SI5340B-B05212-GMR [SILICON]

Processor Specific Clock Generator,;
SI5340B-B05212-GMR
型号: SI5340B-B05212-GMR
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator,

文件: 总56页 (文件大小:2501K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5341/40  
LOW-JITTER, 10-OUTPUT, ANY-FREQUENCY, ANY-OUTPUT  
CLOCK GENERATOR  
Features  
Generates up to 10 independent  
output clocks  
Ultra-low jitter: <100 fs RMS typical  
MultiSynth™ technology enables any-  
frequency synthesis on any-output  
Highly configurable outputs  
compatible with LVDS, LVPECL, CML, Status monitoring: LOS, LOL  
LVCMOS, HCSL, or programmable  
voltage  
DCO mode with frequency steps as  
low as 0.001 ppb  
Independent output clock supply pins:  
3.3 V, 2.5 V, or 1.8 V  
Built-in power supply filtering and  
regulation  
2
Serial Interface: I C or SPI (3-wire or  
4-wire)  
9x9 mm  
7x7 mm  
Input frequency range:  
User programmable (2x) non-volatile  
OTP memory  
External crystal: 25, 48-54 MHz  
Differential clock: 10 to 750 MHz  
LVCMOS clock: 10 to 250 MHz  
Output frequency range:  
Differential: 100 Hz to 712.5 MHz  
LVCMOS: 100 Hz to 250 MHz  
Output-output skew: 20 ps typ  
Adjustable output-output delay  
Optional zero delay mode  
Ordering Information  
TM  
ClockBuilder Pro software utility  
See Section 8.  
simplifies device configuration and  
assigns customer part numbers  
Si5341: 4 input, 10 output, compact  
9x9 mm, 64 QFN  
Si5340: 4 input, 4 output, compact  
7x7 mm, 44 QFN  
Functional Block Diagram  
Temperature range: –40 to +85 °C  
Pb-free, RoHS-6 compliant  
Independent glitchless on-the-fly  
output frequency changes  
Si5341/40  
IN_SEL[1:0]  
Device Selector Guide  
IN0  
IN1  
IN2  
÷INT  
÷INT  
÷INT  
Grade  
Si534xA  
Si534xB  
Si534xC  
Si534xD  
Max Output Frequency  
712.5 MHz  
Frequency Synthesis Mode  
Integer + Fractional  
PLL  
350 MHz  
XA  
712.5 MHz  
OSC  
Integer Only  
350 MHz  
XB  
FB_IN  
÷INT  
Applications  
Clock tree generation replacing XOs,  
Ethernet switches/routers  
OTN framers/mappers/processors  
Test equipment & instrumentation  
Broadcast video  
Multi  
Synth  
buffers, signal format translators  
Any-frequency clock translation  
Clocking for FPGAs, processors,  
memory  
÷INT  
÷INT  
OUT0  
OUT1  
OUT2  
Multi  
Synth  
Multi  
Synth  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
Description  
Multi  
Synth  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
The any-frequency, any-output Si5341/40 clock generators combine a wide-band PLL  
with proprietary MultiSynth fractional synthesizer technology to offer a versatile and  
high performance clock generator platform. This highly flexible architecture is capable  
of synthesizing a wide range of integer and non-integer related frequencies up to  
712.5 MHz on 10 differential clock outputs while delivering sub-100 fs rms phase jitter  
performance with 0 ppm error. Each of the clock outputs can be assigned its own  
format and output voltage enabling the Si5341/40 to replace multiple clock ICs and  
oscillators with a single device making it a true “clock tree on a chip”.  
Multi  
Synth  
NVM  
I2C/SPI  
The Si5341/40 can be quickly and easily configured using ClockBuilder Pro software.  
Custom part numbers are automatically assigned using a ClockBuilder Pro for fast,  
free, and easy factory pre-programming, or the Si5341/40 can be programmed in-  
Control/  
Status  
2
circuit via I C and SPI serial interfaces.  
Rev. 1.0 7/15  
Copyright © 2015 by Silicon Laboratories  
Si5341/40  
Si5341/40  
2
Rev. 1.0  
Si5341/40  
TABLE OF CONTENTS  
1. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.1. Power-up and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.2. Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.3. Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.4. Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.5. Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.6. Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.7. In-Circuit Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.8. Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.9. Custom Factory Preprogrammed Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.10. Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro  
for Factory Pre-programmed Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
6. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.1. Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6.2. High-Level Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
9. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
9.1. Si5341 9x9 mm 64-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
9.2. Si5340 7x7 mm 44-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
10. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
11. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
12. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Rev. 1.0  
3
Si5341/40  
1. Typical Application Schematic  
Buffer  
Buffer  
161.1328125  
MHz  
133.33 MHz  
2x 161.1328125 MHz  
LVDS  
2x 133.33 MHz  
1.8V LVCMOS  
Buffer  
Level  
Delay Line  
Translator  
3x 125 MHz  
LVPECL  
125 MHz  
Buffer  
Clock  
Generator  
4x 125 MHz  
3.3V LVCMOS  
Level  
Translator  
XA  
XB  
200 MHz  
2.5V LVCMOS  
25 MHz  
“Traditional Discrete” Clock Tree  
One Si5341 replaces:  
3x crystal oscillators (XO)  
2x buffers  
1x Clock Generator  
2x level translators  
1x delay line  
1x 161.1328125 MHz  
LVDS  
1x 161.1328125 MHz  
LVDS  
XA  
XB  
2x 133.33 MHz  
1.8V LVCMOS  
25 MHz  
1x 125 MHz  
LVPECL  
1x 125 MHz  
LVPECL  
Si5341  
1x 125 MHz  
LVPECL  
2x 125 MHz  
3.3V LVCMOS  
2x 125 MHz  
3.3V LVCMOS  
2x 200 MHz  
2.5V LVCMOS  
“Clock Tree  
On-a-Chip”  
2x 200 MHz  
2.5V LVCMOS  
Figure 1. Using The Si5341 to Replace a Traditional Clock Tree  
4
Rev. 1.0  
Si5341/40  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%,TA = –40 to 85 °C)  
Parameter  
Ambient Temperature  
Junction Temperature  
Core Supply Voltage  
Symbol  
Min  
–40  
Typ  
25  
Max  
85  
Units  
°C  
°C  
V
T
A
TJ  
125  
1.89  
3.47  
3.47  
2.62  
1.89  
MAX  
V
1.71  
3.14  
3.14  
2.38  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
DD  
V
V
DDA  
DDO  
Output Driver Supply Voltage  
V
V
V
V
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Rev. 1.0  
5
Si5341/40  
Table 2. DC Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
100  
85  
Max  
150  
130  
Units  
mA  
1
2
Core Supply Current  
I
Si5341  
Note  
Note  
DD  
mA  
Si5340  
Si5341  
Si5340  
1
2
I
115  
115  
21  
125  
125  
25  
mA  
mA  
mA  
Note  
DDA  
Note  
3
Output Buffer Supply Current  
I
LVPECL Output  
@ 156.25 MHz  
DDOx  
3
LVDS Output  
15  
21  
16  
12  
18  
25  
18  
13  
mA  
mA  
mA  
mA  
@ 156.25 MHz  
4
3.3 V LVCMOS output  
@ 156.25 MHz  
4
2.5 V LVCMOS output  
@ 156.25 MHz  
4
1.8 V LVCMOS output  
@ 156.25 MHz  
1,5  
Total Power Dissipation  
P
Si5341  
Si5340  
Notes  
Notes  
830  
685  
980  
815  
mW  
mW  
d
2,5  
Notes:  
1. Si5341 test configuration: 7 x 2.5 V LVDS outputs enabled @156.25 MHz. Excludes power in termination resistors.  
2. Si5340 test configuration: 4 x 2.5 V LVDS outputs enabled @ 156.25 MHz. Excludes power in termination resistors.  
3. Differential outputs terminated into an ac-coupled 100 load.  
4. LVCMOS outputs measured into a 6-inch 50 PCB trace with 5 pF load. The LVCMOS outputs were set to  
OUTx_CMOS_DRV=3, which is the strongest driver setting. Refer to the Si5341/40 Family Reference Manual for more  
details on register settings.  
Differential Output Test Configuration  
LVCMOS Output Test Configuration  
IDDO  
IDDO  
6 inch  
0.1 uF  
50  
OUT  
OUTa  
50  
100  
OUTb  
OUT  
5 pF  
50  
0.1 uF  
5. Detailed power consumption for any configuration can be estimated using ClockBuilderPro when an evaluation board  
(EVB) is not available. All EVBs support detailed current measurements for any configuration.  
6
Rev. 1.0  
Si5341/40  
Table 3. Input Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Differential or Single-Ended/LVCMOS — AC-Coupled (IN0/IN0, IN1/IN1, IN2/IN2, FB_IN/FB_IN)  
Input Frequency Range  
f
Differential  
10  
10  
750  
250  
MHz  
IN  
Single-ended/LVCMOS  
5
Input Voltage Swing  
V
IN  
Differential AC Coupled  
fin < 250 MHz  
100  
1800  
mVpp_se  
mVpp_se  
mVpp_se  
Differential AC Coupled  
250 MHz < fin < 750 MHz  
225  
100  
1800  
3600  
Single-ended AC Coupled  
fin < 250 MHz  
1, 2  
Slew Rate  
SR  
DC  
400  
40  
2
60  
V/µs  
%
Duty Cycle  
Capacitance  
C
pF  
IN  
DC-Coupled CMOS Input Buffer (IN0, IN1, IN2)4  
Input Frequency  
Input Voltage  
f
10  
–0.2  
0.49  
400  
40  
8
250  
0.33  
MHz  
V
IN  
V
IL  
V
V
IH  
1, 2  
Slew Rate  
SR  
DC  
PW  
V/µs  
%
Duty Cycle  
Clock Input  
Pulse Input  
60  
Minimum Pulse Width  
Input Resistance  
1.6  
ns  
R
k  
IN  
Differential or Single-Ended/LVCMOS Clock at XA/XB  
Input Frequency Range  
f
Frequency range for best  
output  
48  
200  
MHz  
IN  
jitter performance  
10  
200  
MHz  
Input Single-ended Voltage Swing  
V
365  
2000  
mVpp_se  
IN_SE  
Notes:  
1. Imposed for jitter performance.  
2. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 - 0.2) * VIN_Vpp_se) / SR.  
3. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD  
.
4. DC-coupled CMOS Input Buffer selection is not supported in ClockBuilder Pro for new designs. For single-ended  
LVCMOS inputs to IN0,1,2 it is required to ac-couple into the differential input buffer.  
5. Voltage swing is specified as single-ended mVpp.  
6. Contact Silicon Labs Technical Support for more details.  
Rev. 1.0  
7
Si5341/40  
Table 3. Input Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
2500  
Units  
mVpp_diff  
V/µs  
Input Differential Voltage Swing  
V
365  
IN_DIFF  
1, 2  
Slew rate  
SR  
Imposed for best jitter per- 400  
formance  
Input Duty Cycle  
DC  
40  
60  
%
Notes:  
1. Imposed for jitter performance.  
2. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 - 0.2) * VIN_Vpp_se) / SR.  
3. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD  
.
4. DC-coupled CMOS Input Buffer selection is not supported in ClockBuilder Pro for new designs. For single-ended  
LVCMOS inputs to IN0,1,2 it is required to ac-couple into the differential input buffer.  
5. Voltage swing is specified as single-ended mVpp.  
6. Contact Silicon Labs Technical Support for more details.  
Table 4. Control Input Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Units  
Si5341 Control Input Pins  
(I2C_SEL, IN_SEL[1:0], RST, OE, SYNC, A1, SCLK, A0/CS, FINC, FDEC, SDA/SDIO)  
Input Voltage  
V
2
0.3xV  
*
DDIO  
V
V
IL  
IH  
IN  
IN  
V
C
R
0.7xV  
*
DDIO  
Input Capacitance  
Input Resistance  
pF  
k  
ns  
20  
Minimum Pulse Width  
T
RST, SYNC,  
100  
PW  
FINC, and FDEC  
Frequency Update Rate  
F
FINC and FDEC  
1
MHz  
UR  
Si5340 Control Input Pins (I2C_SEL, IN_SEL[1:0], RST, OE, A1, SDA, SDI, SCLK, A0/CS, SDA/SDIO)  
Input Voltage  
V
2
0.3xV  
*
DDIO  
V
V
IL  
IH  
IN  
IN  
V
C
R
0.7xV  
*
DDIO  
Input Capacitance  
Input Resistance  
pF  
k  
ns  
20  
Minimum Pulse Width  
T
RST only  
100  
PW  
*Note: VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. Refer to the Reference Manual for more  
details on register settings.  
8
Rev. 1.0  
Si5341/40  
Table 5. Differential Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Output Frequency  
Symbol  
Test Condition  
Min  
0.0001  
48  
Typ  
Max  
712.5  
52  
Units  
MHz  
%
f
OUT  
Duty Cycle  
DC  
f
< 400 MHz  
OUT  
400 MHz < f  
<
45  
55  
%
OUT  
712.5 MHz  
Output-Output Skew  
T
Outputs on same Multisynth,  
Normal Mode  
20  
20  
0
50  
ps  
ps  
ps  
SK  
Outputs on same Multisynth,  
Pow Power Mode  
100  
100  
OUT-OUT Skew  
T
Measured from the positive  
to negative output pins  
SK_OUT  
1, 5  
Output Amplitude  
Normal Mode  
V
V
V
= 3.3 V,  
DDO  
LVDS  
350  
470  
810  
550  
mVpp_se  
mVpp_se  
OUT  
OUT  
2.5 V, or 1.8 V  
V
= 3.3 V  
LVPECL  
660  
1000  
DDO  
or 2.5 V  
Low Power Mode  
V
= 3.3 V,  
LVDS  
300  
420  
820  
530  
DDO  
2.5 V, or 1.8 V  
V
= 3.3 V  
LVPECL  
620  
1060  
DDO  
or 2.5 V  
Notes:  
1. The typical normal mode (or low power mode) LVDS maximum is 100 mV (or 80 mV) higher than the TIA/EIA-644  
maximum. For normal and low-power modes, the amplitudes are programmable through register settings and can be  
stored in NVM. Each output driver can be programmed independently. See Appendix A of the Si5341/40 Reference  
Manual.  
2. Driver output impedance depends on selected output mode (Normal, Low Power).  
3. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO (1.8 V = 50 mVpp, 2.5 V/  
3.3 V = 100 mVpp) and noise spur amplitude measured.  
OUTx  
Vpp_se  
Vpp_se  
Vcm  
Vcm  
Vpp_diff = 2*Vpp_se  
OUTx  
4. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor  
at 156.25 MHz. Refer to application note, “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet  
Infrastructure Systems”, guidance on crosstalk minimization.  
5. For other amplitudes see Appendix A of the Si5341/40 Reference Manual.  
6. See Note 4, but in this case the measurement is across two output clocks that have a single clock between them.  
7. Same as Note 4, but the Si5340 has less crosstalk due to the spacing of adjacent outputs.  
Rev. 1.0  
9
Si5341/40  
Table 5. Differential Clock Output Specifications (Continued)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
1
Common Mode Voltage  
Normal Mode or Low Power Modes  
V
V
= 3.3 V  
= 2.5 V  
LVDS  
1.10  
1.90  
1.15  
1.25  
2.05  
1.25  
1.35  
2.15  
1.35  
V
CM  
DDO  
LVPECL  
V
V
LVPECL  
LVDS  
DDO  
DDO  
= 1.8 V Sub-LVDS  
Normal Mode  
0.87  
0.93  
170  
300  
100  
650  
1.0  
240  
430  
Rise and Fall Times  
(20% to 80%)  
t /t  
ps  
R F  
Low Power Mode  
Normal Mode  
2
Differential Output Impedance  
Z
O
Low Power Mode  
3
Power Supply Noise Rejection  
PSRR  
Normal Mode  
10 kHz sinusoidal noise  
–93  
–93  
–84  
–79  
dBc  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Low Power Mode  
10 kHz sinusoidal noise  
–98  
dBc  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
–95  
–84  
–76  
Notes:  
1. The typical normal mode (or low power mode) LVDS maximum is 100 mV (or 80 mV) higher than the TIA/EIA-644  
maximum. For normal and low-power modes, the amplitudes are programmable through register settings and can be  
stored in NVM. Each output driver can be programmed independently. See Appendix A of the Si5341/40 Reference  
Manual.  
2. Driver output impedance depends on selected output mode (Normal, Low Power).  
3. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO (1.8 V = 50 mVpp, 2.5 V/  
3.3 V = 100 mVpp) and noise spur amplitude measured.  
OUTx  
Vpp_se  
Vpp_se  
Vcm  
Vcm  
Vpp_diff = 2*Vpp_se  
OUTx  
4. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor  
at 156.25 MHz. Refer to application note, “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet  
Infrastructure Systems”, guidance on crosstalk minimization.  
5. For other amplitudes see Appendix A of the Si5341/40 Reference Manual.  
6. See Note 4, but in this case the measurement is across two output clocks that have a single clock between them.  
7. Same as Note 4, but the Si5340 has less crosstalk due to the spacing of adjacent outputs.  
10  
Rev. 1.0  
Si5341/40  
Table 5. Differential Clock Output Specifications (Continued)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
–75  
–85  
–85  
Max  
Units  
dBc  
Note 4  
Output-Output Crosstalk  
XTALK  
Si5341  
Si5341  
Si5340  
Note 6  
Note 7  
dBc  
dBc  
Notes:  
1. The typical normal mode (or low power mode) LVDS maximum is 100 mV (or 80 mV) higher than the TIA/EIA-644  
maximum. For normal and low-power modes, the amplitudes are programmable through register settings and can be  
stored in NVM. Each output driver can be programmed independently. See Appendix A of the Si5341/40 Reference  
Manual.  
2. Driver output impedance depends on selected output mode (Normal, Low Power).  
3. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO (1.8 V = 50 mVpp, 2.5 V/  
3.3 V = 100 mVpp) and noise spur amplitude measured.  
OUTx  
Vpp_se  
Vpp_se  
Vcm  
Vcm  
Vpp_diff = 2*Vpp_se  
OUTx  
4. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor  
at 156.25 MHz. Refer to application note, “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet  
Infrastructure Systems”, guidance on crosstalk minimization.  
5. For other amplitudes see Appendix A of the Si5341/40 Reference Manual.  
6. See Note 4, but in this case the measurement is across two output clocks that have a single clock between them.  
7. Same as Note 4, but the Si5340 has less crosstalk due to the spacing of adjacent outputs.  
Table 6. Output Status Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Units  
Si5341 Status Output Pins (LOL, INTR), SDA/SDIO2, SDO  
1
Output Voltage  
V
I
= –2 mA  
= 2 mA  
V
x 0.75  
V
V
OH  
OH  
DDIO  
1
V
I
V
V
x 0.15  
OL  
OL  
DDIO  
Si5340 Status Output Pins (INTR), LOL, LOS_XAXB, SDA/SDIO2, SDO  
1
Output Voltage  
V
I
= –2 mA  
= 2 mA  
V
x 0.75  
V
V
OH  
OH  
DDIO  
1
V
I
x 0.15  
OL  
OL  
DDIO  
Notes:  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. Refer to the Reference Manual for more  
details on register settings.  
2. The VOH specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is  
unused with I2C_SEL pulled high. VOL remains valid in all cases.  
Rev. 1.0  
11  
Si5341/40  
Table 7. LVCMOS Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Output Frequency  
Duty Cycle  
Symbol  
Test Condition  
Min  
0.0001  
47  
Typ  
Max Units  
250  
53  
MHz  
%
DC  
f
< 100 MHz  
OUT  
100 MHz < f  
< 250 MHz  
44  
55  
OUT  
Output-to-Output Skew  
T
100  
ps  
V
SK  
1, 2, 3  
Output Voltage High  
V
V
= 3.3 V  
DDO  
OH  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
I
I
–10 mA  
–12 mA  
–17 mA  
V
V
V
x
x
x
OH =  
OH =  
OH =  
DDO  
0.75  
V
= 2.5 V  
DDO  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
I
–6 mA  
–8 mA  
–11 mA  
V
V
OH =  
OH =  
OH =  
DDO  
0.75  
I
V
= 1.8 V  
DDO  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
–4 mA  
–5 mA  
OH =  
OH =  
DDO  
0.75  
I
Notes:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer  
to the Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A series termination resistor (Rs) is recommended to help match the source impedance to a 50 PCB trace. A 5 pF  
capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
AC Test Configuration  
Trace length 5 inches  
DC Test Configuration  
499  
4.7 pF  
0.1 uF  
IOL/IOH  
IDDO  
50 probe, scope  
50 probe, scope  
50   
50   
OUT  
OUT  
Zs  
56   
0.1 uF  
VOL/VOH  
499   
4.7 pF  
56   
12  
Rev. 1.0  
Si5341/40  
Table 7. LVCMOS Clock Output Specifications (Continued)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max Units  
1, 2, 3  
Output Voltage Low  
V
V
= 3.3 V  
DDO  
OL  
OUTx_CMOS_DRV=1  
I
I
I
= 10 mA  
V
V
V
V
OL  
OL  
OL  
DDO  
x 0.15  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
= 12 mA  
= 17 mA  
V
= 2.5 V  
DDO  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
= 6 mA  
= 8 mA  
= 11 mA  
V
DDO  
x 0.15  
OL  
OL  
OL  
I
I
V
= 1.8 V  
DDO  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
= 4 mA  
= 5 mA  
V
DDO  
x 0.15  
OL  
OL  
I
LVCMOS Rise and Fall  
Times  
tr/tf  
VDDO = 3.3V  
420  
475  
525  
550  
625  
705  
ps  
ps  
ps  
3
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
Notes:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer  
to the Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A series termination resistor (Rs) is recommended to help match the source impedance to a 50 PCB trace. A 5 pF  
capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
AC Test Configuration  
Trace length 5 inches  
DC Test Configuration  
499  
4.7 pF  
0.1 uF  
IOL/IOH  
IDDO  
50 probe, scope  
50 probe, scope  
50   
50   
OUT  
OUT  
Zs  
56   
0.1 uF  
VOL/VOH  
499   
4.7 pF  
56   
Rev. 1.0  
13  
Si5341/40  
Table 8. Performance Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
13.5  
Typ  
Max  
14.256  
Units  
GHz  
MHz  
ms  
V
Frequency Range  
F
VCO  
CO  
PLL Loop Bandwidth  
Initial Start-Up Time  
f
1.0  
30  
BW  
t
Time from power-up to when the  
device generates clocks (Input  
Frequency > 48 MHz)  
45  
START  
1
POR to Serial Interface  
t
15  
ms  
RDY  
Ready  
6
PLL Lock Time  
t
f
= 19.44 MHz  
22  
180  
ms  
ps  
ACQ  
IN  
Output Delay Adjustment  
t
f
= 14 GHz  
VCO  
0.28  
DELAY_-  
frac  
Delay is controlled by the Multi-  
Synth  
t
71.4  
ps  
ns  
DELAY_int  
t
±9.14  
RANGE  
3
Jitter Generation  
Locked to External Clock  
J
Integer Mode  
0.135 0.175  
ps RMS  
GEN  
2
12 kHz to 20 MHz  
4
Fractional/DCO Mode  
0.160 0.205  
ps RMS  
12 kHz to 20 MHz  
J
J
Derived from  
integrated phase noise  
0.140  
0.250  
7.3  
ps pk-pk  
ps pk  
PER  
J
CC  
N = 10,000 cycles  
Integer or Fractional Mode  
Measured in the time domain.  
Performance is limited by the  
noise floor of the  
ps pk-pk  
ps pk  
PER  
3,4  
.
J
8.1  
CC  
equipment.  
Notes:  
1. Measured as time from valid VDD and VDD33 rails (90% of their value) to when the serial interface is ready to respond  
to commands. Measured in SPI 4-wire mode, with SCLK @ 10 MHz.  
2. Jitter generation test conditions fIN = 100 MHz, fOUT = 156.25 MHz LVPECL.  
3. Integer mode assumes that the output dividers (Nn/Nd) are configured with an integer value.  
4. Fractional and DCO modes assume that the output dividers (Nn/Nd) are configured with a fractional value and the  
feedback divider is integer.  
5. Initiate a soft reset command to align the outputs to within +/- 100 ps.  
6. PLL lock time is measured by first letting the PLL lock, then turning off the input clock, and then turning on the input  
clock. The time from the first edge of the input clock being re-applied until LOL de-asserts is the PLL lock time.  
14  
Rev. 1.0  
Si5341/40  
Table 8. Performance Characteristics (Continued)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Jitter Generation  
XTAL Frequency = 48 MHz  
Locked to External XTAL  
3
J
Integer Mode  
0.090 0.150  
ps RMS  
ps RMS  
GEN  
12 kHz to 20 MHz  
4
Fractional/DCO Mode  
12 kHz to 20 MHz  
0.120 0.165  
J
J
Derived from  
integrated phase noise  
0.150  
0.270  
7.3  
ps pk-pk  
ps pk  
PER  
J
CC  
N = 10, 000 cycles  
Integer or Fractional Mode  
Measured in the time domain.  
Performance is limited by the  
noise floor of the equipment.  
ps pk-pk  
ps pk  
PER  
3,4  
.
J
7.8  
CC  
XTAL Frequency = 25 MHz  
J
Integer Mode  
12 kHz to 20 MHz  
0.125 0.330  
0.170 0.360  
ps RMS  
ps RMS  
GEN  
Fractional  
12 kHz to 20 MHz  
Notes:  
1. Measured as time from valid VDD and VDD33 rails (90% of their value) to when the serial interface is ready to respond  
to commands. Measured in SPI 4-wire mode, with SCLK @ 10 MHz.  
2. Jitter generation test conditions fIN = 100 MHz, fOUT = 156.25 MHz LVPECL.  
3. Integer mode assumes that the output dividers (Nn/Nd) are configured with an integer value.  
4. Fractional and DCO modes assume that the output dividers (Nn/Nd) are configured with a fractional value and the  
feedback divider is integer.  
5. Initiate a soft reset command to align the outputs to within +/- 100 ps.  
6. PLL lock time is measured by first letting the PLL lock, then turning off the input clock, and then turning on the input  
clock. The time from the first edge of the input clock being re-applied until LOL de-asserts is the PLL lock time.  
Rev. 1.0  
15  
Si5341/40  
Table 9. I2C Timing Specifications (SCL,SDA)  
Parameter  
Symbol Test Condition  
Min  
Max  
Min  
Max  
Units  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
SCL Clock  
Frequency  
f
100  
400  
kHz  
µs  
SCL  
Hold Time  
t
4.0  
0.6  
HD:STA  
(Repeated)  
START Condition  
Low Period of the  
SCL Clock  
t
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
µs  
µs  
µs  
LOW  
HIGH Period of  
the SCL Clock  
t
HIGH  
Set-up Time for a  
Repeated START  
Condition  
t
SU:STA  
Data Hold Time  
t
100  
250  
100  
100  
20  
ns  
ns  
ns  
HD:DAT  
Data Set-up Time  
t
SU:DAT  
Rise Time of Both  
SDA and SCL  
Signals  
t
1000  
300  
r
Fall Time of Both  
SDA and SCL  
Signals  
t
300  
300  
ns  
f
Set-up Time for  
STOP Condition  
t
4.0  
4.7  
0.6  
1.3  
µs  
µs  
SU:STO  
Bus Free Time  
between a STOP  
and START Con-  
dition  
t
BUF  
Data Valid Time  
t
3.45  
3.45  
0.9  
0.9  
µs  
µs  
VD:DAT  
t
VD:ACK  
Data Valid  
Acknowledge  
Time  
16  
Rev. 1.0  
Si5341/40  
Figure 2. I2C Serial Port Timing Standard and Fast Modes  
Rev. 1.0  
17  
Si5341/40  
Table 10. SPI Timing Specifications (4-Wire)  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, TA = –40 to 85 °C)  
Parameter  
SCLK Frequency  
Symbol  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Units  
MHz  
%
f
SPI  
SCLK Duty Cycle  
T
DC  
SCLK Period  
T
ns  
C
Delay Time, SCLK Fall to SDO Active  
Delay Time, SCLK Fall to SDO  
Delay Time, CS Rise to SDO Tri-State  
Setup Time, CS to SCLK  
T
T
T
12.5  
10  
10  
18  
15  
15  
ns  
D1  
D2  
D3  
ns  
ns  
T
ns  
SU1  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CS)  
T
5
ns  
H1  
T
5
ns  
SU2  
T
5
ns  
H2  
CS  
T
2
T
C
TD1  
TC  
TSU1  
SCLK  
CS  
TH1  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 3. 4-Wire SPI Serial Interface Timing  
18  
Rev. 1.0  
Si5341/40  
Table 11. SPI Timing Specifications (3-Wire)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
SCLK Frequency  
Symbol  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Units  
MHz  
%
f
SPI  
SCLK Duty Cycle  
T
DC  
SCLK Period  
T
ns  
C
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CS Rise to SDIO Tri-State  
Setup Time, CS to SCLK  
T
T
T
12.5  
10  
10  
20  
15  
15  
ns  
D1  
D2  
D3  
ns  
ns  
T
ns  
SU1  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CS)  
T
5
ns  
H1  
T
5
ns  
SU2  
T
5
ns  
H2  
CS  
T
2
T
C
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CS  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 4. 3-Wire SPI Serial Interface Timing  
Rev. 1.0  
19  
Si5341/40  
Table 12. Crystal Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Crystal Frequency Range  
f
Frequency range for  
48  
54  
MHz  
XTAL_48-54  
best jitter performance  
Load Capacitance  
C
8
2
pF  
pF  
L_48-54  
O_48-54  
L_48-54  
Shunt Capacitance  
Crystal Drive Level  
Equivalent Series Resistance  
Crystal Frequency Range  
Load Capacitance  
C
d
200  
µW  
r
Refer to the Si5341/40 Family Reference Manual to determine ESR.  
ESR_48-54  
f
25  
8
MHz  
pF  
XTAL_25  
C
L_25  
O_25  
L_25  
Shunt Capacitance  
Crystal Drive Level  
Equivalent Series Resistance  
Notes:  
C
d
3
pF  
200  
µW  
rESR_25  
Refer to the Si5341/40 Family Reference Manual to determine ESR  
1. The Si5341/40 is designed to work with crystals that meet the specifications in Table 12.  
2. Refer to the Si5341/40 Family Reference Manual for recommended 48 to 54 MHz crystals.  
20  
Rev. 1.0  
Si5341/40  
Table 13. Thermal Characteristics  
Test Condition*  
Parameter  
Symbol  
Value  
Units  
Si5341 — 64QFN  
Thermal Resistance  
Junction to Ambient  
Still Air  
22  
°C/W  
JA  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
9.5  
Thermal Resistance  
Junction to Case  
JC  
Thermal Resistance  
Junction to Board  
9.4  
9.3  
0.2  
JB  
JB  
Thermal Resistance  
JT  
Junction to Top Center  
Si5340–44QFN  
Thermal Resistance  
Junction to Ambient  
Still Air  
22.3  
19.4  
18.4  
10.9  
°C/W  
JA  
Air Flow 1 m/s  
Air Flow 2 m/s  
Thermal Resistance  
Junction to Case  
JC  
Thermal Resistance  
Junction to Board  
9.3  
9.2  
JB  
JB  
Thermal Resistance  
0.23  
JT  
Junction to Top Center  
*Note: Based on PCB Dimension: 3” x 4.5”, PCB Thickness: 1.6 mm, PCB Land/Via under GND pad: 36, Number of Cu  
Layers: 4  
Rev. 1.0  
21  
Si5341/40  
Table 14. Absolute Maximum Ratings1,2,3,4  
Parameter  
Storage Temperature Range  
DC Supply Voltage  
Symbol  
Test Condition  
Value  
Units  
°C  
V
T
–55 to +150  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.85 to 3.8  
–0.5 to 3.8  
STG  
V
DD  
V
V
DDA  
DDO  
V
V
Input Voltage Range  
V
V
IN0-IN2, FB_IN  
V
I1  
I2  
IN_SEL[1:0],  
RST,  
V
OE,  
SYNC,  
I2C_SEL,  
SDI,  
SCLK,  
A0/CS  
A1,  
SDA/SDIO  
FINC/FDEC  
V
XA/XB  
–0.5 to 2.7  
V
I3  
Latch-up Tolerance  
ESD Tolerance  
LU  
JESD78 Compliant  
HBM  
100 pF, 1.5 k  
2.0  
–55 to 150  
260  
kV  
°C  
°C  
Junction Temperature  
Soldering Temperature  
T
JCT  
T
PEAK  
4
(Pb-free profile)  
Soldering Temperature Time at T  
(Pb-free profile)  
T
20-40  
sec  
PEAK  
P
4
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. 64-QFN and 44-QFN packages are RoHS-6 compliant.  
3. For MSL and more packaging information, go to www.silabs.com/support/quality/pages/rohsinformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
22  
Rev. 1.0  
Si5341/40  
3. Typical Operating Characteristics  
ͲϮϬ͘ϬϬ  
ͲϯϬ͘ϬϬ  
ͲϰϬ͘ϬϬ  
ͲϱϬ͘ϬϬ  
ͲϲϬ͘ϬϬ  
ͲϳϬ͘ϬϬ  
ͲϴϬ͘ϬϬ  
ͲϵϬ͘ϬϬ  
ͲϭϬϬ͘ϬϬ  
ͲϭϭϬ͘ϬϬ  
ͲϭϮϬ͘ϬϬ  
ͲϭϯϬ͘ϬϬ  
ͲϭϰϬ͘ϬϬ  
ͲϭϱϬ͘ϬϬ  
ͲϭϲϬ͘ϬϬ  
ͲϭϳϬ͘ϬϬ  
ͲϭϴϬ͘ϬϬ  
ϭϬϬŬ  
ϭϬϬ  
ϭŬ  
ϭϬŬ  
ϭD  
ϭϬD  
Figure 5. Integer Mode—48 MHz Crystal, 625 MHz Output (2.5 V LVDS)  
Rev. 1.0  
23  
Si5341/40  
ͲϮϬ͘ϬϬ  
ͲϯϬ͘ϬϬ  
ͲϰϬ͘ϬϬ  
ͲϱϬ͘ϬϬ  
ͲϲϬ͘ϬϬ  
ͲϳϬ͘ϬϬ  
ͲϴϬ͘ϬϬ  
ͲϵϬ͘ϬϬ  
ͲϭϬϬ͘ϬϬ  
ͲϭϭϬ͘ϬϬ  
ͲϭϮϬ͘ϬϬ  
ͲϭϯϬ͘ϬϬ  
ͲϭϰϬ͘ϬϬ  
ͲϭϱϬ͘ϬϬ  
ͲϭϲϬ͘ϬϬ  
ͲϭϳϬ͘ϬϬ  
ͲϭϴϬ͘ϬϬ  
ϭϬϬ  
ϭϬϬŬ  
ϭŬ  
ϭϬŬ  
ϭD  
ϭϬD  
Figure 6. Integer Mode—48 MHz Crystal, 156.25 MHz Output (2.5 V LVDS)  
24  
Rev. 1.0  
Si5341/40  
ͲϮϬ͘ϬϬ  
ͲϯϬ͘ϬϬ  
ͲϰϬ͘ϬϬ  
ͲϱϬ͘ϬϬ  
ͲϲϬ͘ϬϬ  
ͲϳϬ͘ϬϬ  
ͲϴϬ͘ϬϬ  
ͲϵϬ͘ϬϬ  
ͲϭϬϬ͘ϬϬ  
ͲϭϭϬ͘ϬϬ  
ͲϭϮϬ͘ϬϬ  
ͲϭϯϬ͘ϬϬ  
ͲϭϰϬ͘ϬϬ  
ͲϭϱϬ͘ϬϬ  
ͲϭϲϬ͘ϬϬ  
ͲϭϳϬ͘ϬϬ  
ͲϭϴϬ͘ϬϬ  
ϭϬϬŬ  
ϭϬϬ  
ϭŬ  
ϭϬŬ  
ϭD  
ϭϬD  
Figure 7. Fractional Mode—48 MHz Crystal, 155.52 MHz Output (2.5 V LVDS)  
Rev. 1.0  
25  
Si5341/40  
4. Detailed Block Diagrams  
3
IN_SEL[1:0]  
Si5341  
Dividers/  
Drivers  
Clock  
Generator  
VDDO0  
OUT0  
OUT0  
IN0  
÷P0  
÷R0  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
÷R9  
IN0  
PLL  
PD  
VDDO1  
OUT1  
OUT1  
IN1  
÷P1  
IN1  
IN2  
VDDO2  
OUT2  
OUT2  
÷P2  
LPF  
IN2  
Mn  
÷
VDDO3  
OUT3  
OUT3  
Md  
VDDO4  
OUT4  
OUT4  
P
XAXB  
÷
MultiSynth  
N0n  
XB  
XA  
25MHz,  
48-54MHz  
XTAL  
VDDO5  
OUT5  
OUT5  
÷
÷
÷
÷
÷
t0  
OSC  
N0d  
N1n  
N1d  
t1  
t2  
VDDO6  
OUT6  
OUT6  
Zero Delay  
Mode  
N2n  
N2d  
VDDO7  
OUT7  
OUT7  
FB_IN  
FB_IN  
÷Pfb  
N3n  
N3d  
VDDO8  
OUT8  
OUT8  
t3  
t4  
N4n  
N4d  
I2C_SEL  
VDDO9  
OUT9  
OUT9  
SDA/SDIO  
A1/SDO  
SCLK  
SPI/  
I2C  
NVM  
Frequency  
Control  
Status  
Monitors  
A0/CS  
Figure 8. Si5341 Block Diagram  
26  
Rev. 1.0  
Si5341/40  
2
4
Si5340  
Clock  
÷PXAXB  
OSC  
Generator  
XB  
XA  
25MHz,  
48-54MHz  
XTAL  
Dividers/  
Drivers  
MultiSynth  
Nn0  
VDDO0  
OUT0  
OUT0  
÷
t0  
÷R0  
PLL  
Nd0  
VDDO1  
OUT1  
OUT1  
Nn1  
Nd1  
÷
÷
÷
÷R1  
÷R2  
÷R3  
t1  
t2  
IN0  
LPF  
PD  
÷P0  
÷P1  
÷P2  
Md  
÷
IN0  
VDDO2  
OUT2  
OUT2  
Mn  
N2n  
N2d  
IN1  
IN1  
VDDO3  
OUT3  
OUT3  
IN2  
IN2  
N3n  
N3d  
t3  
IN_SEL[1:0]  
Zero Delay  
Mode  
FB_IN  
FB_IN  
÷Pfb  
SPI/  
I2C  
Status  
Monitors  
NVM  
Figure 9. Si5340 Detailed Block Diagram  
Rev. 1.0  
27  
Si5341/40  
5. Functional Description  
The Si5341/40 combines a wide band PLL with next generation MultiSynth technology to offer the industry’s most  
versatile and high performance clock generator. The PLL locks to either an external crystal between XA/XB or to  
an external clock connected to XA/XB or IN0,1,2. A fractional or integer multiplier takes the selected input clock or  
crystal frequency up to a very high frequency that is then divided by the MultiSynth output stage to any frequency in  
the range of 100 Hz to 712.5 MHz on each output. The MultiSynth stage can divide by both integer and fractional  
values.The high-resolution fractional MultiSynth dividers enables true any-frequency input to any-frequency on any  
of the outputs. The output drivers offer flexible output formats which are independently configurable on each of the  
2
outputs. This clock generator is fully configurable via its serial interface (I C/SPI) and includes in-circuit  
programmable non-volatile memory.  
5.1. Power-up and Initialization  
Once power is applied, the device begins an initialization period where it downloads default register values and  
configuration data from NVM and performs other initialization tasks. Communicating with the device through the  
serial interface is possible once this initialization period is complete. No clocks will be generated until the  
initialization is done. There are two types of resets available. A hard reset is functionally similar to a device power-  
up. All registers will be restored to the values stored in NVM, and all circuits will be restored to their initial state  
including the serial interface. A hard reset is initiated using the RST pin or by asserting the hard reset bit. A soft  
reset bypasses the NVM download. It is simply used to initiate register configuration changes.  
Hard Reset  
bit asserted  
RST  
pin asserted  
Power-Up  
NVM download  
Initialization  
Soft Reset  
bit asserted  
Serial interface  
ready  
Figure 10. Si5341 Power-up and Initialization  
28  
Rev. 1.0  
Si5341/40  
5.2. Frequency Configuration  
The phase-locked loop is fully contained and does not require external loop filter components to operate. Its  
function is to phase lock to the selected input and provide a common reference to the MultiSynth high-performance  
fractional dividers.  
A crosspoint mux connects any of the MultiSynth divided frequencies to any of the outputs drivers. Additional  
output integer dividers provide further frequency division by an even integer from 2 to (2^25)-2. The frequency  
configuration of the device is programmed by setting the input dividers (P), the PLL feedback fractional divider (Mn/  
Md), the MultiSynth fractional dividers (Nn/Nd), and the output integer dividers (R). Silicon Labs’ Clockbuilder Pro  
configuration utility determines the optimum divider values for any desired input and output frequency plan.  
5.3. Inputs  
The Si5341/40 requires either an external crystal at its XA/XB pins or an external clock at XA/XB or IN0,1,2.  
5.3.1. XA/XB Clock and Crystal Input  
An internal crystal oscillator exists between pin XA and XB. When this oscillator is enabled, an external crystal  
connected across these pins will oscillate and provide a clock input to the PLL. A crystal frequency of 25 MHz can  
be used although crystals in the frequency range of 48 MHz to 54 MHz are recommended for best jitter  
performance. Frequency offsets due to C mismatch can be adjusted using the frequency adjustment feature  
L
which allows frequency adjustments of ±1000 ppm. The Si5341/40 Family Reference Manual provides additional  
information on PCB layout recommendations for the crystal to ensure optimum jitter performance. Refer to  
Table 12 for crystal specifications.  
The Si5341/40 can also accommodate an external input clock instead of a crystal. This allows the use of crystal  
oscillator (XO) instead of a XTAL. Selection between the external XTAL or input clock is controlled by register  
configuration. The internal crystal load capacitors (C ) are disabled in the input clock mode. Refer to Table 3 for the  
L
input clock requirements at XAXB. Both a single-ended or a differential input clock can be connected to the XA/XB  
pins as shown in Figure 11. A P  
54 MHz.  
divider is available to accommodate external clock frequencies higher than  
XAXB  
Rev. 1.0  
29  
Si5341/40  
DifferentialConnection  
Singleended XO Connection  
X1  
X1  
nc  
nc  
nc  
X2  
X2  
nc  
Note: 2.0 Vpp_se max  
2xCL  
2xCL  
0.1 uf  
0.1 uf  
XA  
XB  
XA  
XB  
OSC  
OSC  
XO with Clipped Sine Wave  
Output  
0.1 uf  
2xCL  
2xCL  
Si5341/40  
Si5341/40  
0.1 uf  
Note: 2.5 Vpp diff max  
Crystal Connection  
X1  
Singleended Connection  
X1  
nc  
X2  
nc  
Note: 2.0 Vpp_se max  
2xCL  
2xCL  
CMOS Output  
XA  
0.1 uf  
R1  
XA  
XB  
XTAL  
OSC  
OSC  
R2  
XO VDD  
3.3 V  
2.5 V  
R1  
R2  
0.1 uf  
0.1 uf  
XB  
X2  
523  
442   
2xCL  
2xCL  
475  
649  
Si5341/40  
Si5341/40  
1.8 V  
158   
866   
Figure 11. XAXB External Crystal and Clock Connections  
5.3.2. Input Clocks (IN0, IN1, IN2)  
A differential or single-ended clock can be applied at IN2, IN1, or IN0. The recommended input termination  
schemes are shown in Figure 12.  
AC Coupled Differential  
0.1 uf  
50  
Si5341/40  
INx  
INx  
50  
50  
0.1 uf  
Differential  
Driver LVDS,  
LVPECL, CML  
50  
0.1 uf  
AC Coupled LVCMOS or Single Ended  
0.1 uf  
Si5341/40  
50  
INx  
3.3V, 2.5V, 1.8V  
LVCMOS or Single  
Ended Signal  
0.1 uf  
INx  
Figure 12. Termination of Differential and LVCMOS Input Signals  
30  
Rev. 1.0  
Si5341/40  
5.3.3. Input Selection (IN0, IN1, IN2, XA/XB)  
The active clock input is selected using the IN_SEL[1:0] pins or by register control. A register bit determines input  
selection as pin or register selectable. There are internal pull ups on the IN_SEL pins.  
Table 15. Manual Input Selection Using IN_SEL[1:0] Pins  
IN_SEL[1:0]  
Selected Input  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
XA/XB  
5.4. Fault Monitoring  
The Si5341/40 provides fault indicators which monitor loss of signal (LOS) of the inputs (IN0, IN1, IN2, XA/XB,  
FB_IN) and loss of lock (LOL) for the PLL. This is shown in Figure 13.  
Si5341/40  
IN0  
LOS0  
÷P0  
IN0  
LOL  
IN1  
LOS1  
÷P1  
IN1  
PLL  
PD LPF  
IN2  
LOS2  
÷P2  
IN2  
Mn  
÷
Md  
LOSXAB  
XA  
OSC  
XB  
FB_IN  
LOSFB  
÷Pfb  
FB_IN  
Figure 13. LOS and LOL Fault Monitors  
5.4.1. Status Indicators  
The state of the status monitors are accessible by reading registers through the serial interface or with dedicated  
pin (LOL). Each of the status indicator register bits has a corresponding sticky bit in a separate register location.  
Once a status bit is asserted its corresponding sticky bit (_FLG) will remain asserted until cleared. Writing a logic  
zero to a sticky register bit clears its state.  
5.4.2. Interrupt Pin (INTR)  
An interrupt pin (INTR) indicates a change in state with any of the status registers. All status registers are maskable  
to prevent assertion of the interrupt pin. The state of the INTR pin is reset by clearing the status registers.  
Rev. 1.0  
31  
Si5341/40  
5.5. Outputs  
The Si5341 supports 10 differential output drivers which can be independently configured as differential or  
LVCMOS. The Si5340 supports 4 output drivers independently configurable as differential or LVCMOS.  
5.5.1. Output Signal Format  
The differential output amplitude and common mode voltage are both fully programmable and compatible with a  
wide variety of signal formats including LVDS and LVPECL. In addition to supporting differential signals, any of the  
outputs can be configured as LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 20 single-ended outputs, or  
any combination of differential and single-ended outputs.  
5.5.2. Differential Output Terminations  
The differential output drivers support both ac-coupled and dc-coupled terminations as shown in Figure 14.  
AC Coupled LVDS/LVPECL  
DC Coupled LVDS  
VDDO = 3.3V, 2.5V, 1.8V  
VDDO = 3.3V, 2.5V, 1.8V  
50  
50  
50  
OUTx  
OUTx  
OUTx  
OUTx  
100  
100  
50  
Internally  
self-biased  
Si5341/40  
Si5341/40  
AC Coupled LVPECL/CML  
DC Coupled LVCMOS  
3.3V, 2.5V, 1.8V  
LVCMOS  
VDD – 1.3V  
V
DDO = 3.3V, 2.5V, 1.8V  
VDDO = 3.3V, 2.5V  
50  
50  
50  
50  
Rs  
Rs  
OUTx  
OUTx  
50  
50  
OUTx  
OUTx  
Si5341/40  
Si5341/40  
AC Coupled HCSL  
VDDRX  
VDDO = 3.3V, 2.5V, 1.8V  
R1  
R1  
R2  
OUTx  
OUTx  
50  
50  
Standard  
HCSL  
Receiver  
Option 1  
For VCM = 0.37 V  
Si5341/40  
R2  
VDDRX  
R1  
R2  
442 Ohms 56.2 Ohms  
332 Ohms 59 Ohms  
243 Ohms 63.4 Ohms  
3.3 V  
2.5 V  
1.8 V  
Figure 14. Supported Differential Output Terminations  
32  
Rev. 1.0  
Si5341/40  
5.5.3. Differential Output Modes  
There are two selectable* differential output modes: Normal and Low Power. Each output can support a unique  
mode. In this document, the terms, LVDS and LVPECL, refer to driver formats that are compatible with these  
signaling standards.  
Differential Normal Mode: When an output driver is configured in normal mode, its output amplitude is  
selectable as one of 7 settings ranging from ~130 mVpp_se to ~920 mVpp_se in increments of ~100 mV. See  
Appendix A for additional information. The output impedance in the normal mode is 100 differentialAny of  
the terminations shown in Figure 14 are supported in this mode.  
Differential Low Power Mode: When an output driver is configured in low power mode, its output amplitude is  
configurable as one of 7 settings ranging from ~200 mVpp_se to ~1600 mVpp_se in increments of ~200 mV.  
When in Differential Low Power Mode, the output impedance of the driver is much greater than 100 however  
the signal integrity will still be optimum as long as the differential clock traces are properly terminated in their  
characteristic impedance. Any of the terminations shown in Figure 14 are supported in this mode.  
*Note: Not all amplitude levels are available for selection in the CBPro device configuration Wizard. Refer to Sections 5.9 and  
5.10 for more information. See also Appendix A of the Si5341/40 Reference Manual.  
5.5.4. Programmable Common Mode Voltage For Differential Outputs  
The common mode voltage (V ) for the differential Normal and Low Power modes are programmable so that  
CM  
LVDS specifications can be met and for the best signal integrity with different supply voltages. When dc coupling  
the output driver it is essential that the receiver should have a relatively high common mode impedance so that the  
common mode current from the output driver is very small.  
5.5.5. LVCMOS Output Terminations  
LVCMOS outputs are typically dc-coupled as shown in Figure 15.  
DC Coupled LVCMOS  
3.3V, 2.5V, 1.8V  
LVCMOS  
VDDO = 3.3V, 2.5V, 1.8V  
50  
Rs  
Rs  
OUTx  
OUTx  
50  
Figure 15. LVCMOS Output Terminations  
Rev. 1.0  
33  
Si5341/40  
5.5.6. LVCMOS Output Impedance And Drive Strength Selection  
Each LVCMOS driver has a configurable output impedance. It is highly recommended that the minimum output  
impedance (strongest drive setting) is selected and a suitable series resistor (Rs) is chosen to match the trace  
impedance.  
Table 16. Nominal Output Impedance vs OUTx_CMOS_DRV (register)  
CMOS_DRIVE_Selection  
VDDO  
3.3 V  
2.5 V  
1.8 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
38   
43   
30   
35   
46   
22   
24   
31   
*Note: Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
5.5.7. LVCMOS Output Signal Swing  
The signal swing (V /V ) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output  
OL OH  
driver has its own VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.  
5.5.8. LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTx). By  
default the clock on the OUTx pin is generated with complementary polarity with the clock on the OUTx pin. The  
LVCMOS OUTx and OUTx outputs can also be generated in phase.  
5.5.9. Output Enable/Disable  
The OE pin provides a convenient method of disabling or enabling the output drivers. When the OE pin is held high  
all outputs will be disabled. When held low, the outputs will be enabled. Outputs in the enabled state can be  
individually disabled through register control.  
5.5.10. Output Driver State When Disabled  
The disabled state of an output driver is configurable as: disable low or disable high.  
5.5.11. Synchronous/Asynchronous Output Disable Feature  
Outputs can be configured to disable synchronously or asynchronously. The default state is synchronous output  
disable. In synchronous disable mode the output will wait until a clock period has completed before the driver is  
disabled. This prevents unwanted runt pulses from occurring when disabling an output. In asynchronous disable  
mode the output clock will disable immediately without waiting for the period to complete.  
34  
Rev. 1.0  
Si5341/40  
5.5.12. Output Delay Control (t0 t4)  
The Si5341/40 uses independent MultiSynth dividers (N - N ) to generate up to 5 unique frequencies to its 10  
0
4
outputs through a crosspoint switch. By default all clocks are phase aligned. A delay path (t - t ) associated with  
0
4
each of these dividers is available for applications that need a specific output skew configuration. Each delay path  
is controlled by a register parameter call Nx_DELAY with a resolution of ~0.28 ps over a range of ~±9.14 ns. This is  
useful for PCB trace length mismatch compensation. After the delay controls are configured, the soft reset bit  
SOFT_RST must be set high so that the output delay takes effect and the outputs are re-aligned.  
VDDO0  
OUT0  
OUT0  
÷R0  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO1  
OUT1  
OUT1  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO2  
OUT2  
OUT2  
VDDO3  
OUT3  
OUT3  
VDDO4  
OUT4  
OUT4  
VDDO5  
OUT5  
OUT5  
VDDO6  
OUT6  
OUT6  
VDDO7  
OUT7  
OUT7  
VDDO8  
OUT8  
OUT8  
VDDO9  
OUT9  
OUT9  
÷R9  
Figure 16. Example of Independently Configurable Path Delays  
All delay values are restored to their NVM programmed values after power-up or after a hard reset. Delay default  
values can be written to the NVM allowing a custom delay offset configuration at power-up or after a hardware  
reset.  
Rev. 1.0  
35  
Si5341/40  
5.5.13. Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the  
selected input and outputs. The zero delay mode is configured by opening the internal feedback loop through  
software configuration and closing the loop externally as shown in Figure 17. This helps to cancel out the internal  
delay introduced by the dividers, the crosspoint, the input, and the output drivers. Any one of the outputs can be fed  
back to the FB_IN pins, although using the output driver that achieves the shortest trace length will help to  
minimize the input-to-output delay. It is recommended to connect OUT9 (Si5341) or OUT3 (Si5340) to FB_IN for  
external feedback. The FB_IN input pins must be terminated and ac-coupled when zero delay mode is used. A  
differential external feedback path connection is necessary for best performance.  
VDDO0  
OUT0  
OUT0  
Si5341  
VDDO1  
OUT1  
OUT1  
IN0  
IN0  
P
÷
÷
÷
0
fIN  
IN1  
IN1  
VDDO2  
OUT2  
OUT2  
P
1
IN2  
IN2  
P2  
VDDO3  
OUT3  
OUT3  
IN_SEL[1:0]  
MultiSynth  
& Dividers  
PLL  
Zero Delay  
Mode  
FB_IN  
FB_IN  
PD  
VDDO7  
OUT7  
OUT7  
fFB = fIN  
LPF  
P
÷
fb  
Mn  
VDDO8  
OUT8  
OUT8  
÷
Md  
VDDO9  
N9n  
N9d  
OUT9  
OUT9  
÷
÷R9  
External Feedback Path  
Figure 17. Si5341 Zero Delay Mode Setup  
5.5.14. Sync Pin (Synchronizing R Dividers)  
All the output R dividers are reset to the default NVM register state after a power-up or a hard reset. This ensures  
consistent and repeatable phase alignment across all output drivers to within ±100 ps of the expected value from  
the NVM download. Resetting the device using the RST pin or asserting the hard reset bit will have the same  
result. The SYNC pin provides another method of re-aligning the R dividers without resetting the device, however,  
the outputs will only align to within 50 ns when using the SYNC pin. This pin is positive edge triggered. Asserting  
the sync register bit provides the same function as the SYNC pin. A soft reset will align the outputs to within  
±100 ps of the expected value based upon the Nx_DELAY parameter.  
5.5.15. Output Crosspoint  
The output crosspoint allows any of the N dividers to connect to any of the clock outputs.  
36  
Rev. 1.0  
Si5341/40  
5.5.16. Digitally Controlled Oscillator (DCO) Modes  
Each MultiSynth can be digitally controlled to so that all outputs connected to the MultiSynth change frequency in  
real time without any transition glitches. There are two ways to control the MultiSynth to accomplish this task:  
Use the Frequency Increment/Decrement Pins or register bits  
Write directly to the numerator of the MultiSynth divider.  
An output that is controlled as a DCO is useful for simple tasks such as frequency margining or CPU speed control.  
The output can also be used for more sophisticated tasks such as FIFO management by adjusting the frequency of  
the read or write clock to the FIFO or using the output as a variable Local Oscillator in a radio application.  
5.5.16.1. DCO with Frequency Increment/Decrement Pins/Bits  
Each of the MultiSynth fractional dividers can be independently stepped up or down in predefined steps with a  
resolution as low as 0.001 ppb. Setting of the step size and control of the frequency increment or decrement is  
accomplished by setting the step size with the 44 bit Frequency Step Word (FSTEPW). When the FINC or FDEC  
pin or register bit is asserted the output frequency will increment or decrement respectivley by the amount specified  
in the FSTEPW.  
5.5.16.2. DCO with Direct Register Writes  
When a MultiSynth numerator and its corresponding update bit is written, the new numerator value will take effect  
and the output frequency will change without any glitches. The MultiSynth numerator and denominator terms can  
be left and right shifted so that the least significant bit of the numerator word represents the exact step resolution  
that is needed for your application.  
5.6. Power Management  
Several unused functions can be powered down to minimize power consumption. Consult the Si5341/40 Family  
Reference Manual and ClockBuilder Pro configuration utility for details.  
5.7. In-Circuit Programming  
2
The Si5341/40 is fully configurable using the serial interface (I C or SPI). At power-up the device downloads its  
default register values from internal non-volatile memory (NVM). Application specific default configurations can be  
written into NVM allowing the device to generate specific clock frequencies at power-up. Writing default values to  
NVM is in-circuit programmable with normal operating power supply voltages applied to its V and V  
pins. The  
DD  
DDA  
NVM is two time writable. Once a new configuration has been written to NVM, the old configuration is no longer  
accessible. Refer to the Si5341/40 Family Reference Manual for a detailed procedure for writing registers to NVM.  
5.8. Serial Interface  
2
Configuration and operation of the Si5341/40 is controlled by reading and writing registers using the I C or SPI  
interface. The I2C_SEL pin selects I C or SPI operation. Communication with both 3.3V and 1.8V host is  
2
supported. The SPI mode operates in either 4-wire or 3-wire. See the Si5341/40 Family Reference Manual for  
details.  
5.9. Custom Factory Preprogrammed Devices  
For applications where a serial interface is not available for programming the device, custom pre-programmed  
parts can be ordered with a specific configuration written into NVM. A factory pre-programmed device will generate  
clocks at power-up. Custom, factory-preprogrammed devices are available. Use the ClockBuilder Pro custom part  
number wizard (www.silabs.com/clockbuilderpro) to quickly and easily request and generate a custom part number  
for your configuration. In less than three minutes, you will be able to generate a custom part number with a detailed  
data sheet addendum matching your design’s configuration. Once you receive the confirmation email with the data  
sheet addendum, simply place an order with your local Silicon Labs sales representative. Samples of your pre-  
programmed device will ship to you typically within two weeks.  
Rev. 1.0  
37  
Si5341/40  
5.10. Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro  
for Factory Pre-programmed Devices  
As with essentially all software utilities, ClockBuilder Pro is continuously updated and enhanced. By registering at  
www.silabs.com and opting in for updates to software, you will be notified whenever changes are made and what  
the impact of those changes are. This update process will ultimately enable ClockBuilder Pro users to access all  
features and register setting values documented in this data sheet and the Si5341/40 Family Reference Manual.  
However, if you must enable or access a feature or register setting value so that the device starts up with this  
feature or a register setting, but the feature or register setting is NOT yet available in CBPro, you must contact a  
Silicon Labs applications engineer for assistance. An example of this type of feature or custom setting is the  
customizable amplitudes for the clock outputs. After careful review of your project file and custom requirements, a  
Silicon Labs applications engineer will email back your CBPro project file with your specific features and register  
settings enabled, using what is referred to as the manual "settings override" feature of CBPro. "Override" settings  
to match your request(s) will be listed in your design report file. Examples of setting "overrides" in a CBPro design  
report are shown below:  
Setting Overrides  
Location  
Customer Name  
Engineering Name  
Type  
Target  
Dec  
Hex  
Value Value  
0x0435[0] FORCE_HOLD_PLLA  
0x0B48[0:4] OOF_DIV_CLK_DIS  
OLA_HO_FORCE  
No NVM  
User  
N/A  
1
0
0x1  
OOF_DIV_CLK_DIS  
OPN & EVB  
0x00  
Once you receive the updated design file, simply open it in CBPro. After you create a custom OPN, the device will  
begin operation after startup with the values in the NVM file, including the Silicon Labs-supplied override settings.  
Place sample  
Start  
order  
Do I need a  
preprogrammed device  
with a feature or setting  
which is unavailable in  
ClockBuilder Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
nonstandard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 18. Flowchart to Order Custom Parts with Features not Available in CBPro  
38  
Rev. 1.0  
Si5341/40  
6. Register Map  
The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains  
frequently accessible registers such as alarm status, resets, device identification, etc. Other pages contain  
registers that need less frequent access such as frequency configuration, and general device settings. A high level  
map of the registers is shown in section “6.2. High-Level Register Map” . Refer to the Si5341/40 Family Reference  
Manual for a complete list of registers descriptions and settings.  
6.1. Addressing Scheme  
The device registers are accessible using a 16-bit address which consists of an 8-bit page address + 8-bit register  
address. By default the page address is set to 0x00. Changing to another page is accomplished by writing to the  
‘Set Page Address’ byte located at address 0x01 of each page.  
6.2. High-Level Register Map  
Table 17. High-Level Register Map  
16-Bit Address  
Content  
8-bit Page  
8-bit Register  
Address  
Address Range  
00  
00  
01  
Revision IDs  
Set Page Address  
Device IDs  
02–0A  
0B–15  
17–1B  
1C  
Alarm Status  
INTR Masks  
Reset controls  
2C–E1  
E2–E4  
FE  
Alarm Configuration  
NVM Controls  
Device Ready Status  
Set Page Address  
Output Driver Controls  
Output Driver Disable Masks  
Device Ready Status  
01  
01  
08–3A  
41–42  
FE  
Rev. 1.0  
39  
Si5341/40  
Table 17. High-Level Register Map (Continued)  
16-Bit Address  
Content  
8-bit Page  
Address  
8-bit Register  
Address Range  
02  
01  
02–05  
08–2F  
30  
Set Page Address  
XTAL Frequency Adjust  
Input Divider (P) Settings  
Input Divider (P) Update Bits  
PLL Feedback Divider (M) Settings  
PLL Feedback Divider (M) Update Bit  
Output Divider (R) Settings  
User Scratch Pad Memory  
Device Ready Status  
35–3D  
3E  
47–6A  
6B–72  
FE  
03  
01  
Set Page Address  
02–37  
0C  
MultiSynth Divider (N0–N4) Settings  
MultiSynth Divider (N0) Update Bit  
MultiSynth Divider (N1) Update Bit  
MultiSynth Divider (N2) Update Bit  
MultiSynth Divider (N3) Update Bit  
MultiSynth Divider (N4) Update Bit  
FINC/FDEC Settings N0–N4  
Output Delay (t) Settings  
Frequency Readback N0–N4  
Device Ready Status  
17  
22  
2D  
38  
39–58  
59–62  
63–94  
FE  
04–08  
09  
00–FF  
01  
Reserved  
Set Page Address  
49  
Input Settings  
1C  
Zero Delay Mode Settings  
Reserved  
A0–FF  
00–FF  
40  
Rev. 1.0  
Si5341/40  
7. Pin Descriptions  
Si5340 44QFN  
Top View  
Si5341 64QFN  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
IN1  
IN1  
FINC  
LOL  
1
2
33  
IN1  
IN1  
INTR  
3
IN_SEL0  
IN_SEL1  
SYNC  
RST  
VDD  
32  
VDD  
4
OUT6  
OUT6  
VDDO6  
OUT5  
OUT5  
VDDO5  
I2C_SEL  
OUT4  
OUT4  
VDDO4  
OUT3  
OUT3  
VDDO3  
3
31  
30  
29  
28  
27  
26  
25  
24  
23  
OUT2  
IN_SEL0  
5
4
OUT2  
X1  
XA  
6
5
VDDO2  
LOS_XAXB  
LOL  
7
X1  
GND  
Pad  
6
XB  
XA  
8
GND  
Pad  
7
X2  
9
XB  
VDDS  
OUT1  
8
VDDA  
10  
11  
X2  
9
VDDA  
IN2  
OE  
10  
11  
OUT1  
INTR 12  
VDDO1  
13  
VDDA  
IN2  
14  
15  
IN2  
IN2  
SCLK 16  
Rev. 1.0  
41  
Si5341/40  
Table 18. Pin Descriptions  
Pin Type1  
Pin Number  
Si5341 Si5340  
Pin Name  
Function  
Inputs  
XA  
8
9
5
6
I
I
Crystal and External Clock Input  
These pins are used to connect an external crystal or an external  
clock. See section “5.3.1. XA/XB Clock and Crystal Input” and  
“Figure 11. XAXB External Crystal and Clock Connections” for  
connection information. If IN_SEL[1:0] = 11b, then the XAXB input  
is selected. If the XAXB input is not used and powered down, then  
both inputs can be left unconnected. ClockBuilder Pro will power  
down an input that is set as "Unused".  
XB  
X1  
X2  
7
4
7
I
I
XTAL Shield  
Connect these pins directly to the XTAL ground pins. X1, X2, and  
the XTAL ground pins must not be connected to the PCB ground  
plane. DO NOT GROUND THE CRYSTAL GROUND PINS. Refer  
to the Si5341/40 Family Reference Manual for layout guidelines.  
These pins should be left disconnected when connecting XA/XB  
pins to an external reference clock.  
10  
IN0  
IN0  
63  
64  
1
43  
44  
1
I
I
I
I
I
I
I
I
Clock Inputs  
These pins accept both differential and single-ended clock sig-  
nals. Refer to "5.3.2. Input Clocks (IN0, IN1, IN2)" on page 30 for  
input termination options. These pins are high-impedance and  
must be terminated externally. If both the INx and INx (with over-  
strike) inputs are un-used and powered down, then both inputs  
can be left floating. ClockBuilder Pro will power down an input that  
is set as "Unused".  
IN1  
IN1  
2
2
IN2  
14  
15  
61  
62  
10  
11  
41  
42  
IN2  
FB_IN  
FB_IN  
External Feedback Input  
These pins are used as the external feedback input (FB_IN/  
FB_IN) for the optional zero delay mode. See "5.5.13. Zero Delay  
Mode" on page 36 for details on the optional zero delay mode. If  
FB_IN and FB_IN (with overstrike) are un-used and powered  
down, then both inputs can be left floating. ClockBuilder Pro will  
power down an input that is set as "Unused".  
Notes:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation for the serial interface pins, control input  
pins, and status output pins. Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
3. If neither serial interface is used, leave pins I2C_SEL, A1/SDO, and A0/CS disconnected and tie SDA/SDIO and SCLK  
low.  
42  
Rev. 1.0  
Si5341/40  
Table 18. Pin Descriptions (Continued)  
Pin Number  
Pin Type1  
Pin Name  
Function  
Si5341 Si5340  
Outputs  
OUT0  
OUT0  
OUT1  
OUT1  
OUT2  
OUT2  
OUT3  
OUT3  
OUT4  
OUT4  
OUT5  
OUT5  
OUT6  
OUT6  
OUT7  
OUT7  
OUT8  
OUT8  
OUT9  
OUT9  
Notes:  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
59  
58  
20  
19  
25  
24  
31  
30  
36  
35  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Output Clocks  
These output clocks support a programmable signal amplitude  
when configured as a differential output. Desired output signal for-  
mat is configurable using register control. Termination recommen-  
dations are provided in "5.5.2. Differential Output Terminations"  
on page 32 and "5.5.5. LVCMOS Output Terminations" on page  
33. Unused outputs should be left unconnected.  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation for the serial interface pins, control input  
pins, and status output pins. Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
3. If neither serial interface is used, leave pins I2C_SEL, A1/SDO, and A0/CS disconnected and tie SDA/SDIO and SCLK  
low.  
Rev. 1.0  
43  
Si5341/40  
Table 18. Pin Descriptions (Continued)  
Pin Number  
Si5341 Si5340  
Pin Type1  
Pin Name  
Function  
Serial Interface  
I2C_SEL  
39  
18  
38  
13  
I
I2C Select2  
2
This pin selects the serial interface mode as I C (I2C_SEL = 1) or  
SPI (I2C_SEL = 0). This pin is internally pulled up by a ~ 20 k  
resistor to the voltage selected by the IO_VDD_SEL register bit.  
SDA/SDIO  
I/O  
Serial Data Interface2  
This is the bidirectional data pin (SDA) for the I C mode, or the  
2
bidirectional data pin (SDIO) in the 3-wire SPI mode, or the input  
2
data pin (SDI) in 4-wire SPI mode. When in I C mode, this pin  
must be pulled-up using an external resistor of at least 1 k. No  
pull-up resistor is needed when in SPI mode.  
A1/SDO  
SCLK  
17  
16  
15  
14  
I/O  
Address Select 1/Serial Data Output2  
In I C mode, this pin functions as the A1 address input pin and  
does not have an internal pull up or pull down resistor. In 4-wire  
SPI mode this is the serial data output (SDO) pin (SDO) pin and  
drives high to the voltage selected by the IO_VDD_SEL pin.  
2
I
Serial Clock Input2  
This pin functions as the serial clock input for both I C and SPI  
2
modes.This pin is internally pulled up by a ~20 kresistor to the  
2
voltage selected by the IO_VDD_SEL register bit. In I C mode  
this pin should have an external pull up of at least 1 k. No pull-up  
resistor is needed when in SPI mode.  
A0/CS  
19  
16  
I
Address Select 0/Chip Select2  
This pin functions as the hardware controlled address A0 in I C  
2
mode. In SPI mode, this pin functions as the chip select input  
(active low). This pin is internally pulled up by a ~20 kresistor to  
the voltage selected by the IO_VDD_SEL register bit.  
Notes:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation for the serial interface pins, control input  
pins, and status output pins. Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
3. If neither serial interface is used, leave pins I2C_SEL, A1/SDO, and A0/CS disconnected and tie SDA/SDIO and SCLK  
low.  
44  
Rev. 1.0  
Si5341/40  
Table 18. Pin Descriptions (Continued)  
Pin Number  
Pin Type1  
Pin Name  
Function  
Si5341 Si5340  
Control/Status  
INTR  
12  
6
33  
17  
O
Interrupt2  
This pin is asserted low when a change in device status has  
occurred. This interrupt has a push pull output and should be left  
unconnected when not in use.  
RST  
I
Device Reset2  
Active low input that performs power-on reset (POR) of the  
device. Resets all internal logic to a known state and forces the  
device registers to their default values. Clock outputs are disabled  
during reset. This pin is internally pulled up with a ~20 kresistor  
to the voltage selected by the IO_VDD_SEL bit.  
OE  
11  
47  
12  
27  
I
Output Enable2  
This pin disables all outputs when held high. This pin is internally  
pulled low and can be left unconnected when not in use.  
LOL  
O
O
Loss Of Lock2  
This output pin indicates when the DSPLL is locked (high) or out-  
of-lock (low). An external pull up or pull down is not needed.  
Loss Of Lock  
This output pin indicates when the DSPLL is locked (high) or out-  
of-lock (low). An external pull up or pull down is not needed. The  
voltage on the VDDS pin sets the VOH/VOL for this pin. See  
Table 6.  
LOS_XAXB  
SYNC  
5
28  
O
I
Loss Of Signal  
This output pin indicates a loss of signal at the XA/XB pins.  
Output Clock Synchronization2  
An active low signal on this pin resets the output dividers for the  
purpose of re-aligning the output clocks. For a tighter alignment of  
the clocks, a soft reset should be applied. This pin is internally  
pulled up with a ~20 kresistor to the voltage selected by the  
IO_VDD_SEL bitand can be left unconnected when not in use.  
FDEC  
25  
I
Frequency Decrement Pin2  
This pin is used to step-down the output frequency of a selected  
output. The affected output driver and its frequency change step  
size is register configurable. This pin is internally pulled low with a  
~20 kresistor and can be left unconnected when not in use.  
Notes:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation for the serial interface pins, control input  
pins, and status output pins. Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
3. If neither serial interface is used, leave pins I2C_SEL, A1/SDO, and A0/CS disconnected and tie SDA/SDIO and SCLK  
low.  
Rev. 1.0  
45  
Si5341/40  
Table 18. Pin Descriptions (Continued)  
Pin Number  
Si5341 Si5340  
Pin Type1  
Pin Name  
Function  
FINC  
48  
I
Frequency Increment Pin2  
This pin is used to step-up the output frequency of a selected out-  
put. The affected output and its frequency change step size is reg-  
ister configurable. This pin is internally pulled low with a ~20 k  
resistor and can be left unconnected when not in use.  
IN_SEL0  
IN_SEL1  
3
4
3
I
I
Input Reference Select2  
The IN_SEL[1:0] pins are used in the manual pin controlled mode  
to select the active clock input as shown in Table 15. These pins  
are internally pulled up with a ~20 kresistor to the voltage  
selected by the IO_VDD_SEL bit and can be left unconnected  
when not in use.  
37  
RSVD  
20  
21  
55  
56  
22  
Reserved  
These pins are connected to the die. Leave disconnected.  
NC  
No Connect  
These pins are not connected to the die. Leave disconnected.  
Power  
VDD  
32  
46  
60  
13  
21  
32  
39  
40  
8
P
Core Supply Voltage  
The device core operates from a 1.8 V supply. A 1.0 µf bypass  
capacitor is recommended  
VDDA  
VDDS  
P
P
Core Supply Voltage 3.3 V  
This core supply pin requires a 3.3 V power source.  
A 1.0 µf bypass capacitor is recommended.  
9
26  
P
Status Output Voltage  
The voltage on this pin determines the V /V on LOL and  
OL OH  
LOS_XAXB status output pins.  
A 0.1 µf to 1.0 µf bypass capacitor is recommended.  
Notes:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation for the serial interface pins, control input  
pins, and status output pins. Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
3. If neither serial interface is used, leave pins I2C_SEL, A1/SDO, and A0/CS disconnected and tie SDA/SDIO and SCLK  
low.  
46  
Rev. 1.0  
Si5341/40  
Table 18. Pin Descriptions (Continued)  
Pin Number  
Pin Type1  
Pin Name  
Function  
Output Clock Supply Voltage 0–9  
Supply voltage (3.3 V, 2.5 V, 1.8 V) for OUTx, OUTx outputs.  
See the Si5341/40 Family Reference Manual for power supply fil-  
tering recommendations.  
Leave VDDO pins of unused output drivers unconnected. An  
alternate option is to connect the VDDO pin to a power supply and  
disable the output driver to minimize current consumption.  
Si5341 Si5340  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
GND PAD  
22  
26  
29  
33  
36  
40  
43  
49  
52  
57  
18  
23  
29  
34  
P
P
P
P
P
P
P
P
P
P
P
Ground Pad  
This pad provides electrical and thermal connection to ground and  
must be connected for proper operation. Use as many vias as  
practical and keep the via length to an internal ground plan as  
short as possible.  
Notes:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation for the serial interface pins, control input  
pins, and status output pins. Refer to the Si5341/40 Family Reference Manual for more information on register settings.  
3. If neither serial interface is used, leave pins I2C_SEL, A1/SDO, and A0/CS disconnected and tie SDA/SDIO and SCLK  
low.  
Rev. 1.0  
47  
Si5341/40  
8. Ordering Guide  
Si534fg-Rxxxxx-GM  
Timing product family  
f = Clock generator family member (1, 0)  
g = Device grade (A, B)  
Product Revision*  
Custom ordering part number (OPN) sequence ID**  
Package, ambient temperature range (QFN, -40°C to +85°C)  
*See Ordering Guide table for current product revision  
** 5 digits; assigned by ClockBuilder Pro  
Ordering  
Part Number  
(OPN)  
Number of  
Input/Output Frequency Range  
Output Clock  
Frequency  
Synthesis Mode  
Temperature  
Range  
Package  
Clocks  
(MHz)  
Si5341  
1,2  
Si5341A-B-GM  
Si5341B-B-GM  
Si5341C-B-GM  
Si5341D-B-GM  
0.0001 to 712.5 MHz  
0.0001 to 350 MHz  
0.0001 to 712.5 MHz  
0.0001 to 350 MHz  
Integer and  
fractional mode  
1,2  
1,2  
1,2  
64-Lead  
9x9 QFN  
4/10  
–40 to 85 °C  
Integer mode only  
Si5340  
1,2  
1,2  
1,2  
1,2  
Si5340A-B-GM  
Si5340B-B-GM  
Si5340C-B-GM  
Si5340D-B-GM  
Si5341/40-EVB  
Si5341-EVB  
0.0001 to 712.5 MHz  
0.0001 to 350 MHz  
0.0001 to 712.5 MHz  
0.0001 to 350 MHz  
Integer and  
fractional mode  
44-Lead  
7x7 QFN  
4/4  
–40 to 85 °C  
Integer Only  
Evaluation  
Board  
Si5340-EVB  
Notes:  
1. Add an R at the end of the OPN to denote tape and reel ordering options.  
2. Custom, factory pre-programmed devices are available. Ordering part numbers are assigned by Silicon Labs and the  
ClockBuilder Pro software utility.  
3. Custom part number format is: e.g., Si5341A-Bxxxxx-GM, where “xxxxx” is a unique numerical sequence representing  
the preprogrammed configuration.  
4. See Sections 5.9 and 5.10 for important notes about specifying a preprogrammed device to use features or device  
register settings not yet available in CBPro.  
48  
Rev. 1.0  
Si5341/40  
9. Package Outlines  
9.1. Si5341 9x9 mm 64-QFN Package Diagram  
Figure 19 illustrates the package details for the Si5341. Table 19 lists the values for the dimensions shown in the  
illustration.  
Figure 19. 64-Pin Quad Flat No-Lead (QFN)  
Table 19. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
9.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
5.10  
0.30  
5.30  
0.50  
0.15  
0.10  
0.08  
0.10  
0.05  
L
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.0  
49  
Si5341/40  
9.2. Si5340 7x7 mm 44-QFN Package Diagram  
Figure 20 illustrates the package details for the Si5340. Table 20 lists the values for the dimensions shown in the  
illustration.  
Figure 20. 44-Pin Quad Flat No-Lead (QFN)  
Table 20. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
7.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
7.00 BSC  
5.20  
E
E2  
5.10  
0.30  
5.30  
0.50  
0.15  
0.10  
0.08  
0.10  
L
0.40  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
50  
Rev. 1.0  
Si5341/40  
10. PCB Land Pattern  
Figure 21 illustrates the PCB land pattern details for the devices. Table 21 lists the values for the dimensions  
shown in the illustration.  
Si5341  
Si5340  
Figure 21. PCB Land Pattern  
Rev. 1.0  
51  
Si5341/40  
Table 21. PCB Land Pattern Dimensions  
Dimension  
Si5341 (Max)  
8.90  
Si5340 (Max)  
C1  
C2  
E
6.90  
6.90  
0.50  
0.30  
0.85  
5.30  
5.30  
8.90  
0.50  
X1  
Y1  
X2  
Y2  
0.30  
0.85  
5.30  
5.30  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition is calculated based on a fabrication Allowance of 0.05 mm.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all the  
way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter  
pads.  
8. A 3x3 array of 1.25 mm square openings on 1.80 mm pitch should be used for  
the center ground pad.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
52  
Rev. 1.0  
Si5341/40  
11. Top Marking  
Si5341g-  
Rxxxxx-GM  
YYWWTTTTTT  
Si5340g-  
Rxxxxx-GM  
YYWWTTTTTT  
e4  
TW  
TW  
e4  
64-QFN  
44-QFN  
Figure 22. Si5341-40 Top Markings  
Table 22. Si5341-40 Top Marking Explanation  
Characters Description  
Line  
1
Si5341g-  
Si5340g-  
Base part number and Device Grade for Low Jitter, Any-Frequency, 10-  
output Clock Generator.  
Si5341: 10-output, 64-QFN  
Si5340: 4-output, 44-QFN  
g = Device Grade (A, B, C, D). See "8. Ordering Guide" on page 48 for  
more information.  
– = Dash character.  
2
Rxxxxx-GM  
R = Product revision. (See ordering guide for current revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code  
assigned for custom, factory pre-programmed devices.  
Characters are not included for standard, factory default configured  
devices. See Ordering Guide for more information.  
–GM = Package (QFN) and temperature range (–40 to +85 °C)  
3
4
YYWWTTTTTT  
YYWW = Characters correspond to the year (YY) and work week (WW)  
of package assembly.  
TTTTTT = Manufacturing trace code.  
Circle w/ 1.6 mm (64-QFN) Pin 1 indicator; left-justified  
or 1.4 mm (44-QFN)  
diameter  
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
Rev. 1.0  
53  
Si5341/40  
12. Device Errata  
Please log in or register at www.silabs.com to access the device errata document.  
54  
Rev. 1.0  
Si5341/40  
DOCUMENT CHANGE LIST  
Revision 0.9 to Revision 0.95  
Removed advanced product information  
revision history.  
Updated Ordering Guide and changed  
references to revision B  
Updated parametric Tables 2,3,5,6,7,8 to reflect  
production characterization  
Updated terminology to align with ClockBuilder  
Pro software  
2
Table 9: I C data hold time specification  
corrected to 100 ns from 5 µs  
Revision 0.95 to Revision 1.0  
General updates to typos in Tables 2,3,4,5,8,11,  
and 12.  
Changed Vin_diff minimum value in Table 3 to  
be the same as Vin_se.  
Added crosstalk spec for Si5340 to Table 5.  
Changed the schematic for AC Test  
Configuration in Table 7.  
Changed the PLL lock time in Table 8.  
Added a spec to Table 8 for the VCO frequency  
range.  
Changed the "Delay Time Between Chip  
Selects" to be 2.0 clock periods.  
Changed Note 2 in Table 12 as only 25 and 48–  
54 Mhz crystals are supported.  
2
Changed the timing specs for I C and SPI.  
Added a 1.0 µf bypass capacitor  
recommendation to be consistent with the  
reference manual.  
Updated output-to-output skew spec.  
Rev. 1.0  
55  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si5340B-D-GM

Low-Jitter, 10 or 4-Output, Any-Frequency, Any-Output Clock Generator
SILICON

SI5340B-D06644-GMR

Processor Specific Clock Generator,
SILICON

SI5340B-D06646-GM

Processor Specific Clock Generator,
SILICON

SI5340B-D06721-GMR

Processor Specific Clock Generator,
SILICON

SI5340B-D08379-GMR

Processor Specific Clock Generator,
SILICON

SI5340B-D09484-GM

Processor Specific Clock Generator,
SILICON

SI5340B-D10153-GM

Processor Specific Clock Generator,
SILICON

SI5340B-D10153-GMR

Processor Specific Clock Generator,
SILICON

SI5340B-D10200-GMR

Processor Specific Clock Generator,
SILICON

Si5340C-D-GM

Low-Jitter, 10 or 4-Output, Any-Frequency, Any-Output Clock Generator
SILICON

SI5340C-D08915-GMR

Processor Specific Clock Generator,
SILICON

SI5340D-B04967-GM

Processor Specific Clock Generator,
SILICON