SI52147 [SILICON]

PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE OUTPUT CLOCK GENERATOR; PCI - EXPRESS GEN 1 , GEN 2 ,与第3代九个输出时钟发生器
SI52147
型号: SI52147
厂家: SILICON    SILICON
描述:

PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE OUTPUT CLOCK GENERATOR
PCI - EXPRESS GEN 1 , GEN 2 ,与第3代九个输出时钟发生器

时钟发生器 输出元件 PC
文件: 总22页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si52147  
PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE OUTPUT  
CLOCK GENERATOR  
Features  
PCI-Express Gen 1, Gen 2, &  
25 MHz crystal input or clock  
Gen 3 compliant  
input  
2
Low power push-pull type  
I C support with readback  
differential output buffers  
capabilities  
Integrated resistors on differential  
Triangular spread spectrum  
profile for maximum  
clocks  
Output enable pin for all clocks  
electromagnetic interference  
(EMI) reduction  
Hardware selectable spread  
control  
Industrial temperature:  
o
Nine PCI-Express clocks  
–40 to 85 C  
Ordering Information:  
3.3 V power supply  
48-pin QFN package  
See page 20.  
Pin Assignments  
Applications  
Network attached storage  
Multi-function printer  
Wireless access point  
Routers  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DIFF8  
DIFF8  
36  
35  
34  
33  
VDD  
1
2
3
4
VDD  
Description  
OE01  
VDD  
DIFF7  
OE11  
32 DIFF7  
SSON2  
VSS_PLL3  
VSS_PLL4  
OE21  
5
6
7
8
9
The Si52147 is a spread-controlled PCIe clock generator that can source  
nine PCIe clocks simultaneously. The device has six hardware output  
enable control inputs for enabling the respective differential outputs on the  
fly while powered on along with the hardware spread control for EMI  
reduction.  
31  
30  
29  
28  
DIFF6  
DIFF6  
49  
GND  
VDD  
OE31  
DIFF5  
27 DIFF5  
OE[4:5]1 10  
DIFF4  
DIFF4  
26  
25  
OE[6:8]1  
11  
12  
VDD  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Functional Block Diagram  
Notes:  
1. Internal 100 kohm pull-up.  
2. Internal 100 kohm pull-down.  
Patents pending  
DIFF0  
XIN/CLKIN  
XOUT  
DIFF1  
DIFF2  
DIFF3  
PLL1  
Divider  
DIFF4  
(SSC)  
DIFF5  
DIFF6  
SCLK  
Control & Memory  
SDATA  
DIFF7  
CKPWRGD/PDB  
Control  
RAM  
OE [8:0]  
SSON  
DIFF8  
Preliminary Rev. 0.1 12/11  
Copyright © 2011 by Silicon Laboratories  
Si52147  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si52147  
2
Preliminary Rev. 0.1  
Si52147  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.1. Crystal Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.2. CKPWRGD_PDB (Power down) Clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.3. PDB (Power down) Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.4. PDB Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.5. OE Clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.6. OE Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.7. OE Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.8. SSON Clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.1. Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.2. Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
5. Pin Descriptions: 48-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Preliminary Rev. 0.1  
3
Si52147  
1. Electrical Specifications  
Table 1. DC Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
3.3 V Operating Voltage  
VDD core  
3.3 ±5%  
3.135  
3.3  
3.465  
V
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
Input High Voltage  
V
Control input pins  
Control input pins  
SDATA, SCLK  
2.0  
V
+ 0.3  
DD  
V
V
IH  
V
V
– 0.3  
SS  
0.8  
IL  
V
2.2  
1.0  
5
V
IHI2C  
Input Low Voltage  
V
SDATA, SCLK  
V
ILI2C  
Input High Leakage Current  
I
Except internal pull-down  
A  
IH  
resistors, 0 < V < V  
IN  
DD  
Input Low Leakage Current  
I
Except internal pull-up  
resistors, 0 < V < V  
–5  
A  
IL  
IN  
DD  
3.3 V Output High Voltage  
(SE)  
V
I
= –1 mA  
2.4  
0.4  
10  
V
V
OH  
OH  
3.3 V Output Low Voltage  
(SE)  
V
I
OL  
= 1 mA  
OL  
OZ  
High-impedance Output  
Current  
I
–10  
A  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
C
1.5  
5
6
pF  
pF  
IN  
C
OUT  
L
7
nH  
mA  
mA  
IN  
Power Down Current  
Dynamic Supply Current  
I
_
1
DD PD  
I
All outputs enabled. Differ-  
ential clocks with 5” traces  
and 2 pF load.  
85  
DD_3.3V  
4
Preliminary Rev. 0.1  
Si52147  
Table 2. AC Electrical Specifications  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Crystal  
Long-term Accuracy  
Clock Input  
L
Measured at V /2 differential  
250  
ppm  
ACC  
DD  
CLKIN Duty Cycle  
CLKIN Rise and Fall Times  
T
Measured at V /2  
47  
53  
%
DC  
DD  
T /T  
Measured between 0.2 V and  
0.5  
4.0  
V/ns  
R
F
DD  
0.8 V  
DD  
CLKIN Cycle to Cycle Jitter  
CLKIN Long Term Jitter  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
DIFF at 0.7 V  
T
Measured at VDD/2  
Measured at VDD/2  
XIN/CLKIN pin  
2
250  
350  
ps  
ps  
V
CCJ  
T
LTJ  
V
VDD+0.3  
0.8  
IH  
V
XIN/CLKIN pin  
–35  
V
IL  
I
XIN/CLKIN pin, VIN = VDD  
XIN/CLKIN pin, 0 < VIN <0.8  
35  
uA  
uA  
IH  
I
IL  
DIFF Duty Cycle  
T
Measured at 0 V differential  
Measured at 0 V differential  
45  
55  
50  
%
DC  
Any DIFF Clock Skew from the T  
Earliest Bank to the Latest  
Bank  
ps  
SKEW(win  
dow)  
DIFF Cycle to Cycle Jitter  
T
Measured at 0 V differential  
0
35  
40  
50  
ps  
ps  
CCJ  
Output PCIe Gen1 REFCLK  
Phase Jitter  
RMS  
108  
Includes PLL BW 1.5–22 MHz,  
ζ = 0.54, Td=10 ns,  
GEN1  
Ftrk=1.5 MHz with BER = 1E-12  
Output PCIe Gen2 REFCLK  
Phase Jitter  
RMS  
RMS  
Includes PLL BW 8–16 MHz, Jitter  
Peaking = 3 dB, ζ = 0.54, Td=12 ns,  
Low Band, F < 1.5 MHz  
0
0
0
2
2
3.0  
3.1  
1.0  
ps  
ps  
ps  
GEN2  
GEN2  
GEN3  
Output PCIe Gen2 REFCLK  
Phase Jitter  
Includes PLL BW 8–16 MHz, Jitter  
Peaking = 3 dB, ζ = 0.54, Td=12 ns,  
High Band,1.5 MHz < F < Nyquist  
Output Phase Jitter Impact— RMS  
PCIe Gen3  
Includes PLL BW 2–4 MHz,  
CDR = 10 MHz  
0.5  
DIFF Long Term Accuracy  
L
Measured at 0 V differential  
1
100  
8
ppm  
V/ns  
ACC  
DIFF Rising/Falling Slew Rate  
T /T  
Measured differentially from  
±150 mV  
R
F
Voltage High  
Voltage Low  
V
1.15  
V
V
HIGH  
V
–0.3  
300  
LOW  
Crossing Point Voltage at  
0.7 V Swing  
V
550  
mV  
OX  
Enable/Disable and Setup  
Clock Stabilization from  
Power-up  
T
1.8  
ms  
ns  
STABLE  
Stopclock Set-up Time  
T
10.0  
SS  
Preliminary Rev. 0.1  
5
Si52147  
Table 3. Absolute Maximum Conditions  
Parameter  
Main Supply Voltage  
Symbol  
Condition  
Min  
Typ  
Max Unit  
V
Functional  
4.6  
4.6  
150  
85  
V
DD_3.3V  
Input Voltage  
V
Relative to V  
–0.5  
–65  
–40  
V–0  
2
V
DC  
IN  
SS  
Temperature, Storage  
T
Non-functional  
Functional  
°C  
S
Temperature, Operating Ambient  
Temperature, Junction  
T
°C  
°C  
A
T
Functional  
150  
22  
J
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model)  
Flammability Rating  
Ø
JEDEC (JESD 51)  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
JC  
JA  
Ø
30  
ESD  
JEDEC (JESD 22-A114) 2000  
UL (Class)  
HBM  
UL-94  
MSL  
Moisture Sensitivity Level  
JEDEC (J-STD-020)  
Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up.  
Power supply sequencing is not required.  
6
Preliminary Rev. 0.1  
Si52147  
2. Functional Description  
2.1. Crystal Recommendations  
The clock device requires a parallel resonance crystal. Substituting a series resonance crystal causes the clock  
device to operate at the wrong frequency and violates the ppm specification. For most applications there is a  
300 ppm frequency shift between series and parallel crystals due to incorrect loading.  
Table 4. Crystal Recommendations  
Frequency  
(Fund)  
Cut  
Loading Load Cap  
Shunt  
Cap (max)  
Motional  
(max)  
Tolerance  
(max)  
Stability  
(max)  
Aging  
(max)  
25 MHz  
AT  
Parallel 12–15 pF  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
2.1.1. Crystal Loading  
Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, use the  
total capacitance the crystal sees to calculate the appropriate capacitive loading (CL).  
Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors  
are in series with the crystal. It is not true that load capacitors are in parallel with the crystal and are approximately  
equal to the load capacitance of the crystal.  
Figure 1. Crystal Capacitive Clarification  
2.1.2. Calculating Load Capacitors  
In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate  
the crystal loading correctly. Again, the capacitance on each side is in series with the crystal. The total capacitance  
on both side is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal  
capacitive loading on both sides.  
Figure 2. Crystal Loading Example  
Preliminary Rev. 0.1  
7
Si52147  
Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 x CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
CL: Crystal load capacitance  
CLe: Actual loading seen by crystal using standard value trim capacitors  
Ce: External trim capacitors  
Cs: Stray capacitance (terraced)  
Ci : Internal capacitance (lead frame, bond wires, etc.)  
2.2. CKPWRGD_PDB (Power down) Clarification  
The CKPWRGD_PDB pin is a dual-function pin. During initial power up, the pin functions as CKPWRGD. Upon the  
2
first powerup if the CKPWRGD is low, the device outputs will be disabled, but the crystal oscillator and I C logics  
are active. Once CKPWRGD has been sampled high by the clock chip, the pin assumes a PDB functionality. When  
the pin has assumed a PDB functionality and the pin is pull low, the device will be placed in standby mode.  
2.3. PDB (Power down) Assertion  
The PDB pin is an asynchronous active low input used to disable all clocks in a glitch free manner. All outputs will  
2
be driven low in power down mode. In power down mode, all outputs, the crystal oscillator and the I C logic are  
disabled.  
2.4. PDB Deassertion  
When a valid rising edge on CKPWRGD/PDB pin is applied, all outputs are enabled in a glitch free manner within  
two to six output clock cycle.  
2.5. OE Clarification  
The OE pins are active high inputs used to enable and disable the output clocks. To enable the output clock, the OE  
2
pin needs to be logic high and the I C output enable bit needs to be logic high. There are two methods to disable  
2
the output clocks: the OE is pulled to a logic low, or the I C enable bit is set to a logic low. The OE pins is required  
to be driven at all time and even though it has an internally 100 kresistor.  
2.6. OE Assertion  
The OE signals are active high input used for synchronous stopping and starting the DIFF output clocks respectively  
while the rest of the clock generator continues to function. The assertion of the OE signal by making it logic high  
causes stopped respective DIFF output to resume normal operation. No short or stretched clock pulses are produced  
when the clock resumes. The maximum latency from the assertion to active outputs is no more than two to six output  
clock cycles.  
2.7. OE Deassertion  
When the OE pin is deasserted by making its logic low, the corresponding DIFF output is stopped cleanly, and the  
final output state is driven low.  
2.8. SSON Clarification  
SSON is an active input used to enable –0.5% spread on all DIFF outputs. When sampled high, –0.5% spread is  
enabled on all DIFF outputs. When sampled low, the DIFF output frequencies are non-spread.  
8
Preliminary Rev. 0.1  
Si52147  
3. Test and Measurement Setup  
This diagram shows the test load configuration for the differential clock signals.  
M easurem ent  
L1  
P oint  
O U T+  
50  
2 pF  
L1 = 5"  
M easurem ent  
P oint  
L1  
O U T-  
50  
2 pF  
Figure 3. 0.7 V Differential Load Configuration  
Figure 4. Differential Output Signals (for AC Parameters Measurement)  
Preliminary Rev. 0.1  
9
Si52147  
VMIN = –0.30V  
VMIN = –0.30V  
Figure 5. Single-ended Measurement for Differential Output Signals  
(for AC Parameters Measurement)  
10  
Preliminary Rev. 0.1  
Si52147  
4. Control Registers  
4.1. Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through  
the Serial Data Interface, various device functions, such as individual clock output buffers are individually enabled  
or disabled. The registers associated with the Serial Data Interface initialize to their default setting at power-up.  
The use of this interface is optional. Clock device register changes are normally made at system initialization, if any  
are required. The interface cannot be used during system operation for power management functions.  
4.2. Data Protocol  
The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the  
controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most  
significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read  
operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded  
in the command code described in Table 1 on page 4.  
The block write and block read protocol is outlined in Table 5 while Table 6 outlines byte write and byte read  
protocol. The slave receiver address is 11010110 (D6h).  
Table 5. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
Slave address—7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code—8 bits  
Acknowledge from slave  
Byte Count—8 bits  
Acknowledge from slave  
Data byte 1–8 bits  
10  
Acknowledge from slave  
18:11  
19  
18:11 Command Code–8 bits  
19  
20  
Acknowledge from slave  
Repeat start  
27:20  
28  
27:21 Slave address–7 bits  
36:29  
37  
28  
29  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
Acknowledge from slave  
45:38  
46  
37:30 Byte Count from slave–8 bits  
38 Acknowledge  
46:39 Data byte 1 from slave–8 bits  
47 Acknowledge  
55:48 Data byte 2 from slave–8 bits  
Acknowledge from slave  
Data Byte/Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
....  
....  
....  
....  
56  
....  
....  
....  
....  
Acknowledge  
Data bytes from slave/Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
Preliminary Rev. 0.1  
11  
Si52147  
Table 6. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
Description  
Bit  
1
Start  
1
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
12  
Preliminary Rev. 0.1  
Si52147  
Control Register 0. Byte 0  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000000  
Bit  
Name  
Reserved  
Function  
7:0  
Control Register 1. Byte 1  
Bit  
D7  
D6  
D5  
D4  
DIFF0_OE  
R/W  
D3  
D2  
DIFF1_OE  
R/W  
D1  
DIFF2_OE  
R/W  
D0  
DIFF3_OE  
R/W  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00010111  
Bit  
Name  
Function  
7:5  
Reserved  
4
DIFF0_OE  
Output Enable for DIFF0.  
0: Output disabled.  
1: Output enabled.  
3
2
Reserved  
DIFF1_OE  
Output Enable for DIFF1.  
0: Output disabled.  
1: Output enabled.  
1
0
DIFF2_OE  
DIFF3_OE  
Output Enable for DIFF2.  
0: Output disabled.  
1: Output enabled.  
Output Enable for DIFF3.  
0: Output disabled.  
1: Output enabled.  
Preliminary Rev. 0.1  
13  
Si52147  
Control Register 2. Byte 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIFF4_OE  
DIFF5_OE  
DIFF6_OE  
DIFF7_OE  
DIFF8_OE  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 11111000  
Bit  
Name  
Function  
7
DIFF4_OE  
Output Enable for DIFF4.  
0: Output disabled.  
1: Output enabled.  
6
5
DIFF5_OE  
DIFF6_OE  
DIFF7_OE  
Output Enable for DIFF5.  
0: Output disabled.  
1: Output enabled.  
Output Enable for DIFF6.  
0: Output disabled.  
1: Output enabled.  
4
3
Output Enable for DIFF7.  
0: Output disabled.  
1: Output enabled.  
DIFF8_OE  
Reserved  
Output Enable for DIFF8.  
0: Output disabled.  
1: Output enabled.  
2:0  
14  
Preliminary Rev. 0.1  
Si52147  
Control Register 3. Byte 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Rev Code[3:0]  
Vendor ID[3:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00001000  
Bit  
Name  
Function  
7:4  
Rev Code[3:0]  
Vendor ID[3:0]  
Program Revision Code.  
3:0  
Vendor Identification Code.  
Control Register 4. Byte 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BC[7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000110  
Bit  
Name  
BC[7:0]  
Function  
7:0  
Byte Count Register.  
Preliminary Rev. 0.1  
15  
Si52147  
Control Register 5. Byte 5  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0]  
Type  
R/W  
R/W  
R/W  
R/W  
R/W R/W R/W R/W  
Reset settings = 11011000  
Bit  
Name  
Function  
7
DIFF_Amp_Sel  
Amplitude Control for DIFF Differential Outputs.  
0: Differential outputs with Default amplitude.  
1: Differential outputs amplitude is set by Byte 5[6:4].  
6
5
DIFF_Amp_Cntl[2]  
DIFF_Amp_Cntl[1]  
DIFF_Amp_Cntl[0]  
Reserved  
DIFF Differential Outputs Amplitude Adjustment.  
000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV  
100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV  
4
3:0  
16  
Preliminary Rev. 0.1  
Si52147  
5. Pin Descriptions: 48-Pin QFN  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DIFF8  
DIFF8  
36  
35  
34  
33  
VDD  
1
2
3
4
5
6
7
8
9
VDD  
OE01  
VDD  
DIFF7  
OE11  
32 DIFF7  
SSON2  
VSS_PLL3  
VSS_PLL4  
OE21  
31  
30  
29  
28  
DIFF6  
DIFF6  
49  
GND  
VDD  
OE31  
DIFF5  
27 DIFF5  
OE[4:5]1 10  
DIFF4  
DIFF4  
26  
25  
OE[6:8]1  
11  
12  
VDD  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Notes:  
1. Internal 100 kohm pull-up.  
2. Internal 100 kohm pull-down.  
Table 7. Part Number 48-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
PWR 3.3 V Power Supply  
1
VDD  
PWR 3.3 V Power Supply  
2
3
VDD  
OE0  
I,PU 3.3 V input to disable DIFF0 (internal 100 kpull-up).  
Refer to Table 1 on page 4 for OE specifications.  
I,PU 3.3 V input to disable DIFF1 (internal 100 kpull-up).  
4
5
6
OE1  
SSON  
VSS  
Refer to Table 1 on page 4 for OE specifications.  
I, PD 3.3 V-tolerant input for enabling –0.5% spread on DIFF clocks (internal  
100 kpull-down)  
GND Ground  
Preliminary Rev. 0.1  
17  
Si52147  
Table 7. Part Number 48-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
GND Ground  
7
VSS  
OE2  
I,PU 3.3 V input to disable DIFF2 (internal 100 kpull-up).  
8
9
Refer to Table 1 on page 4 for OE specifications.  
I,PU 3.3 V input to disable DIFF3 (internal 100 kpull-up).  
OE3  
Refer to Table 1 on page 4 for OE specifications.  
I,PU  
10  
OE[4:5]  
3.3 V input to disable DIFF[4:5] (internal 100 kpull-up).  
Refer to Table 1 on page 4 for OE specifications.  
I,PU 3.3 V input to disable DIFF[6:8] (internal 100 kpull-up).  
11  
OE[6:8]  
Refer to Table 1 on page 4 for OE specifications.  
PWR 3.3 V Power Supply  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
VDD  
VDD  
PWR 3.3 V Power Supply  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
VSS Ground  
DIFF0  
DIFF0  
VSS  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
PWR 3.3V Power Supply  
DIFF1  
DIFF1  
DIFF2  
DIFF2  
DIFF3  
DIFF3  
VDD  
GND Ground  
VSS  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
GND Ground  
DIFF4  
DIFF4  
DIFF5  
DIFF5  
VSS  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
DIFF6  
DIFF6  
DIFF7  
DIFF7  
18  
Preliminary Rev. 0.1  
Si52147  
Table 7. Part Number 48-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
PWR 3.3 V Power Supply  
34  
VDD  
O, DIF 0.7 V, 100 MHz differential clock  
O, DIF 0.7 V, 100 MHz differential clock  
35  
36  
37  
38  
39  
DIFF8  
DIFF8  
I
SMBus compatible SCLOCK  
SCLK  
I/O SMBus compatible SDATA  
I, PU  
SDATA  
CKPWRGD_PDB  
3.3 V CMOS input. A real-time active low input for asserting power  
down (PDB) and disabling all outputs (internal 100 kpull-up).  
PWR 3.3 V Power Supply  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
VDD_CORE  
XOUT  
XIN/CLKIN  
NC  
O
I
25.00 MHz Crystal output, Float XOUT if using only CLKIN (Clock input)  
25.00 MHz Crystal input or 3.3 V, 25 MHz Clock Input  
NC No Connect  
NC No Connect  
GND Ground  
NC  
VSS_CORE  
VSS  
GND Ground  
NC No Connect  
NC No Connect  
NC  
NC  
GND  
GND Ground for bottom pad of the IC.  
Preliminary Rev. 0.1  
19  
Si52147  
6. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si52147-A01AGM  
Si52147-A01AGMR  
48-pin QFN  
Industrial, –40 to 85 C  
Industrial, –40 to 85 C  
48-pin QFN—Tape and Reel  
20  
Preliminary Rev. 0.1  
Si52147  
7. Package Outline  
Figure 6 illustrates the package details for the Si52147. Table 8 lists the values for the dimensions shown in the  
illustration.  
Figure 6. 48-Pin Quad Flat No Lead (QFN) Package  
Table 8. Package Diagram Dimensions  
Symbol  
Millimeters  
Nom  
Min  
0.70  
0.00  
0.15  
Max  
0.80  
0.05  
0.25  
A
A1  
b
0.75  
0.025  
0.20  
D
6.00 BSC  
4.40  
D2  
e
4.30  
4.50  
0.40 BSC  
6.00 BSC  
4.40  
E
E2  
L
4.30  
0.30  
4.50  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
0.10  
0.10  
0.08  
0.07  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components  
Preliminary Rev. 0.1  
21  
Si52147  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
22  
Preliminary Rev. 0.1  

相关型号:

SI52147-A01AGM

PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE OUTPUT CLOCK GENERATOR
SILICON

SI52147-A01AGMR

PCI-EXPRESS GEN 1, GEN 2, & GEN 3 NINE OUTPUT CLOCK GENERATOR
SILICON

Si52202

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

Si52202-A01AGM

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

Si52202-A01AGMR

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

Si52202-A02AGM

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

Si52202-A02AGMR

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

Si52204

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

SI52204-A01AGM

Processor Specific Clock Generator, QFN-32
SILICON

Si52204-A01AGMR

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON

SI52204-A02AGM

Processor Specific Clock Generator, QFN-32
SILICON

Si52204-A02AGMR

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator
SILICON