1:0]  
BLERD[1:0]  
RDS Block C Errors.  
00 = 0 errors requiring correction.  
01 = 1–2 errors requiring correction.  
10 = 3–5 errors requiring correction.  
11 = 6+ errors or error in checkword, correction not possible.  
Available only in RDS Verbose mode (RDSM = 1).  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
RDS Block D Errors.  
00 = 0 errors requiring correction.  
01 = 1–2 errors requiring correction.  
10 = 3–5 errors requiring correction.  
11 = 6+ errors or error in checkword, correction not possible.  
Available only in RDS Verbose mode (RDSM = 1).  
Refer to “4.4. RDS/RBDS Processor and Functionality”.  
READCHAN[9:0] Read Channel.  
If BAND 05h[7:6] = 00, then Freq (MHz) = Spacing (MHz) x Channel + 87.5 MHz.  
If BAND 05h[7:6] = 01, BAND 05h[7:6] = 10, then  
Freq (MHz) = Spacing (MHz) x Channel + 76 MHz.  
READCHAN[9:0] provides the current tuned channel and is updated during a seek  
operation and after a seek or tune operation completes. Spacing and channel are set  
with the bits SPACE 05h[5:4] and CHAN 03h[9:0].  
34  
Rev. 1.1  
Register 0Ch. RDSA  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
RDSA[15:0]  
R
Type  
Reset value = 0x0000  
Bit  
Name  
Function  
15:0  
RDSA  
RDS Block A Data.  
Register 0Dh. RDSB  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
RDSB[15:0]  
R
Type  
Reset value = 0x0000  
Bit  
Name  
Function  
15:0  
RDSB  
RDS Block B Data.  
Rev. 1.1  
35  
Register 0Eh. RDSC  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
RDSC[15:0]  
R
Type  
Reset value = 0x0000  
Bit  
Name  
Function  
15:0  
RDSC  
RDS Block C Data.  
Register 0Fh. RDSD  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
RDSD[15:0]  
R
Type  
Reset value = 0x0000  
Bit  
Name  
Function  
15:0  
RDSD  
RDS Block D Data.  
36  
Rev. 1.1  
7. Pin Descriptions: Si4702/03-C19  
1
2
20  
19  
18  
17 16  
15 GND  
NC  
FMIP  
RFGND  
GND  
3
4
14  
13  
LOUT  
ROUT  
GND  
PAD  
RST  
5
6
12 GND  
11 VD  
7
8
9
10  
Top View  
Pin Number(s)  
Name  
NC  
Description  
1, 20  
No Connect. Leave floating.  
FM RF inputs.  
2
FMIP  
RFGND  
GND  
3
RF ground. Connect to ground plane on PCB.  
Ground. Connect to ground plane on PCB.  
Device reset input (active low).  
Serial enable input (active low).  
Serial clock input.  
4, 12, 15, PAD  
5
RST  
6
SEN  
7
SCLK  
SDIO  
RCLK  
8
Serial data input/output.  
9
External reference oscillator input.  
I/O supply voltage.  
10  
V
IO  
11  
13  
V
Digital supply voltage. May be connected directly to battery.  
Right audio output.  
D
ROUT  
LOUT  
14  
Left audio output.  
16  
V
Analog supply voltage. May be connected directly to battery.  
A
17, 18, 19  
GPIO3, GPIO2, General purpose input/output.  
GPIO1  
Rev. 1.1  
37  
8. Ordering Guide  
Part  
Number*  
Package  
Type  
Operating  
Temperature  
Description  
Si4702-C19-GM Portable Broadcast Radio Tuner  
FM Stereo  
QFN  
Pb-free  
–20 to 85 °C  
–20 to 85 °C  
Si4703-C19-GM Portable Broadcast Radio Tuner  
FM Stereo with RDS  
QFN  
Pb-free  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option; 2500 quantity per reel.  
38  
Rev. 1.1  
9. Package Markings (Top Marks)  
9.1. Si4702 Top Mark  
Figure 10. Si4702 Top Mark  
9.2. Si4703 Top Mark  
Figure 11. Si4703 Top Mark  
9.3. Top Mark Explanation  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
02 = Si4702  
03 = Si4703  
Firmware Revision  
R = Die Revision  
19 = Firmware Revision 19  
C = Revision C Die  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier  
(Bottom-Left Justified)  
Y = Year  
Assigned by the Assembly House. Corresponds to the last sig-  
nificant digit of the year and workweek of the mold date.  
WW = Workweek  
Rev. 1.1  
39  
10. Package Outline: Si4702/03-C19  
Figure 12 illustrates the package details for the Si4702/03-C19. Table 10 lists the values for the dimensions shown  
in the illustration.  
Figure 12. 20-Pin Quad Flat No-Lead (QFN)  
Table 10. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.18  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.10  
0.10  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
40  
Rev. 1.1  
11. PCB Land Pattern: Si4702/03-C19  
Figure 13 illustrates the PCB land pattern details for the Si4702/03-C19. Table 11 lists the values for the  
dimensions shown in the illustration.  
Figure 13. PCB Land Pattern  
Rev. 1.1  
41  
Table 11. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes: Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component stand-off.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
42  
Rev. 1.1  
ADDITIONAL REFERENCE RESOURCES  
AN230: Si4700/01/02/03 Programming Guide  
AN231: Si4700/01/02/03 Headphone and Antenna Interface  
Si4700/01/02/03 EVB User’s Guide  
AN234: Si4700/01/02/03 EVB Test Procedure  
AN235: Si4700/01/02/03 EVB Quick Start Guide  
AN243: Using RDS/RBDS with the Si4701/03  
AN284: Si4700/01/02/03 Seek Adjustability and Settings  
AN299: External 32.768 kHz Crystal Oscillator  
AN383: Antenna Selection and Universal Layout Guidelines  
Si4702/03 Internal Crystal Oscillator Errata  
Si4700/01/02/03 Customer Support Site: http://www.mysilabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA  
is required for access. To request access, register at http://www.mysilabs.com and send user’s first and last  
name, company, NDA reference number, and mysilabs user name to fminfo@silabs.com. Silicon Labs  
recommends an all lower case user name.  
Rev. 1.1  
43  
DOCUMENT CHANGE LIST  
Revision 0.8 to Revision 0.9  
Updated Figure 1, “Reset Timing Parameters for  
Busmode Select Method 1 (GPIO3 = 0),” on page 6.  
1
Updated Table 3, “DC Characteristics ,” on page 5.  
Updated Table 7, “2-Wire Control Interface  
1,2,3  
Characteristics  
,” on page 10.  
1,2  
Updated Table 8, “FM Receiver Characteristics ,” on  
page 12.  
Updated 4.4. "RDS/RBDS Processor and  
Functionality" on page 16.  
Updated Register 1, “Chip ID,” on page 23.  
Updated Register 5, “System Configuration 2,” on  
page 28.  
Revision 0.9 to Revision 1.0  
Updated notes in Table 7 on page 10.  
Updated Table 8 on page 12.  
Updated “4. Functional Description”.  
Updated “5. Register Summary”.  
Updated “6. Register Descriptions”.  
Updated “7. Pin Descriptions: Si4702/03-C19”.  
Revision 1.0 to Revision 1.1  
Updated Table 8 on page 12.  
Updated “4.11. Initialization Sequence”.  
Updated Register 06h: System Configuration 3.  
Updated additional reference resources.  
44  
Rev. 1.1  
NOTES:  
Rev. 1.1  
45  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without  
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior  
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance  
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to  
design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required  
or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails,  
can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs  
disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri  
DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.  
Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective  
holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI4702-C19

Broadcast FM Radio Tuner for Portable Applications
SILICON

SI4702-C19-GM

Audio Tuner, 2-Band, 3 X 3 MM, ROHS COMPLIANT, QFN-20
SILICON

SI4702-C19-GMR

Audio Tuner, 2-Band, 3 X 3 MM, ROHS COMPLIANT, QFN-20
SILICON

SI4702-EVB

Si4700/01/02/03 EVALUATION BOARD USER’S GUIDE
SILICON

SI4702DY

Load Switch with Level-Shift
VISHAY

SI4702DY-T1

Load Switch with Level-Shift
VISHAY

SI4703

Broadcast FM Radio Tuner for Portable Applications
SILICON

SI4703-B16-GMR

Audio Demodulator, 3 X 3 MM, ROHS COMPLIANT, QFN-20
SILICON

SI4703-B17-GM

Audio Demodulator, 3 X 3 MM, ROHS COMPLIANT, QFN-20
SILICON

SI4703-C19

Audio Demodulator, FM, CMOS, 3 X 3 MM, ROHS COMPLIANT, QFN-20
SILICON

SI4703-C19-GM

Broadcast FM Radio Tuner for Portable Applications
SILICON

SI4703-C19-GM

Broadcast FM Radio Tuner for Portable Applications
SILICONIMAGE