SI5338Q-A-GM [SILICON]

I2C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR; I2C可编程任意频率, ANY- QUAD输出时钟发生器
SI5338Q-A-GM
型号: SI5338Q-A-GM
厂家: SILICON    SILICON
描述:

I2C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR
I2C可编程任意频率, ANY- QUAD输出时钟发生器

时钟发生器 输出元件
文件: 总170页 (文件大小:662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5338  
2
I C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR  
Features  
Low power MultiSynth™ technology  
enables independent, any-frequency  
synthesis on four differential output  
drivers  
Highly-configurable output drivers with  
up to four differential outputs, eight  
single-ended clock outputs, or a  
combination of both  
Low phase jitter of 0.7 ps RMS typ  
High precision synthesis allows true  
zero ppm frequency accuracy on all  
outputs  
Single supply core with excellent  
PSRR: 1.8, 2.5, 3.3 V  
Independent frequency increment/  
decrement feature enables  
glitchless frequency adjustments in  
1 ppm steps  
Independent phase adjustment on  
each of the output drivers with an  
accuracy of <20 ps steps  
Highly configurable spread  
spectrum (SSC) on any output:  
Any frequency from 5 to 350 MHz  
Any spread from 0.5 to 5.0%  
Any modulation rate from 33 to  
63 kHz  
External feedback mode allows  
zero-delay mode  
Loss of lock and loss of signal  
alarms  
I2C/SMBus compatible interface  
Easy to use programming software  
Small size: 4 x 4 mm, 24-QFN  
Low power: 45 mA core supply typ  
Wide temperature range: –40 to  
+85 °C  
Ordering Information:  
See page 168.  
Flexible input reference:  
External crystal: 8 to 30 MHz  
CMOS input: 5 to 200 MHz  
SSTL/HSTL input: 5 to 350 MHz  
Differential input: 5 to 710 MHz  
Independently configurable outputs  
support any frequency or format:  
LVPECL/LVDS: 0.16 to 710 MHz  
HCSL: 0.16 to 250 MHz  
Pin Assignments  
Top View  
24  
23  
22  
21  
20  
19  
1
2
3
4
IN1  
18  
17  
16  
15  
CLK1A  
CMOS: 0.16 to 200 MHz  
IN2  
IN3  
IN4  
CLK1B  
VDDO1  
SSTL/HSTL: 0.16 to 350 MHz  
Independent output voltage per driver:  
1.5, 1.8, 2.5, or 3.3 V  
GND  
Pad  
VDDO2  
CLK2A  
CLK2B  
Applications  
5
6
14  
13  
IN5  
IN6  
Ethernet switch/router  
PCI Express 2.0/3.0  
Broadcast video/audio timing  
Processor and FPGA clocking  
Any-frequency clock conversion  
MSAN/DSLAM/PON  
Fibre Channel, SAN  
7
8
9
10  
12  
11  
Telecom line cards  
Description  
The Si5338 is a high-performance, low-jitter clock generator capable of  
synthesizing any frequency on each of the device's four output drivers. This timing  
IC is capable of replacing up to four different frequency crystal oscillators or  
operating as a frequency translator. Using its patented MultiSynth™ technology,  
the Si5338 allows generation of four independent clocks with 0 ppm precision.  
Each output clock is independently configurable to support various signal formats  
and supply voltages. The Si5338 provides low-jitter frequency synthesis in a  
space-saving 4 x 4 mm QFN package. The device is programmable via an I2C/  
SMBus-compatible serial interface and supports operation from a 1.8, 2.5, or  
3.3 V core supply. I2C device programming is made easy with the ClockBuilder™  
Desktop software available at www.silabs.com/ClockBuilder.  
Rev. 0.6 9/10  
Copyright © 2010 by Silicon Laboratories  
Si5338  
Si5338  
Functional Block Diagram  
VDD  
Output  
Stage  
Synthesis  
Stage 1  
(PLL)  
Synthesis  
Stage 2  
Osc  
noclk  
VDDO0  
CLK0A  
CLK0B  
P1DIV_IN  
÷P1  
IN1  
IN2  
MultiSynth  
÷M0  
ref  
÷R0  
÷R1  
÷R2  
÷R3  
IN3  
VDDO1  
CLK1A  
Loop  
Filter  
VCO  
Phase  
MultiSynth  
÷M1  
Frequency  
Detector  
P2DIV_IN  
÷P2  
CLK1B  
fb  
IN4  
IN5  
IN6  
VDDO2  
CLK2A  
CLK2B  
noclk  
MultiSynth  
÷M2  
MultiSynth  
÷N  
Control & Memory  
VDDO3  
CLK3A  
OEB/PINC/FINC  
MultiSynth  
÷M3  
I2C_LSB/PDEC/FDEC  
NVM  
(OTP)  
CLK3B  
Control  
RAM  
SCL  
SDA  
INTR  
2
Rev. 0.6  
Si5338  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.2. Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.3. Synthesis Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.4. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.5. Configuring the Si5338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.6. Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.7. Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.8. Reset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.9. Features of the Si5338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Applications of the Si5338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.1. Free-Running Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.2. Synchronous Frequency Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.3. Configurable Buffer and Level Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
2
5. I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Si5338 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6.1. Register Write-Allowed Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6.2. Register Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
6.3. Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
6.4. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
7. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
8. Device Pinout by Part Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
9. Package Outline: 24-Lead QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
10. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
11. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
Rev. 0.6  
3
Si5338  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
–40  
2.97  
2.25  
1.71  
1.4  
Typ  
25  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
T
A
3.3  
2.5  
1.8  
3.63  
2.75  
1.98  
3.63  
V
V
Core Supply Voltage  
DD  
V
Output Buffer Supply  
Voltage  
V
V
DDOn  
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 2. Absolute Maximum Ratings  
Parameter  
Symbol  
Test Condition  
Value  
–0.5 to 3.8  
–55 to 150  
2.5  
Unit  
V
DC Supply Voltage  
Storage Temperature Range  
ESD Tolerance  
V
DD  
T
°C  
kV  
STG  
HBM  
(100 pF, 1.5 k)  
ESD Tolerance  
CDM  
MM  
550  
175  
V
V
ESD Tolerance  
Latch-up Tolerance  
Junction Temperature  
JESD78 Compliant  
T
150  
°C  
J
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
4
Rev. 0.6  
Si5338  
Table 3. DC Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Core Supply Current  
I
100 MHz on all outputs,  
25 MHz refclk  
45  
60  
mA  
DD  
LVPECL, 710 MHz  
LVDS, 710 MHz  
30  
8
mA  
mA  
mA  
HCSL, 250 MHz  
2 pF load  
20  
SSTL, 350 MHz  
19  
28  
mA  
mA  
CMOS, 50 MHz  
15 pF load  
Output Buffer Supply Current  
I
DDOx  
CMOS, 200 MHz  
2 pF load, 3.3 V VDD0  
13  
11  
20  
17  
15  
19  
mA  
mA  
mA  
mA  
CMOS, 200 MHz  
2 pF load, 2.5 V  
CMOS, 200 MHz  
2 pF load, 1.8 V  
HSTL, 350 MHz  
Table 4. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance  
Junction to Ambient  
Still Air  
37  
°C/W  
JA  
Thermal Resistance  
Junction to Case  
Still Air  
25  
°C/W  
JC  
Rev. 0.6  
5
Si5338  
Table 5. Performance Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
25  
Unit  
ms  
PLL Acquisition Time  
PLL Lock Range  
PLL Loop Bandwidth  
t
ACQ  
f
5000  
ppm  
MHz  
ppb  
LOCK  
f
1.6  
0
BW  
MultiSynth Frequency  
Synthesis Resolution  
f
Output frequency < Fvco/8  
0
1
RES  
CLKIN Loss of Signal Detect  
Time  
t
2.6  
0.2  
5
1
µs  
µs  
LOS  
CLKIN Loss of Signal Release  
Time  
t
0.01  
LOSRLS  
PLL Loss of Lock Detect Time  
t
5
10  
2
ms  
ms  
LOL  
POR to Output Clock Valid  
(Pre-programmed Devices)  
t
RDY  
Input-to-Output Propagation  
Delay  
t
Buffer Mode  
(PLL Bypass)  
2.5  
ns  
PROP  
1
Rn divider = 1  
100  
15  
ps  
ms  
ns  
Output-Output Skew  
t
DSKEW  
2
POR to I C Ready  
Programmable Initial  
Phase Offset  
–45  
+45  
P
OFFSET  
Phase Increment/Decrement  
Accuracy  
P
–45  
20  
ps  
ns  
STEP  
Phase Increment/Decrement  
Range  
P
+45  
RANGE  
2
Frequency range for phase  
increment/decrement  
f
350  
MHz  
ns  
PRANGE  
2,3  
Phase Increment/Decrement  
Update Time  
P
Pin control  
667  
UPDATE  
MultiSynth output >18 MHz  
Notes:  
1. Outputs at integer-related frequencies and using the same driver format. See "3.9.3. Initial Phase Offset" on page 24.  
2. The maximum step size is only limited by the register lengths; however, the MultiSynth output frequency must be kept  
between 5 MHz and Fvco/8.  
3. Update rate via I2C is also limited by the time it takes to perform a write operation.  
4. Default value is 0.5% down spread.  
5. Default value is ~31.5 kHz.  
6
Rev. 0.6  
Si5338  
Table 5. Performance Characteristics (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
P
Test Condition  
Min  
Typ  
Max  
Unit  
2,3  
Phase Increment/Decrement  
Update Time  
Pin control  
12  
Periods  
UPDATE  
MultiSynth output <18 MHz  
Number of periods of  
MultiSynth output frequency  
Frequency Increment/  
Decrement Step Size  
f
R divider not used  
1
12  
See  
Note  
ppm  
MHz  
STEP  
2
2
Frequency Increment/  
Decrement Range  
f
R divider not used  
350  
RANGE  
UPDATE  
UPDATE  
2,3  
Frequency Increment/  
Decrement Update Time  
f
f
Pin control  
667  
ns  
MultiSynth output >18 MHz  
2,3  
Frequency Increment/  
Pin control  
Periods  
Decrement Update Time  
MultiSynth output <18 MHz  
Number of periods of  
MultiSynth output frequency  
4
Spread Spectrum PP  
Frequency Deviation  
SS  
SS  
MultiSynth Output < ~Fvco/8  
0.1  
30  
5.0  
%
DEV  
DEV  
5
Spread Spectrum Modulation  
Rate  
MultiSynth Output < ~Fvco/8  
63  
kHz  
Notes:  
1. Outputs at integer-related frequencies and using the same driver format. See "3.9.3. Initial Phase Offset" on page 24.  
2. The maximum step size is only limited by the register lengths; however, the MultiSynth output frequency must be kept  
between 5 MHz and Fvco/8.  
3. Update rate via I2C is also limited by the time it takes to perform a write operation.  
4. Default value is 0.5% down spread.  
5. Default value is ~31.5 kHz.  
Table 6. Input and Output Clock Characteristics  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Input Clock (AC Coupled Differential Input Clocks on Pins IN1/2, IN5/6)  
fIN  
5
710  
2.4  
MHz  
VPP  
Frequency  
Differential Voltage  
Swing  
VPP  
710 MHz input  
0.4  
tR/tF  
DC  
20%–80%  
< 1 ns tr/tf  
1.0  
60  
ns  
%
Rise/Fall Time  
Duty Cycle1  
Notes:  
40  
1. For best jitter performance, keep the input slew rate on pins 1,2,5,6 faster than 0.3 V/ns  
2. Not in PLL bypass mode.  
3. For best jitter performance, keep the input single ended slew rate on pins 3 or 4 faster than 1 V/ns  
4. Only two unique frequencies above 350 MHz can be simultaneously output, Fvco/4 and Fvco/6.  
5. Includes effect of internal series 22 resistor.  
Rev. 0.6  
7
Si5338  
Table 6. Input and Output Clock Characteristics (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
RIN  
Test Condition  
Min  
10  
Typ  
Max  
Units  
k  
Input Impedance  
Input Capacitance  
CIN  
3.5  
pF  
Input Clock (DC-Coupled Single-Ended Input Clock on Pins IN3/4)  
fIN  
VI  
CMOS  
5
–0.1  
0.8  
2.0  
200  
MHz  
V
Frequency  
3.63  
Input Voltage  
200 MHz  
20%–80%  
< 4 ns tr/tf  
VDD+10%  
Vpp  
ns  
Input Voltage Swing  
Rise/Fall Time  
tR/tF  
DC  
2
Duty Cycle2,3  
40  
60  
%
CIN  
pF  
Input Capacitance  
Output Clocks (Differential)  
0.16  
367  
550  
0.16  
350  
473.33  
710  
MHz  
MHz  
MHz  
MHz  
V
LVPECL, LVDS  
Frequency4  
fOUT  
HCSL  
250  
VOC  
VSEPP  
VOC  
VSEPP  
VOC  
VSEPP  
VOC  
common mode  
VDDO–1.45 V  
LVPECL Output Voltage  
peak-to-peak single-  
ended swing  
0.55  
1.125  
0.25  
0.8  
0.8  
1.2  
0.96  
1.275  
0.45  
VPP  
V
common mode  
LVDS Output Voltage  
(2.5/3.3 V)  
peak-to-peak single-  
ended swing  
0.35  
0.875  
0.35  
0.375  
0.725  
VPP  
V
common mode  
0.95  
LVDS Output Voltage  
(1.8 V)  
peak-to-peak single-  
ended swing  
0.25  
0.35  
0.575  
0.45  
VPP  
V
common mode  
0.400  
0.85  
HCSL Output Voltage  
peak-to-peak single-  
ended swing  
VSEPP  
VPP  
tR/tF  
DC  
20%–80%  
450  
55  
ps  
%
Rise/Fall Time  
Duty Cycle2  
Notes:  
45  
1. For best jitter performance, keep the input slew rate on pins 1,2,5,6 faster than 0.3 V/ns  
2. Not in PLL bypass mode.  
3. For best jitter performance, keep the input single ended slew rate on pins 3 or 4 faster than 1 V/ns  
4. Only two unique frequencies above 350 MHz can be simultaneously output, Fvco/4 and Fvco/6.  
5. Includes effect of internal series 22 resistor.  
8
Rev. 0.6  
Si5338  
Table 6. Input and Output Clock Characteristics (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Output Clocks (Single-Ended)  
CMOS  
0.16  
0.16  
200  
350  
MHz  
MHz  
fOUT  
Frequency  
SSTL, HSTL  
CMOS 20%–80%  
Rise/Fall Time  
tR/tF  
tR/tF  
2 pF load  
0.45  
0.85  
1.7  
ns  
ns  
CMOS 20%–80%  
Rise/Fall Time  
15 pF load  
CMOS Output Resis-  
tance  
50  
SSTL Output  
Resistance  
50  
HSTL Output  
Resistance  
50  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
DC  
4 mA load  
4 mA load  
VDDO – 0.3  
V
V
V
V
V
V
V
V
V
V
%
CMOS Output Voltage5  
SSTL Output Voltage  
HSTL Output Voltage  
0.3  
0.45xVDDO+0.41  
SSTL-3 VDDOx = 2.97  
to 3.63 V  
0.45xVDDO–0.41  
0.5xVDDO+0.41  
SSTL-2 VDDOx = 2.25  
to 2.75 V  
0.5xVDDO–0.41  
0.5xVDDO+0.34  
SSTL-18VDDOx = 1.71  
to 1.98 V  
0.5xVDDO–0.34  
0.5xVDDO+0.3  
0.5xVDDO –0.3  
55  
VDDO = 1.4 to 1.6 V  
Duty Cycle2  
45  
Notes:  
1. For best jitter performance, keep the input slew rate on pins 1,2,5,6 faster than 0.3 V/ns  
2. Not in PLL bypass mode.  
3. For best jitter performance, keep the input single ended slew rate on pins 3 or 4 faster than 1 V/ns  
4. Only two unique frequencies above 350 MHz can be simultaneously output, Fvco/4 and Fvco/6.  
5. Includes effect of internal series 22 resistor.  
Rev. 0.6  
9
Si5338  
Table 7. Control Pins  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Input Control Pins (IN3, IN4)  
0.3 x  
VDD  
V
–0.1  
V
V
Input Voltage Low  
Input Voltage High  
IL  
0.7 x  
VDD  
V
3.63  
IH  
C
4
pF  
Input Capacitance  
IN  
R
20  
k  
Input Resistance  
IN  
Output Control Pins (INTR)  
V
I
= 3 mA  
0
0.4  
10  
V
Output Voltage Low  
OL  
SINK  
t /t  
C < 10 pf, pull up 1 k  
ns  
Rise/Fall Time 20–80%  
R F  
L
10  
Rev. 0.6  
Si5338  
Table 8. Crystal Specifications for 8 to 11 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
8
11  
MHz  
XTAL  
Load Capacitance (on-chip differential)  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
11  
12  
13  
6
pF  
pF  
L
c
O
r
300  
ESR  
d
100  
µW  
L
Table 9. Crystal Specifications for 11 to 19 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
11  
19  
MHz  
XTAL  
Load Capacitance (on-chip differential)  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
11  
12  
13  
5
pF  
pF  
L
c
O
r
200  
ESR  
d
100  
µW  
L
Table 10. Crystal Specifications for 19 to 26 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
19  
26  
MHz  
XTAL  
Load Capacitance (on-chip differential)  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
11  
12  
13  
5
pF  
pF  
L
c
O
r
100  
ESR  
d
100  
µW  
L
Table 11. Crystal Specifications for 26 to 30 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
26  
30  
MHz  
XTAL  
Load Capacitance (on-chip differential)  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Max Drive Level  
c
11  
12  
13  
5
pF  
pF  
L
c
O
r
75  
ESR  
d
100  
µW  
L
Rev. 0.6  
11  
Si5338  
Table 12. Jitter Specifications1,2  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
GbE Random Jitter  
(12 kHz–20 MHz)  
CLKIN = 25 MHz  
All CLKn at 125 MHz  
J
0.7  
1
ps RMS  
GBE  
3
4
4
GbE Random Jitter  
(1.875–20 MHz)  
CLKIN = 25 MHz  
All CLKn at 125 MHz  
R
0.38  
0.7  
0.79  
1
ps RMS  
ps RMS  
JGBE  
CLKIN = 19.44 MHz  
All CLKn at  
OC-12 Random Jitter  
(12 kHz–5 MHz)  
J
OC12  
4
155.52 MHz  
CLKIN = 25 MHz  
All CLKn at 100 MHz  
PCI Express 3.0  
Random Jitter  
(1.5 MHz—50 MHz)  
J
J
0.6  
0.7  
8
1
1
ps RMS  
ps RMS  
ps pk-pk  
PCIERJ1  
Spread Spectrum not  
3
4
enabled  
CLKIN = 25 MHz  
PCI Express 3.0  
Random Jitter  
(12 kHz—20 MHz)  
All CLKn at 100 MHz  
Spread Spectrum not  
PCIERJ2  
3
4
enabled  
CLKIN = 25 MHz  
PCI Express 3.0  
Period Jitter  
All CLKn at 100 MHz  
Spread Spectrum not  
15  
4
enabled  
CLKIN = 25 MHz  
PCI Express 3.0  
Cycle-Cycle Jitter  
All CLKn at 100 MHz  
Spread Spectrum not  
enabled  
13  
10  
9
30  
30  
29  
ps pk-pk  
ps pk-pk  
4
5
J
Period Jitter  
N = 10,000 cycles  
PER  
N = 10,000 cycles  
Output MultiSynth  
operated in integer or  
6
J
ps pk  
Cycle-Cycle Jitter  
CC  
5
fractional mode  
Output and feedback  
MultiSynth in integer or  
fractional mode  
Random Jitter  
(12 kHz–20 MHz)  
R
0.7  
1.5  
ps RMS  
J
5
Notes:  
1. All jitter measurements apply for LVDS/HCSL/LVPECL output format with a low noise differential input clock and are  
made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.  
2. For best jitter performance, keep the single ended clock input slew rates at Pins 3 and 4 more than 1.0 V/ns and the  
differential clock input slew rates more than 0.3 V/ns.  
3. DJ for PCI and GBE is < 5 ps pp  
4. Output MultiSynth in Integer mode.  
5. Input frequency to the Phase Detector between 25 and 40 MHz and any output frequency > 5 MHz.  
6. Measured in accordance with JEDEC standard 65.  
7. Rj is multiplied by 14; estimate the pp jitter from Rj over 212 rising edges.  
12  
Rev. 0.6  
Si5338  
Table 12. Jitter Specifications1,2 (Continued)  
(VDD = 1.8 V –5% to +10%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output MultiSynth  
3
15  
10  
ps pk-pk  
operated in fractional  
5
mode  
D
Deterministic Jitter  
J
Output MultiSynth  
operated in integer  
2
ps pk-pk  
5
mode  
Output MultiSynth  
13  
12  
36  
20  
ps pk-pk  
ps pk-pk  
operated in fractional  
5
mode  
T = D +14xR  
J
(See Note )  
Total Jitter  
(12 kHz–20 MHz)  
J
J
7
Output MultiSynth  
operated in integer  
5
mode  
Notes:  
1. All jitter measurements apply for LVDS/HCSL/LVPECL output format with a low noise differential input clock and are  
made with an Agilent 90804 oscilloscope. All RJ measurements use RJ/DJ separation.  
2. For best jitter performance, keep the single ended clock input slew rates at Pins 3 and 4 more than 1.0 V/ns and the  
differential clock input slew rates more than 0.3 V/ns.  
3. DJ for PCI and GBE is < 5 ps pp  
4. Output MultiSynth in Integer mode.  
5. Input frequency to the Phase Detector between 25 and 40 MHz and any output frequency > 5 MHz.  
6. Measured in accordance with JEDEC standard 65.  
7. Rj is multiplied by 14; estimate the pp jitter from Rj over 212 rising edges.  
Table 13. Typical Phase Noise Performance  
Offset Frequency  
25MHz XTAL  
to 156.25 MHz  
27 MHz Ref In  
to 148.3517 MHz  
19.44 MHz Ref In  
to 155.52 MHz  
Units  
100 Hz  
1 kHz  
–90  
–87  
–110  
–116  
–123  
–128  
–128  
–145  
–120  
–126  
–132  
–132  
–145  
–117  
–123  
–130  
–132  
–145  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
dBc/Hz  
Rev. 0.6  
13  
Si5338  
Table 14. I2C Specifications (SCL,SDA)1  
Parameter  
Symbol  
Test Condition  
Standard Mode  
Fast Mode  
Unit  
Min  
Max  
Min  
Max  
2
LOW Level Input  
Voltage  
VILI2C  
VIHI2C  
VHYS  
–0.5  
0.7 x VDDI2C  
N/A  
0.3 x VDDI2C  
–0.5  
0.3 x VDDI2C  
V
V
V
2
HIGH Level Input  
Voltage  
3.63  
N/A  
0.7 x VDDI2C  
0.1  
3.63  
Hysteresis of  
Schmitt Trigger  
Inputs  
2
LOW Level Out-  
put Voltage (open  
drain or open col-  
lector) at 3 mA  
Sink Current  
VOLI2C  
VDDI2C2 = 2.5/3.3 V  
VDDI2C2 = 1.8 V  
0
0.4  
0
0
0.4  
V
V
N/A  
N/A  
0.2 x VDDI2C  
Input Current  
II2C  
–10  
10  
4
–10  
10  
4
µA  
pF  
Capacitance for  
each I/O Pin  
CI2C  
VIN = –0.1 to VDDI2C  
Timeout Enabled  
I2C Bus Timeout  
25  
35  
25  
35  
ms  
Notes:  
1. Refer to NXP’s UM10204 I2C-bus specification and user manual, Revision 03, for further details:  
www.nxp.com/acrobat_download/usermanuals/UM10204_3.pdf.  
2. Only I2C pullup voltages (VDDI2C) of 1.71 to 3.63 V are supported. Must write register 27[7] = 1 if the I2C bus voltage  
is less than 2.5 V to maintain compatibility with the I2C bus standard.  
14  
Rev. 0.6  
Si5338  
2. Typical Application Circuits  
+3.3 V  
SD/HD/3G-SDI  
Video/Audio  
0.1 uF Power Supply  
Decoupling Capacitors  
(1 per VDD or VDDOx pin)  
Format Converter  
7
24 20 16 15 11  
SD/HD/3G  
SDI OUT  
SD/HD/3G  
SDI IN  
SDI  
Deserializer  
Video  
Processor  
SDI  
Serializer  
1
2
Optional XTAL for  
Free-run Applications  
27 MHz  
XTAL  
IN1  
IN2  
3
100 MHz  
100  
22  
27 MHz  
74.25 MHz  
74.25/1.001 MHz  
148.5 MHz  
148.5/1.001 MHz  
IN3  
IN5  
Single-ended or  
CLK0A  
CLK0B  
21 x  
Differential Inputs  
for Synchronous  
Applications  
5
74.25 MHz, 74.25/1.001 MHz  
148.5 MHz, 148.5/1.001 MHz  
Si5338C  
100  
18  
17  
6
CLK1A  
CLK1B  
IN6  
Audio Out  
+3.3 V  
14 x  
13 x  
Audio  
Processor  
CLK2A  
CLK2B  
N3  
1k  
1k  
1k  
8
19  
12  
24.576 MHz / 6.144 MHz  
10  
INTR  
SDA  
SCL  
CLK3A  
CLK3B  
I2C Bus  
9
x
4
I2C Address = 111 0000 or 111 0001  
I2C_LSB  
PAD  
PAD  
23  
23  
Storage Area  
Network  
+3.3 V  
disk  
disk  
disk  
disk  
0.1 uF Power Supply  
Decoupling Capacitors  
(1 per VDD or VDDOx pin)  
SAS2  
4/8 Port  
Controller  
Ethernet  
Fiber  
Channel  
7
24 20 16 15 11  
PCIe  
Switch  
SAS2  
4/8 Port  
Controller  
1
25 MHz  
XTAL  
IN1  
IN2  
2
3
22  
21  
IN3  
IN5  
IN6  
37.5/75/120/150 MHz  
CLK0A  
5
CLK0B  
x
Si5338C  
6
18  
100 MHz  
CLK1A  
CLK1B  
17 x  
14  
Network  
Processor  
+3.3V  
66 MHz  
CLK2A  
CLK2B  
13 x  
1k  
1k  
1k  
8
19  
12  
10  
106.25 MHz  
INTR  
SDA  
SCL  
CLK3A  
CLK3B  
I2C Bus  
9
x
4
I2C Address = 111 0000 or 111 0001  
I2C_LSB  
PAD  
PAD  
23  
23  
Rev. 0.6  
15  
Si5338  
3. Functional Description  
VDD  
Output  
Stage  
Synthesis  
Stage 1  
(PLL)  
Input  
Stage  
Synthesis  
Stage 2  
Osc  
VDDO0  
CLK0A  
CLK0B  
MultiSynth  
÷M0  
÷R0  
÷R1  
÷R2  
÷R3  
CLKIN  
IN1  
IN2  
ref  
fb  
÷P1  
VDDO1  
CLK1A  
IN3  
Loop  
Filter  
VCO  
Phase  
MultiSynth  
÷M1  
Frequency  
Detector  
FDBK  
÷P2  
CLK1B  
IN4  
IN5  
IN6  
VDDO2  
CLK2A  
CLK2B  
MultiSynth  
÷M2  
MultiSynth  
÷N  
Control & Memory  
VDDO3  
CLK3A  
OEB/PINC/FINC  
MultiSynth  
÷M3  
I2C_LSB/PDEC/FDEC  
NVM  
(OTP)  
CLK3B  
Control  
RAM  
SCL  
SDA  
INTR  
Figure 1. Si5338 Block Diagram  
3.1. Overview  
The Si5338 is a high-performance, low-jitter clock A zero-delay mode is also available to help minimize  
generator capable of synthesizing four independent input-to-output delay. Spread spectrum is available on  
user-programmable clock frequencies up to 350 MHz each of the clock outputs for EMI-sensitive applications,  
and select frequencies up to 710 MHz. The device such as PCI Express.  
supports free-run operation using an external crystal, or  
it can lock to an external clock for generating  
Configuration and control of the Si5338 is mainly  
handled through the I C/SMBus interface. Some  
2
synchronous clocks. The output drivers support four  
features, such as output enable and frequency or phase  
differential clocks or eight single-ended clocks or a  
adjustments, can optionally be pin controlled. The  
combination of both. The output drivers are configurable  
device has a maskable interrupt pin that can be  
to support common signal formats, such as LVPECL,  
monitored for loss of lock or loss of input signal  
LVDS, HCSL, CMOS, HSTL, and SSTL. Separate  
conditions.  
output supply pins allow supply voltages of 3.3, 2.5, 1.8,  
The device also provides the option of storing a user-  
and 1.5 V to support the multi-format output driver. The  
definable clock configuration in its non-volatile memory  
core voltage supply accepts 3.3, 2.5, or 1.8 V and is  
(NVM), which becomes the default clock configuration  
independent from the output supplies.  
at power-up.  
Using its two-stage synthesis architecture and patented  
3.1.1. ClockBuilder™ Desktop Software  
high-resolution MultiSynth technology, the Si5338 can  
To simplify device configuration, Silicon Labs provides  
generate four independent frequencies from a single  
ClockBuilder Desktop software. To ease these steps,  
input frequency. In addition to clock generation, the  
Silicon Labs has released ClockBuilder Desktop. The  
inputs can bypass the synthesis stage enabling the  
software serves two purposes: configure the Si5338  
Si5338 to be used as a high-performance clock buffer or  
with optimal divider ratios based on the desired  
a combination of a buffer and generator.  
frequencies, and to control the EVB, if connected to the  
host PC. The optimal configuration can be saved from  
For applications that need fine frequency adjustments,  
such as clock margining, each of the synthesized  
frequencies can be incremented or decremented in  
user-defined steps as low as 1 ppm per step.  
the software in text files that can be used in any system,  
2
which configures the device over I C.  
ClockBuilder Desktop can be downloaded from  
www.silabs.com/ClockBuilder and runs on Windows XP,  
Windows Vista, and Windows 7.  
Output-to-output phase delays are also adjustable in  
user-defined steps with an error of <20 ps to  
compensate for PCB trace delays or for fine tuning of  
setup and hold margins.  
16  
Rev. 0.6  
Si5338  
IN3 and IN4 accept single-ended signals from 5 MHz to  
200 MHz. The single-ended inputs are internally ac-  
coupled; so, they can accept a wide variety of signals  
without requiring a specific dc level. The input signal  
only needs to meet a minimum voltage swing and must  
not exceed a maximum VIH or a minimum VIL. Refer to  
Table 6 for signal voltage limits. A typical single-ended  
connection is shown in Figure 3. For additional  
termination options, refer to “AN408: Termination  
Options for Any-Frequency, Any-Output Clock  
Generators and Clock Buffers—Si5338, Si5334,  
Si5330”.  
3.2. Input Stage  
The input stage supports four inputs. Two are used as  
the clock inputs to the synthesis stage, and the other  
two are used as feedback inputs for zero delay or  
external feedback mode. In cases where external  
feedback is not required, all four inputs are available to  
the synthesis stage. The reference selector selects one  
of the inputs as the reference to the synthesis stage.  
The input configuration is selectable through the I C  
interface. The input MUXes are set automatically in  
ClockBuilder Desktop (see “3.1.1. ClockBuilder™  
Desktop Software”). For information on setting the input  
MUXs manually, see “AN411: Configuring the Si5338”.  
For free-run operation, the internal oscillator can  
operate from a low-frequency fundamental mode crystal  
(XTAL) with a resonant frequency between 8 and  
30 MHz. A crystal can easily be connected to pins IN1  
and IN2 without external components as shown in  
Figure 4. See Tables 8–11 for crystal specifications that  
are guaranteed to work with the Si5338.  
Osc  
noclk  
P1DIV_IN  
÷P1  
IN1  
IN2  
IN3  
IN1  
P2DIV_IN  
÷P2  
IN4  
IN5  
IN6  
To synthesis stage  
or output selectors  
XTAL  
Osc  
noclk  
IN2  
Figure 2. Input Stage  
Figure 4. Connecting an XTAL to the Si5338  
IN1/IN2 and IN5/IN6 are differential inputs capable of  
accepting clock rates from 5 to 710 MHz. The  
differential inputs are capable of interfacing to multiple  
signals, such as LVPECL, LVDS, HSCL, HCSL, and  
CML. Differential signals must be ac-coupled as shown  
in Figure 3. A termination resistor of 100 placed close  
to the input pins is also required. Refer to Table 6 for  
signal voltage limits.  
Refer to “AN360: Crystal Selection Guide for Si533x/5x  
Devices” for information on the crystal selection.  
3.2.1. Loss-of-Signal (LOS) Alarm Detectors  
There are two LOS detectors: LOS_CLKIN and  
LOS_FDBK. These detectors are tied to the outputs of  
the P1 and P2 frequency dividers, which are always  
enabled. See "3.6. Status Indicators" on page 22 for  
details on the alarm indicators. These alarms are used  
during programming to ensure that a valid input clock is  
detected. The input MUXs are set automatically in  
ClockBuilder Desktop (see AN411 to set manually).  
0.1 uF  
50  
IN1 / IN5  
IN2 / IN6  
100  
3.3. Synthesis Stages  
50  
Next-generation timing applications require a wide  
range of frequencies that are often non-integer related.  
Traditional clock architectures address this by using  
multiple single PLL ICs, often at the expense of BOM  
complexity and power. The Si5338 uses patented  
MultiSynth technology to dramatically simplify timing  
architectures by integrating the frequency synthesis  
capability of four Phase-Locked Loops (PLLs) in a  
single device, greatly reducing size and power  
requirements versus traditional solutions.  
0.1 uF  
Rs  
50  
IN3 / IN4  
Figure 3. Interfacing Differential and Single-  
Ended Signals to the Si5338  
Rev. 0.6  
17  
Si5338  
Synthesis of the output clocks is performed in two The second stage of synthesis consists of the output  
stages, as shown in Figure 5. The first stage consists of MultiSynth dividers (M ). Based on a fractional N  
x
a high-frequency analog phase-locked loop (PLL) that divider, the MultiSynth divider shown in Figure 6  
multiplies the input stage to a frequency within the switches seamlessly between the two closest integer  
range of 2.2 to 2.84 GHz. Multiplication of the input divider values to produce the exact output clock  
frequency is accomplished using a proprietary and frequency with 0 ppm error.  
highly precise MultiSynth feedback divider (N), which  
allows the PLL to generate any frequency within its  
MultiSynth block calculates the relative phase difference  
VCO range with much less jitter than typical fractional N  
To eliminate phase error generated by this process, the  
between the clock produced by the fractional-N divider  
and the desired output clock and dynamically adjusts  
PLL.  
the phase to match the ideal clock waveform. This novel  
approach makes it possible to generate any output  
clock frequency without sacrificing jitter performance.  
Synthesis  
Stage 2  
Synthesis  
Stage 1  
(APLL)  
MultiSynth  
This architecture allows the output of each MultiSynth to  
÷M0  
produce any frequency from 5 to F /8 MHz. To  
2.2-2.84 GHz  
VCO  
vco  
ref  
fb  
support higher frequency operation, the MultiSynth  
divider can be bypassed. In bypass mode, integer divide  
ratios of 4 and 6 are supported. This allows for output  
Loop  
Filter  
Phase  
Frequency  
Detector  
MultiSynth  
÷M1  
frequencies of F /4 and F /6 MHz, which translates  
vco  
vco  
to 367–473.33 MHz and 550–710 MHz respectively.  
Because each MultiSynth uses the same VCO output,  
there are output frequency limitations when output  
MultiSynth  
÷M2  
MultiSynth  
÷N  
frequencies greater than F /8 are desired.  
vco  
MultiSynth  
÷M3  
For example, if 375 MHz is needed at the output of  
MultiSynth0, the VCO frequency would need to be  
2.25 GHz. Now, all the other MultiSynths can produce  
any frequency from 5 MHz up to a maximum frequency  
of 2250/8 = 281.25 MHz. MultiSynth1,2,3 could also  
Figure 5. Synthesis Stages  
produce F /4 = 562.5 MHz or F /6 = 375 MHz. Only  
vco  
vco  
two unique frequencies above F /8 can be output:  
vco  
F
/6 and F /4.  
vco  
vco  
MultiSynth  
Fractional-N  
Phase  
Adjust  
Divider  
fVCO  
fOUT  
Phase Error  
Calculator  
Divider Select  
(DIV1, DIV2)  
Figure 6. Silicon Labs’ MultiSynth Technology  
18  
Rev. 0.6  
Si5338  
Each of the outputs can also be enabled or disabled  
through the I C port. A single pin to enable/disable all  
outputs is available in the Si5338K/L/M.  
3.4. Output Stage  
2
The output stage consists of output selectors, output  
dividers, and programmable output drivers as shown in  
Figure 7.  
3.5. Configuring the Si5338  
The Si5338 is a highly-flexible clock generator that is  
2
entirely configurable through its I C interface. The  
Output  
Stage  
device’s default configuration is stored in non-volatile  
memory (NVM) as shown in Figure 8. The NVM is a  
one-time programmable memory (OTP), which can  
store a custom user configuration at power-up. This is a  
useful feature for applications that need a clock present  
at power-up (e.g., for providing a clock to a processor).  
VDDO0  
CLK0A  
÷R0  
CLK0B  
VDDO1  
CLK1A  
÷R1  
CLK1B  
Power-Up/POR  
VDDO2  
CLK2A  
÷R2  
NVM  
CLK2B  
(OTP)  
RAM  
VDDO3  
Default  
CLK3A  
÷R3  
Config  
CLK3B  
I2C  
Figure 7. Output Stage  
Figure 8. Si5338 Memory Configuration  
The output selectors select the clock source for the  
output drivers. By default, each output driver is  
connected to its own MultiSynth block (e.g. M0 to CLK0,  
M1 to CLK1, etc), but other combinations are possible  
by reconfiguring the device. The PLL can be bypassed  
by connected the input stage signals (osc, ref, refdiv, fb,  
or fbdiv) directly to the output divider. Bypassing an  
input directly to an output will not allow phase alignment  
of that output to other outputs. Each of the output  
drivers can also connect to the first MultiSynth block  
(M0) enabling a fan-out function. This allows the Si5338  
to act as a clock generator, a fanout buffer, or a  
combination of both in the same package.  
During a power cycle or a power-on reset (POR), the  
contents of the NVM are copied into random access  
memory (RAM), which sets the device configuration that  
will be used during operation. Any changes to the  
device configuration after power-up are made by  
reading and writing to registers in the RAM space  
2
through the I C interface. ClockBuilder Desktop (see  
"3.1.1. ClockBuilder™ Desktop Software" on page 16)  
can be used to easily configure register map files that  
can be written into RAM (see “3.5.2. Creating a New  
Configuration for RAM” for details). Alternatively, the  
register map file can be created manually with the help  
of the equations in AN411.  
The output dividers (R0, R1, R2, R3) allow another  
stage of clock division.These dividers are configurable  
as divide by 1 (default), 2, 4, 8, 16, or 32. When an Rn  
does not equal 1, the phase alignment function for that  
output will not work.  
Two versions of the Si5338 are available. First,  
standard, non-customized Si5338 devices are available  
in which the RAM can be configured in-circuit via I C  
(example part number Si5338C-A-GM). Alternatively,  
standard Si5338 devices can be field-programmed  
using the Si5338-PROG-EVB field programmer.  
Second, custom factory-programmed Si5338 devices  
are available that include a user-specified startup  
frequency configuration (example part number  
Si5338C-Axxxxx-GM).  
2
The output drivers are configurable to support common  
signal formats, such as LVPECL, LVDS, HCSL, CMOS,  
HSTL, and SSTL. Separate output supply pins (VDDO )  
n
are provided for each output buffer.  
The voltage on these supply pins can be 3.3, 2.5, 1.8, or  
1.5 V as needed for the possible output formats.  
Additionally, the outputs can be configured to stop high,  
low, or tri-state when the PLL has lost lock. If the Si5338  
is used in a zero delay mode, the output that is fed back  
must be set for always on, which will override any  
output disable signal.  
Rev. 0.6  
19  
Si5338  
3.5.1. Ordering a Custom NVM Configuration  
When writing a configuration to RAM, use the following  
procedure:  
The Si5338 is orderable with a factory-programmed  
custom NVM configuration. This is the simplest way of 1. Create a device configuration (register map) using  
using the Si5338 since it generates the desired output  
frequencies at power-up or after a power-on reset  
(POR). This default configuration can be reconfigured in  
ClockBuilder Desktop (v2.7 or later; see "3.1.1.  
ClockBuilder™ Desktop Software" on page 16) or  
manually using the equations in “AN411: Configuring  
the Si5338”.  
2
RAM through the I C interface after power-up (see  
“3.5.2. Creating a New Configuration for RAM”).  
a. Configure the frequency plan.  
The first step in ordering a custom device is generating  
an NVM file which defines the input and output clock  
frequencies and signal formats. This is easily done  
using the ClockBuilder Desktop software (see "3.1.1.  
ClockBuilder™ Desktop Software" on page 16). This  
GUI based software generates an NVM file, which is  
used by the factory to manufacture custom parts. Each  
custom part is marked with a unique part number  
identifying the specific configuration (e.g., Si5338C-  
A00100-GM). Consult your local sales representative  
for more details on ordering a custom Si5338.  
b. Configure the output driver format and supply  
voltage.  
c. Configure frequency and/or phase inc/dec (if  
desired).  
d. Configure spread spectrum (if desired).  
e. Configure for zero-delay mode (if desired,  
see "3.9.5. Zero-Delay Mode" on page 24).  
f. If needed go to the Advanced tab and make  
additional configurations.  
2. Save the configuration using the Options > Save  
Register Map File or Options > Save C code Header  
File, or create the register contents by the  
conversions listed in AN411.  
3.5.2. Creating a New Configuration for RAM  
Any Si5338 device can be configured by writing to  
2
registers in RAM through the I C interface. A non-  
factory programmed device must be configured in this  
manner.  
3.5.3. Writing a Custom Configuration to RAM  
Writing a new configuration (register map) to the RAM  
consists of pausing the LOL state-machine, writing new  
values to the IC accounting for the write-allowed mask  
given in "6.1. Register Write-Allowed Mask" on page 28,  
validating the input clock or crystal, locking the PLL to  
the input with the new configuration, restarting the LOL  
state-machine, and calibrating the VCO for robust  
operation across temperature. The flow chart in  
Figure 9 on page 21 enumerates the details:  
Note: The write-allowed mask specifies which bits must be  
read and modified before writing the entire register  
byte (a.k.a. read-modify-write). “AN428: Jump Start: In-  
System, Flash-Based Programming for Silicon Labs’  
Timing Products” illustrates the procedure defined in  
Section 3.5.2 with ANSI C code.  
20  
Rev. 0.6  
Si5338  
Disable Outputs  
Set OEB_ALL = 1; reg230[4]  
Pause LOL  
Set DIS_LOL = 1; reg241[7]  
Write new configuration to device  
accounting for the write-allowed mask  
(See Section 6.1)  
Register  
Map  
Use ClockBuilder  
Desktop v2.7 or later  
Validate input clock status  
NO  
Input clocks are  
validated with the  
LOS alarms. See  
Register 218 to  
Is input clock valid?  
determine which LOS  
should be monitored  
YES  
Configure PLL for locking  
Set FCAL_OVRD_EN = 0; reg49[7]  
Initiate Locking of PLL  
Set SOFT_RESET = 1; reg246[1]  
Restart LOL  
Set DIS_LOL = 0; reg241[7]  
Wait 25 ms  
Confirm PLL lock status  
NO  
PLL is locked when  
PLL_LOL, SYS_CAL, and  
all other alarms are  
cleared  
Is PLL locked?  
YES  
Copy registers as follows:  
237[1:0] to 47[1:0]  
236[7:0] to 46[7:0]  
Copy FCAL values to  
active registers  
235[7:0] to 45[7:0]  
Set 47[7:2] = 000101b  
Set PLL to use FCAL values  
Set FCAL_OVRD_EN = 1; reg49[7]  
Enable Outputs  
Set OEB_ALL = 0; reg230[4]  
Figure 9. I2C Programming Procedure  
Rev. 0.6  
21  
Si5338  
2
3.5.4. Modifying a MultiSynth Output Divider Ratio/  
Frequency Configuration  
3.6.1. Using the INTR Pin in Systems with I C  
The INTR output pin is not latched and thus it should not  
be a polled input to an MCU but an edge-triggered  
interrupt. An MCU can process an interrupt event by  
reading the sticky register 247 to see what event  
caused the interrupt. The same register can be cleared  
by writing zeros to the bits that were set. Individual  
interrupt bits can be masked by register 6[4:0].  
The output MultiSynth dividers of a configured and  
phase-locked Si5338 can be modified without relocking  
the PLL (i.e. without following section 3.5.3). This  
feature allows any of the four output frequencies to be  
modified without disturbing the others.  
In this case, only write the set of registers associated  
with the output MultiSynth divider (MultiSynth  
Frequency Configuration; see Section 6.2). The  
feedback MultiSynth must not be modified unless  
following the procedure in Section 3.5.3.  
2
3.6.2. Using the INTR Pin in Systems without I C  
The INTR pin also provides a useful function in systems  
that require a pin-controlled fault indicator. Pre-setting  
the interrupt mask register allows the INTR pin to  
become an indicator for a specific event, such as LOS  
and/or LOL. Therefore, the INTR pin can be used to  
indicate a single fault event or even multiple events.  
To avoid intermediate frequencies, it is recommended  
that the output be disabled before changing the divider  
ratio (see Register 230).  
Any output MultiSynth that is reconfigured will lose its  
phase alignment with the other outputs. SOFT_RESET  
can be used to resynchronize the outputs (see "3.8.  
Reset Options" on page 23).  
Control & Memory  
VDD  
NVM  
Control  
RAM  
3.5.5. Writing a Custom Configuration to NVM  
1k  
(OTP)  
An alternative to ordering an Si5338 with a custom NVM  
configuration is to use the field programming kit  
(Si5338-PROG-EVB) to write directly to the NVM of a  
"blank" Si5338. Since NVM is an OTP memory, it can  
only be written once. The default configuration can be  
INTR  
Figure 11. INTR Pin with Required Pull-Up  
2
reconfigured by writing to RAM through the I C interface  
(see “3.5.2. Creating a New Configuration for RAM”).  
3.7. Output Enable  
There are two methods of enabling and disabling the  
output drivers: Pin control, and I C control.  
2
3.6. Status Indicators  
A logic-high interrupt pin (INTR) is available to indicate  
a loss of signal (LOS) condition, a PLL loss of lock  
(PLL_LOL) condition, or that the PLL is in process of  
acquiring lock (SYS_CAL). PLL_LOL is held high when  
the input frequency drifts beyond the PLL lock range. It  
is held low during all other times and during a POR or  
soft reset. SYS_CAL is held high during a POR or SOFT  
reset so that no chattering occurs during the locking  
process. As shown in Figure 10, a status register at  
address 218 is available to help identify the exact event  
that caused the interrupt pin to become active.  
3.7.1. Enabling Outputs Using Pin Control  
The Si5338K/L/M devices provide an Output Enable pin  
(OEB) as shown in Figure 12. Pulling this pin high will  
turn all outputs off. The state of the individual drivers  
when turned off is controllable. If an individual output is  
set to always on, then the OEB pin will not have an  
effect on that driver. Drive state options and always on  
are explained in “3.7.2. Enabling Outputs through the  
2
I C Interface”.  
Control & Memory  
7
6
5
4
3
2
1
0
Sys  
Cal  
NVM  
(OTP)  
PLL_LOL LOS_FDBK LOS_CLKIN  
218  
Control  
RAM  
System Calibration  
(Lock Acquisition)  
0 = Enabled  
1 = Disabled  
OEB  
Loss Of Signal  
Clock Input  
Loss Of Signal  
Feedback Input  
Figure 12. Output Enable Pin (Si5338K/L/M)  
Loss Of Lock  
Figure 10. Status Register  
Figure 11 shows a typical connection with the required  
pull-up resistor to VDD.  
22  
Rev. 0.6  
Si5338  
2
3.8. Reset Options  
3.7.2. Enabling Outputs through the I C Interface  
2
Output enable can be controlled through the I C  
interface. As shown in Figure 13, register 230[3:0]  
allows control of each individual output driver. Register  
230[4] controls all drivers at once. When register 230[4]  
is set to disable all outputs, the individual output  
enables will have no effect. Registers 110[7:6], 114[7:6],  
118[7:6], and 112[7:6] control the output disabled state  
as tri-state, low, high, or always on. If always on is set,  
that output will always be on regardless of any other  
register or chip state. In addition, the always on mode  
must be selected for an output that is fed back in a Zero  
Delay application.  
There are two types of resets on the Si5338, POR and  
soft reset. A POR reset automatically occurs whenever  
the supply voltage on the VDD is applied.  
The soft reset is forced by writing 0x02 to register 246.  
This bit is not self-clearing, and thus it may read back as  
a 1 or a 0. A soft reset will not download any pre-  
programmed NVM and will not change any register  
values in RAM.  
The soft reset performs the following sequence:  
1. All outputs turn off except if programmed to be  
always on.  
2. Internal calibrations are done and MultiSynths are  
initialized.  
7
6
5
4
3
2
1
0
a. Outputs that are synchronous are phase  
aligned (if Rn = 1).  
OEB OEB OEB OEB OEB  
230  
All  
3
2
1
0
3. 25 ms is allowed for the PLL to lock (no delay occurs  
when FCAL_OVRD_EN = 1).  
0 = enable  
1 = disable  
Bits reserved  
4. Turn on all outputs that were turned off in step 1.  
3.9. Features of the Si5338  
7
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
The Si5338 offers several features and functions that  
are useful in many timing applications. The following  
paragraphs describe in detail the main features and  
typical applications. All of these features can be easily  
configured using the ClockBuilder Desktop. See "3.1.1.  
ClockBuilder™ Desktop Software" on page 16.  
CLK0 OEB  
State  
110  
114  
118  
122  
7
6
CLK1 OEB  
State  
3.9.1. Frequency Increment/Decrement  
7
6
Each of the output clock frequencies can be  
independently stepped up or down in predefined steps  
as low as 1 ppm per step and with a resolution of  
1 ppm. Setting of the step size and control of the  
frequency increment or decrement is accomplished  
CLK2 OEB  
State  
7
6
2
CLK3 OEB  
State  
through the I C interface. Alternatively, the Si5338 can  
be ordered with optional frequency increment (FINC)  
and frequency decrement (FDEC) pins for pin-  
controlled applications. See Table 18 for ordering  
information of pin-controlled devices.  
00 = disabled tri-state  
01 = disabled low  
10 = disabled high  
11 = always enabled  
Bits used by other functions  
The frequency increment and decrement feature is  
useful in applications requiring a variable clock  
frequency (e.g., CPU speed control, FIFO overflow  
management, etc.) or in applications where frequency  
Figure 13. Output Enable Control Registers  
margining (e.g., f  
±5%) is necessary for design  
out  
verification and manufacturing test. Frequency  
increment or decrement can be applied as fast as  
2
1.5 MHz when it is done by pin control. When under I C  
control, the frequency increment and decrement update  
2
rate is limited by the I C bus speed. The magnitude of  
the frequency step has 0 ppm error. Frequency steps  
are seamless and glitchless.  
Rev. 0.6  
23  
Si5338  
3.9.2. Output Phase Increment/Decrement  
Non-unity settings of R0 will affect the Finc/Fdec step  
size at the MultiSynth0 output. For example, if the  
MultiSynth0 output step size is 2.56 MHz and R0 = 8,  
the step size at the output of R0 will be 2.56 MHz  
divided by 8 = .32 MHz. When the Rn divider is set to  
non-unity, the initial phase of the CLKn output with  
respect to other CLKn outputs is not guaranteed.  
The Si5338 has a digitally-controlled glitchless phase  
increment and decrement feature that allows adjusting  
the phase of each output clock in relation to the other  
output clocks. The phase of each output clock can be  
adjusted with an accuracy of 20 ps over a range of  
±45 ns. Setting of the step size and control of the phase  
increment or decrement is accomplished through the 3.9.5. Zero-Delay Mode  
2
I C interface. Alternatively, the Si5338 can be ordered  
The Si5338 supports an optional zero delay mode of  
with optional phase increment (PINC) and phase  
decrement (PDEC) pins for pin-controlled applications.  
In pin controlled applications the phase increment and  
decrement update rate is as fast as 1.5 MHz. In I C  
applications, the maximum update rate is limited by the  
operation for applications that require minimal input-to-  
output delay. In this mode, one of the device output  
clocks is fed back to the feedback input pin (IN4 or IN5/  
IN6) to implement an external feedback path essentially  
nullifying the delay between the reference input and the  
output clocks. Figure 14 shows the Si5338 in a typical  
zero-delay configuration. It is generally recommended  
2
2
speed of the I C. See Table 18 for ordering information  
of pin-controlled devices.  
The phase increment and decrement feature provides a that Clk3 be LVDS and that the feedback input be pins 5  
useful method for fine tuning setup and hold timing and 6. For the differential input configuration to pins 5  
margins or adjusting for mismatched PCB trace lengths. and 6, see Figure 3 on page 17. The zero-delay mode  
combined with the phase increment/decrement feature  
allows unprecedented flexibility in generating clocks  
with precise edge alignment.  
3.9.3. Initial Phase Offset  
Each output clock can be set for its initial phase offset  
up to ±45 ns. In order for the initial phase offset to be  
applied correctly at power up, the VDDOx output supply  
voltage must cross 1.2 V before the VDD (pins 7,24)  
Si5338  
core power supply voltage crosses 1.45 V. This applies  
M0  
M1  
M2  
M3  
R0  
R1  
R2  
R3  
Clk0  
Clk1  
Clk2  
to the each driver output individually. A soft_reset will  
also guarantee that the programmed Initial Phase Offset  
is applied correctly. The initial phase offset only works  
on outputs that have their R divider set to 1.  
Clk  
Input  
P1  
P2  
PLL  
3.9.4. Output R Divider  
When the requested output frequency of a channel is  
below 5 MHz, the Rn (n = 0,1,2,3) divider needs to be  
set and enabled. This is automatically done in register  
maps generated by the ClockBuilder Desktop. When  
the Rn divider is active the step size range of the  
frequency increment and decrement function will  
decrease by the Rn divide ratio. The Rn divider can be  
set to {1, 2, 4, 8, 16, 32}.  
Clk3  
Figure 14. Si5338 in Zero Delay Clock  
Generator Mode  
24  
Rev. 0.6  
Si5338  
3.9.6. Spread Spectrum  
4. Applications of the Si5338  
To help reduce electromagnetic interference (EMI), the  
Si5338 supports spread spectrum modulation. The  
output clock frequencies can be modulated to spread  
energy across a broader range of frequencies, lowering  
system EMI. The Si5338 implements spread spectrum  
using its patented MultiSynth technology to achieve  
previously unattainable precision in both modulation  
rate and spreading magnitude as shown in Figure 15.  
Spread spectrum can be applied to any output clock,  
any clock frequency, and any spread amount. The  
device supports center spread (±0.1% to ±5%) and  
down spread (–0.1% to –5%). In addition, the device  
has extensive on-chip voltage regulation so that power  
supply variations do not influence the device’s spread-  
spectrum clock waveforms.  
Because of its flexible architecture, the Si5338 can be  
configured to serve several functions in the timing path.  
The following sections describe some common  
applications.  
4.1. Free-Running Clock Generator  
Using the internal oscillator (Osc) and an inexpensive  
external crystal (XTAL), the Si5338 can be configured  
as a free-running clock generator for replacing high-end  
and long-lead-time crystal oscillators found on many  
printed circuit boards (PCBs). Replacing several crystal  
oscillators with a single IC solution helps consolidate the  
bill of materials (BOM), reduces the number of  
suppliers, and reduces the number of long-lead-time  
components on the PCB. In addition, since crystal  
oscillators tend to be the least reliable aspect of many  
systems, the overall FIT rate improves with the  
elimination of each oscillator.  
20  
+/- 0%  
10  
+/- 1%  
Up to four independent clock frequencies can be  
generated at any rate within its supported frequency  
range and with any of supported output types. Features,  
such as frequency increment and decrement and phase  
0
+/- 2.5%  
+/- 5%  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
adjustments on  
a
per-output basis, provide  
unprecedented flexibility for PCB designs. Figure 16  
shows the Si5338 configured as a free-running clock  
generator.  
ref  
Osc  
PLL  
XTAL  
M0  
M1  
M2  
M3  
R0  
R1  
R2  
R3  
F0  
F1  
F2  
F3  
-10%  
-8%  
-6%  
-4%  
-2%  
0%  
2%  
4%  
6%  
8%  
10%  
Relative Frequency  
Figure 15. Configurable Spread Spectrum  
Si5338  
Figure 16. Si5338 as a Free-Running Clock  
Generator  
Rev. 0.6  
25  
Si5338  
4.2. Synchronous Frequency Translation  
4.3. Configurable Buffer and Level  
Translator  
In other cases, it is useful to generate an output  
frequency that is synchronous (or phase-locked) to  
another clock frequency. The Si5338 is the ideal choice  
for generating up to four clocks with different  
frequencies with a fixed phase relationship to an input  
reference. Because of its highly precise frequency  
synthesis, the Si5338 can generate all four output  
frequencies with 0 ppm error to the input reference. The  
Si5338 is an ideal choice for applications that have  
traditionally required multiple stages of frequency  
synthesis to achieve complex frequency translations.  
Examples are in broadcast video (e.g., 148.5 MHz to  
148.351648351648 MHz), WAN/LAN applications (e.g.  
155.52 MHz to 156.25 MHz), and Forward Error  
Correction (FEC) applications (e.g., 156.25 MHz to  
161.1328125 MHz). Using the input reference selectors,  
the Si5338 can select from one of four inputs (IN1/IN2,  
IN3, IN4, and IN5/IN6). Figure 17 shows the Si5338  
Using the output selectors, the synthesis stage can be  
entirely bypassed allowing the Si5338 to act as a  
configurable clock buffer/divider with level translation  
and selectable inputs. Because of its highly selectable  
configuration, virtually any combination is possible. The  
configurable output drivers allow four differential  
outputs, eight single-ended outputs, or a combination of  
both. Figure 18 shows the Si5338 configured as a  
flexible clock buffer.  
Si5338  
1
R0  
R1  
R2  
R3  
Fin  
Fin  
Fin  
Fin  
*
*
*
*
R0  
1
R1  
Fin  
1
R2  
configured as  
a
synchronous clock generator.  
Frequencies and multiplication ratios may be entered  
into ClockBuilder Desktop using fractional notation to  
ensure that the exact scaling ratios can be achieved.  
1
R3  
Figure 18. Si5338 as a Configurable Clock  
Buffer/Divider with Level Translation  
Si5338  
M0  
M1  
M2  
M3  
R0  
R1  
R2  
R3  
F0  
F1  
F2  
F3  
4.3.1. Combination Free-Running and Synchronous  
Clock Generator  
P1  
P2  
Another application of the Si5338 is in generating both  
free-running and synchronous clocks in one device.  
This is accomplished by configuring the input and  
output selectors for the desired split configuration. An  
example of such an application is shown in Figure 19.  
ref  
Fin  
PLL  
Figure 17. Si5338 as a Synchronous Clock  
Generator or Frequency Translator  
Si5338  
Osc  
XTAL  
R0  
R1  
R2  
R3  
F0  
F1  
F2  
F3  
M0  
M1  
ref  
Fin  
PLL  
P2  
Figure 19. Si5338 In a Free-Running and  
Synchronous Clock Generator Application  
26  
Rev. 0.6  
Si5338  
5. I2C Interface  
Write Operation – Single Byte  
Slv Addr [6:0] Reg Addr [7:0]  
S
0
A
A
Data [7:0]  
A
P
Configuration and operation of the Si5338 is controlled  
by reading and writing to the RAM space using the I C  
2
interface. The device operates in slave mode with 7-bit  
addressing and can operate in Standard-Mode  
(100 kbps) or Fast-Mode (400 kbps) and supports burst  
data transfer with auto address increments.  
Write Operation - Burst (Auto Address Increment)  
Slv Addr [6:0] Reg Addr [7:0] Data [7:0]  
S
0
A
A
A
Data [7:0] A P  
Reg Addr +1  
2
The I C bus consists of a bidirectional serial data line  
(SDA) and a serial clock input (SCL) as shown in  
Figure 20. Both the SDA and SCL pins must be  
connected to the VDD supply via an external pull-up as  
1 – Read  
0 – Write  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH)  
S – START condition  
From slave to master  
Frommaster to slave  
2
recommended by the I C specification.  
P – STOP condition  
Figure 22. I2C Write Operation  
OEB/PINC/FINC  
I2C_LSB/PDEC/FDEC  
VDD  
I2C_LSB  
0/1  
A read operation is performed in two stages. A data  
write is used to set the register address, then a data  
read is performed to retrieve the data from the set  
address. A read burst operation is also supported. This  
is shown in Figure 23.  
Control  
SCL  
SDA  
I2C Bus  
Figure 20. I2C and Control Signals  
Read Operation – Single Byte  
The 7-bit device (slave) address of the Si5338 consists  
of a 6-bit fixed address plus a user-selectable LSB bit as  
shown in Figure 21. The LSB bit is selectable using the  
optional I2C_LSB pin which is available as an ordering  
option for applications that require more than one  
S
Slv Addr [6:0]  
0
A
Reg Addr [7:0]  
A
P
P
S
Slv Addr [6:0]  
1
A
Data [7:0]  
N
2
Si5338 on a single I C bus. Devices without the  
Read Operation - Burst (Auto Address Increment)  
I2C_LSB pin option have a fixed 7-bit address of 70h  
(111 0000) as shown in Figure 21. Other custom I C  
addresses are also possible. See Table 18 for details on  
device ordering information with the optional I2C_LSB  
pin.  
S
S
Slv Addr [6:0]  
Slv Addr [6:0]  
0
1
A
A
Reg Addr [7:0]  
Data [7:0]  
A P  
2
A
Data [7:0]  
N P  
Reg Addr +1  
6
5
4
3
2
1
0
Slave Address  
(with I2C_LSB Option)  
1 – Read  
0 – Write  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH)  
S – START condition  
1
1
1
0
0
0
0/1  
From slave to master  
Frommaster to slave  
I2C_LSB pin  
6
5
4
3
2
1
0
P – STOP condition  
Slave Address  
(without I2C_LSB Option)  
1
1
1
0
0
0
0
Figure 23. I2C Read Operation  
AC and DC electrical specifications for the SCL and  
SDA pins are shown in Table 14. The timing  
Figure 21. Si5338 I2C Slave Address  
2
specifications and timing diagram for the I C bus are  
Data is transferred MSB first in 8-bit words as specified  
2
2
compatible with the I C-Bus Standard. SDA timeout is  
by the I C specification. A write command consists of a  
supported for compatibility with SMBus interfaces.  
7-bit device (slave) address + a write bit, an 8-bit  
register address, and 8 bits of data as shown in  
Figure 22. A write burst operation is also shown where  
every additional data word is written using an auto-  
incremented address.  
2
The I C bus can be operated at a bus voltage of 1.71 to  
3.63 V and is 3.3 V tolerant. If a bus voltage of less than  
2.5 V is used, register 27[7] = 1 must be written to  
2
maintain compatibility with the I C bus standard.  
Rev. 0.6  
27  
Si5338  
0xFF, all the bits in the register can be changed. All  
other registers require a read-modify-write procedure to  
6. Si5338 Registers  
This section describes the registers and their usage in write to the registers. ClockBuilder Desktop can be used  
detail. These values are easily configured using to create ANSI C code (Options Save C code header  
ClockBuilder Desktop (see "3.1.1. ClockBuilder™ file) with the register contents and mask values. AN428  
Desktop Software" on page 16). See AN428 for a demonstrates the usage of this header file and the read-  
working example using Silicon Labs' F301 MCU.  
modify-write procedure.  
The following code demonstrates the application of the  
above write allowed mask.  
6.1. Register Write-Allowed Mask  
The masks listed in Table 15 indicate which bits in each  
register of the Si5338 can be modified and which bits  
cannot. Therefore, these masks are write-allowed or  
write-enabled bits. These masks must be used to  
perform a read-modify-write on each register.  
Let addr be the address of the register to access.  
Let data be the data or value to write to the register  
located at addr.  
Let mask be the write-allowed bits defined for the  
corresponding register.  
If a mask is 0x00, all bits in the associated register are  
reserved and must remain unchanged. If the mask is  
// ignore registers with masks of 0x00  
if(mask != 0x00){  
if(mask == 0xFF){  
// do a regular I2C write to the register  
// at addr with the desired data value  
write_Si5338(addr, data);  
} else {  
// do a read-modify-write using I2C and  
// bit-wise operations  
// get the current value from the device at the  
// register located at addr  
curr_val = read_Si5338(addr);  
// clear the bits that are allowed to be  
// accessed in the current value of the register  
clear_curr_val = curr_val AND (NOT mask);  
// clear the bits in the desired data that  
// are not allowed to be accessed  
clear_new_val = data AND mask;  
// combine the cleared values to get the new  
// value to write to the desired register  
combined = clear_curr_val OR clear_new_val;  
write_Si5338(addr, combined);  
}
}
28  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks  
Address (Decimal)  
Mask (Hex)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1D  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x80  
0xFF  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
29  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x1F  
0x1F  
0x1F  
0x1F  
0xFF  
0x7F  
0x3F  
0x00  
0x00  
0xFF  
0xFF  
0x3F  
0xFF  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
30  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0x3F  
0x7F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x3F  
0x7F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x3F  
0x7F  
0xFF  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
31  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x3F  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xBF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
32  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
0x0F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
33  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
0x0F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
34  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
35  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0x0F  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x00  
0x00  
0x00  
0xFF  
0x00  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230*  
231  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
36  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0x02  
0x00  
0x00  
0x00  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241*  
242  
243  
244  
245  
246*  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
37  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
38  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
0x00  
0x00  
0x00  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
39  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x0F  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
40  
Rev. 0.6  
Si5338  
Table 15. Register Write-Allowed Masks (Continued)  
Address (Decimal)  
Mask (Hex)  
0x00  
348  
349  
350  
0x00  
0x00  
*Note: See Figure 9, “I2C Programming Procedure,” on page 21 for the  
correct usage of registers 230, 241, and 246. These registers are  
not saved in the register map or C code header file from  
ClockBuilder Desktop (v2.7 or later).  
Rev. 0.6  
41  
Si5338  
6.2. Register Categories  
This is a list of registers needed to define the Configuration of a device. Set the PAGEBIT to access registers with  
addresses greater than 255.  
Address (Decimal)  
Bits  
4:0  
7:6  
7
Function  
6
27  
Mask bits for LOS_CLKIN,LOS_FB, LOL, SYS_CAL  
2
I C Configuration  
27  
28 - 30  
31 - 39  
40  
7:0  
7:0  
7:0  
6:0  
4:0  
5:2  
7:0  
6:0  
7:0  
7:4, 2:0  
6:0  
7:0  
5:0  
6:0  
7:0  
5:0  
6:0  
7:0  
5:0  
6:0  
7:0  
5:0  
7:0  
5:0  
7:0  
7:0  
7:0  
Input Mux Configuration  
Output Configuration  
41  
Output Driver Trim Bits  
Input Configuration  
42  
47  
48  
49  
PLL Configuration  
50  
51  
52  
MultiSynth0 Freq inc/dec, SS, Phase inc/dec Configuration  
MultiSynth0 frequency Configuration  
53-61  
62  
63  
64-72  
73  
MultiSynth1 frequency Configuration  
MultiSynth2 frequency Configuration  
74  
75-83  
84  
85  
86-94  
95  
MultiSynth3 frequency Configuration  
97-105  
106  
MultiSynthN Feedback divider Configuration  
107 - 110  
111 - 114  
115 - 118  
MultiSynth0 Phase inc/dec, SS Configuration, drive state  
MultiSynth1 Phase inc/dec, SS Configuration, drive state  
MultiSynth2 Phase inc/dec, SS Configuration, drive state  
42  
Rev. 0.6  
Si5338  
Address (Decimal)  
119  
Bits  
7:0  
6:0  
7:0  
7:0  
3:0  
6:0  
7:0  
7:0  
7:0  
7:0  
6:0  
7:0  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
7:0  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
Function  
120  
MultiSynth3 Phase inc/dec, SS Configuration, drive state  
121 - 122  
123-128  
129  
MultiSynth0 freq inc/dec Configuration, ID config  
130  
131 - 144  
152 - 173  
174 - 195  
196 - 216  
217  
MultiSynth1 freq inc/dec Configuration  
MultiSynth2 freq inc/dec Configuration  
MultiSynth3 freq inc/dec Configuration  
241  
Reserved - set to 0x65 if not factory-programmed.  
287  
288  
289  
290  
291  
292  
293  
MultiSynth0 spread spectrum Configuration  
294  
295  
296  
297  
298  
299  
Rev. 0.6  
43  
Si5338  
Address (Decimal)  
Bits  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
7:0  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
7:0  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
Function  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
MultiSynth1 spread spectrum Configuration  
MultiSynth2 spread spectrum Configuration  
44  
Rev. 0.6  
Si5338  
Address (Decimal)  
Bits  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
7:0  
7:0  
6:0  
7:0  
6:0  
7:0  
7:0  
Function  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
MultiSynth3 spread spectrum Configuration  
Rev. 0.6  
45  
Si5338  
6.3. Register Summary  
Table 16. Register Summary  
Register  
7
6
5
4
3
2
1
0
0
REVID[2:0]  
PLL_LOL_  
MASK  
LOS_FDBK_ LOS_CLKIN_  
SYS_CAL_  
MASK  
6
MASK  
I2C_ADDR[6:0]  
P1DIV_IN[2:0]  
MASK  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
I2C_1P8_SEL  
FDBK_PDN  
P2DIV_IN[0]  
XTAL_FREQ[1:0]  
PFD_IN_REF[2:0]  
PFD_IN_FB[2:0]  
R0DIV_IN[2:0]  
R1DIV_IN[2:0]  
R2DIV_IN[2:0]  
R3DIV_IN[2:0]  
P1DIV_IN[4:3]  
P2DIV_IN[2:1]  
R0DIV[2:0]  
P1DIV[2:0]  
P2DIV[2:0]  
MS0_PDN  
MS1_PDN  
MS2_PDN  
MS3_PDN  
DRV0_PDN  
DRV1_PDN  
DRV2_PDN  
DRV3_PDN  
R1DIV[2:0]  
R2DIV[2:0]  
R3DIV[2:0]  
DRV3_VDDO[1:0]  
DRV2_VDDO[1:0]  
DRV0_INV[1:0]  
DRV1_VDDO[1:0]  
DRV0_VDDO[1:0]  
DRV0_FMT[2:0]  
DRV1_FMT[2:0]  
DRV2_FMT[2:0]  
DRV3_FMT[2:0]  
DRV1_INV[1:0]  
DRV2_INV[1:0]  
DRV3_INV[1:0]  
DRV1_TRIM[2:0]  
DRV0_TRIM[4:0]  
DRV3_TRIM[4:0]  
DRV2_TRIM[4:0]  
DRV1_TRIM[4:3]  
FCAL_OVRD[7:0]  
FCAL_OVRD[15:8]  
FCAL_OVRD[17:16]  
BWSEL[1:0]  
PFD_EXTFB  
FCAL_OVRD_EN  
PLL_ENABLE[1:0]  
MS3_HS MS2_HS  
PLL_KPHI[6:0]  
RSEL[1:0]  
MSCAL[5:0]  
VCO_GAIN[2:0]  
MS1_HS  
MS0_HS  
MS_PEC[2:0]  
MS0_FIDCT[1:0]  
MS0_FIDDIS  
MS0_SSMODE[1:0]  
MS0_PHIDCT[1:0]  
MS0_P1[7:0]  
MS0_P1[15:8]  
MS0_P2[5:0]  
MS0_P1[17:16]  
MS0_P2[13:6]  
MS0_P2[21:14]  
MS0_P2[29:22]  
MS0_P3[7:0]  
46  
Rev. 0.6  
Si5338  
Table 16. Register Summary (Continued)  
Register  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
7
6
5
4
3
2
1
0
MS0_P3[15:8]  
MS0_P3[23:16]  
MS0_P3[29:24]  
MS1_FIDCT[1:0]  
MS2_FRCTL[1:0]  
MS3_FIDCTL[1:0]  
MS1_FIDDIS  
MS1_P1[7:0]  
MS1_SSMODE[1:0]  
MS1_PHIDCT[1:0]  
MS1_P1[17:16]  
MS1_P1[15:8]  
MS1_P2[5:0]  
MS2_P2[5:0]  
MS3_P2[5:0]  
MS1_P2[13:6]  
MS1_P2[21:14]  
MS1_P2[29:22]  
MS1_P3[7:0]  
MS1_P3[15:8]  
MS1_P3[23:16]  
MS1_P3[29:24]  
MS2_FIDDIS  
MS2_SSMODE[1:0]  
MS2_PHIDCT[1:0]  
MS2_P1[17:16]  
MS2_P1[7:0]  
MS2_P1[15:8]  
MS2_P2[13:6]  
MS2_P2[21:14]  
MS2_P2[29:22]  
MS2_P3[7:0]  
MS2_P3[15:8]  
MS2_P3[23:16]  
MS2_P3[29:24]  
MS3_FIDDIS  
MS3_SSMODE[1:0]  
MS3_PHIDCTL[1:0]  
MS3_P1DIV[17:16]  
MS3_P1[7:0]  
MS3_P1[15:8]  
MS3_P2[13:6]  
MS3_P2[21:14]  
MS3_P2[29:22]  
MS3_P3[7:0]  
MS3_P3[15:8]  
MS3_P3[23:16]  
MS3_P3[29:24]  
Rev. 0.6  
47  
Si5338  
Table 16. Register Summary (Continued)  
Register  
97  
7
6
5
4
3
2
1
0
MSN_P1[7:0]  
MSN_P1[15:8]  
98  
99  
MSN_P2[5:0]  
MSN_P1[17:16]  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
MSN_P2[13:6]  
MSN_P2[21:14]  
MSN_P2[29:22]  
MSN_P3[7:0]  
MSN_P3[15:8]  
MSN_P3[23:16]  
MSN_P3[29:24]  
MS0_PHOFF[7:0]  
MS0_PHOFF[14:8]  
MS0_PHSTEP[7:0]  
MS0_PHSTEP[13:8]  
MS1_PHOFF[7:0]  
MS1_PHOFF[14:8]  
MS1_PHSTEP[7:0]  
MS1_PHSTEP[13:8]  
MS2_PHOFF[7:0]  
MS2_PHOFF[14:8]  
MS2_PHSTEP[7:0]  
MS2_PHSTEP[13:8]  
MS3_PHOFF[7:0]  
MS3_PHOFF[14:8]  
MS3_PHSTEP[7:0]  
MS3_PHSTEP[13:8]  
CLK0_DISST[1:0]  
CLK1_DISST[1:0]  
CLK2_DISST[1:0]  
CLK3_DISST[1:0]  
MS0_FIDP1[7:0]  
MS0_FIDP1[15:8]  
MS0_FIDP1[23:16]  
MS0_FIDP1[31:24]  
MS0_FIDP1[39:32]  
MS0_FIDP1[47:40]  
MS0_FIDP1[51:48]  
MS0_FIDP2[51:48]  
MS0_FIDP2[47:40]  
MS0_FIDP2[39:32]  
48  
Rev. 0.6  
Si5338  
Table 16. Register Summary (Continued)  
Register  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
7
6
5
4
3
2
1
0
MS0_FIDP2[31:24]  
MS0_FIDP2[23:16]  
MS0_FIDP2[15:8]  
MS0_FIDP2[7:0]  
MS0_FIDP3[7:0]  
MS0_FIDP3[15:8]  
MS0_FIDP3[23:16]  
MS0_FIDP3[31:24]  
MS0_FIDP3[39:32]  
MS0_FIDP3[47:40]  
MS0_FIDP3[51:48]  
MS0_ALL  
MS0_FIDP3[62:56]  
MS1_FIDP1[7:0]  
MS1_FIDP1[15:8]  
MS1_FIDP1[23:16]  
MS1_FIDP1[31:24]  
MS1_FIDP1[39:32]  
MS1_FIDP1[47:40]  
MS1_FIDP1[51:48]  
MS1_FIDP2[51:48]  
MS1_FIDP2[47:40]  
MS1_FIDP2[39:32]  
MS1_FIDP2[31:24]  
MS1_FIDP2[23:16]  
MS1_FIDP2[15:8]  
MS1_FIDP2[7:0]  
MS1_FIDP3[7:0]  
MS1_FIDP3[15:8]  
MS1_FIDP3[23:16]  
MS1_FIDP3[31:24]  
MS1_FIDP3[39:32]  
MS1_FIDP3[47:40]  
MS1_FIDP3[51:48]  
MS1_FIDP3[62:56]  
MS2_FIDP1[7:0]  
MS2_FIDP1[15:8]  
Rev. 0.6  
49  
Si5338  
Table 16. Register Summary (Continued)  
Register  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
7
6
5
4
3
2
1
0
MS2_FIDP1[23:16]  
MS2_FIDP1[31:24]  
MS2_FIDP1[39:32]  
MS2_FIDP1[47:40]  
MS2_FIDP1[51:48]  
MS2_FIDP2[51:48]  
MS2_FIDP2[47:40]  
MS2_FIDP2[39:32]  
MS2_FIDP2[31:24]  
MS2_FIDP2[23:16]  
MS2_FIDP2[15:8]  
MS2_FIDP2[7:0]  
MS2_FIDP3[7:0]  
MS2_FIDP3[15:8]  
MS2_FIDP3[23:16]  
MS2_FIDP3[31:24]  
MS2_FIDP3[39:32]  
MS2_FIDP3[47:40]  
MS2_FIDP3[51:48]  
MS2_FIDP3[62:56]  
MS3_FIDP1[7:0]  
MS3_FIDP1[15:8]  
MS3_FIDP1[23:16]  
MS3_FIDP1[31:24]  
MS3_FIDP1[39:32]  
MS3_FIDP1[47:40]  
MS3_FIDP1[51:48]  
MS3_FIDP2[51:48]  
MS3_FIDP2[47:40]  
MS3_FIDP2[39:32]  
MS3_FIDP2[31:24]  
MS3_FIDP2[23:16]  
MS3_FIDP2[15:8]  
MS3_FIDP2[7:0]  
MS3_FIDP3[7:0]  
MS3_FIDP3[15:8]  
50  
Rev. 0.6  
Si5338  
Table 16. Register Summary (Continued)  
Register  
212  
213  
214  
215  
216  
217  
218  
230  
235  
236  
237  
241  
242  
246  
7
6
5
4
3
2
1
0
MS3_FIDP3[23:16]  
MS3_FIDP3[31:24]  
MS3_FIDP3[39:32]  
MS3_FIDP3[47:40]  
MS3_FIDP3[51:48]  
MS3_FIDP3[62:56]  
LOS_FDBK  
OEB_3  
PLL_LOL  
OEB_ALL  
LOS_CLKIN  
OEB_2  
SYS_CAL  
OEB_0  
OEB_1  
FCAL[7:0]  
FCAL[15:8]  
FCAL[17:16]  
DIS_LOL  
DCLK_DIS  
SOFT_RESET  
LOS_FDBK_ LOS_CLKIN_  
STK STK  
247  
PLL_LOL_STK  
SYS_CAL_STK  
PAGE_SEL  
255  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
303  
304  
305  
306  
307  
308  
MS0_SSUPP2[7:0]  
MS0_SSUPP2[14:8]  
MS0_SSUPP3[7:0]  
MS0_SSUPP3[14:8]  
MS0_SSUPP1[7:0]  
MS0_SSUDP1[3:0]  
MS0_SSUPP1[11:8]  
MS0_SSUDP1[11:4]  
MS0_SSDNP2[7:0]  
MS0_SSDNP2[14:8]  
MS0_SSDNP3[7:0]  
MS0_SSDNP3[14:8]  
MS0_SSDNP1[7:0]  
MS0_SSDNP1[11:8]  
MS1_SSUPP2[7:0]  
MS1_SSUPP2[14:8]  
MS1_SSUPP3[7:0]  
MS1_SSUPP3[14:8]  
MS1_SSUPP1[7:0]  
MS1_SSUDP1[3:0]  
MS1_SSUPP1[11:8]  
Rev. 0.6  
51  
Si5338  
Table 16. Register Summary (Continued)  
Register  
309  
310  
311  
312  
313  
314  
315  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
7
6
5
4
3
2
1
0
MS1_SSUDP1[11:4]  
MS1_SSDNP2[7:0]  
MS1_SSDNP2[14:8]  
MS1_SSDNP3[7:0]  
MS1_SSDNP3[14:8]  
MS1_SSDNP1[7:0]  
MS1_SSDNP1[11:8]  
MS2_SSUPP2[7:0]  
MS2_SSUPP2[14:8]  
MS2_SSUPP3[7:0]  
MS2_SSUPP3[14:8]  
MS2_SSUPP1[7:0]  
MS2_SSUDP1[3:0]  
MS2_SSUPP1[11:8]  
MS2_SSUDP1[11:4]  
MS2_SSDNP2[7:0]  
MS2_SSDNP2[14:8]  
MS2_SSDNP3[7:0]  
MS2_SSDNP3[14:8]  
MS2_SSDNP1[7:0]  
MS2_SSDNP1[11:8]  
MS3_SSUPP2[7:0]  
MS3_SSUPP2[14:8]  
MS3_SSUPP3[7:0]  
MS3_SSUPP3[14:8]  
MS3_SSUPP1[7:0]  
MS3_SSUDP1[3:0]  
MS3_SSUPP1[11:8]  
MS3_SSUDP1[11:4]  
MS3_SSDNP2[7:0]  
MS3_SSDNP2[14:8]  
MS3_SSDNP3[7:0]  
MS3_SSDNP3[14:8]  
MS3_SSDNP1[7:0]  
MS3_SSDNP1[11:8]  
52  
Rev. 0.6  
Si5338  
6.4. Register Descriptions  
In many registers, the byte reset value contains one or more “x”s because a factory-programmed device can have  
multiple values for these bits.  
Register 0.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
REVID[2:0]  
R
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
7:3  
2:0  
Name  
Function  
Reserved.  
Reserved  
REVID[2:0] Device Revision ID.  
Rev. 0.6  
53  
Si5338  
Register 6.  
Bit  
D7 D6 D5  
D4  
PLL_LOL_MASK LOS_FDBK_MASK LOS_CLKIN_MASK  
R/W R/W R/W  
D3  
D2  
D1  
D0  
SYS_CAL_MASK  
R/W  
Name  
Type  
Reserved  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved. Must only write 000b to these bits.  
Mask Bit for PLL_LOL.  
When true, the PLL_LOL bit (Register 218) will not cause an interrupt. See also  
PLL_LOL_MASK Register 247.  
0: PLL Loss of Lock (LOL) triggers active interrupt on INTR output pin.  
4
3
1: PLL Loss of Lock (LOL) ignored in generating interrupt output.  
Mask Bit for Loss of Signal on IN4 or IN5,6.  
When true, the LOS_FDBK bit (Register 218) will not cause an interrupt. See  
LOS_FDBK_MASK also Register 247.  
0: FDBK LOS triggers active interrupt on INTR output pin.  
1: FDBK LOS ignored in generating interrupt output.  
Mask Bit for Loss of Signal on IN1,2 or IN3.  
When true, the LOS_CLKIN bit (Register 218) will not cause an interrupt.  
2
1
0
LOS_CLKIN_MASK See also Register 247.  
0: CLKIN LOS triggers active interrupt on INTR output pin.  
1: CLKIN LOS ignored in generating interrupt output.  
Reserved  
Reserved. Must only write 0 to this bit.  
Chip Calibration Mask Bit.  
When true, the SYS_CAL bit (Register 218) will not cause an interrupt. See also  
SYS_CAL_MASK Register 247.  
0:PLL self-calibration triggers active interrupt on INTR output pin.  
1:PLL self-calibration ignored in generating interrupt output.  
54  
Rev. 0.6  
Si5338  
Register 27.  
Bit  
D7  
D6  
D5  
D4  
D3  
I2C_ADDR[6:0]  
R/W*  
D2  
D1  
D0  
Name I2C_1P8_SEL  
Type R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
2
I C Reference V  
.
DD  
External I2C VDD 0 = 3.3 V/2.5 V, 1 = 1.8 V.  
0: 3.3 V/2.5 V (default)  
1: 1.8 V  
7
I2C_1P8_SEL  
2
7-Bit I C Address.  
2
If and only if there is an I2C_LSB pin, the actual I C LSB address is the logical “or” of  
the bit in position 0 with the state of the I2C_LSB pin. Otherwise, the actual I2C_LSB  
is the LSB of this 7-bit address. Custom 7-bit I C addresses may be requested but  
2
6:0*  
I2C_ADDR[6:0]  
2
must be even numbers if pin control of the I C address is to be implemented. For  
2
example, if the I C address = 70h, the I2C_LSB pin can change the LSB from 0 to 1.  
2
2
However, if the I C address = 71h, the I2C_LSB pin will have no effect upon the I C  
address.  
*Note: Although these bits are R/W, writing them is not supported. Custom I2C addresses can be set at the factory. Contact  
your local sales office for details.  
Rev. 0.6  
55  
Si5338  
Register 28.  
Bit  
D7  
D6  
D5  
P2DIV_IN[0]  
R/W  
D4  
D3  
P1DIV_IN[2:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
XTAL_FREQ[1:0]  
R/W  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:6  
Reserved  
Reserved. Must only write a 00 to these bits.  
This bit and Register 30[4:3] create a 3-bit field that selects the input to the P2  
divider [reg30[4:3] reg28[5]] = P2DIV_IN[2:0].  
000b: Clock from IN5,IN6 is input to P2 divider  
011b: Clock from IN4 is input to P2  
5
P2DIV_IN[0]  
100b: No clock is input to P2  
All other bit values are reserved.  
These three bits are combined with Register 29[4:3] and create a 5-bit field that  
selects the input to the P1 divider [reg29[4:3] reg28[4:2]] = P1DIV_IN[4:0].  
00000b: Clock from IN1,IN2 selected  
4:2  
P1DIV_IN[2:0]  
01010b: Clock from IN3 selected  
10101b: Crystal oscillator selected  
All other bit values are reserved and should not be written.  
Crystal Frequency Range.  
Select Xtal Frequency that you are using. For more information on using crystals,  
see “AN360: Crystal Selection Guide for Si533x/5x Devices”.  
1:0  
XTAL_FREQ[1:0] 0: 8–11 MHz  
1: 11–19 MHz  
2: 19–26 MHz  
3: 26–30 MHz  
56  
Rev. 0.6  
Si5338  
Register 29.  
Bit  
D7  
D6  
PFD_IN_REF[2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
P1DIV_IN[4:3]  
R/W  
P1DIV[2:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects the input clock to be provided to the reference input of PLL Phase  
Frequency Detector (PFD).  
0: P1DIV_IN selected  
1: P2DIV_IN selected  
2: P1DIV_OUT (P1 divider output) selected  
3: P2DIV_OUT (P2 divider output) selected  
4: XOCLK selected  
7:5  
PFD_IN_REF[2:0]  
5: No Clock selected  
6: Reserved  
7: Reserved  
These two bits along with reg28[4:2] create a 5-bit field that selects the input to  
the P1 divider [reg29[4:3] reg28[4:2]] = P1DIV_IN[4:0].  
00000b: Clock from IN,2 selected  
01010b: Clock from IN3 selected  
10101b: Crystal oscillator selected  
All other bit values are reserved  
4:3  
2:0  
P1DIV_IN[4:3]  
Sets the value of the P1 divider.  
0: Divide by 1  
1: Divide by 2  
P1DIV[2:0]  
2: Divide by 4  
3: Divide by 8  
4: Divide by 16  
5: Divide by 32  
Rev. 0.6  
57  
Si5338  
Register 30.  
Bit  
D7  
D6  
PFD_IN_FB[2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
P2DIV[2:0]  
R/W  
D0  
Name  
Type  
P2DIV_IN[2:1]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects the external input applied to the PFD feedback input. See also Register  
48[7].  
0: P2DIV_IN (fbclk)  
1: P1DIV_IN (refclk)  
2: P2DIV_OUT (P2 divider output) selected  
3: P1DIV_OUT (P1 divider output) selected  
4: Reserved  
7:5  
PFD_IN_FB[2:0]  
5: No Clock selected  
6: Reserved  
7: Reserved  
These two bits and Register 28[5] create a 3-Bit field that selects the input to the  
P2 divider [reg30[4:3] reg28[5]] = P2DIV_IN[2:0].  
000b: Clock from IN5,IN6 is input to P2 divider  
011b: Clock from IN4 is input to P2  
100b: No clock is input to P2  
4:3  
2:0  
P2DIV_IN[2:1]  
All other bit values are reserved.  
Sets the value of the P2 the divider.  
0: Divide by 1  
1: Divide by 2  
P2DIV[2:0]  
2: Divide by 4  
3: Divide by 8  
4: Divide by 16  
5: Divide by 32  
58  
Rev. 0.6  
Si5338  
Register 31.  
Bit  
D7  
D6  
R0DIV_IN[2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
MS0_PDN  
R/W  
D0  
DRV0_PDN  
R/W  
Name  
Type  
R0DIV[2:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects the input to the R0 divider. R0 divider output goes to CLK0.  
0: P2DIV_IN (fbclk) selected  
1: P1DIV_IN (refclk) selected  
2: P2DIV_OUT (P2 divider output) selected  
3: P1DIV_OUT (P1 divider output) selected  
4: XOCLK selected  
7:5  
R0DIV_IN[2:0]  
5: MultiSynth0 output selected  
6: MultiSynth0 output selected  
7: No Clock selected  
CLK0 R0 Output Divider.  
0: Divide by 1  
1: Divide by 2  
4:2  
R0DIV[2:0]  
2: Divide by 4  
3: Divide by 8  
4: Divide by 16  
5: Divide by 32  
MultiSynth0 Power Down.  
1
0
MS0_PDN  
0: MS0 MultiSynth powered up  
1: MS0 MultiSynth powered down  
R0 and CLK0 Power Down.  
DRV0_PDN  
0: R0 output divider and CLK0 driver powered up  
1: R0 output divider and CLK0 driver powered down  
Rev. 0.6  
59  
Si5338  
Register 32.  
Bit  
D7  
D6  
R1DIV_IN[2:0]  
R/W  
D5  
D4  
D3  
R1DIV[2:0]  
R/W  
D2  
D1  
MS1_PDN  
R/W  
D0  
DRV1_PDN  
R/W  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects the input to the R1 divider. R1 divider output goes to CLK1.  
0: P2DIV_IN (fbclk) selected  
1: P1DIV_IN (refclk) selected  
2: P2DIV_OUT (P2 divider output) selected  
3: P1DIV_OUT (P1 divider output) selected  
4: XOCLK selected  
7:5  
R1DIV_IN[2:0]  
5: MultiSynth0 output selected  
6: MultiSynth1 output selected  
7: No Clock selected  
CLK1 R1 Output Divider.  
0: Divide by 1  
1: Divide by 2  
4:2  
R1DIV[2:0]  
2: Divide by 4  
3: Divide by 8  
4: Divide by 16  
5: Divide by 32  
MultiSynth1 Power Down.  
0: MultiSynth1 is powered up  
1: MultiSynth1 is powered down  
1
0
MS1_PDN  
R1 and CLK1 Power Down.  
DRV1_PDN  
0: R1 output divider and CLK1 driver powered up  
1: R1 output divider and CLK1 driver powered down  
60  
Rev. 0.6  
Si5338  
Register 33.  
Bit  
D7  
D6  
R2DIV_IN[2:0]  
R/W  
D5  
D4  
D3  
R2DIV[2:0]  
R/W  
D2  
D1  
MS2_PDN  
R/W  
D0  
DRV2_PDN  
R/W  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects the input to the R2 divider. R2 divider output goes to CLK2.  
0: P2DIV_IN (fbclk) selected  
1: P1DIV_IN (refclk) selected  
2: P2DIV_OUT (P2 divider output) selected  
3: P1DIV_OUT (P1 divider output) selected  
4: XOCLK selected  
7:5  
R2DIV_IN[2:0]  
5: MultiSynth0 output selected  
6: MultiSynth2 output selected  
7: No Clock selected  
CLK2 R2 Output Divider.  
0: Divide by 1  
1: Divide by 2  
2: Divide by 4  
3: Divide by 8  
4: Divide by 16  
5: Divide by 32  
4:2  
R2DIV[2:0]  
MultiSynth2 Power Down.  
1
0
MS2_PDN  
0: MultiSynth2 powered up  
1: MultiSynth2 powered down  
R2 and CLK2 Power Down.  
DRV2_PDN  
0: R2 output divider and CLK2 driver powered up  
1: R2 output divider and CLK2 driver powered down  
Rev. 0.6  
61  
Si5338  
Register 34.  
Bit  
D7  
D6  
R3DIV_IN[2:0]  
R/W  
D5  
D4  
D3  
R3DIV[2:0]  
R/W  
D2  
D1  
MS3_PDN  
R/W  
D0  
DRV3_PDN  
R/W  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects the input to the R3 divider. R3 divider output goes to CLK3.  
0: P2DIV_IN (fbclk) selected  
1: P1DIV_IN (refclk) selected  
2: P2DIV_OUT (P2 divider output) selected  
3: P1DIV_OUT (P1 divider output) selected  
4: XOCLK selected  
7:5  
R3DIV_IN[2:0]  
5: MultiSynth0 output selected  
6: MultiSynth3 output selected  
7: No Clock selected  
CLK3 R3 Output Divider.  
0: Divide by 1  
1: Divide by 2  
4:2  
R3DIV[2:0]  
2: Divide by 4  
3: Divide by 8  
4: Divide by 16  
5: Divide by 32  
MultiSynth3 Power Down.  
0: MultiSynth3 is power up  
1: MultiSynth3 powered down  
1
0
MS3_PDN  
R3 and CLK3 Powerdown.  
DRV3_PDN  
0: R3 output divider and CLK3 driver powered up  
1: R3 output divider and CLK3 driver powered down  
62  
Rev. 0.6  
Si5338  
Register 35.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRV3_VDDO[1:0]  
R/W  
DRV2_VDDO[1:0]  
R/W  
DRV1_VDDO[1:0]  
R/W  
DRV0_VDDO[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
VDDO Setting for CLK3.  
0: VDDO3 = 3.3 V (not for HSTL)  
1: VDDO3 = 2.5 V (not for HSTL)  
7:6  
DRV3_VDDO[1:0]  
2: VDDO3 = 1.8 V (not for HSTL or LVPECL)  
3: VDDO3 = 1.5 V (HSTL only)  
VDDO Setting for CLK2.  
0: VDDO2 = 3.3 V (not for HSTL)  
1: VDDO2 = 2.5 V (not for HSTL)  
2: VDDO2 = 1.8 V (not for HSTL or LVPECL)  
3: VDDO2 = 1.5 V (HSTL only)  
5:4  
3:2  
1:0  
DRV2_VDDO[1:0]  
DRV1_VDDO[1:0]  
DRV0_VDDO[1:0]  
VDDO Setting for CLK1.  
0: VDDO1 = 3.3 V (not for HSTL)  
1: VDDO1 = 2.5 V (not for HSTL)  
2: VDDO1 = 1.8 V (not for HSTL or LVPECL)  
3: VDDO1 = 1.5 V (HSTL only)  
VDDO Setting for CLK0.  
0: VDDO0 = 3.3 V (not for HSTL)  
1: VDDO0 = 2.5 V (not for HSTL)  
2: VDDO0 = 1.8 V (not for HSTL or LVPECL)  
3: VDDO0 = 1.5 V (HSTL only)  
Note: If the VDDOx voltage is below the minimum allowed voltage of the programmed voltage setting in Register 35, the  
output driver may not turn on.  
Rev. 0.6  
63  
Si5338  
Register 36.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
DRV0_FMT[2:0]  
R/W  
D0  
Name  
Type  
DRV0_INV[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved.  
Invert Driver for CLK0 for CMOS/SSTL/HSTL Outputs.  
0: Both outputs are in phase  
4:3  
2:0  
DRV0_INV[1:0]  
1: CLK0A inverted  
2: CLK0B inverted  
3: CLK0A/B inverted and in phase  
CLK0 Signal Format.  
0: Reserved  
1: CLK0A = (CMOS/SSTL/HSTL), CLK0B = off  
2: CLK0B = (CMOS/SSTL/HSTL), CLK0A = off  
3: CLK0A,B = (CMOS/SSTL/HSTL)  
DRV0_FMT[2:0]  
4: LVPECL  
5: Reserved  
6: LVDS  
7: HCSL  
64  
Rev. 0.6  
Si5338  
Register 37.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRV1_INV[1:0]  
R/W  
DRV1_FMT[2:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved.  
Invert Driver for CLK1 for CMOS/SSTL/HSTL Outputs.  
0: Both outputs are in phase  
1: CLK1A invert  
2: CLK1B invert  
3: CLK1A/B invert and in phase  
4:3  
2:0  
DRV1_INV[1:0]  
DRV1_FMT[2:0]  
CLK1 Signal Format.  
0: Reserved  
1: CLK1A = (CMOS/SSTL/HSTL), CLK1B = off  
2: CLK1B = (CMOS/SSTL/HSTL), CLK1A = off  
3: CLK1A,B = (CMOS/SSTL/HSTL)  
4: LVPECL  
5: Reserved  
6: LVDS  
7: HCSL  
Rev. 0.6  
65  
Si5338  
Register 38.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
DRV2_FMT[2:0]  
R/W  
D0  
Name  
Type  
DRV2_INV[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved.  
Invert Driver for CLK2 for CMOS/SSTL/HSTL Outputs.  
0: Both outputs are in phase  
4:3  
2:0  
DRV2_INV[1:0]  
DRV2_FMT[2:0]  
1: CLK2A inverted  
2: CLK2B inverted  
3: CLK2A/B inverted and in phase  
CLK2 Signal Format.  
0: Reserved  
1: CLK2A = (CMOS/SSTL/HSTL), CLK2B = off  
2: CLK2B = (CMOS/SSTL/HSTL), CLK2A = off  
3: CLK2A,B = (CMOS/SSTL/HSTL)  
4: LVPECL  
5: Reserved  
6: LVDS  
7: HCSL  
66  
Rev. 0.6  
Si5338  
Register 39.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRV3_INV[1:0]  
R/W  
DRV3_FMT[2:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved.  
Invert Driver for CLK3 for CMOS/SSTL/HSTL Outputs.  
0: Both outputs are in phase  
4:3  
2:0  
DRV3_INV[1:0]  
DRV3_FMT[2:0]  
1: CLK3A inverted  
2: CLK3B inverted  
3: CLK3A/B inverted and in phase  
CLK3 Signal Format.  
0: Reserved  
1: CLK3A = (CMOS/SSTL/HSTL), CLK3B = off  
2: CLK3B = (CMOS/SSTL/HSTL), CLK3A = off  
3: CLK3A,B = (CMOS/SSTL/HSTL)  
4: LVPECL  
5: Reserved  
6: LVDS  
7: HCSL  
Register 40.  
Bit  
D7  
D6  
DRV1_TRIM [2:0]  
R/W  
D5  
D4  
D3  
D2  
DRV0_TRIM [4:0]  
R/W  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Trim Bits for CLK1 Driver.  
7:5  
DRV1_TRIM [2:0]  
Clockbuilder Desktop sets these values automatically. See AN411 for required  
manual settings information  
Trim Bits for CLK0 Driver.  
4:3  
DRV0_TRIM [4:0]  
Clockbuilder Desktop sets these values automatically. See AN411 for required  
manual settings information  
Rev. 0.6  
67  
Si5338  
Register 41.  
Bit  
D7  
D6  
D5  
D4  
DRV2_TRIM [4:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
DRV1_TRIM [4:3]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
Trim Bits for CLK2 Driver.  
6:2  
1:0  
DRV2_TRIM [4:0]  
DRV1_TRIM [4:3]  
Clockbuilder Desktop sets these values automatically. See AN411 for required  
manual settings information.  
Trim Bits for CLK1 Driver.  
Clockbuilder Desktop sets these values automatically. See AN411 for required  
settings information.  
Register 42.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
DRV3_TRIM [4:0]  
R/W  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
7:6  
5
Name  
Function  
Reserved  
Reserved  
Reserved.  
Must write 1b to this bit.  
Trim Bits for CLK3.  
4:0  
DRV3_TRIM [4:0]  
Clockbuilder Desktop sets these values automatically. See AN411 for required  
manual settings information.  
68  
Rev. 0.6  
Si5338  
Register 45.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
D1  
D0  
Name  
Type  
FCAL_OVRD[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
FCAL_OVRD[7:0] Bits 7:0 of the Override Frequency Calibration for the VCO.  
Register 46.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
Name  
Type  
FCAL_OVRD[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
FCAL_OVRD[15:8] Bits 15:8 of the Override Frequency Calibration for the VCO  
Register 47.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D0  
Name  
Type  
Reserved  
R
FCAL_OVRD[17:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
7:2  
1:0  
Name  
Function  
Reserved.  
Reserved  
Must write 000101b to these bits if the device is not factory programmed.  
FCAL_OVRD[17:16] Bits 17:16 of the Override Frequency Calibration for the VCO.  
Rev. 0.6  
69  
Si5338  
Register 48.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PFD_EXTFB  
R/W  
PLL_KPHI[6:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Selects PFD feedback input from internal (see Register 30[7:5]) or external source.  
0: Internal feedback path  
7
PFD_EXTFB  
1: External feedback path (zero delay mode)  
Sets the charge pump current for the PFD. Clockbuilder Desktop sets these values  
automatically. See AN411 for manual setting.  
6:0  
PLL_KPHI[6:0]  
Register 49.  
Bit  
D7  
D6  
D5  
VCO_GAIN[2:0]  
R/W  
D4  
D3  
RSEL[1:0]  
R/W  
D2  
D1  
BWSEL[1:0]  
R/W  
D0  
Name FCAL_OVRD_EN  
Type R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
FCAL Override Enable.  
7
FCAL_OVRD_EN  
0: Do not use FCAL value in registers 45,46,47  
1: Use FCAL value in registers 45,46,47  
Sets the VCO Gain.  
6:4  
3:2  
1:0  
VCO_GAIN[2:0]  
RSEL[1:0]  
Clockbuilder Desktop sets these values automatically. See AN411 for manual set-  
ting.  
Loop Filter Resistor Select.  
Clockbuilder Desktop sets these values automatically. See AN411 for manual set-  
ting.  
Select the PLL Loopfilter.  
BWSEL[1:0]  
Clockbuilder Desktop sets these values automatically. See AN411 for manual set-  
ting.  
70  
Rev. 0.6  
Si5338  
Register 50.  
Bit  
D7  
D6  
D5  
D4  
D3  
MSCAL[5:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
PLL_ENABLE[1:0]  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
00: Disable PLL  
11: Enable PLL  
7:6  
PLL_ENABLE[1:0]  
It is expected that all Si5338 applications will need to have the PLL enabled; how-  
ever, the PLL may be disabled when the Si5338 is set up in buffer mode.  
MultiSynth Calibration Value for Optimum Performance.  
5:0  
MSCAL[5:0]  
Clockbuilder Desktop sets these values automatically. See AN411 for manual set-  
ting.  
Rev. 0.6  
71  
Si5338  
Register 51.  
Bit  
D7  
D6  
MS2_HS  
R/W  
D5  
MS1_HS  
R/W  
D4  
MS0_HS  
R/W  
D3  
D2  
D1  
D0  
Name MS3_HS  
MS_PEC[2:0]  
Type  
R/W  
Reset value = xxxx x111  
Bit  
Name  
Function  
MultiSynth3 High Speed Mode.  
When this bit is asserted, MultiSynth3 will only accept divide ratios of 4.0 or 6.0. Incre-  
ment/decrement, SSC, and all phase functions are not available when this bit is set.  
0: MultiSynth3 implements fractional divide ratios between 8 and 1023  
1: MultiSynth3 can only implement 4.0 or 6.0 divide ratio.  
7
MS3_HS  
MultiSynth2 High Speed Mode.  
When this bit is asserted, MultiSynth2 will only accept divide ratios of 4.0 or 6.0. Incre-  
ment/decrement, SSC, and all phase functions are not available when this bit is set.  
0: MultiSynth2 implements fractional divide ratios between 8 and 1023.  
1: MultiSynth2 can only implement 4.0 or 6.0 divide ratio.  
6
5
4
MS2_HS  
MS1_HS  
MS0_HS  
MultiSynth1 High Speed Mode.  
When this bit is asserted, MultiSynth1 will only accept divide ratios of 4.0 or 6.0. Incre-  
ment/decrement, SSC, and all phase functions are not available when this bit is set.  
0: MultiSynth1 implements fractional divide ratios between 8 and 1023.  
1: MultiSynth1 can only implement 4.0 or 6.0 divide ratio.  
MultiSynth0 High Speed Mode.  
When this bit is asserted, MultiSynth0 will only accept divide ratios of 4.0 or 6.0. Incre-  
ment/decrement, SSC, and all phase functions are not available when this bit is set.  
0: MultiSynth0 implements fractional divide ratios between 8 and 1023.  
1: MultiSynth0 can only implement 4.0 or 6.0 divide ratio.  
3
Unused  
Unused.  
MultiSynth Phase Error Correction.  
2:0  
MS_PEC[2:0]  
All non-factory programmed devices must have 111b written to these bits.  
72  
Rev. 0.6  
Si5338  
Register 52.  
Bit  
D7  
D6  
D5  
D4  
MS0_FIDDIS  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDCT[1:0]  
R/W  
MS0_SSMODE[1:0]  
R/W  
MS0_PHIDCT[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
MultiSynth0 Frequency Increment/Decrement Control.  
Bit 4 (disable) must be 0 before writing an increment or decrement  
to these bits. Only MS0 can have pin control of Frequency Incre-  
ment/Decrement.  
6:5  
MS0_FIDCT[1:0]  
0: No frequency inc/dec on MS0  
1: Enable pin control of frequency inc/dec  
2: Frequency increment on MS0, self-clearing  
3: Frequency decrement on MS0, self-clearing  
MultiSynth0 Frequency Increment/Decrement Disable (see also  
Register 242[1]).  
4
MS0_FIDDIS  
0: Frequency inc/dec enabled on MS0  
1: Frequency inc/dec disabled on MS0  
MultiSynth0 Spread Spectrum Mode Select.  
0: No SSC on MS0  
3:2  
MS0_SSMODE[1:0]  
1: Center spread on MS0  
2: Reserved  
3: Down spread MS0  
MultiSynth0 Phase Increment/Decrement Control.  
0: No phase inc/dec on MS0  
1:0  
MS0_PHIDCT[1:0]  
1: Enable pin control of phase inc/dec  
2: Phase increment on MS0, self clearing  
3: Phase decrement on MS0, self clearing  
Rev. 0.6  
73  
Si5338  
Register 53.  
Bit  
D7  
D6  
D5  
D4  
MS0_P1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_P1[7:0]  
Function  
MultiSynth0 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth0 divider.  
Register 54.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P1[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_P1[15:8]  
Function  
MultiSynth0 Parameter 1.  
15:8  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth0 divider.  
74  
Rev. 0.6  
Si5338  
Register 55.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P2[5:0]  
MS0_P1[17:16]  
R/W  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth0 Parameter 2.  
7:2  
MS0_P2[5:0]  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth0 Divider.  
MultiSynth0 Parameter 1.  
1:0  
MS0_P1[17:16]  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth0 divider.  
Register 56.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P2[13:6]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_P2[13:6]  
Function  
MultiSynth0 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth0 Divider.  
Rev. 0.6  
75  
Si5338  
Register 57.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P2[21:14]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_P2[21:14]  
Function  
MultiSynth0 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth0 Divider.  
Register 58.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P2[29:22]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth0 Parameter 2.  
7:0  
MS0_P2[29:22]  
This 30-bit number is an encoded representation of the numerator for the  
fractional part of the MultiSynth0 Divider.  
76  
Rev. 0.6  
Si5338  
Register 59.  
Bit  
D7  
D6  
D5  
D4  
MS0_P3[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth0 Parameter 3.  
7:0  
MS0_P3[7:0]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth0 divider.  
Register 60.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P3[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_P3[15:8]  
Function  
MultiSynth0 Parameter 3.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth0 divider.  
Register 61.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P3[23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth0 Parameter 3.  
7:0  
MS0_P3[23:16]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth0 divider.  
Rev. 0.6  
77  
Si5338  
Register 62.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_P3[29:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:6  
Reserved  
Reserved.  
MultiSynth0 Parameter 3.  
5:0  
MS0_P3[29:24]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth0 divider.  
78  
Rev. 0.6  
Si5338  
Register 63.  
Bit  
D7  
D6  
D5  
D4  
MS1_FIDDIS  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDCT[1:0]  
R/W  
MS1_SSMODE[1:0]  
R/W  
MS1_PHIDCT[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
MultiSynth1 Frequency Increment/Decrement Control.  
Bit 4 (disable) must be 0 before writing an increment or decrement  
to these bits.  
6:5  
MS1_FIDCT[1:0]  
0: No frequency inc/dec on MS1  
1: Reserved  
2: Frequency increment on MS1, self-clearing  
3: Frequency decrement on MS1, self-clearing  
MultiSynth1 Frequency Increment/Decrement Disable.  
See also Register 242[1].  
0: Frequency inc/dec enabled on MS1  
1: Frequency inc/dec disabled on MS1  
4
MS1_FIDDIS  
MultiSynth1 Spread Spectrum Mode Select.  
0: No SSC on MS1  
3:2  
MS1_SSMODE[1:0]  
1: Center spread on MS1  
2: Reserved  
3: Downspread MS1  
MultiSynth1 Phase Increment/Decrement Control.  
Writing a 10 or 11 will self clear back to 0.  
0: No phase inc/dec on MS1  
1: Enable pin control of phase inc/dec  
2: Phase increment on MS1, self clearing  
3: Phase decrement on MS1, self clearing  
1:0  
MS1_PHIDCT[1:0]  
Rev. 0.6  
79  
Si5338  
Register 64.  
Bit  
D7  
D6  
D5  
D4  
MS1_P1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
MS1_P1[7:0]  
Function  
MultiSynth1 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth1 divider.  
Register 65.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P1[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS1_P1[15:8]  
Function  
MultiSynth1 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth1 divider.  
80  
Rev. 0.6  
Si5338  
Register 66.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P2[5:0]  
MS1_P1[17:16]  
R/W  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth1 Parameter 2.  
7:2  
MS1_P2[5:0]  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth1 Divider.  
MultiSynth1 Parameter 1.  
1:0  
MS1_P1[17:16]  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth1 divider.  
Register 67.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P2[13:6]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS1_P2[13:6]  
Function  
MultiSynth1 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the fractional  
part of the MultiSynth1 Divider.  
Rev. 0.6  
81  
Si5338  
Register 68.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P2[21:14]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS1_P2[21:14]  
Function  
MultiSynth1 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth1 Divider.  
Register 69.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P2[29:22]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS1_P2[29:22]  
Function  
MultiSynth1 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth1 Divider.  
Register 70.  
Bit  
D7  
D6  
D5  
D4  
MS1_P3[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth1 Parameter 3.  
7:0  
MS1_P3[7:0]  
This 30-bit number is an encoded representation of the denominator for the fractional  
part of the MultiSynth1 Divider.  
82  
Rev. 0.6  
Si5338  
Register 71.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P3[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS1_P3[15:8]  
Function  
MultiSynth1 Parameter 3.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth1 Divider.  
Register 72.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P3[23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth1 Parameter 3.  
7:0  
MS1_P3[23:16]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth1 Divider.  
Register 73.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_P3[29:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:6  
Reserved  
Reserved  
MultiSynth1 Parameter 3.  
5:0  
MS1_P3[29:24]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth1 Divider.  
Rev. 0.6  
83  
Si5338  
Register 74.  
Bit  
D7  
D6  
D5  
D4  
MS2_FIDDIS  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDCT[1:0]  
R/W  
MS2_SSMODE[1:0]  
R/W  
MS2_PHIDCT[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
MultiSynth2 Frequency Increment/Decrement Control.  
Bit 4 (disable) must be 0 before writing an increment or decrement  
to these bits.  
6:5  
MS2_FIDCT[1:0]  
0: No frequency inc/dec on MS2  
1: Reserved  
2: Frequency increment on MS2, self-clearing  
3: Frequency decrement on MS2, self-clearing  
MultiSynth2 Frequency Increment/Decrement Disable (see also  
Register 242[1]).  
4
MS2_FIDDIS  
0: Frequency inc/dec enabled on MS2  
1: Frequency inc/dec disabled on MS2  
MultiSynth2 Spread Spectrum Mode Select.  
0: No SSC on MS2  
3:2  
MS2_SSMODE[1:0]  
1: Center spread on MS2  
2: Reserved  
3: Down spread MS2  
MultiSynth2 Phase Increment/Decrement Control.  
0: No phase inc/dec on MS2  
1:0  
MS2_PHIDCT[1:0]  
1: Enable pin control of phase inc/dec  
2: Phase increment on MS2, self clearing  
3: Phase decrement on MS2, self clearing  
84  
Rev. 0.6  
Si5338  
Register 75.  
Bit  
D7  
D6  
D5  
D4  
MS2_P1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P1[7:0]  
Function  
MultiSynth2 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth2 divider.  
Register 76.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P1[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P1[15:8]  
Function  
MultiSynth2 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth2 divider.  
Rev. 0.6  
85  
Si5338  
Register 77.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P2[5:0]  
MS2_P1[17:16]  
R/W  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth2 Parameter 2.  
7:2  
MS2_P2[5:0]  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth2 Divider.  
MultiSynth2 Parameter 1.  
1:0  
MS2_P1[17:16]  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth2 divider.  
Register 78.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P2[13:6]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P2[13:6]  
Function  
MultiSynth2 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the fractional  
part of the MultiSynth2 Divider.  
86  
Rev. 0.6  
Si5338  
Register 79.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P2[21:14]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P2[21:14]  
Function  
MultiSynth2 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth2 Divider.  
Register 80.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P2[29:22]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P2[29:22]  
Function  
MultiSynth2 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth2 Divider.  
Rev. 0.6  
87  
Si5338  
Register 81.  
Bit  
D7  
D6  
D5  
D4  
MS2_P3[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth2 Parameter 3.  
MS2_P3[7:0]  
This 30-bit number is an encoded representation of the denominator for the fractional  
part of the MultiSynth2 Divider.  
Register 82.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P3[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P3[15:8]  
Function  
MultiSynth2 Parameter 3.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth2 Divider.  
88  
Rev. 0.6  
Si5338  
Register 83.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P3[23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS2_P3[23:16]  
Function  
MultiSynth2 Parameter 3.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth2 Divider.  
Register 84.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_P3[29:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:6  
Reserved  
Reserved.  
MultiSynth2 Parameter 3.  
MS2_P3[29:24]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth2 Divider.  
Rev. 0.6  
89  
Si5338  
Register 85.  
Bit  
D7  
D6  
D5  
D4  
MS3_FIDDIS  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDCT[1:0]  
R/W  
MS3_SSMODE[1:0]  
R/W  
MS3_PHIDCT[1:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
MultiSynth3 Frequency Increment/Decrement Control.  
Bit 4 (disable) must be 3 before writing an increment or decrement to these  
bits.  
6:5  
MS3_FIDCT[1:0]  
0: No frequency inc/dec on MS3  
1: Reserved  
2: Frequency increment on MS3, self-clearing  
3: Frequency decrement on MS3, self-clearing  
MultiSynth3 Frequency Increment/Decrement Disable (see also  
Register 242[1]).  
4
MS3_FIDDIS  
0: Frequency inc/dec enabled on MS3  
1: Frequency inc/dec disabled on MS3  
MultiSynth3 Spread Spectrum Mode Select.  
0: No SSC on MS3  
3:2  
MS3_SSMODE[1:0]  
1: Center spread on MS3  
2: Reserved  
3: Down spread MS3  
MultiSynth3 Phase Increment/Decrement Control.  
0: No phase inc/dec on MS3  
1:0  
MS3_PHIDCT[1:0]  
1: Enable pin control of phase inc/dec  
2: Phase increment on MS3  
3: Phase decrement on MS3  
90  
Rev. 0.6  
Si5338  
Register 86.  
Bit  
D7  
D6  
D5  
D4  
MS3_P1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
MS3_P1[7:0]  
Function  
MultiSynth3 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth3 divider.  
Register 87.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P1[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS3_P1[15:8]  
Function  
MultiSynth3 Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth3 divider  
Rev. 0.6  
91  
Si5338  
Register 88.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P2[5:0]  
MS3_P1[17:16]  
R/W  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Parameter 2.  
7:2  
MS3_P2[5:0]  
This 30-bit number is an encoded representation of the denominator for the  
fractional part of the MultiSynth3 Divider.  
MultiSynth3 Parameter 1.  
1:0  
MS3_P1[17:16]  
This 18-bit number is an encoded representation of the integer part of the  
MultiSynth3 divider.  
Register 89.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P2[13:6]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS3_P2[13:6]  
Function  
MultiSynth3 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth3 Divider.  
92  
Rev. 0.6  
Si5338  
Register 90.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P2[21:14]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS3_P2[21:14]  
Function  
MultiSynth3 Parameter 2.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth3 Divider.  
Register 91.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P2[29:22]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Parameter 2.  
7:0  
MS3_P2[29:22]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth3 Divider.  
Register 92.  
Bit  
D7  
D6  
D5  
D4  
MS3_P3[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Parameter 3.  
7:0  
MS3_P3[7:0]  
This 30-bit number is an encoded representation of the denominator for the fractional  
part of the MultiSynth3 Divider.  
Rev. 0.6  
93  
Si5338  
Register 93.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P3[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS3_P3[15:8]  
Function  
MultiSynth3 Parameter 3.  
7:0  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth3 Divider  
Register 94.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P3[23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Parameter 3.  
7:0  
MS3_P3[23:16]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth3 Divider  
Register 95.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_P3[29:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:6  
Reserved  
Reserved.  
MultiSynth3 Parameter 3.  
5:0  
MS3_P3[29:24]  
This 30-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth3 Divider.  
94  
Rev. 0.6  
Si5338  
Register 97.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P1[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Feedback MultiSynthN Parameter 1.  
7:0  
MSN_P1[7:0]  
This 18-bit number is an encoded representation of the integer part of the MultiSynth  
Feedback divider.  
Register 98.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P1[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MSN_P1[15:8]  
Function  
Feedback MultiSynthN Parameter 1.  
7:0  
This 18-bit number is an encoded representation of the integer part of the MultiSynth  
Feedback divider.  
Rev. 0.6  
95  
Si5338  
Register 99.  
Bit  
D7  
D6  
D5  
MSN_P2[5:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P1[17:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Feedback MultiSynthN Parameter 2.  
7:2  
MSN_P2[5:0]  
This 18-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth Feedback divider.  
Feedback MultiSynthN Parameter 1.  
1:0  
MSN_P1[17:16]  
This 18-bit number is an encoded representation of the integer part of the Multi-  
Synth Feedback divider.  
Register 100.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P2[13:6]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Feedback MultiSynthN Parameter 2.  
7:0  
MSN_P2[13:6]  
This 18-bit number is an encoded representation of the numerator for the fractional  
part of the MultiSynth Feedback divider.  
96  
Rev. 0.6  
Si5338  
Register 101.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P2[21:14]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MSN_P2[21:14]  
Function  
Feedback MultiSynthN Parameter 2.  
7:0  
This 18-bit number is an encoded representation of the numerator for the fractional  
part of the MultiSynth Feedback divider.  
Register 102.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P2[29:22]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MSN_P2[29:22]  
Function  
Feedback MultiSynthN Parameter 2.  
7:0  
This 18-bit number is an encoded representation of the numerator for the frac-  
tional part of the MultiSynth Feedback divider.  
Register 103.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P3[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Feedback MultiSynthN Parameter 3.  
7:0  
MSN_P3[7:0]  
This 18-bit number is an encoded representation of the denominator for the fractional  
part of the MultiSynth Feedback divider.  
Rev. 0.6  
97  
Si5338  
Register 104.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P3[15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Feedback MultiSynthN Parameter 3.  
7:0  
MSN_P3[15:8]  
This 18-bit number is an encoded representation of the denominator for the fractional  
part of the MultiSynth Feedback divider  
Register 105.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MSN_P3[23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MSN_P3[23:16]  
Function  
Feedback MultiSynthN Parameter 3.  
7:0  
This 18-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth Feedback divider.  
98  
Rev. 0.6  
Si5338  
Register 106.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NOTERM_FB  
R/W  
MSN_P3[29:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
7
Name  
Function  
Reserved.  
Reserved  
Reserved  
Must write 1b to this bit.  
6
Reserved.  
Feedback MultiSynthN Parameter 3.  
5:0  
MSN_P3[29:24]  
This 18-bit number is an encoded representation of the denominator for the frac-  
tional part of the MultiSynth Feedback divider.  
Register 107.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_PHOFF[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth0 Initial Phase Offset.  
MultiSynth0_PHOFF[14:0] is a 2s complement number. The initial phase  
offset is MultiSynth0_PHOFF[14:0]*Tvco/128 where Tvco is the period of  
the VCO.  
7:0  
MS0_PHOFF[7:0]  
Rev. 0.6  
99  
Si5338  
Register 108.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS0_PHOFF[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved.  
MultiSynth0 Initial Phase Offset.  
MultiSynth0_PHOFF[14:0] is a 2s complement number. The initial  
phase offset is MultiSynth0_PHOFF[14:0]*Tvco/128 where Tvco is the  
period of the VCO.  
6:0  
MS0_PHOFF[14:8]  
Register 109.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_PHSTEP[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth0 Phase Step Size.  
The phase step size is MultiSynth0_PHSTEP[13:0]*Tvco/128 where  
Tvco is the period of the VCO. Either the phase inc/dec pins (if avail-  
able) or register 52[1:0] will control the stepping of phase. A phase  
increment will delay the clock edge.  
7:0  
MS0_PHSTEP[7:0]  
100  
Rev. 0.6  
Si5338  
Register 110.  
Bit  
D7  
D6  
CLK0_DISST[1:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_PHSTEP[13:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
CLK0 Output Driver State When Disabled.  
00: High impedance  
7:6  
CLK0_DISST[1:0  
01: Logic low  
10: Logic high  
11: Always on even if disabled  
MS0 Phase Step Size.  
The phase step size is MS0_PHSTEP[13:0]*Tvco/128 where Tvco is  
the period of the VCO. Either the phase inc/dec pins (if available) or  
register 52[1:0] will control the stepping of phase. A phase increment  
will delay the clock edge.  
5:0  
MS0_PHSTEP[13:8]  
Register 111.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_PHOFF[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth1 Initial Phase Offset.  
MultiSynth1_PHOFF[14:0] is a 2s complement number. The initial phase  
offset is MultiSynth1_PHOFF[14:0]*Tvco/128 where Tvco is the period of  
the VCO.  
7:0  
MS1_PHOFF[7:0]  
Rev. 0.6  
101  
Si5338  
Register 112.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS1_PHOFF[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Reserved  
Reserved  
MultiSynth1 Initial Phase Offset.  
MultiSynth1_PHOFF[14:0] is a 2s complement number. The initial  
phase offset is MultiSynth1_PHOFF[14:0] x Tvco/128 where Tvco is the  
period of the VCO.  
6:0  
MS1_PHOFF[14:8]  
Register 113.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_PHSTEP[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth1 Phase Step Size.  
The phase step size is MultiSynth1_PHSTEP[13:0] x Tvco/128 where  
Tvco is the period of the VCO. Either the phase inc/dec pins (if avail-  
able) or register 63[1:0] will control the stepping of phase. A phase  
increment will delay the clock edge.  
7:0  
MS1_PHSTEP[7:0]  
102  
Rev. 0.6  
Si5338  
Register 114.  
Bit  
D7  
D6  
CLK1_DISST[1:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_PHSTEP[13:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth1 Output Driver State When Disabled.  
00: High impedance  
7:6  
CLK1_DISST[1:0]  
01: Logic low  
10: Logic high  
11: Always on even if disabled  
MultiSynth1 Phase Step Size.  
The phase step size is MS1_PHSTEP[13:0]*Tvco/128 where Tvco is  
the period of the VCO. Either the phase inc/dec pins (if available) or  
register 63[1:0] will control the stepping of phase. A phase increment  
will delay the clock edge.  
5:0  
MS1_PHSTEP[13:8]  
Register 115.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_PHOFF[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth2 Initial Phase Offset.  
MultiSynth2_PHOFF[14:0] is a 2s complement number. The initial phase  
offset is MultiSynth2_PHOFF[14:0] x Tvco/128 where Tvco is the period  
of the VCO.  
7:0  
MS2_PHOFF[7:0]  
Rev. 0.6  
103  
Si5338  
Register 116.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS2_PHOFF[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Reserved  
Function  
Reserved.  
7
Must write 1b to this bit.  
MultiSynth2 Initial Phase Offset.  
MultiSynth2_PHOFF[14:0] is a 2s complement number. The initial  
phase offset is MultiSynth2_PHOFF[14:0] x Tvco/128 where Tvco is  
the period of the VCO.  
6:0  
MS2_PHOFF[14:8]  
Register 117.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_PHSTEP[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth2 Phase Step Size.  
The phase step size is MultiSynth2_PHSTEP[13:0] x Tvco/128 where  
Tvco is the period of the VCO. Either the phase inc/dec pins (if avail-  
able) or register 74[1:0] will control the stepping of phase. A phase  
increment will delay the clock edge.  
7:0  
MS2_PHSTEP[7:0]  
104  
Rev. 0.6  
Si5338  
Register 118.  
Bit  
D7  
D6  
CLK2_DISST[1:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_PHSTEP[13:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth2 Output Driver State When Disabled.  
00: High impedance  
7:6  
CLK2_DISST[1:0]  
01: Logic low  
10: Logic high  
11: Always on even if disabled  
MultiSynth2 Phase Step Size.  
The phase step size is MS2_PHSTEP[13:0]*Tvco/128 where Tvco is  
the period of the VCO. Either the phase inc/dec pins (if available) or  
register 74[1:0] will control the stepping of phase. A phase increment  
will delay the clock edge.  
5:0  
MS2_PHSTEP[13:8]  
Register 119.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_PHOFF[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Initial Phase Offset.  
MultiSynth3_PHOFF[14:0] is a 2s complement number. The initial phase  
offset is MultiSynth3_PHOFF[14:0] x Tvco/128 where Tvco is the period  
of the VCO.  
7:0  
MS3_PHOFF[7:0]  
Rev. 0.6  
105  
Si5338  
Register 120.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS3_PHOFF[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7
Unused  
Unused.  
MultiSynth3 Initial Phase Offset.  
MultiSynth3_PHOFF[14:0] is a 2s complement number. The initial  
phase offset is MultiSynth3_PHOFF[14:0] x Tvco/128 where Tvco is the  
period of the VCO.  
6:0  
MS3_PHOFF[14:8]  
Register 121.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_PHSTEP[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Phase Step Size.  
The phase step size is MultiSynth3_PHSTEP[13:0] x Tvco/128 where  
Tvco is the period of the VCO. Either the phase inc/dec pins (if avail-  
able) or register 85[1:0] will control the stepping of phase. A phase  
increment will delay the clock edge.  
7:0  
MS3_PHSTEP[7:0]  
106  
Rev. 0.6  
Si5338  
Register 122.  
Bit  
D7  
D6  
CLK3_DISST[1:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_PHSTEP[13:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
MultiSynth3 Output Driver State When Disabled.  
00: High impedance  
7:6  
CLK3_DISST[1:0]  
01: Logic low  
10: Logic high  
11: Always on even if disabled  
MultiSynth3 Phase Step Size.  
The phase step size is MultiSynth3_PHSTEP[13:0] x Tvco/128 where  
Tvco is the period of the VCO. Either the phase inc/dec pins (if avail-  
able) or register 85[1:0] will control the stepping of phase. A phase  
increment will delay the clock edge.  
5:0  
MS3_PHSTEP[13:8]  
Register 123.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1[7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_FIDP1[7:0]  
Function  
7:0  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
Rev. 0.6  
107  
Si5338  
Register 124.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1 [15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP1 [15:8]  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
Register 125.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1 [23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP1 [23:16]  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
Register 126.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1 [31:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP1 [31:24]  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
108  
Rev. 0.6  
Si5338  
Register 127.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1 [39:32]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP1 [39:32]  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
Register 128.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1 [47:40]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP1 [47:40]  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
Register 129.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP1 [51:48]  
R/W  
Reset value = 001x xxxx  
Bit  
7:4  
3:0  
Name  
Reserved  
Function  
Reserved.  
MultiSynth0 Frequency Increment/Decrement Parameter 1.  
MS0_FIDP1[51:48]  
Rev. 0.6  
109  
Si5338  
Register 130.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP2 [51:48]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:4  
3:0  
Reserved  
Reserved  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
MS0_FIDP2[51:48]  
Register 131.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP2 [47:40]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP2 [47:40]  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
Register 132.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP2 [39:32]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_FIDP2 [39:32]  
Function  
7:0  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
110  
Rev. 0.6  
Si5338  
Register 133.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP2 [31:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP2 [31:24]  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
Register 134.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP2 [23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP2 [23:16]  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
Register 135.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP2 [15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP2 [15:8]  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
Rev. 0.6  
111  
Si5338  
Register 136.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS0_FIDP2 [7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP2 [7:0]  
MultiSynth0 Frequency Increment/Decrement Parameter 2.  
Register 137.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS0_FIDP3 [7:0]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP3 [7:0]  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
Register 138.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS0_FIDP3 [15:8]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
MS0_FIDP3 [15:8]  
Function  
7:0  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
112  
Rev. 0.6  
Si5338  
Register 139.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP3 [23:16]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP3 [23:16]  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
Register 140.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP3 [31:24]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP3 [31:24]  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
Register 141.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_FIDP3 [39:32]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP3 [39:32]  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
Rev. 0.6  
113  
Si5338  
Register 142.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS0_FIDP3 [47:40]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP3 [47:40]  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
Register 143.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS0_FIDP3 [55:48]  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:0  
MS0_FIDP3 [55:48]  
MultiSynth0 Frequency Increment/Decrement Parameter 3.  
Register 144.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name MS0_ALL  
MS0_FIDP3[62:56]  
Type  
R/W  
Reset value = xxxx xxxx  
Bit  
7
Name  
Function  
Use MultiSynth0 for All Outputs.  
MS0_ALL  
If set, the MultiSynth0 output is routed to the mux at the input of each R divider.  
Unused MultiSynths should be powered down to save power.  
6:0  
MS0_FIDP3[62:56] MultiSynth0 Frequency Increment/Decrement Parameter 3.  
114  
Rev. 0.6  
Si5338  
Register 152.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP1[7:0]  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
Register 153.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP1[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP1[15:8]  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
Register 154.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP1[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS1_FIDP1[23:16]  
Function  
7:0  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
Rev. 0.6  
115  
Si5338  
Register 155.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS1_FIDP1[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP1[31:24]  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
Register 156.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS1_FIDP1[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP1[39:32]  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
Register 157.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS1_FIDP1[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP1[47:40]  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
116  
Rev. 0.6  
Si5338  
Register 158.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP1[51:48]  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
MultiSynth1 Frequency Increment/Decrement Parameter 1.  
MS1_FIDP1[51:48]  
Register 159.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP2[51:48]  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
MS1_FIDP2[51:48]  
Register 160.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP2[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP2[47:40]  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
Rev. 0.6  
117  
Si5338  
Register 161.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS1_FIDP2[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP2[39:32]  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
Register 162.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS1_FIDP2[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP2[31:24]  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
Register 163.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS1_FIDP2[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP2[23:16]  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
118  
Rev. 0.6  
Si5338  
Register 164.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP2[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP2[15:8]  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
Register 165.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP2[7:0]  
MultiSynth1 Frequency Increment/Decrement Parameter 2.  
Register 166.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP3[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS1_FIDP3[7:0]  
Function  
7:0  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
Rev. 0.6  
119  
Si5338  
Register 167.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS1_FIDP3[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP3[15:8]  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
Register 168.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS1_FIDP3[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP3[23:16]  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
Register 169.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS1_FIDP3[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS1_FIDP3[31:24]  
Function  
7:0  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
120  
Rev. 0.6  
Si5338  
Register 170.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP3[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP3[39:32]  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
Register 171.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP3[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP3[47:40]  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
Register 172.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_FIDP3[55:48]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_FIDP3[55:48]  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
Rev. 0.6  
121  
Si5338  
Register 173.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS1_FIDP3[62:56]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth1 Frequency Increment/Decrement Parameter 3.  
6:0  
MS1_FIDP3[62:56]  
Register 174.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP1[7:0]  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
Register 175.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS2_FIDP1[15:8]  
Function  
7:0  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
122  
Rev. 0.6  
Si5338  
Register 176.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP1[23:16]  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
Register 177.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP1[31:24]  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
Register 178.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP1[39:32]  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
Rev. 0.6  
123  
Si5338  
Register 179.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP1[47:40]  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
Register 180.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP1[51:48]  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Unused  
Unused.  
MultiSynth2 Frequency Increment/Decrement Parameter 1.  
MS2_FIDP1[51:48]  
Register 181.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP2[51:48]  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
MS2_FIDP2[51:48]  
124  
Rev. 0.6  
Si5338  
Register 182.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP2[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP2[47:40]  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
Register 183.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP2[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP2[39:32]  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
Register 184.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP2[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP2[31:24]  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
Rev. 0.6  
125  
Si5338  
Register 185.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS2_FIDP2[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP2[23:16]  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
Register 186.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS2_FIDP2[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP2[15:8]  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
Register 187.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS2_FIDP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS2_FIDP2[7:0]  
Function  
7:0  
MultiSynth2 Frequency Increment/Decrement Parameter 2.  
126  
Rev. 0.6  
Si5338  
Register 188.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP3[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP3[7:0]  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
Register 189.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP3[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP3[15:8]  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
Register 190.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP3[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS2_FIDP3[23:16]  
Function  
7:0  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
Rev. 0.6  
127  
Si5338  
Register 191.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS2_FIDP3[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP3[31:24]  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
Register 192.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS2_FIDP3[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP3[39:32]  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
Register 193.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS2_FIDP3[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP3[47:40]  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
128  
Rev. 0.6  
Si5338  
Register 194.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_FIDP3[55:48]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_FIDP3[55:48]  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
Register 195.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS2_FIDP3[62:56]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth2 Frequency Increment/Decrement Parameter 3.  
6:0  
MS2_FIDP3[62:56]  
Register 196.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP1[7:0]  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
Rev. 0.6  
129  
Si5338  
Register 197.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS3_FIDP1[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP1[15:8]  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
Register 198.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS3_FIDP1[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP1[23:16]  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
Register 199.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS3_FIDP1[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS3_FIDP1[31:24]  
Function  
7:0  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
130  
Rev. 0.6  
Si5338  
Register 200.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP1[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP1[39:32]  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
Register 201.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP1[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP1[47:40]  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
Register 202.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP1 [51:48]  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Unused  
Unused.  
MultiSynth3 Frequency Increment/Decrement Parameter 1.  
MS3_FIDP1 [51:48]  
Rev. 0.6  
131  
Si5338  
Register 203.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP2[51:48]  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
MS3_FIDP2[51:48]  
Register 204.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP2[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP2[47:40]  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
Register 205.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP2[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP2[39:32]  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
132  
Rev. 0.6  
Si5338  
Register 206.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP2[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP2[31:24]  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
Register 207.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP2[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP2[23:16]  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
Register 208.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP2[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP2[15:8]  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
Rev. 0.6  
133  
Si5338  
Register 209.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS3_FIDP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP2[7:0]  
MultiSynth3 Frequency Increment/Decrement Parameter 2.  
Register 210.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS3_FIDP3[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP3[7:0]  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
Register 211.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS3_FIDP3[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS3_FIDP3[15:8]  
Function  
7:0  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
134  
Rev. 0.6  
Si5338  
Register 212.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP3[23:16]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP3[23:16]  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
Register 213.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP3[31:24]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP3[31:24]  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
Register 214.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_FIDP3[39:32]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP3[39:32]  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
Rev. 0.6  
135  
Si5338  
Register 215.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
MS3_FIDP3[47:40]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP3[47:40]  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
Register 216.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
MS3_FIDP3[55:48]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_FIDP3[55:48]  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
Register 217.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS3_FIDP3[62:56]  
R/W  
D2  
D1  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused  
MultiSynth3 Frequency Increment/Decrement Parameter 3.  
6:0  
MS3_FIDP3[62:56]  
136  
Rev. 0.6  
Si5338  
Register 218.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SYS_CAL  
R
Name  
Type  
PLL_LOL LOS_FDBK LOS_CLKIN  
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved  
PLL Loss of Lock (LOL).  
Asserts when the two PFD inputs have a frequency difference > 1000 ppm.  
This bit is held high during a POR_reset until the PLL has locked. This bit will not  
chatter while the PLL is locking. PLL_LOL does not assert when the input from  
IN1,IN2 or IN3 is lost. When PLL_LOL asserts, the part will automatically try to  
re-acquire to the input clock. See Register 241[7].  
4
PLL_LOL  
3
2
1
0
LOS_FDBK  
LOS_CLKIN  
Reserved  
Loss of Signal on Feedback Clock from IN5,6 or IN4.  
Loss of Signal on Input Clock from IN1,2 or IN3.  
Reserved  
SYS_CAL  
Device Calibration in Process.  
Rev. 0.6  
137  
Si5338  
Register 230.  
Bit  
D7  
D6  
D5  
D4  
OEB_ALL  
R/W  
D3  
OEB_3  
R/W  
D2  
OEB_2  
R/W  
D1  
OEB_1  
R/W  
D0  
OEB_0  
R/W  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:5  
Unused  
Unused.  
Disable All Clock Outputs.  
0: All output clocks are disabled  
1: Output clocks are not disabled  
4
3
2
1
0
OEB_ALL  
OEB_3  
OEB_2  
OEB_1  
OEB_0  
CLK3 Disable.  
0: CLK1 output is disabled  
1: CLK1 output is not disabled  
CLK2 Disable.  
0: CLK2 output is disabled  
1: CLK2 output is not disabled  
CLK1 Disable.  
0: CLK2 output is disabled  
1: CLK2 output is not disabled  
CLK0 Disable.  
0: CLK0 output is disabled  
1: CLK0 output is not disabled  
Register 235.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FCAL[7:0]  
R
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Bits 7:0 of the Frequency Calibration for the VCO.  
7:0  
FCAL[7:0]  
138  
Rev. 0.6  
Si5338  
Register 236.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FCAL[15:8]  
R
Reset value = xxxx xxxx  
Bit  
Name  
Function  
Bits 15:8 of the Frequency Calibration for the VCO.  
7:0  
FCAL[15:8]  
Register 237.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reserved  
R
FCAL[17:16]  
R
Reset value = xxxx xxxx  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
FCAL[17:16]  
Reserved.  
Bits 17:16 of the Frequency Calibration for the VCO.  
Register 241.  
Bit  
D7  
DIS_LOL  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reserved. Write to 0x65.  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
When asserted, the PLL_LOL status in register 218 is prevented from  
asserting.  
7
DIS_LOL  
Reserved  
On a non-factory-programmed device this register must be set to 0x65.  
On a factory programmed device, this register must stay 0x65.  
6:0  
Rev. 0.6  
139  
Si5338  
Register 242.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
DCLK_DIS  
R/W  
D0  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:2  
Reserved  
Reserved.  
Disable Clock to INC/DEC State Machine.  
1
0
DCLK_DIS  
Reserved  
When true, the frequency inc/dec logic is disabled, which saves about 2 mA of current.  
See also Registers 52[4], 63[4], 74[4], 85[4].  
Reserved.  
Register 246.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SOFT_RESET  
R/W  
D0  
Name  
Type  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:2  
Reserved  
Reserved.  
Soft Reset.  
This reset will disable all clock outputs, then re-acquire the PLL to the input clock and  
the enable all the clock outputs. Retains device configuration stored in RAM. Do not  
use read-modify-write procedure to perform soft reset. Instead, write reg246=0x02,  
regardless of the current value of this bit. Reading this bit after a soft reset will return a  
1.  
1
0
SOFT_RESET  
Reserved  
Reserved.  
140  
Rev. 0.6  
Si5338  
Register 247.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SYS_CAL_STK  
R/W  
Name  
Type  
PLL_LOL_STK LOS_FDBK_STK LOS_CLKIN_STK  
R/W  
R/W  
R/W  
Reset value = xxxx xxxx  
Bit  
Name  
Function  
7:5  
Reserved  
Reserved.  
PLL Loss of Lock Sticky Bit.  
4
3
PLL_LOL_STK  
Sticky version of PLL_LOL. See also Registers 6 and 218. Only a soft or POR  
reset or writing a “0” to this bit will clear it.  
Feedback Clock Loss of Signal Sticky Bit.  
LOS_FDBK_STK  
Sticky version of LOS_FDBK. See also Registers 6 and 218. Only a soft or  
POR reset or writing a “0” to this bit will clear it.  
Input Clock Loss of Signal Sticky Bit.  
2
1
0
LOS_CLKIN_STK  
Reserved  
Sticky version of LOS_CLKIN_STK. See also Registers 6 and 218. Only a soft  
or POR reset or writing a “0” to this bit will clear it.  
Reserved.  
System Calibration in Process Sticky Bit.  
SYS_CAL_STK  
Sticky version of SYS_CAL. See also Registers 6 and 218. Only a soft or POR  
reset or writing a “0” to this bit will clear it.  
Rev. 0.6  
141  
Si5338  
Register 255.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PAGE_SEL  
R/W  
Name  
Type  
Reset value = xxxx xxxx  
Bit  
7:1  
0
Name  
Unused  
Function  
Unused.  
PAGE_SEL  
Set to 0 to access registers 0–254, set to 1 to access register 256 to 347.  
Register 287.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSUPP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS0_SSUPP2[7:0]  
Function  
7:0  
MultiSynth0 Spread Spectrum Up Parameter 2.  
142  
Rev. 0.6  
Si5338  
Register 288.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS0_SSUPP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth0 Spread Spectrum Up Parameter 2.  
6:0  
MS0_SSUPP2[14:8]  
Register 289.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSUPP3[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS0_SSUPP3[7:0]  
MultiSynth0 Spread Spectrum Up Parameter 3.  
Register 290.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS0_SSUPP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused  
MultiSynth0 Spread Spectrum Up Parameter 3.  
6:0  
MS0_SSUPP3[14:8]  
Rev. 0.6  
143  
Si5338  
Register 291.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSUPP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS0_SSUPP1[7:0]  
MultiSynth0 Spread Spectrum Up Parameter 1.  
Register 292.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSUDP1[3:0]  
R/W  
MS0_SSUPP1[11:8]  
R/W  
Reset value = 0011 0001  
Bit  
7:4  
3:0  
Name  
Function  
MS0_SSUDP1[3:0]  
MS0_SSUPP1[11:8]  
MultiSynth0 Spread Spectrum Up/Down Parameter 1.  
MultiSynth0 Spread Spectrum Up Parameter 1.  
Register 293.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSUDP1[11:4]  
R/W  
Reset value = 0011 0001  
Bit  
Name  
MS0_SSUDP1[11:4]  
Function  
7:0  
MultiSynth0 Spread Spectrum Up Parameter 1.  
144  
Rev. 0.6  
Si5338  
Register 294.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSDNP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS0_SSDNP2[7:0]  
MultiSynth0 Spread Spectrum Down Parameter 2.  
Register 295.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS0_SSDNP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth0 Spread Spectrum Down Parameter 2.  
6:0  
MS0_SSDNP2[14:8]  
Register 296.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSDNP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS0_SSDNP3[7:0]  
MultiSynth0 Spread Spectrum Down Parameter 3.  
Rev. 0.6  
145  
Si5338  
Register 297.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS0_SSDNP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth0 Spread Spectrum Down Parameter 3.  
6:0  
MS0_SSDNP3[14:8]  
Register 298.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSDNP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS0_SSDNP1[7:0]  
MultiSynth0 Spread Spectrum Down Parameter 1.  
Register 299.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS0_SSDNP1[11:8]  
R/W  
R/W  
Reset value = 0011 0001  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
MultiSynth0 Spread Spectrum Down Parameter 1.  
MS0_SSDNP1[11:8]  
146  
Rev. 0.6  
Si5338  
Register 303.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSUPP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_SSUPP2[7:0]  
MultiSynth1 Spread Spectrum Up Parameter 2.  
Register 304.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS1_SSUPP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth1 Spread Spectrum Up Parameter 2.  
6:0  
MS1_SSUPP2[14:8]  
Register 305.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSUPP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS1_SSUPP3[7:0]  
MultiSynth1 Spread Spectrum Up Parameter 3.  
Rev. 0.6  
147  
Si5338  
Register 306.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS1_SSUPP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth1 Spread Spectrum Up Parameter 3.  
6:0  
MS1_SSUPP3[14:8]  
Register 307.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSUPP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_SSUPP1[7:0]  
MultiSynth1 Spread Spectrum Up Parameter 1.  
Register 308.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSUDP1[3:0]  
R/W  
MS1_SSUPP1[11:8]  
R/W  
Reset value = 1001 0000  
Bit  
7:4  
3:0  
Name  
Function  
MS1_SSUDP1[3:0]  
MS1_SSUPP1[11:8]  
MultiSynth1 Spread Spectrum Up/Down Parameter 1.  
MultiSynth1 Spread Spectrum Up Parameter 1.  
148  
Rev. 0.6  
Si5338  
Register 309.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSUDP1[11:4]  
R/W  
Reset value = 0011 0001  
Bit  
Name  
Function  
7:0  
MS1_SSUDP1[11:4]  
MultiSynth1 Spread Spectrum Up Parameter 1.  
Register 310.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSDNP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_SSDNP2[7:0]  
MultiSynth1 Spread Spectrum Down Parameter 2.  
Register 311.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS1_SSDNP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth1 Spread Spectrum Down Parameter 2.  
6:0  
MS1_SSDNP2[14:8]  
Rev. 0.6  
149  
Si5338  
Register 312.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSDNP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS1_SSDNP3[7:0]  
MultiSynth1 Spread Spectrum Down Parameter 3.  
Register 313.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS1_SSDNP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth1 Spread Spectrum Down Parameter 3.  
6:0  
MS1_SSDNP3[14:8]  
Register 314.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSDNP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS1_SSDNP1[7:0]  
MultiSynth1 Spread Spectrum Down Parameter 1.  
150  
Rev. 0.6  
Si5338  
Register 315.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS1_SSDNP1[11:8]  
R/W  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
MultiSynth1 Spread Spectrum Down Parameter 1.  
MS1_SSDNP1[11:8]  
Register 319.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSUPP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_SSUPP2[7:0]  
MultiSynth2 Spread Spectrum Up Parameter 2.  
Register 320.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS2_SSUPP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth2 Spread Spectrum Up Parameter 2.  
6:0  
MS2_SSUPP2[14:8]  
Rev. 0.6  
151  
Si5338  
Register 321.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSUPP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS2_SSUPP3[7:0]  
MultiSynth2 Spread Spectrum Up Parameter 3.  
Register 322.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS2_SSUPP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth2 Spread Spectrum Up Parameter 3.  
6:0  
MS2_SSUPP3[14:8]  
Register 323.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSUPP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_SSUPP1[7:0]  
MultiSynth2 Spread Spectrum Up Parameter 1.  
152  
Rev. 0.6  
Si5338  
Register 324.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSUDP1[3:0]  
R/W  
MS2_SSUPP1[11:8]  
R/W  
Reset value = 1001 0000  
Bit  
7:4  
3:0  
Name  
Function  
MS2_SSUDP1[3:0]  
MS2_SSUPP1[11:8]  
MultiSynth2 Spread Spectrum Up/Down Parameter 1.  
MultiSynth2 Spread Spectrum Up Parameter 1.  
Register 325.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSUDP1[11:4]  
R/W  
Reset value = 0011 0001  
Bit  
Name  
Function  
7:0  
MS2_SSUDP1[11:4]  
MultiSynth2 Spread Spectrum Up/Down Parameter 1.  
Register 326.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSDNP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS2_SSDNP2[7:0]  
Function  
7:0  
MultiSynth2 Spread Spectrum Down Parameter 2.  
Rev. 0.6  
153  
Si5338  
Register 327.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS2_SSDNP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth2 Spread Spectrum Down Parameter 2.  
6:0  
MS2_SSDNP2[14:8]  
Register 328.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSDNP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS2_SSDNP3[7:0]  
MultiSynth2 Spread Spectrum Down Parameter 3.  
Register 329.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS2_SSDNP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth2 Spread Spectrum Down Parameter 3.  
6:0  
MS2_SSDNP3[14:8]  
154  
Rev. 0.6  
Si5338  
Register 330.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSDNP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS2_SSDNP1[7:0]  
MultiSynth2 Spread Spectrum Down Parameter 1.  
Register 331.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS2_SSDNP1[11:8]  
R/W  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
MultiSynth2 Spread Spectrum Down Parameter 1.  
MS2_SSDNP1[11:8]  
Register 335.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSUPP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
MS3_SSUPP2[7:0]  
Function  
7:0  
MultiSynth3 Spread Spectrum Up Parameter 2.  
Rev. 0.6  
155  
Si5338  
Register 336.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS3_SSUPP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth3 Spread Spectrum Up Parameter 2.  
6:0  
MS3_SSUPP2[14:8]  
Register 337.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSUPP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS3_SSUPP3[7:0]  
MultiSynth3 Spread Spectrum Up Parameter 3.  
Register 338.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS3_SSUPP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth3 Spread Spectrum Up Parameter 3.  
6:0  
MS3_SSUPP3[14:8]  
156  
Rev. 0.6  
Si5338  
Register 339.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSUPP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_SSUPP1[7:0]  
MultiSynth3 Spread Spectrum Up Parameter 1.  
Register 340.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSUDP1[3:0]  
R/W  
MS3_SSUPP1[11:8]  
R/W  
Reset value = 1001 0000  
Bit  
7:4  
3:0  
Name  
Function  
MS3_SSUDP1[3:0]  
MS3_SSUPP1[11:8]  
MultiSynth3 Spread Spectrum Up/Down Parameter 1.  
MultiSynth3 Spread Spectrum Up Parameter 1.  
Register 341.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSUDP1[11:4]  
R/W  
Reset value = 0011 0001  
Bit  
Name  
MS3_SSUDP1[11:4]  
Function  
7:0  
MultiSynth3 Spread Spectrum Up Parameter 2.  
Rev. 0.6  
157  
Si5338  
Register 342.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSDNP2[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_SSDNP2[7:0]  
MultiSynth3 Spread Spectrum Down Parameter 2.  
Register 343.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS3_SSDNP2[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth3 Spread Spectrum Down Parameter 2.  
6:0  
MS3_SSDNP2[14:8]  
Register 344.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSDNP3[7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
MS3_SSDNP3[7:0]  
MultiSynth3 Spread Spectrum Down Parameter 3.  
158  
Rev. 0.6  
Si5338  
Register 345.  
Bit  
D7  
D6  
D5  
D4  
D3  
MS3_SSDNP3[14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
7
Name  
Function  
Unused  
Unused.  
MultiSynth3 Spread Spectrum Down Parameter 3.  
6:0  
MS3_SSDNP3[14:8]  
Register 346.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSDNP1[7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
MS3_SSDNP1[7:0]  
MultiSynth3 Spread Spectrum Down Parameter 1.  
Register 347.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MS3_SSDNP1[11:8]  
R/W  
R/W  
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
MultiSynth3 Spread Spectrum Down Parameter 1.  
MS3_SSDNP1[11:8]  
Rev. 0.6  
159  
Si5338  
7. Pin Descriptions  
Top View  
24  
23 22  
21  
20  
19  
1
2
3
4
IN1  
18  
17  
16  
15  
CLK1A  
IN2  
IN3  
IN4  
CLK1B  
VDDO1  
GND  
Pad  
VDDO2  
CLK2A  
CLK2B  
5
6
14  
13  
IN5  
IN6  
7
8
9
10  
12  
11  
Note: Center pad must be tied to GND for normal operation.  
Table 17. Si5338 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
CLKIN/CLKINB.  
These pins are used as the main differential clock input or as the  
XTAL input. See "3.2. Input Stage" on page 17, Figure 3 and  
Figure 4, for connection details. Clock inputs to these pins must be  
ac-coupled. Keep the traces from pins 1,2 to the crystal as short as  
possible and keep other signals and radiating sources away from  
the crystal.  
1,2  
IN1/IN2  
I
Multi  
When not in use, leave IN1 unconnected and IN2 connected to  
GND.  
160  
Rev. 0.6  
Si5338  
Table 17. Si5338 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
This pin can have one of the following functions depending on the  
part number:  
CLKIN (for Si5338A/B/C and Si5338N/P/Q devices only)  
Provides a high-impedance clock input for single ended clock  
signals. This input should be dc-coupled as shown in “3.2. Input  
Stage”, Figure 3.  
If this pin is not used, it should be connected to ground.  
PINC (for Si5338D/E/F devices only)  
Used as the phase increment pin. See "3.9.2. Output Phase  
Increment/Decrement" on page 24 for more details. Minimum  
pulse width of 100 ns is required for proper operation. If this pin is  
not used, it should be connected to ground.  
3
IN3  
I
Multi  
FINC (for Si5338G/H/J devices only)  
Used as the frequency increment pin. See "3.9.1. Frequency  
Increment/Decrement" on page 23 for more details. Minimum  
pulse width of 100 ns is required for proper operation. If this pin is  
not used, it should be connected to ground.  
OEB (for Si5338K/L/M devices only)  
Used as an output enable pin. 0 = All outputs enabled; 1 = All  
outputs disabled. By default, outputs are tri-stated when disabled.  
This pin can have one of the following functions depending on the  
part number  
2
I C_LSB (for Si5338A/B/C and Si5338K/L/M devices only)  
2
2
This is the LSB of the Si5338 I C address. 0 = I C address  
2
70h (111 0000), 1 = I C address 71h (111 0001).  
FDBK (for Si5338N/P/Q devices only)  
Provides a high-impedance feedback input for single-ended clock  
signals. This input should be dc-coupled as shown in “3.2. Input  
Stage”, Figure 3. If this pin is not used, it should be connected to  
ground.  
4
IN4  
I
Multi  
PDEC (for Si5338D/E/F) devices only)  
Used as the phase decrement pin. See “3.9.2. Output Phase  
Increment/Decrement” for more details. Minimum pulse width of  
100 ns is required for proper operation. If this pin is not used, it  
should be connected to ground.  
FDEC (for Si5338G/H/J devices only)  
Used as the frequency decrement pin. See “3.9.1. Frequency  
Increment/Decrement” for more details. Minimum pulse width of  
100 ns is required for proper operation. If this pin is not used, it  
should be connected to ground.  
Rev. 0.6  
161  
Si5338  
Table 17. Si5338 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
FDBK/FDBKB.  
These pins can be used as a differential feedback input in zero  
delay mode or as a secondary clock input. See section 3.2,  
Figure 3, for termination details. See "3.9.5. Zero-Delay Mode" on  
page 24 for zero delay mode set-up. Inputs to these pins must be  
ac-coupled.  
5,6  
IN5/IN6  
I
Multi  
When not in use, leave IN5 unconnected and IN6 connected to  
GND.  
Core Supply Voltage.  
This is the core supply voltage, which can operate from a 1.8, 2.5,  
or 3.3 V supply. A 0.1 µF bypass capacitor should be located very  
close to this pin.  
7
8
VDD  
VDD  
Supply  
Interrupt.  
A typical pullup resistor of 1–4 kis used on this pin. This pin can  
be pulled up to a supply voltage as high as 3.6 V regardless of the  
other supply voltages on pins 7, 11, 15, 16, 20, and 24. The inter-  
rupt condition allows the pull up resistor to pull the output up to the  
supply voltage.  
INTR  
O
Open Drain  
Output Clock B for Channel 3.  
May be a single-ended output or half of a differential output with  
CLK3A being the other differential half. If unused, leave this pin  
floating.  
9
CLK3B  
CLK3A  
VDDO3  
O
O
Multi  
Multi  
Output Clock A for Channel 3.  
May be a single-ended output or half of a differential output with  
CLK3B being the other differential half. If unused, leave this pin  
floating.  
10  
11  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK3A,B. A 0.1 µF  
capacitor must be located very close to this pin. If CLK3 is not  
used, this pin must be tied to VDD (pin 7, 24).  
VDD  
Supply  
2
I C Serial Clock Input.  
This is the serial clock input for the I C bus. A pullup resistor at this  
pin is required. Typical values would be 1–4 k. See the I C bus  
2
2
12  
SCL  
I
LVCMOS  
spec for more information. This pin is 3.3 V tolerant regardless of  
the other supply voltages on pins 7, 11, 15, 16, 20, 24.  
Output Clock B for Channel 2.  
May be a single-ended output or half of a differential output with  
CLK2A being the other differential half. If unused, leave this pin  
floating.  
13  
14  
CLK2B  
CLK2A  
O
O
Multi  
Multi  
Output Clock A for Channel 2.  
May be a single-ended output or half of a differential output with  
CLK2B being the other differential half. If unused, leave this pin  
floating.  
162  
Rev. 0.6  
Si5338  
Table 17. Si5338 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Type  
Description  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK2A,B.  
A 0.1 µF capacitor must be located very close to this pin. If CLK2 is  
not used, this pin must be tied to VDD (pin 7, 24).  
15  
VDDO2  
VDD  
Supply  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK1A,B.  
A 0.1 µF capacitor must be located very close to this pin. If CLK1 is  
not used, this pin must be tied to VDD (pin 7, 24).  
16  
17  
18  
VDDO1  
CLK1B  
CLK1A  
VDD  
O
Supply  
Multi  
Output Clock B for Channel 1.  
May be a single-ended output or half of a differential output with  
CLK1A being the other differential half. If unused, leave this pin  
floating.  
Output Clock A for Channel 1.  
May be a single-ended output or half of a differential output with  
CLK1B being the other differential half. If unused, leave this pin  
floating.  
O
Multi  
2
I C Serial Data.  
2
This is the serial data for the I C bus. A pullup resistor at this pin is  
required. Typical values would be 1–4 k. See the I C bus spec  
2
19  
SDA  
I/O  
LVCMOS  
for more information. This pin is 3.3 V tolerant regardless of the  
other supply voltages on pins 7, 11, 15, 16, 20, 24.  
Output Clock Supply Voltage.  
Supply voltage (3.3, 2.5, 1.8, or 1.5 V) for CLK0A,B.  
A 0.1 µF capacitor must be located very close to this pin. If CLK0 is  
not used, this pin must be tied to VDD (pin 7, 24).  
20  
21  
VDDO0  
CLK0B  
VDD  
O
Supply  
Multi  
Output Clock B for Channel 0.  
May be a single-ended output or half of a differential output with  
CLK0A being the other differential half. If unused, leave this pin  
floating.  
22  
CLK0A  
O
Multi  
Output Clock A for Channel 0.  
May be a single-ended output or half of a differential output with  
CLK0B being the other differential half. If unused, leave this pin  
floating.  
23  
24  
GND  
VDD  
GND  
GND  
VDD  
GND  
GND  
Supply  
GND  
Ground.  
Must be connected to system ground. Minimize the ground path  
impedance for optimal performance of this device.  
Core Supply Voltage.  
The device operates from a 1.8, 2.5, or 3.3 V supply. A 0.1 µF  
bypass capacitor should be located very close to this pin.  
GND  
PAD  
Ground Pad.  
This is the large pad in the center of the package. Device  
specifications cannot be guaranteed unless the ground pad is  
properly connected to a ground plane on the PCB. See Table 20,  
“PCB Land Pattern,” on page 167 for ground via requirements.  
Rev. 0.6  
163  
Si5338  
8. Device Pinout by Part Number  
The Si5338 is orderable in three different speed grades: Si5338A/D/G/K/N have a maximum output clock  
frequency limit of 710 MHz. Si5338B/E/H/L/P have a maximum output clock frequency of 350 MHz. Si5338C/F/J/  
M/Q have a maximum output clock frequency of 200 MHz.  
Devices are also orderable according to the pin control functions available on Pins 3 and 4:  
CLKIN—single-ended clock input  
2
I2C_LSB—determines the LSB bit of the 7-bit I C address  
FINC—frequency increment pin  
FDEC—frequency decrement pin  
PINC—phase increment pin  
PDEC—phase decrement pin  
FDBK—single-ended feedback input  
OEB—output enable  
Table 18. Pin Function by Part Number  
Pin # Si5338A: 710 MHz Si5338D: 710 MHz Si5338G: 710 MHz Si5338K: 710 MHz Si5338N: 710 MHz  
Si5338B: 350 MHz Si5338E: 350 MHz Si5338H: 350 MHz Si5338L: 350 MHz Si5338P: 350 MHz  
Si5338C: 200 MHz Si5338F: 200 MHz Si5338J: 200 MHz Si5338M: 200 MHz Si5338Q: 200 MHz  
1
1
1
1
1
1
2
CLKIN  
CLKIN  
CLKIN  
CLKIN  
CLKIN  
1
1
1
1
1
CLKINB  
CLKINB  
PINC  
CLKINB  
FINC  
CLKINB  
OEB  
CLKINB  
2
2
3
CLKIN  
CLKIN  
3
4
I2C_LSB  
PDEC  
FDEC  
I2C_LSB  
FDBK  
FDBK  
4
4
4
4
4
5
FDBK  
FDBK  
FDBK  
FDBK  
4
4
4
4
4
6
FDBKB  
FDBKB  
VDD  
FDBKB  
VDD  
FDBKB  
FDBKB  
VDD  
7
VDD  
INTR  
VDD  
INTR  
8
INTR  
INTR  
INTR  
9
CLK3B  
CLK3A  
VDDO3  
SCL  
CLK3B  
CLK3A  
CLK3B  
CLK3A  
CLK3B  
CLK3A  
VDDO3  
SCL  
CLK3B  
CLK3A  
10  
11  
12  
13  
14  
15  
16  
Notes:  
VDDO3  
SCL  
VDDO3  
SCL  
VDDO3  
SCL  
CLK2B  
CLK2A  
VDDO2  
VDDO1  
CLK2B  
CLK2A  
VDDO2  
VDDO1  
CLK2B  
CLK2A  
VDDO2  
VDDO1  
CLK2B  
CLK2A  
VDDO2  
VDDO1  
CLK2B  
CLK2A  
VDDO2  
VDDO1  
1. CLKIN/CLKINB on pins 1 and 2 are differential clock inputs or XTAL inputs.  
2. CLKIN on pin 3 is a single-ended clock input.  
3. FDBK on pin 4 is a single-ended feedback input.  
4. FDBK/FDBKB on pins 5 and 6 are differential feedback inputs.  
164  
Rev. 0.6  
Si5338  
Table 18. Pin Function by Part Number (Continued)  
Pin # Si5338A: 710 MHz Si5338D: 710 MHz Si5338G: 710 MHz Si5338K: 710 MHz Si5338N: 710 MHz  
Si5338B: 350 MHz Si5338E: 350 MHz Si5338H: 350 MHz Si5338L: 350 MHz Si5338P: 350 MHz  
Si5338C: 200 MHz Si5338F: 200 MHz Si5338J: 200 MHz Si5338M: 200 MHz Si5338Q: 200 MHz  
17  
18  
CLK1B  
CLK1A  
SDA  
CLK1B  
CLK1A  
SDA  
CLK1B  
CLK1A  
SDA  
CLK1B  
CLK1A  
SDA  
CLK1B  
CLK1A  
SDA  
19  
20  
VDDO0  
CLK0B  
CLK0A  
GND  
VDDO0  
CLK0B  
CLK0A  
GND  
VDDO0  
CLK0B  
CLK0A  
GND  
VDDO0  
CLK0B  
CLK0A  
GND  
VDDO0  
CLK0B  
CLK0A  
GND  
21  
22  
23  
24  
VDD  
VDD  
VDD  
VDD  
VDD  
Notes:  
1. CLKIN/CLKINB on pins 1 and 2 are differential clock inputs or XTAL inputs.  
2. CLKIN on pin 3 is a single-ended clock input.  
3. FDBK on pin 4 is a single-ended feedback input.  
4. FDBK/FDBKB on pins 5 and 6 are differential feedback inputs.  
Rev. 0.6  
165  
Si5338  
9. Package Outline: 24-Lead QFN  
Figure 24. 24-Lead Quad Flat No-lead (QFN)  
Table 19. Package Dimensions  
Dimension  
Min  
Nom  
Max  
A
A1  
b
0.80  
0.00  
0.18  
0.85  
0.02  
0.90  
0.05  
0.30  
0.25  
D
4.00 BSC.  
2.50  
D2  
e
2.35  
2.65  
0.50 BSC.  
4.00 BSC.  
2.50  
E
E2  
L
2.35  
0.30  
2.65  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Outline MO-220, variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body  
Components.  
166  
Rev. 0.6  
Si5338  
10. Recommended PCB Layout  
Table 20. PCB Land Pattern  
Dimension  
Min  
Nom  
Max  
2.60  
2.60  
0.30  
0.85  
P1  
P2  
X1  
Y1  
C1  
C2  
E
2.50  
2.50  
0.20  
0.75  
2.55  
2.55  
0.25  
0.80  
3.90  
3.90  
0.50  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. Center pad should be connected to the nearest GND plane.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is  
to be 60 µm minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder  
paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.  
9. A 2x2 array of 1.0 mm square openings on 1.25 mm pitch should be used for the center ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
Rev. 0.6  
167  
Si5338  
11. Ordering Information  
GMR  
Si5338X  
AXXXXX  
Operating Temp Range: -40 to +85 °C  
Package: 4 x 4 mm QFN, ROHS6, Pb-free  
R = Tape & Reel  
(blank) = Tubes  
A = Product Revision A  
XXXXX = NVM code (optional).  
For blank devices, order Si5338X-A-GM(R).  
For custom NVM configurations, a unique 5-digit ordering code  
will be assigned by the factory. Consult your sales representative  
for custom NVM configurations.  
Si5338A  
Si5338B  
Si5338C  
Si5338D  
Si5338E  
Si5338F  
Si5338G  
Si5338H  
Si5338J  
Si5338K  
Si5338L  
Si5338M  
Si5338N  
Si5338P  
Si5338Q  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.16 MHz to 710 MHz I2C_LSB  
0.16 MHz to 350 MHz I2C_LSB  
0.16 MHz to 200 MHz I2C_LSB  
0.16 MHz to 710 MHz Phase Inc/Dec Pin Control  
0.16 MHz to 350 MHz Phase Inc/Dec Pin Control  
0.16 MHz to 200 MHz Phase Inc/Dec Pin Control  
0.16 MHz to 710 MHz Freq Inc/Dec Pin Control  
0.16 MHz to 350 MHz Freq Inc/Dec Pin Control  
0.16 MHz to 200 MHz Freq Inc/Dec Pin Control  
0.16 MHz to 710 MHz OEB Pin Control + I2C_LSB  
0.16 MHz to 350 MHz OEB Pin Control + I2C_LSB  
0.16 MHz to 200 MHz OEB Pin Control + I2C_LSB  
0.16 MHz to 710 MHz Four Inputs (2 Differential, 2 Single-ended)  
0.16 MHz to 350 MHz Four Inputs (2 Differential, 2 Single-ended)  
0.16 MHz to 200 MHz Four Inputs (2 Differential, 2 Single-ended)  
Evaluation Boards  
Si5338  
Si5338 Evaluation Board  
Si5338 Field Programmer  
EVB  
PROG - EVB  
168  
Rev. 0.6  
Si5338  
Revision 0.5 to 0.55  
DOCUMENT CHANGE LIST  
Revision 0.1 to 0.2  
Editorial changes to section 3.5 “Configuring the  
Si5338” to improve clarity on ordering custom  
Si5338 and on configuring "blank" Si5338.  
Updated block diagram to show Rn output divider  
and PLL bypass mode  
Added pin numbers to device package drawings.  
Updated pin description to include FDBK±  
Updated Table 3. DC Characteristics  
Updated Table 12. Jitter Specifications  
Added Supply Current vs. Output Frequency  
Updated package outline specification  
Clarified input clock configuration register settings  
Updated DRV_INVERTn[1:0] settings  
Added PLL bypass mode  
Updated ordering information to include evaluation  
boards.  
Updated first page description and applications  
Added to specification tables.  
JC  
Added GbE RM jitter specification with 1.875–  
20 MHz integration band.  
Revision 0.55 to 0.6  
Changed output duty cycle to 45–55%.  
Added LOS_FDBK description  
2
All I C address now in binary.  
Added additional detail to phase increment/  
decrement and frequency increment/decrement  
descriptions  
Changed ordering information to reflect 710 MHz  
limit.  
Info on POR and soft reset added.  
Updated Figure 14 on page 24.  
Added register section.  
Clarified output driver powerdown options  
Clarified entry to self-calibration mode  
Updated ordering guide  
Update programming procedure in “3.5. Configuring  
Revision 0.2 to 0.3  
the Si5338” to improve robustness.  
Changed minimum output clock frequency from  
Updated Figure 9 to include the entire programming  
5 MHz to 1 MHz.  
procedure.  
Updated slew rates.  
Added "3.2.1. Loss-of-Signal (LOS) Alarm  
Detectors" on page 17 to show the location of the  
LOS detector circuits.  
Updated " Features" on page 1.  
Updated Table 6, “Input and Output Clock  
Updated input circuit diagrams in "3.2. Input Stage"  
Characteristics,” on page 7.  
on page 17.  
Deleted Table 12, “Output Driver Slew Rate Control”.  
Update block diagrams with new input circuit  
Revision 0.3 to 0.5  
diagrams.  
Major editorial changes to all sections to improve  
clarity  
Completed electrical specification tables with final  
characterization results  
Revised the maximum input and output frequencies  
from 700 MHz to 710 MHz  
Improved jitter specifications to reflect updated  
characterization results  
Added new Si5338N/P/Q ordering codes  
Added typical application diagrams  
Added an application section to highlight the  
flexibility of the Si5338 in various timing functions  
Added a configuration section to clarify configuration  
options  
Rev. 0.6  
169  
Si5338  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
170  
Rev. 0.6  

相关型号:

SI5338Q-A-GMR

I2C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR
SILICON

SI5338Q-AXXXXXGMR

Processor Specific Clock Generator, 200MHz, CMOS, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-8, QFN-24
SILICON

SI5338Q-B-GMR

I2C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR
SILICON

SI5338Q-B09425-GM

Processor Specific Clock Generator,
SILICON

SI5338Q-B09461-GMR

Processor Specific Clock Generator,
SILICON

SI5338Q-B09462-GM

Processor Specific Clock Generator,
SILICON

SI5338Q-B09836-GMR

Processor Specific Clock Generator,
SILICON

SI5338Q-B10802-GM

Processor Specific Clock Generator,
SILICON

SI5338Q-B10802-GMR

Processor Specific Clock Generator,
SILICON

SI5338Q-B10803-GMR

Processor Specific Clock Generator,
SILICON

SI5338X-B-GMR

I2C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR
SILICON

SI5338_V01

I2C-PROGRAMMABLE ANY-FREQUENCY, ANY-OUTPUT QUAD CLOCK GENERATOR
SILICON