SI5018-BM [SILICON]

SiPHY⑩ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC; SiPHY⑩ OC- 48 / STM -16的时钟和具有FEC数据恢复IC
SI5018-BM
型号: SI5018-BM
厂家: SILICON    SILICON
描述:

SiPHY⑩ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC
SiPHY⑩ OC- 48 / STM -16的时钟和具有FEC数据恢复IC

ATM集成电路 SONET集成电路 SDH集成电路 电信集成电路 电信电路 异步传输模式 时钟
文件: 总22页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5018  
SiPHY™ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC  
Features  
Complete high-speed, low-power, CDR solution includes the following:  
! Supports OC-48 /STM-16 & FEC! Exceeds all SONET/SDH jitter  
specifications  
! Low power—270 mW  
(typ OC-48)  
! Jitter generation  
3.0 mUI  
(typ)  
! Small footprint: 4x4 mm  
rms  
! Device powerdown  
! Loss-of-lock indicator  
! Single 2.5 V Supply  
! DSPLL™ Eliminates external  
Ordering Information:  
loop filter components  
! 3.3 V tolerant control inputs  
See page 17.  
Applications  
Pin Assignments  
Si5018  
! SONET/SDH/ATM routers  
! Add/drop multiplexers  
! Optical transceiver modules  
! SONET/SDH regenerators  
! Board level serial links  
! Digital cross connects  
! SONET/SDH test equipment  
description  
20 19 18 17 16  
REXT  
VDD  
1
2
3
4
5
15  
14  
13  
12  
11  
The Si5018 is a fully-integrated low-power clock and data recovery (CDR)  
IC designed for high-speed serial communication systems. It extracts  
timing information and data from a serial input at OC-48/STM-16 data  
rates. In addition, support for 2.7 Gbps data streams is also provided for  
applications that employ forward error correction (FEC). DSPLL™  
technology eliminates sensitive noise entry points thus making the PLL  
less susceptible to board-level interaction and helping to ensure optimal  
jitter performance.  
PWRDN/CAL  
VDD  
GND  
Pad  
Connection  
GND  
DOUT+  
DOUT–  
VDD  
REFCLK+  
REFCLK–  
6
7
8
9
10  
The Si5018 represents a new standard in low jitter, low power, and small  
size for high speed CDRs. It operates from a single 2.5 V supply over the  
industrial temperature range (–40 to 85 °C).  
Functional Block Diagram  
LOL  
DSPLLTM  
Phase-Locked  
Loop  
DIN +  
DIN –  
DOUT +  
DOUT –  
BUF  
BUF  
BUF  
Retim er  
2
2
2
PW RDN/CAL  
CLKOUT +  
CLKOUT –  
Bias  
2
REXT  
REFCLKIN +  
REFCLKIN –  
Rev. 1.2 1/04  
Copyright © 2004 by Silicon Laboratories  
Si5018-DS12  
Si5018  
2
Rev. 1.2  
Si5018  
TABLE OF CONTENTS  
Section  
Page  
Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
DSPLL™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Reference Clock Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Forward Error Correction (FEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Lock Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Device Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Pin Descriptions: Si5018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Package Outline: Si5018-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4x4 mm 20L MLP Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Rev. 1.2  
3
Si5018  
Detailed Block Diagram  
DOUT+  
DOUT–  
Retime  
c
DIN+  
CLKOUT+  
CLKOUT–  
Phase  
Detector  
CLK  
A/D  
VCO  
DSP  
c
Divider  
DIN–  
n
REFCLK+  
REFCLK–  
Lock  
Detector  
LOL  
REXT  
Calibration  
Bias  
Generation  
PWRDN/CAL  
4
Rev. 1.2  
Si5018  
Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
1
Parameter  
Symbol  
Test Condition  
Typ  
Unit  
Min  
Max  
85  
Ambient Temperature  
Si5018 Supply Voltage  
Notes:  
T
–40  
25  
°C  
V
A
2
V
2.375  
2.5  
2.625  
DD  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. The Si5018 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) shown in "Typical Application Schematic‚" on page 9.  
V
SIGNAL+  
V
,V  
Differential  
I/Os  
V
ICM OCM  
Single-Ended Voltage  
IS  
SIGNAL–  
(SIGNAL+) – (SIGNAL–)  
Differential Peak-to-Peak Voltage  
t
V ,V (V = 2V )  
ID OD  
ID  
IS  
Differential  
Voltage Swing  
Figure 1. Differential Voltage Measurement (DIN, REFCLK, DOUT, CLKOUT)  
tC-D  
DOUT  
CLKOUT  
Figure 2. Differential Clock to Data Timing  
80%  
DOUT,  
CLKOUT  
20%  
tF  
tR  
Figure 3. Differential DOUT and CLKOUT Rise/Fall Times  
Rev. 1.2  
5
Si5018  
Table 2. DC Characteristics  
(VDD = 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
108  
Max  
122  
320  
Unit  
mA  
mW  
V
Supply Current  
I
DD  
Power Dissipation  
P
270  
D
Common Mode Input Voltage (DIN, REFCLK)*  
Single Ended Input Voltage (DIN, REFCLK)*  
Differential Input Voltage Swing (DIN, REFCLK)*  
Input Impedance (DIN, REFCLK)  
V
varies with V  
.80 x V  
ICM  
DD  
DD  
V
See Figure 1  
See Figure 1  
Line-to-Line  
200  
200  
84  
750  
1500  
116  
mV  
mV  
IS  
ID  
IN  
PP  
PP  
V
R
100  
Differential Output Voltage Swing (DOUT)  
OC48  
V
100 Load  
Line-to-Line  
780  
990  
1260  
mV  
OD  
PP  
Differential Output Voltage Swing (CLKOUT)  
OC48  
V
100 Load  
Line-to-Line  
550  
900  
1260  
mV  
PP  
OD  
Output Common Mode Voltage  
(DOUT,CLKOUT)  
V
100 Load  
Line-to-Line  
V
DD  
V
OCM  
0.23  
100  
25  
Output Impedance (DOUT,CLKOUT)  
Output Short to GND (DOUT,CLKOUT)  
R
Single-ended  
84  
116  
31  
mA  
mA  
V
OUT  
SC(–)  
SC(+)  
I
I
Output Short to V (DOUT,CLKOUT)  
–17.5  
–14.5  
DD  
Input Voltage Low (LVTTL Inputs)  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
Input Impedance (LVTTL Inputs)  
PWRDN/CAL Leakage Current  
V
.8  
IL  
V
I
2.0  
V
IH  
10  
10  
0.4  
µA  
µA  
V
IL  
I
IH  
V
I = 2 mA  
OL  
O
V
I = 2 mA  
2.4  
10  
V
OH  
O
R
kΩ  
µA  
IN  
PWRDN  
I
V
0.8 V  
15  
25  
35  
PWRDN  
*Note: The DIN and REFCLK inputs may be driven differentially or single-endedly. When driving single-endedly, the voltage swing  
of the signal applied to the active input must exceed the specified minimum Differential Input Voltage Swing (VID min), and  
the unused input must be ac coupled to ground. When driving differentially, the difference between the positive and  
negative input signals must exceed VID min. (Each individual input signal needs to swing only half of this range.) In either  
case, the voltage applied to any individual pin (DIN+, DIN–, REFCLK+, or REFCLK–) must not exceed the specified  
maximum Input Voltage Range (VIS max).  
6
Rev. 1.2  
Si5018  
Table 3. AC Characteristics (Clock and Data)  
(VA 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
2.4  
Typ  
Max  
2.7  
Unit  
GHz  
ps  
Output Clock Rate  
Output Rise/Fall Time  
f
CLK  
t t  
Figure 3  
Figure 2  
80  
110  
R, F  
Clock to Data Delay  
FEC (2.7 GHz)  
OC-48  
t
C-D  
225  
225  
250  
250  
270  
270  
ps  
Input Return Loss  
100 kHz–2.5 GHz  
2.5 GHz–4.0 GHz  
16  
13  
dB  
dB  
Table 4. AC Characteristics (PLL Characteristics)  
(VA 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
f = 600 Hz  
Min  
40  
4
Typ  
Max  
Unit  
Jitter Tolerance*  
J
UI  
UI  
UI  
UI  
TOL(P–P)  
PP  
PP  
PP  
PP  
f = 6000 Hz  
f = 100 kHz  
4
f = 1 MHz  
.4  
*
RMS Jitter Generation  
J
with no jitter on serial data  
with no jitter on serial data  
1.45  
2.9  
25  
5.0  
55  
mUI  
mUI  
MHz  
dB  
GEN(rms)  
*
Peak-to-Peak Jitter Generation  
J
GEN(PP)  
*
Jitter Transfer Bandwidth  
J
2.0  
0.1  
1.7  
BW  
*
Jitter Transfer Peaking  
J
0.03  
1.5  
P
Acquisition Time  
T
After falling edge of  
PWRDN/CAL  
ms  
AQ  
From the return of valid data  
40  
40  
60  
50  
150  
60  
µs  
Input Reference Clock Duty  
Cycle  
C
%
DUTY  
Input Reference Clock Frequency  
Tolerance  
C
–100  
100  
ppm  
TOL  
Reference Clock Range  
19.44  
450  
168.75  
750  
MHz  
ppm  
Frequency Difference at which  
Receive PLL goes out of Lock  
(REFCLK compared to the  
divided down VCO clock)  
LOL  
600  
Frequency Difference at which  
Receive PLL goes into Lock  
(REFCLK compared to the  
divided down VCO clock)  
LOCK  
150  
300  
450  
ppm  
*Note: Bellcore specifications: GR-253-CORE, Issue 2, December 1995. Using PRBS 223 – 1 data pattern.  
Rev. 1.2  
7
Si5018  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
V
DC Supply Voltage  
V
–0.5 to 2.8  
–0.3 to 3.6  
DD  
LVTTL Input Voltage  
V
V
DIG  
Differential Input Voltages  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
ESD HBM Tolerance (100 pf, 1.5 k)  
V
–0.3 to (V + 0.3)  
V
DIF  
DD  
±50  
–55 to 150  
–55 to 150  
1
mA  
°C  
°C  
kV  
T
JCT  
T
STG  
Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Table 6. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕ
Still Air  
38  
°C/W  
JA  
8
Rev. 1.2  
Si5018  
Typical Application Schematic  
Powerdown  
Loss-of-Lock  
Indicator  
DIN+  
DIN–  
DOUT+  
High-Speed  
Serial Input  
Recovered  
Data  
DOUT–  
Si5018  
System  
Reference  
Clock  
REFCLK+  
REFCLK–  
CLKOUT+  
CLKOUT–  
Recovered  
Clock  
0.1 µF  
10 kΩ  
VDD  
(1%)  
2200 pF  
20 pF  
Rev. 1.2  
9
Si5018  
no activity exists on REFCLK, indicating the lock status  
of the PLL is unknown. Additionally, the Si5018 uses the  
Functional Description  
The Si5018 utilizes a phase-locked loop (PLL) to reference clock to center the VCO output frequency at  
recover a clock synchronous to the input data stream. the OC-48/STM-16 data rate. The device will self-  
This clock is used to retime the data, and both the configure for operation with one of three reference clock  
recovered clock and data are output synchronously via frequencies. This eliminates the need to externally  
current mode logic (CML) drivers. Optimal jitter configure the device to operate with a particular  
performance is obtained by using Silicon Laboratories' reference clock.  
DSPLL™ technology to eliminate the noise entry points  
caused by external PLL loop filter components.  
The reference clock centers the VCO for a nominal  
output between 2.488 GHz and 2.7 GHz. The VCO  
frequency is centered at 16, 32, or 128 times the  
reference clock frequency. Detection circuitry  
DSPLL™  
The phase-locked loop structure (shown in "Typical  
Application Schematic‚" on page 9) utilizes Silicon  
Laboratories' DSPLL™ technology to eliminate the  
need for external loop filter components found in  
traditional PLL implementations. This is achieved by  
using a digital signal processing (DSP) algorithm to  
replace the loop filter commonly found in analog PLL  
designs. This algorithm processes the phase detector  
error term and generates a digital control value to adjust  
the frequency of the voltage-controlled oscillator (VCO).  
Because external loop filter components are not  
required, sensitive noise entry points are eliminated  
thus making the DSPLL less susceptible to board-level  
noise sources that make SONET/SDH jitter compliance  
difficult to attain.  
continuously monitors the reference clock input to  
determine whether the device should be configured for  
a reference clock that is 1/16, 1/32, or 1/128 the  
nominal VCO output. Approximate reference clock  
frequencies are given in Table 7.  
Table 7. Typical REFCLK Frequencies  
OC-48/  
STM-16  
OC-48/STM-16 w/  
15/14 FEC  
Ratio of  
VCO to  
(2.488 GHz)  
(2.666 GHz)  
REFCLK  
19.44 MHz  
77.76 MHz  
155.52 MHz  
20.83 MHz  
83.31 MHz  
166.63 MHz  
128  
32  
16  
PLL Self-Calibration  
Forward Error Correction (FEC)  
The Si5018 achieves optimal jitter performance by  
using self-calibration circuitry to set the loop gain  
parameters within the DSPLL. For the self-calibration  
circuitry to operate correctly, the power supply voltage  
must exceed 2.25 V when calibration occurs. For best  
performance, the user should force a self-calibration  
once the supply has stabilized on powerup.  
The Si5018 supports FEC in SONET OC-48 (SDH  
STM-16) applications for data rates up to 2.7 Gbps. In  
FEC applications, the appropriate reference clock  
frequency is determined by dividing the input data rate  
by 16, 32, or 128. For example, if an FEC code is used  
that produces a 2.7 Gbps data rate, the required  
reference clock would be 168.75 MHz, 84.375 MHz, or  
21.09 MHz.  
A self-calibration can be initiated by forcing a high-to-  
low transition on the power-down control input,  
PWRDN/CAL, while a valid reference clock is supplied  
to the REFCLK input. The PWRDN/CAL input should be  
held high at least 1 µs before transitioning low to  
guarantee a self-calibration. Several application circuits  
that could be used to initiate a power-on self-calibration  
are provided in Silicon Laboratories’ “AN42: Controlling  
DSPLL™ Self-Calibration for the Si5020/5018/5010  
CDR Devices and Si531x Clock Multiplier/Regenerator  
Devices.”  
Lock Detect  
The Si5018 provides lock-detect circuitry that indicates  
whether the PLL has achieved frequency lock with the  
incoming data. The circuit compares the frequency of a  
divided-down version of the recovered clock with the  
frequency of the applied reference clock (REFCLK). If  
the recovered clock frequency deviates from that of the  
reference clock by the amount specified in Table 4 on  
page 7, the PLL is declared out of lock, and the loss-of-  
lock (LOL) pin is asserted high. In this state, the PLL will  
periodically try to reacquire lock with the incoming data  
stream. During reacquisition, the recovered clock may  
drift over a ±600 ppm range relative to the applied  
reference clock, and the LOL output alarm may toggle  
until the PLL has reacquired frequency lock. Due to the  
Reference Clock Detect  
The Si5018 CDR requires an external reference clock  
applied to the REFCLK input for normal device  
operation. When REFCLK is absent, the LOL alarm will  
always be asserted when it has been determined that  
10  
Rev. 1.2  
Si5018  
low noise and stability of the DSPLL, under the  
condition where data is removed from the inputs, there  
is the possibility that the PLL will not drift enough to  
render an out-of-lock condition.  
Sinusoidal  
Input  
Jitter (UIPP  
)
20 dB/Decade Slope  
If REFCLK is removed, the LOL output alarm is always  
asserted when it has been determined that no activity  
exists on REFCLK, indicating the frequency lock status  
of the PLL is unknown.  
15  
1.5  
0.15  
Note: LOL is not asserted during PWRDN/CAL.  
PLL Performance  
f0  
f1  
f2  
f3  
ft  
Frequency  
The PLL implementation used in the Si5018 is fully  
compliant with the jitter specifications proposed for  
SONET/SDH equipment by Bellcore GR-253-CORE,  
Issue 2, December 1995 and ITU-T G.958.  
F0  
(Hz)  
F1  
F2  
F3  
Ft  
SONET  
Data Rate  
(Hz)  
(Hz)  
(kHz) (kHz)  
Jitter Tolerance  
OC- 48  
10  
600  
6000  
100 1000  
The Si5018’s tolerance to input jitter exceeds that of the  
Bellcore/ITU mask shown in Figure 4. This mask  
defines the level of peak-to-peak sinusoid jitter that  
must be tolerated when applied to the differential data  
input of the device.  
Figure 4. Jitter Tolerance Specification  
Jitter  
Jitter Transfer  
Transfer  
The Si5018 is fully compliant with the relevant Bellcore/  
ITU specifications related to SONET/SDH jitter transfer.  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter as a function of jitter frequency (see  
Figure 5). These measurements are made with an input  
test signal that is degraded with sinusoidal jitter whose  
magnitude is defined by the mask in Figure 4.  
20 dB / Decade  
Slope  
0.1 dB  
Acceptable  
Range  
Jitter Generation  
Fc  
The Si5018 exceeds all relevant specifications for jitter  
generation proposed for SONET/SDH equipment. The  
jitter generation specification defines the amount of jitter  
that may be present on the recovered clock and data  
outputs when a jitter free input signal is provided. The  
Frequency  
SONET  
Fc  
Data Rate  
OC- 48  
(kHz)  
Si5018 generates less than 3.0 mUI  
presented with jitter free input data.  
of jitter when  
2000  
rms  
Figure 5. Jitter Transfer Specification  
Powerdown  
The Si5018 provides a powerdown pin, PWRDN/CAL,  
that disables the output drivers (DOUT, CLKOUT).  
When the PWRDN/CAL pin is driven high, the positive  
and negative terminals of CLKOUT and DOUT are each  
tied to VDD through 100 on-chip resistors. This  
feature is useful in reducing power consumption in  
applications that employ redundant serial channels.  
When PWRDN/CAL is released (set to low) the digital  
logic resets to a known initial condition, recalibrates the  
DSPLL, and will begin to lock to the data stream.  
Rev. 1.2  
11  
Si5018  
Device Grounding  
Differential Input Circuitry  
The Si5018 uses the GND pad on the bottom of the 20- The Si5018 provides differential inputs for both the high  
pin micro leaded package (MLP) for device ground. This speed data (DIN) and the reference clock (REFCLK)  
pad should be connected directly to the analog supply inputs. An example termination for these inputs is  
ground. See Figures 10 and 11 for the ground (GND) shown in Figure 6. In applications where direct dc  
pad location.  
coupling is possible, the 0.1 µF capacitors may be  
omitted. The DIN and REFCLK input amplifiers require  
an input signal with a minimum differential peak-to-peak  
Bias Generation Circuitry  
The Si5018 makes use of an external resistor to set voltage listed in Table 2 on page 6.  
internal bias currents. The external resistor allows  
precise generation of bias currents which significantly  
reduces power consumption versus traditional  
implementations that use an internal resistor. The bias  
generation circuitry requires a 10 k(1%) resistor  
connected between REXT and GND.  
Si5018  
Differential Driver  
VDD  
2.5 kΩ  
DIN +,  
RFCLK +  
0.1 µ F  
0.1 µ F  
Zo = 50 Ω  
10 kΩ  
2.5 kΩ  
102Ω  
DIN –,  
RFCLK –  
Zo = 50 Ω  
10 kΩ  
GND  
Figure 6. Input Termination for DIN and REFCLK (AC Coupled)  
Si5018  
Clock  
VDD  
source  
2.5 kΩ  
0.1  
µ
F
Zo = 50  
REFCLK +  
REFCLK –  
10 kΩ  
2.5 kΩ  
102  
100  
10 kΩ  
0.1 µF  
GND  
Figure 7. Single-Ended Input Termination for REFCLK (AC Coupled)  
12  
Rev. 1.2  
Si5018  
Si5018  
VDD  
Clock  
source  
2.5 kΩ  
0.1  
µ
F
Zo = 50  
DIN +  
DIN –  
10 kΩ  
2.5 kΩ  
102  
100  
10 kΩ  
0.1 µF  
GND  
Figure 8. Single-Ended Input Termination for DIN (AC Coupled)  
Rev. 1.2  
13  
Si5018  
Differential Output Circuitry  
The Si5018 utilizes a current mode logic (CML) architecture to output both the recovered clock (CLKOUT) and data  
(DOUT). An example of output termination with ac coupling is shown in Figure 9. In applications in which direct dc  
coupling is possible, the 0.1 µF capacitors may be omitted. The differential peak-to-peak voltage swing of the CML  
architecture is listed in Table 2 on page 6.  
Si5018  
VDD  
VDD  
50 Ω  
100 Ω  
DOUT +,  
CLKOUT +  
0.1 µ F  
0.1 µ F  
Zo = 50 Ω  
DOUT –,  
CLKOUT –  
Zo = 50 Ω  
100 Ω  
VDD  
50 Ω  
VDD  
Figure 9. Output Termination for DOUT and CLKOUT (AC Coupled)  
14  
Rev. 1.2  
Si5018  
Pin Descriptions: Si5018  
20 19 18 17 16  
REXT  
VDD  
1
2
3
4
5
15  
14  
13  
12  
11  
PWRDN/CAL  
VDD  
GND  
Pad  
Connection  
GND  
DOUT+  
DOUT–  
VDD  
REFCLK+  
REFCLK–  
6
7
8
9
10  
Figure 10. Si5018 Pin Configuration  
Table 8. Si5018 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
External Bias Resistor.  
1
REXT  
This resistor is used by onboard circuitry to estab-  
lish bias currents within the device. This pin must  
be connected to GND through a 10 kΩ (1%) resis-  
tor.  
Differential Reference Clock.  
4
5
REFCLK+  
REFCLK–  
I
See Table 2  
LVTTL  
The reference clock sets the initial operating fre-  
quency used by the onboard PLL for clock and data  
recovery. Additionally, the reference clock is used to  
derive the clock output when no data is present.  
Loss-of-Lock.  
6
LOL  
O
This output is driven high when the recovered clock  
frequency deviates from the reference clock by the  
amount specified in Table 4 on page 7.  
Differential Data Input.  
9
10  
DIN+  
DIN–  
I
See Table 2  
CML  
Clock and data are recovered from the differential  
signal present on these pins.  
Differential Data Output.  
12  
13  
DOUT–  
DOUT+  
O
The data output signal is a retimed version of the  
data recovered from the signal present on DIN. It is  
phase aligned with CLKOUT and is updated on the  
rising edge of CLKOUT.  
Rev. 1.2  
15  
Si5018  
Table 8. Si5018 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
15  
PWRDN/CAL  
I
LVTTL  
Powerdown.  
To shut down the high-speed outputs and reduce  
power consumption, hold this pin high. For normal  
operation, hold this pin low.  
Calibration.  
To initiate an internal self-calibration, force a high-  
to-low transition on this pin. (See "PLL Self-Calibra-  
tion‚" on page 10.)  
Note: This input has a weak internal pulldown.  
Differential Clock Output.  
16  
17  
CLKOUT–  
CLKOUT+  
O
CML  
The output clock is recovered from the data signal  
present on DIN. In the absence of data, the output  
clock is derived from REFCLK.  
Supply Voltage.  
2, 7, 11, 14  
VDD  
GND  
2.5 V  
GND  
Nominally 2.5 V.  
Supply Ground.  
3, 8, 18, 19,  
20, and  
GND Pad  
Nominally 0.0 V. The GND pad found on the bottom  
of the 20-pin micro leaded package (see Figure 11)  
must be connected directly to supply ground.  
16  
Rev. 1.2  
Si5018  
Ordering Guide  
Part Number  
Package  
Temperature  
Si5018-BM  
20-pin MLP  
–40 to 85 °C  
Top Mark  
Silicon Labs  
Die Revision (R)  
Part Designator (Z)  
Part Number  
Si5018-BM  
B
C
Rev. 1.2  
17  
Si5018  
Package Outline: Si5018-BM  
Figure 11 illustrates the package details for the Si5018-BM. Table 9 lists the values for the dimensions shown in the  
illustration.  
A
D
D1  
A1  
D2  
A2  
L
b
PIN1 ID  
0.50 DIA.  
A3  
b
20  
20  
1
2
3
1
2
3
E1  
E
E2  
θ
e
e
Top View  
Side View  
Bottom View  
Figure 11. 20-pin Micro Leadframe Package (MLP)  
Table 9. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
Nom  
0.85  
Max  
0.90  
0.05  
0.70  
Min  
Nom  
3.75 BSC  
2.10  
Max  
A
A1  
D1, E1  
0.00  
0.01  
D2, E2  
1.95  
2.25  
A2  
0.65  
e
θ
L
0.50 BSC  
A3  
0.20 REF.  
0.23  
12°  
b
0.18  
0.30  
0.50  
0.60  
0.75  
D, E  
4.00 BSC  
Notes:  
1. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
2. Package warpage MAX 0.05 mm.  
3. “b” applies to plated terminal and is measured between 0.20 and 0.25 mm from terminal TIP.  
4. The package weight is approximately 42 mg.  
5. The mold compound for this package has a flammability rating of UL94-V0 with an oxygen index of 28  
minimum/54 typical.  
6. The recommended reflow profile for this package is defined by the JEDEC-020B Small Body specification.  
18  
Rev. 1.2  
Si5018  
4x4 mm 20L MLP Recommended PCB Layout  
See Note 8  
See Note 9  
Gnd Pin  
Symbol  
Parameter  
Dimensions  
Nom  
Min  
2.23  
2.03  
Max  
2.28  
2.13  
A
D
e
Pad Row/Column Width/Length  
Thermal Pad Width/Height  
Pad Pitch  
2.25  
2.08  
0.50 BSC  
2.46  
G
R
X
Y
Z
Pad Row/Column Separation  
Pad Radius  
2.43  
2.48  
0.12 REF  
0.25  
Pad Width  
0.23  
0.28  
Pad Length  
0.94 REF  
4.28  
Pad Row/Column Extents  
4.26  
4.31  
Notes:  
1. All dimensions listed are in millimeters (mm).  
2. The perimeter pads are to be Non-Solder Mask Defined (NSMD). Solder mask openings should be designed to leave 60-75 mm  
separation between solder mask and pad metal, all the way around the pad.  
3. The center thermal pad is to be Solder Mask Defined (SMD).  
4. Thermal/Ground vias placed in the center pad should be no less than 0.2 mm (8 mil) diameter and tented from the top to prevent  
solder from flowing into the via hole.  
5. The stencil aperture should match the pad size (1:1 ratio) for the perimeter pads. A 3x3 array of 0.5 mm square stencil openings, on a  
0.65 mm pitch, should be used for the center thermal pad.  
6. A stencil thickness of 5 mil is recommended. The stencil should be laser cut and electropolished, with trapezoidal walls to facilitate  
paste release.  
7. A “No-Clean”, Type 3 solder paste should be used for assembly. Nitrogen purge during reflow is recommended.  
8. Do not place any signal or power plane vias in these “keep out” regions.  
9. Suggest four 0.38 mm (15 mil) vias to the ground plane.  
Rev. 1.2  
19  
Si5018  
Document Change List  
Revision 1.0 to Revision 1.1  
! Added "Top Mark‚" on page 17.  
! Updated "Package Outline: Si5018-BM‚" on page 18.  
! Added "4x4 mm 20L MLP Recommended PCB  
Layout‚" on page 19.  
Revision 1.1 to Revision 1.2  
! Made minor note corrections to "4x4 mm 20L MLP  
Recommended PCB Layout‚" on page 19.  
20  
Rev. 1.2  
Si5018  
Notes:  
Rev. 1.2  
21  
Si5018  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, DSPLL, and SiPHY are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
22  
Rev. 1.2  

相关型号:

SI5018-BMR

Clock Recovery Circuit, 1-Func, 4 X 4 MM, MLP-20
SILICON

SI5018-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, LEAD FREE, MLP-20
SILICON

SI5018-X-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI502-EVB

USB plug-in board that allows for evaluation of the Si50x family of CMEMS oscillators.
SILICON

SI5020

SiPHY MULTI-RATE SONET/SDH CLOCK AND DATA RECOVERY IC
ETC

SI5020-B-GMR

Clock Recovery Circuit, 1-Func, QFN-20
SILICON

SI5020-BM

SiPHY MULTI-RATE SONET/SDH CLOCK AND DATA RECOVERY IC
ETC

SI5020-X-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI5020C-BA

Si5020 MICRO PCB WITH S3050 FOOTPRINT
SILICON

SI5022

MULTI-RATE SONET/SDH CDR IC WITH LIMITING AMP
ETC

SI5022-BM

MULTI-RATE SONET/SDH CDR IC WITH LIMITING AMP
ETC

SI5023

MULTI-RATE SONET/SDH CDR IC WITH LIMITING AMPLIFIER
SILICON