SI5394P-A10073-GMR [SILICON]

Processor Specific Clock Generator,;
SI5394P-A10073-GMR
型号: SI5394P-A10073-GMR
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator,

外围集成电路
文件: 总60页 (文件大小:1618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5395/94/92 Data Sheet  
12-Channel, Any-Frequency, Any-Output Jitter Attenuator/  
Clock Multiplier with Ultra-Low Jitter  
KEY FEATURES  
• Generates any combination of output  
frequencies from any input frequency  
The Si5395/94/92 Jitter attenuators combine fourth-generation DSPLL™ and Multi-  
Synth™ technologies to deliver ultra-low jitter (69 fs) for high performance applica-  
tions like 56G SerDes. They are used in applications that demand the highest level  
of integration and jitter performance. All PLL components are integrated on-chip,  
eliminating the risk of noise coupling associated with discrete solutions. Device  
grades J/K/L/M/E have an integrated reference to save board space, improve sys-  
tem reliability and reduces the effect of acoustic emissions noise caused by temper-  
ature ramps. Grades A/B/C/D/P use an external crystal (XTAL) or crystal oscillator  
(XO) reference.  
• Ultra low phase jitter:  
• 69 fs RMS (Grade P)  
• 71 fs RMS (Grade E)  
• 85 fs RMS (integer mode)  
• 100 fs RMS (fractional mode)  
• Enhanced hitless switching minimizes output  
phase transients (0.2 ns typ)  
• Input frequency range  
• Differential: 8 kHz to 750 MHz  
The Si5395/94/92 support free-run, synchronous and holdover modes as well as en-  
hanced hitless switching, minimizing the phase transients associated when switching  
between input clocks. These devices are programmable via a serial interface with in-  
circuit programmable non-volatile memory (NVM) so they always power up with a  
known frequency configuration. Programming the Si5395/94/92 is easy with Silicon  
• LVCMOS: 8 kHz to 250 MHz  
• Output frequency range  
• Differential: 100 Hz to 1028 MHz  
Labs’ ClockBuilderTM Pro software. Factory preprogrammed devices are also availa-  
ble.  
• LVCMOS: 100 Hz to 250 MHz  
• Meets G.8262, E.8262.1 EEC Standards  
• Status monitoring  
For more information, visit the https://www.silabs.com/contact-sales page.  
• Si5395: 4 input, 12 output  
• Si5394: 4 input, 4 output  
Applications:  
• Si5392: 4 input, 2 output  
• 56G/112G PAM4 SerDes clocking  
• OTN muxponders and transponders  
• 10/40/100/200/400G networking line cards  
• 10/40/100/400 GbE Synchronous Ethernet (ITU-T G.8262)  
• Medical imaging  
• External reference: Grades A/B/C/D/P  
• Integrated reference: Grades J/K/L/M/E  
• Drop-in compatible with Si5345/44/42  
• Test and measurement  
OUT0A  
÷INT  
Integrated  
Reference*  
MultiSynth  
MultiSynth  
MultiSynth  
MultiSynth  
MultiSynth  
÷INT  
OUT0  
OUT1  
OUT2  
÷INT  
÷INT  
÷INT  
÷INT  
IN0  
IN1  
IN2  
÷FRAC  
÷FRAC  
DSPLL  
OUT3  
4 Input  
Clocks  
Up to 12  
Output Clocks  
÷FRAC  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT9A  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
IN3/FB_IN  
÷FRAC  
Status Flags  
I2C/SPI  
Status Monitor  
Control  
NVM  
*Only for Si539x J/K/L/M/E grades. Si539x A/B/C/D/P grades have external reference (XTAL or XO)  
silabs.com | Building a more connected world.  
Rev. 1.1  
Si5395/94/92 Data Sheet  
Features List  
1. Features List  
The Si5395/94/92 features are listed below:  
• Generates any output frequency in any format from any input  
frequency  
• Optional zero delay mode  
• Fast-lock acquisition for low nominal bandwidths  
• Independent Frequency-on-the fly for each MultiSynth  
• DCO mode: as low as 0.001 ppb step size  
• Core voltage  
• External XTAL or XO reference (A/B/C/D/P)  
• Integrated reference (J/K/L/M/E)  
• Ultra-low phase jitter of 69 fs (P-Grade)  
• Dynamic phase adjust  
• VDD: 1.8 V ±5%  
• Input frequency range  
• VDDA: 3.3 V ±5%  
• Differential: 8 kHz–750 MHz  
• Independent output clock supply pins  
• 3.3 V, 2.5 V, or 1.8 V  
• LVCMOS: 8 kHz–250 MHz  
• Output frequency range  
Serial interface: I2C or SPI  
• Differential: 100 Hz to 1028 MHz  
• LVCMOS: 100 Hz to 250 MHz  
• In-circuit programmable with non-volatile OTP memory  
• ClockBuilder Pro software simplifies device configuration  
• Si5395: 4 input, 12 output  
• Programmable jitter attenuation bandwidth: 0.1 Hz to 4 kHz  
• Meets requirements of:  
• Grade A/B/C/D/P: 64-QFN 9×9 mm  
• Grade J/K/L/M/E: 64-LGA 9x9 mm  
• Si5394: 4 input, 4 output  
• ITU-T G.8262 (SyncE) EEC Options 1 and 2  
• ITU-T G.8262.1 (Enhanced SyncE) eEEC  
• Highly configurable outputs compatible with LVDS, LVPECL,  
LVCMOS, CML, and HCSL with programmable signal ampli-  
tude  
• Grade A/B/C/D/P: 44-QFN 7×7 mm  
• Grade J/K/L/M/E: 44-LGA 7x7 mm  
• Si5392: 4 input, 2 output  
• Status monitoring (LOS, OOF, LOL)  
• Grade A/B/C/D/P: 44-QFN 7×7 mm  
• Grade J/K/L/M/E: 44-LGA 7x7 mm  
• Temperature range: –40 to +85 °C  
• Pb-free, RoHS-6 compliant  
• Enhanced hitless switching for 8 kHz, 19.44 MHz, 25 MHz in-  
puts and other frequencies  
• Locks to gapped clock inputs  
• Free-run and holdover modes  
• Drop-in compatible with Si5345/44/42  
silabs.com | Building a more connected world.  
Rev. 1.1 | 2  
Si5395/94/92 Data Sheet  
Related Documents  
2. Related Documents  
Table 2.1. Related Documentation and Software  
Document/Resource  
Description/URL  
Si5395-94-92 Family Reference Manual  
Si5395/94/92 Family Reference Manual  
https://www.silabs.com/documents/public/reference-manuals/  
si534x-8x-9x-recommended-crystals-rm.pdf  
Crystal Reference Manual (Grades A/B/C/D/P only)  
UG387: Si5392 Evaluation Board User's Guide  
https://www.silabs.com/documents/public/user-guides/ug387-  
si5392-evb.pdf  
https://www.silabs.com/documents/public/user-guides/ug334-  
si5394evb.pdf  
UG334: Si5394 Evaluation Board User's Guide  
https://www.silabs.com/documents/public/user-guides/ug335-  
si5395evb.pdf  
UG335: Si5395 Evaluation Board User's Guide  
AN1151: Using the Si539x in 56G SerDes Applications  
https://www.silabs.com/documents/public/application-notes/  
an1151-using-si539x.pdf  
https://www.silabs.com/documents/public/application-notes/  
an1155-differences-between-si5342-47-and-si5392-97.pdf  
AN1155: Differences between Si5342-47 and Si5392-97  
AN1178: Frequency-On-the-Fly for Silicon Labs Jitter Attenuators https://www.silabs.com/documents/public/application-notes/  
and Clock Generators  
Frequently Asked Questions  
Quality and Reliability  
an1178-frequency-otf-jitter-atten-clock-gen.pdf  
http://www.silabs.com/Si5395-94-92-FAQ  
http://www.silabs.com/quality  
https://www.silabs.com/products/development-tools/timing/  
clock#highperformance  
Development Kits  
https://www.silabs.com/products/development-tools/software/  
clockbuilder-pro-software  
ClockBuilder Pro (CBPro) Software  
silabs.com | Building a more connected world.  
Rev. 1.1 | 3  
Si5395/94/92 Data Sheet  
Ordering Guide  
3. Ordering Guide  
Table 3.1. Si5395/94/92 A/B/C/D/P Ordering Guide (External Reference)  
Ordering Part  
Number (OPN)  
Number of Input/  
Output Clocks  
Output Clock  
Frequency Range (MHz)  
Supported Frequency  
Synthesis Modes  
Package  
Reference  
Si5395  
Si5395A-A-GM1, 2  
Si5395B-A-GM1, 2  
Si5395C-A-GM1, 2  
Si5395D-A-GM1, 2  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
Integer and Fractional  
64-QFN  
9×9 mm  
4/12  
External  
Integer Only  
Up to 3 domains  
(Section 4.9.2 Grades P and E)  
Si5395P-A-GM1, 2  
Precision Calibration  
Si5394  
Si5394A-A-GM1, 2  
Si5394B-A-GM1, 2  
Si5394C-A-GM1, 2  
Si5394D-A-GM1, 2  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
Integer and Fractional  
44-QFN  
7×7 mm  
4/4  
External  
Integer Only  
Up to 2 domains  
(Section 4.9.2 Grades P and E)  
Si5394P-A-GM1, 2  
Precision Calibration  
Si5392  
Si5392A-A-GM1, 2  
Si5392B-A-GM1, 2  
Si5392C-A-GM1, 2  
Si5392D-A-GM1, 2  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
0.0001 to 1028 MHz  
0.0001to 350 MHz  
Integer and Fractional  
44-QFN  
7×7 mm  
4/2  
External  
Integer Only  
1 domain  
(Section 4.9.2 Grades P and E)  
Si5392P-A-GM1, 2  
Precision Calibration  
Si5395/94/92 Evaluation Board  
64-QFN  
EVB  
Si5395A-A-EVB  
Si5395P-A-EVB  
Si5394A-A-EVB  
Si5394P-A-EVB  
12-output  
Any-frequency, any Output  
Low jitter clocks for 56G PAM4  
SerDes  
64-QFN  
EVB  
12-output  
4-output  
4-output  
44-QFN  
EVB  
Any-frequency, any Output  
Low jitter clocks for 56G PAM4  
SerDes  
44-QFN  
EVB  
Notes:  
1. Add an R at the end of the OPN to denote tape and reel ordering options.  
2. Custom, factory preprogrammed devices are available. Ordering part numbers are assigned by Silicon Labs and the ClockBuilder  
Pro software utility. Custom part number format is “Si5395A-Axxxxx-GM” where “xxxxx” is a unique numerical sequence repre-  
senting the preprogrammed configuration.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 4  
Si5395/94/92 Data Sheet  
Ordering Guide  
Table 3.2. Si5395/4/2 J/K/L/M/E Ordering guide (Integrated Reference)  
Ordering Part  
Number (OPN)  
Number of Input/  
Output Clocks  
Output Clock  
Frequency Range (MHz)  
Supported Frequency  
Synthesis Modes  
Package  
Reference  
Si5395  
Si5395J-A-GM1, 2  
Si5395K-A-GM1, 2  
Si5395L-A-GM1, 2  
Si5395M-A-GM1, 2  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
Integer and Fractional  
64-LGA  
9×9 mm  
4/12  
Internal  
Integer Only  
Up to 3 domains  
(Section 4.9.2 Grades P and E)  
Si5395E-A-GM1, 2  
Precision Calibration  
Si5394  
Si5394J-A-GM1, 2  
Si5394K-A-GM1, 2  
Si5394L-A-GM1, 2  
Si5394M-A-GM1, 2  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
Integer and Fractional  
44-LGA  
7×7 mm  
4/4  
Internal  
Integer Only  
Up to 2 domains  
(Section 4.9.2 Grades P and E)  
Si5394E-A-GM1, 2  
Precision Calibration  
Si5392  
Si5392J-A-GM1, 2  
Si5392K-A-GM1, 2  
Si5392L-A-GM1, 2  
Si5392M-A-GM1, 2  
0.0001 to 1028 MHz  
0.0001 to 350 MHz  
0.0001 to 1028 MHz  
0.0001to 350 MHz  
Integer and Fractional  
44-LGA  
7×7 mm  
4/2  
Internal  
Integer Only  
1 domain  
(Section 4.9.2 Grades P and E)  
Si5392E-A-GM1, 2  
Precision Calibration  
Si5395/94/92 Evaluation Board  
64-LGA  
EVB  
Si5395J-A-EVB  
Si5395E-A-EVB  
Si5394J-A-EVB  
Si5394E-A-EVB  
Si5392J-A-EVB  
Si5392E-A-EVB  
12-output  
Any-frequency, any Output  
Low jitter clocks for 56G PAM4  
SerDes  
64-LGA  
EVB  
12-output  
4-output  
4-output  
2-output  
2-output  
44-LGA  
EVB  
Any-frequency, any Output  
Low jitter clocks for 56G PAM4  
SerDes  
44-LGA  
EVB  
44-LGA  
EVB  
Any-frequency, any Output  
Low jitter clocks for 56G PAM4  
SerDes  
44-LGA  
EVB  
silabs.com | Building a more connected world.  
Rev. 1.1 | 5  
Si5395/94/92 Data Sheet  
Ordering Guide  
Ordering Part  
Number (OPN)  
Number of Input/  
Output Clocks  
Output Clock  
Frequency Range (MHz)  
Supported Frequency  
Synthesis Modes  
Package  
Reference  
Notes:  
1. Add an R at the end of the OPN to denote tape and reel ordering options.  
2. Custom, factory preprogrammed devices are available. Ordering part numbers are assigned by Silicon Labs and the ClockBuilder  
Pro software utility. Custom part number format is “Si5395J-Axxxxx-GM” where “xxxxx” is a unique numerical sequence repre-  
senting the preprogrammed configuration.  
Figure 3.1. Ordering Part Number Fields  
silabs.com | Building a more connected world.  
Rev. 1.1 | 6  
Table of Contents  
1. Features List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
4. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2 DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.3 Fastlock Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4.1 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.4.2 Freerun Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.4.3 Lock Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.4.4 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.4.5 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.4.6 Frequency-on-the-Fly (FOTF) . . . . . . . . . . . . . . . . . . . . . . .11  
4.5 Digitally Controlled Oscillator (DCO) Mode (Grade A/B/C/D and J/K/L/M ) . . . . . . . . . .11  
4.6 External Reference (Grade A/B/C/D/P Only) . . . . . . . . . . . . . . . . . . . .12  
4.7 Inputs (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.7.1 Manual Input Selection (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . .13  
4.7.2 Automatic Input Selection (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . .13  
4.7.3 Hitless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.7.4 Frequency Ramped Input Switching . . . . . . . . . . . . . . . . . . . . .15  
4.7.5 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.7.6 Synchronizing to Gapped Input Clocks (Grade A/B/C/D and J/K/L/M Only) . . . . . . . .16  
4.8 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.8.1 Input LOS Detection. . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.8.2 XA/XB LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.8.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.8.4 LOL Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.8.5 Interrupt Pin (INTRb) . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.9 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.9.1 Grade A/B/C/D and J/K/L/M . . . . . . . . . . . . . . . . . . . . . . . .19  
4.9.2 Grades P and E . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.9.3 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9.4 Output Signal Format . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9.5 Programmable Common Mode Voltage For Differential Outputs . . . . . . . . . . . .21  
4.9.6 LVCMOS Output Impedance Selection . . . . . . . . . . . . . . . . . . . .21  
4.9.7 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . . .21  
4.9.8 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9.9 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9.10 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . . .22  
4.9.11 Synchronous Output Disable Feature . . . . . . . . . . . . . . . . . . . .22  
4.9.12 Input/Output Skew Control . . . . . . . . . . . . . . . . . . . . . . . .22  
silabs.com | Building a more connected world.  
Rev. 1.1 | 7  
4.9.13 Zero Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.9.14 Output Divider (R) Synchronization . . . . . . . . . . . . . . . . . . . . .23  
4.10 Power Management. . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.11 In-Circuit Programming. . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.12 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.13 Custom Factory Preprogrammed Parts . . . . . . . . . . . . . . . . . . . . .23  
4.14 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . 42  
7. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8. Typical Operating Characteristics  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
. . . . . . . . . . . . . . . . . . . . . .44  
10.1 Si5395 A/B/C/D/P (External Reference) 9x9 mm 64-QFN Package Diagram . . . . . . . . .52  
10.2 Si5395 J/K/L/M/E (Internal Reference) 9x9 mm 64-LGA Package Diagram . . . . . . . . .53  
10.3 Si5394 and Si5392 A/B/C/D/P (External Reference) 7x7 mm 44-QFN Package Diagram . . . .54  
10.4 Si5394 and Si5392 J/K/L/M/E (Internal Reference) 7x7 mm 44-LGA Package Diagram . . . . .55  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
13. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
silabs.com | Building a more connected world.  
Rev. 1.1 | 8  
Si5395/94/92 Data Sheet  
Functional Description  
4. Functional Description  
The Si5392-95’s internal DSPLL provides jitter attenuation and any-frequency multiplication of the selected input frequency. Fractional  
input dividers (P) allow the DSPLL to perform hitless switching between input clocks (INx) that are fractionally related. Input switching is  
controlled manually or automatically using an internal state machine. The oscillator circuit (OSC) provides a frequency reference which  
determines output frequency stability and accuracy while the device is in free-run or holdover mode. The high-performance MultiSynth  
dividers (N) generate integer or fractionally related output frequencies for the output stage. A crosspoint switch connects any of the  
MultiSynth generated frequencies to any of the outputs. Additional integer division (R) determines the final output frequency.  
4.1 Frequency Configuration  
The frequency configuration of the DSPLL is programmable through the serial interface and can also be stored in non-volatile memory.  
The combination of fractional input dividers (Pn/Pd), fractional frequency multiplication (Mn/Md), fractional output MultiSynth division  
(Nn/Nd), and integer output division (Rn) allows the generation of virtually any output frequency on any of the outputs. All divider values  
for a specific frequency plan are easily determined using the ClockBuilder Pro utility.  
4.2 DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL loop bandwidth set-  
tings in the range of 0.1 Hz to 4 kHz are available for selection for Grade A/B/C/D. Since the loop bandwidth is controlled digitally, the  
DSPLL will always remain stable with less than 0.1 dB of peaking regardless of the loop bandwidth selection. For grade P and E devi-  
ces, the DSPLL bandwidth is fixed at 100 Hz.  
4.3 Fastlock Feature  
Selecting a low DSPLL loop bandwidth (e.g. 0.1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting  
a temporary Fastlock Loop Bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will ena-  
ble the DSPLLs to lock faster. Fastlock Loop Bandwidth settings of in the range of 100 Hz to 4 kHz are available for selection. The  
DSPLL will revert to its normal loop bandwidth once lock acquisition has completed.  
4.4 Modes of Operation  
Once initialization is complete the DSPLL operates in one of four modes: Free-run Mode, Lock Acquisition Mode, Locked Mode, or  
Holdover Mode. A state diagram showing the modes of operation is shown in the figure below. The following sections describe each of  
these modes in greater detail.  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
An input is  
qualified and  
available for  
selection  
Locked  
Mode  
No valid input  
clocks available  
for selection  
Holdover  
Mode  
Input Clock  
Switch  
Selected input  
clock fails  
Yes  
No  
Other Valid  
Clock Inputs  
Available?  
Yes  
Holdover  
History  
Valid?  
No  
Figure 4.1. Modes of Operation  
silabs.com | Building a more connected world.  
Rev. 1.1 | 9  
Si5395/94/92 Data Sheet  
Functional Description  
4.4.1 Initialization and Reset  
Once power is applied, the device begins an initialization period, downloads default register values and configuration data from NVM,  
and performs other initialization tasks. To communicate with the device through the serial interface, wait untl the initialization period is  
complete. No clocks will be generated until the initialization is complete.  
Clocks that feature the integrated crystal may require a slightly longer settling time compared to the external crystal device. See the  
Reference Manual for more details.  
Two types of resets are available. A hard reset is functionally similar to a device power-up. All registers will be restored to the values  
stored in NVM and all circuits including the serial interface will be restored to their initial state. A hard reset is initiated using the RSTb  
pin or by asserting the hard reset register bit.  
A soft reset bypasses the NVM download. It is used to initiate register configuration changes.  
4.4.2 Freerun Mode  
The DSPLL will automatically enter freerun mode once power is applied to the device and initialization is complete. The frequency ac-  
curacy of the generated output clocks in freerun mode is entirely dependent on the frequency accuracy of the external crystal or refer-  
ence clock on the XA/XB pins. For example, if the crystal frequency is ±100 ppm, then all the output clocks will be generated at their  
configured frequency ±100 ppm in freerun mode. Any drift of the crystal frequency will be tracked at the output clock frequencies. A  
TCXO or OCXO is recommended for applications that need better frequency accuracy and stability while in freerun or holdover modes.  
4.4.3 Lock Acquisition Mode  
The device monitors all inputs for a valid clock. If at least one valid clock is available for synchronization, the DSPLL will automatically  
start the lock acquisition process. If the fast lock feature is enabled, the DSPLL will acquire lock using the Fastlock Loop Bandwidth  
setting and then transition to the DSPLL Loop Bandwidth setting when lock acquisition is complete. During lock acquisition the outputs  
will generate a clock that follows the VCO frequency change as it pulls in to the input clock frequency.  
4.4.4 Locked Mode  
Once locked, the DSPLL will generate output clocks that are both frequency and phase locked to their selected input clocks. At this  
point, any XTAL frequency drift will not affect the output frequency. A loss of lock pin (LOL) and status bit indicate when lock is ach-  
ieved. See 4.8.4 LOL Detection for more details on the operation of the loss-of-lock circuit.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 10  
Si5395/94/92 Data Sheet  
Functional Description  
4.4.5 Holdover Mode  
The DSPLL will automatically enter holdover mode when the selected input clock becomes invalid and no other valid input clocks are  
available for selection. The DSPLL uses an averaged input clock frequency as its final holdover frequency to minimize the disturbance  
of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit for the DSPLL stores up to 120 sec-  
onds of historical frequency data while locked to a valid clock input. The final averaged holdover frequency value is calculated from a  
programmable window within the stored historical frequency data. Both the window size and the delay are programmable as shown in  
the figure below. The window size determines the amount of holdover frequency averaging. The delay value allows ignoring frequency  
data that may be corrupt just before the input clock failure.  
Clock Failure and Entry  
into Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window used to  
determine the final holdover value  
Programmable delay  
120 seconds  
0
Figure 4.2. Programmable Holdover Window  
When entering holdover, the DSPLL will pull its output clock frequency to the calculated averaged holdover frequency. While in hold-  
over, the output frequency drift is entirely dependent on the external crystal or external reference clock connected to the XA/XB pins. If  
the clock input becomes valid, the DSPLL will automatically exit the holdover mode and re-acquire lock to the new input clock. This  
process involves pulling the output clock frequency to achieve frequency and phase lock with the input clock. This pull-in process is  
glitchless and its rate is controlled by the DSPLL or the Fastlock bandwidth.  
The DSPLL output frequency when exiting holdover can be ramped (recommend). Just before the exit is initiated, the difference be-  
tween the current holdover frequency and the new desired frequency is measured. Using the calculated difference and a user-selecta-  
ble ramp rate, the output is linearly ramped to the new frequency. The ramp rate can be 0.2 ppm/s, 40,000 ppm/s, or any of about 40  
values in between. The DSPLL loop BW does not limit or affect ramp rate selections (and vice versa). CBPro defaults to ramped exit  
from holdover. The same ramp rate settings are used for both exit from holdover and ramped input switching. For more information on  
ramped input switching, see 4.7.4 Frequency Ramped Input Switching.  
Note: If ramped holdover exit is not selected, the holdover exit is governed either by (1) the DSPLL loop BW or (2) a user-selectable  
holdover exit BW.  
4.4.6 Frequency-on-the-Fly (FOTF)  
The Si5395/94/92 use register writes to support frequency-on-the-fly to allow frequency changes on one MultiSynth without affecting  
the clocks generated from other MultiSynths. See the Si5395-94-92 Family Reference Manual and AN1178: Frequency-On-the-Fly for  
Silicon Labs Jitter Attenuators and Clock Generators for more details.  
4.5 Digitally Controlled Oscillator (DCO) Mode (Grade A/B/C/D and J/K/L/M )  
The output MultiSynths support a DCO mode where their output frequencies are adjustable in predefined steps defined by frequency  
step words (FSW). The frequency adjustments are controlled through the serial interface or by pin control using frequency increment  
(FINC) or decrement (FDEC). A FINC will add the frequency step word to the DSPLL output frequency, while a FDEC will decrement it.  
Any number of MultiSynths can be updated at once or independently controlled. The DCO mode is available when the DSPLL is operat-  
ing in either free-run or locked mode.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 11  
Si5395/94/92 Data Sheet  
Functional Description  
4.6 External Reference (Grade A/B/C/D/P Only)  
An external crystal (XTAL) or crystal oscillator (XO) is used in combination with the internal oscillator (OSC) to produce an ultra low jitter  
reference clock for the DSPLL and for providing a stable reference for the free-run and holdover modes. A simplified diagram is shown  
in the figure below. The device includes internal XTAL loading capacitors which eliminates the need for external capacitors and also  
has the benefit of reduced noise coupling from external sources. Refer to Table 5.12 External Crystal Specifications for Grades  
A/B/C/D/P on page 39 for crystal specifications. For the A/B/C/D grades, a crystal in the range of 48 MHz to 54 MHz is recommended  
for best jitter performance. The P grade devices must use a high quality 48 MHz crystal to achieve the ultra low jitter specification. The  
family referernce manual provides additional information on PCB layout recommendations for the crystal to ensure optimum jitter per-  
formance.  
To achieve optimal jitter performance and minimize BOM cost, a crystal is recommended on the XA/XB reference input. For SyncE  
pizza box applications (e.g. loop bandwidth set to 0.1 Hz), a TCXO is required on the XA/XB reference to minimize wander and to pro-  
vide a stable holdover reference. See the Si5395-94-92 Family Reference Manual for more information. Selection between the external  
XTAL or REFCLK is controlled by register configuration. The internal crystal loading capacitors (CL) are disabled in the REFCLK mode.  
Refer to Table 5.3 Input Clock Specifications on page 26 for REFCLK requirements when using this mode. A PREF divider is availa-  
ble to accommodate external clock frequencies higher than 54 MHz. Frequencies in the range of 48 MHz to 54 MHz will achieve the  
best output jitter performance.  
25-54 MHz  
25-54 MHz  
XO/Clock  
XO/Clock  
LVCMOS  
C1 is recommended  
to increase the slew  
rate at Xa  
C1  
R1  
See the Reference Manual for the  
recommended R1, R2, C1 values  
25-54 MHz  
XTAL  
R2  
Note: See Pin  
Descriptions for  
X1/X2 connections  
nc nc  
nc nc  
X1  
X1  
X1  
X2  
XB  
XA  
XB  
XA  
X2  
XB  
XA  
X2  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
OSC  
OSC  
OSC  
÷ PXAXB  
÷ PXAXB  
÷ PXAXB  
Crystal Resonator  
Connection  
Differential XO/Clock  
Connection  
LVCMOS XO/Clock  
Connection  
(Recommended)  
(Not Recommended)  
(Not Recommended)  
Note: XA and XB must not exceed the maximum input voltage listed in Table 5.3 Input Clock Specifications on page 24  
Figure 4.3. Crystal Resonator and External Reference Clock Connection Options  
Note that connecting an external reference to a device that already has an integrated reference (grades J/K/L/M/E) is not allowed. Do-  
ing so could lead to internal damage to the circuits.  
4.7 Inputs (IN0, IN1, IN2, IN3)  
There are four inputs that can be used to synchronize to the DSPLL. The inputs accept three formats of input clock: Standard Differen-  
tial/Single-Ended, Standard LVCMOS or Pulsed CMOS (See Family Reference Manual for more details). Input selection can be manual  
(pin or register controlled) or automatic with user definable priorities.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 12  
Si5395/94/92 Data Sheet  
Functional Description  
4.7.1 Manual Input Selection (IN0, IN1, IN2, IN3)  
Input clock selection can be made manually using the IN_SEL[1:0] pins or through a register. A register bit determines input selection  
as pin selectable (default) or register selectable. If there is no clock signal on the selected input, the device will automatically enter free-  
run or holdover mode. When the zero delay mode is enabled, IN3 becomes the feedback input (FB_IN) and is not available for  
selection as a clock input.  
Table 4.1. Manual Input Selection Using IN_SEL[1:0] Pins  
Selected Input  
IN_SEL[1:0]  
Zero Delay Mode Disabled  
Zero Delay Mode Enabled  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
IN0  
IN1  
IN2  
Reserved  
4.7.2 Automatic Input Selection (IN0, IN1, IN2, IN3)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic mode, the selection  
criteria is based on input clock qualification, input priority, and the revertive option. Only input clocks that are valid can be selected by  
the automatic clock selection state machine. If there are no valid input clocks available the DSPLL will enter the holdover mode. With  
revertive switching enabled, the highest priority input with a valid input clock is always selected. If an input with a higher priority be-  
comes valid then an automatic switchover to that input will be initiated. With non-revertive switching, the active input will always remain  
selected while it is valid. If it becomes invalid an automatic switchover to a valid input with the highest priority will be initiated.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 13  
Si5395/94/92 Data Sheet  
Functional Description  
4.7.3 Hitless Input Switching  
Hitless switching is a feature that prevents a phase offset from propagating to the output when switching between two clock inputs that  
have a fixed phase relationship. A hitless switch can only occur when the two input frequencies are frequency locked meaning that they  
have to be exactly at the same frequency, or at an integer frequency relationship to each other. When hitless switching is enabled, the  
DSPLL simply absorbs the phase difference between the two input clocks during a input switch. When disabled, the phase difference  
between the two inputs is propagated to the output at a rate determined by the DSPLL Loop Bandwidth. The hitless switching feature  
supports clock frequencies down to the minimum input frequency of 8 kHz; however, for optimum hitless switching performance, higher  
input frequencies are recommended.  
Figure 4.4. Output Phase Transient—Hitless Switching between Two 25 MHz Inputs (0 ppm, 180 Degree Phase Shift)  
silabs.com | Building a more connected world.  
Rev. 1.1 | 14  
Si5395/94/92 Data Sheet  
Functional Description  
4.7.4 Frequency Ramped Input Switching  
The ramped input switching feature is enabled/disabled depending on both the frequency of the Phase-Frequency detector (Fpfd) and  
the difference in input frequencies (Zero-PPM vs non-zero PPM). The table below shows the selection criteria to enable ramped input  
switching. The same ramp rate settings are used for both holdover exit and clock switching. For more information on ramped exit from  
holdover, see 4.4.5 Holdover Mode and the Si5395-94-92 Family Reference Manual.  
Figure 4.5. Output Frequency Transient—Ramped Switching between Two 8 kHz Inputs (±4.6 ppm Offset)  
Table 4.2. Recommended Ramped Input Switching Settings for Internal Clock Switches  
Fpfd1 < 500 kHz  
Ramped Exit from Holdover  
Fpfd1 ≥ 500 kHz  
Maximum Input Frequency Difference  
0 ppm Frequency Locked  
≤ 10 ppm  
> 10 ppm  
Ramped Input Switching and Ramped Exit from Holdover Ramped Exit from Holdover  
Ramped Input Switching and Ramped Exit from Holdover  
Note:  
1. The Fpfd value is determineby various requirements of the frequency plan and is displayed in the CBPro project file.  
Always enable hitless switching and enable phase buildout on holdover exit. See the latest version of CBPro to properly configure the  
device.  
.
4.7.5 Glitchless Input Switching  
The glitchless switching feature allows the DSPLL to switch between two input clock frequencies that are up to ±500 ppm apart without  
an abrupt phase change at the output. The DSPLL will pull-in to the new frequency using a ramped frequency step (if ramping is ena-  
bled) or using Fastlock/nominal lock parameters (if ramping is disabled).  
The loss of lock (LOL) indicator will assert while the DSPLL is pulling-in to the new clock frequency.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 15  
Si5395/94/92 Data Sheet  
Functional Description  
4.7.6 Synchronizing to Gapped Input Clocks (Grade A/B/C/D and J/K/L/M Only)  
The DSPLL supports locking to an input clock that has missing periods. This is also referred to as a gapped clock. The purpose of  
gapped clocking is to modulate the frequency of a periodic clock by selectively removing some of its cycles. Gapping a clock severely  
increases its jitter so a phase-locked loop with high jitter tolerance and low loop bandwidth is required to produce a low-jitter periodic  
clock. The resulting output will be a periodic non-gapped clock with an average frequency of the input with its missing cycles. For exam-  
ple, an input clock of 100 MHz with one cycle removed every 10 cycles will result in a 90 MHz periodic non-gapped output clock. This is  
shown in the following figure. For more information on gapped clocks, see “AN561: Introduction to Gapped Clocks and PLLs”.  
Gapped Input Clock  
100 MHz clock  
1 missing period every 10  
Periodic Output Clock  
90 MHz non-gapped clock  
100 ns  
100 ns  
DSPLL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10  
Period Removed  
10 ns  
11.11111... ns  
Figure 4.6. Generating an Averaged Clock Output Frequency from a Gapped Clock Input  
A valid gapped clock input must have a minimum frequency of 10 MHz with a maximum of two missing cycles out of every eight. Lock-  
ing to a gapped clock will not trigger the LOS, OOF, and LOL fault monitors. Clock switching between gapped clocks may violate the  
hitless switching specification in Table 5.8 Performance Characteristics on page 34 when the switch occurs during a gap in either  
input clock.  
4.8 Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3/FB_IN) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in the fig-  
ure below. The reference at the XA/XB pins is also monitored for LOS since it provides a critical reference clock for the DSPLL. There is  
also a Loss Of Lock (LOL) indicator, which is asserted when the DSPLL loses synchronization.  
XA XB  
Si5395/94/92  
OSC  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
IN0b  
DSPLL  
IN1  
Precision  
Fast  
LOL  
IN1b  
PD LPF  
÷M  
Precision  
Fast  
IN2  
IN2b  
IN3/FB_IN  
Precision  
Fast  
IN3/FB_INb  
Figure 4.7. Si5395/94/92 Fault Monitors  
silabs.com | Building a more connected world.  
Rev. 1.1 | 16  
Si5395/94/92 Data Sheet  
Functional Description  
4.8.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits has its own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility. The LOS status for each of the monitors is accessible by reading a status  
register. The live LOS register always displays the current LOS state and a sticky register always stays asserted until cleared. An option  
to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 4.8. LOS Status Indicators  
4.8.2 XA/XB LOS Detection  
A LOS monitor is available to ensure that the external crystal or reference clock is valid. By default the output clocks are disabled when  
XAXB_LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB_LOS is  
detected.  
4.8.3 OOF Detection  
Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its “0_ppm” reference. This  
OOF reference can be selected as either:  
• XA/XB pins  
• Any input clock (IN0, IN1, IN2, IN3)  
The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as shown in the figure  
below. An option to disable either monitor is also available. The live OOF register always displays the current OOF state, and its sticky  
register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
OOF  
OOF  
Live  
en  
Figure 4.9. OOF Status Indicator  
silabs.com | Building a more connected world.  
Rev. 1.1 | 17  
Si5395/94/92 Data Sheet  
Functional Description  
4.8.3.1 Precision OOF Monitor  
The precision OOF monitor circuit measures the frequency of all input clocks to within ±1/16 ppm accuracy with respect to the selected  
OOF frequency reference. A valid input clock frequency is one that remains within the OOF frequency range which is register configura-  
ble up to ±512 ppm in steps of 1/16 ppm. A configurable amount of hysteresis is also available to prevent the OOF status from toggling  
at the failure boundary. An example is shown in the figure below. In this case, the OOF monitor is configured with a valid frequency  
range of ±6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0–IN3) as the 0 ppm OOF reference instead of  
the XA/XB pins is available. This option is register configurable.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF Reference  
Figure 4.10. Example of Precise OOF Monitor Assertion and Deassertion Triggers  
4.8.3.2 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1/16 ppm of frequency measurement accuracy, it must measure the monitored  
input clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in  
frequency. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quick-  
ly detect a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by greater than  
±4000 ppm.  
4.8.4 LOL Detection  
The Loss Of Lock (LOL) monitor asserts a LOL register bit when the DSPLL has lost synchronization with its selected input clock. There  
is also a dedicated loss of lock pin that reflects the loss of lock condition. The LOL monitor functions by measuring the frequency differ-  
ence between the input and feedback clocks at the phase detector. There are two LOL frequency monitors, one that sets the LOL indi-  
cator (LOL Set) and another that clears the indicator (LOL Clear). An optional timer is available to delay clearing of the LOL indicator to  
allow additional time for the DSPLL to completely lock to the input clock. The timer is also useful to prevent the LOL indicator from  
toggling or chattering as the DSPLL completes lock acquisition. A block diagram of the LOL monitor is shown in the figure below. The  
live LOL register always displays the current LOL state and a sticky register always stays asserted until cleared. The LOL pin reflects  
the current state of the LOL monitor.  
LOL Monitor  
Sticky  
LOL  
Clear  
Timer  
LOL  
LOL  
Set  
Live  
LOLb  
DSPLL  
fIN  
PD LPF  
Feedback  
Clock  
÷M  
Si5395/94/92  
Figure 4.11. LOL Status Indicators  
The LOL frequency monitors have an adjustable sensitivity which is register configurable from 0.1 ppm to 10,000 ppm. Having two sep-  
arate frequency monitors allows for hysteresis to help prevent chattering of LOL status.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 18  
Si5395/94/92 Data Sheet  
Functional Description  
An example configuration where LOCK is indicated when there is less than 0.1 ppm frequency difference at the inputs of the phase  
detector and LOL is indicated when there’s more than 1 ppm frequency difference is shown in the following figure.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
Lost Lock  
LOL  
Hysteresis  
LOCKED  
0
0.1  
1
10,000  
Phase Detector Frequency Difference (ppm)  
Figure 4.12. LOL Set and Clear Thresholds  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely lock to the input  
clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisition. The  
configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calculated using  
the ClockBuilder Pro utility.  
4.8.5 Interrupt Pin (INTRb)  
An interrupt pin (INTRb) indicates a change in state of the status indicators (LOS, OOF, LOL, HOLD). Any of the status indicators are  
maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the status register that caused the  
interrupt.  
4.9 Outputs  
Each driver has a configurable voltage swing and common mode voltage covering a wide variety of differential signal formats. In addi-  
tion to supporting differential signals, any of the outputs can be configured as single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing  
up to 20 single-ended outputs, or any combination of differential and single-ended outputs.  
4.9.1 Grade A/B/C/D and J/K/L/M  
The Si539x "standard" grades A/B/C/D (external reference) and J/K/L/M (integrated reference) can generate any output frequency in  
any format with best-in-class jitter. These devices are available as a preprogrammed option or can be written to the device via I2C. The  
input/output frequency plan determines whether the output divider operates in integer or fractional mode. In the fractional mode, the  
device can generate any output frequency or any format from any input frequency with best-in-class jitter. Some frequency plans allow  
the user to use an integer mode that delivers even lower jitter. See the Si5395-94-92 Family Reference Manual for more details.  
PHYs  
156.25 MHz  
Backplane  
Clock  
Si5395A  
Jitter  
Attenuator  
19.44 MHz  
PHYs  
155.52 MHz  
Figure 4.13. Si5395 A/B/C/D/J/K/L/M Jitter Attenuator  
silabs.com | Building a more connected world.  
Rev. 1.1 | 19  
Si5395/94/92 Data Sheet  
Functional Description  
4.9.2 Grades P and E  
Some applications, like 56G PAM4 SerDes, require even higher performance (< 100fs MAX) than is already provided by standard Sili-  
con Labs jitter attenuators (<140fs MAX). The Si539x grades P (external reference) and E (integrated reference) are Precision grade  
jitter attenuators that calibrate out linearity errors to deliver the world's best jitter performance over a wide range of frequency plans.  
The Si5392P/E can support 1 clock domain while the Si5394P/E supports 1 or 2 clock domains and the Si5395P/E can support 1, 2 or  
3 clock domains while delivering guaranteed low jitter of 100fs MAX on the primary SerDes clocks. The frequencies supported by the 3  
domains are  
• Domain#1 (Si5395/94/92 P/E) - 156.25/312.5/625 MHz  
• Domain#2 (Si5395/94 P/E) - 25/50/100/125/200/156.25/312.5/625 MHz  
• Domain#3 (Si5395 P/E) - 25/50/100/125/200/156.25/312.5/625/322.265625/644.53125 MHz  
The examples below show examples of how each of the 3 devices can be used as jitter attenuators in 56G Pam4 SerDes applications.  
156.25 MHz  
PHYs  
(100fs MAX)  
5
Backplane  
Clock  
25 MHz  
25 MHz  
50 MHz  
100 MHz  
Si5395P/E  
Jitter  
System  
Clocks  
Attenuator  
644.53125 MHz /  
322.265625 MHz  
Si5395P/E typical 56G SerDes application (up to 3  
domains)  
156.25 MHz  
(100fs MAX)  
PHYs  
Backplane  
Clock  
Si5394P/E  
Jitter  
Attenuator  
25 MHz  
25/50/100/125/200 MHz  
Si5394P/E typical 56G SerDes application (up to 2 domains)  
Backplane  
Clock  
156.25 MHz  
Si5392P/E  
(100fs MAX)  
PHYs  
25 MHz  
Jitter  
Attenuator  
Si5392P/E typical 56G SerDes application (1 domain)  
Figure 4.14. Typical Grade P and Grade E 56G SerDes Applications  
silabs.com | Building a more connected world.  
Rev. 1.1 | 20  
Si5395/94/92 Data Sheet  
Functional Description  
The external reference used on the XA/XB pins of the P grade is restricted to a 48 MHz crystal. No other values of crystal or other  
reference sources like XO or VCXO are allowed. If the design requires other crystal frequencies, then the standard Si539xA/B/C/D  
should be used instead of the Si539xP.  
To deliver guaranteed jitter performance 100fs MAX on the 56 G Pam4 SerDes clocks, the additional system clocks must follow some  
specific design rules. Additionally, the device input clocks should be traceable back to a Stratum 3 primary reference clock. See the  
Si5395/94/92 Family Reference manual for more details on these design rules.  
4.9.3 Output Crosspoint  
A crosspoint allows any of the output drivers to connect with any of the MultiSynths. The crosspoint configuration is programmable and  
can be stored in NVM so that the desired output configuration is ready at power up.  
4.9.4 Output Signal Format  
The differential output swing and common mode voltage are both fully programmable covering a wide variety of signal formats including  
LVDS and LVPECL. In addition to supporting differential signals, any of the outputs can be configured as LVCMOS (3.3 V, 2.5 V, or 1.8  
V) drivers providing up to 20 single-ended outputs, or any combination of differential and single-ended outputs.  
4.9.5 Programmable Common Mode Voltage For Differential Outputs  
The common mode voltage (VCM) for the differential modes are programmable so that LVDS specifications can be met and for the best  
signal integrity with different supply voltages. When DC coupling the output driver, it is essential that the receiver have a relatively high  
common mode impedance so that the common mode current from the output driver is very small.  
4.9.6 LVCMOS Output Impedance Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances. A source termination resistor  
is recommended to help match the selected output impedance to the trace impedance, where Rs = Transmission line impedance – ZO.  
There are three programmable output impedance selections (CMOS1, CMOS2, CMOS3) for each VDDO option as shown in the follow-  
ing table.  
Table 4.3. Typical Output Impedance (ZS)  
VDDO  
CMOS Drive Selections  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
3.3 V  
2.5 V  
1.8 V  
38 Ω  
43 Ω  
30 Ω  
35 Ω  
46 Ω  
22 Ω  
24 Ω  
31 Ω  
4.9.7 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.  
4.9.8 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output, it generates a clock signal on both pins (OUTx and OUTxb). By default, the clock  
on the OUTx pin is generated with the same polarity (in phase) as the clock on the OUTxb pin. The polarity of these clocks is configura-  
ble, enabling complementary clock generation and/or inverted polarity with respect to other output drivers.  
4.9.9 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling the output drivers. When the OEb pin is held high, all outputs are  
disabled. When held low, the outputs are enabled. Outputs in the enabled state can be individually disabled through register control.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 21  
Si5395/94/92 Data Sheet  
Functional Description  
4.9.10 Output Driver State When Disabled  
The disabled state of an output driver is configurable as disable low or disable high.  
4.9.11 Synchronous Output Disable Feature  
The output drivers provide a selectable synchronous disable feature. Output drivers with this feature turned on will wait until a clock  
period has completed before the driver is disabled. This prevents unwanted runt pulses from occurring when disabling an output. When  
this feature is turned off, the output clock will disable immediately without waiting for the period to complete.  
4.9.12 Input/Output Skew Control  
The input-output skew can be adjusted in dynamic mode. The dynamic phase adjust will allow the device to dynamically and glitchlessly  
change the output phase using register writes with the device still powered up. The skew value may change after each reset or power  
cycle. See the family reference manual for more details.  
4.9.13 Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the selected input and outputs.  
The zero delay mode is configured by opening the internal feedback loop through software configuration and closing the loop externally  
as shown in the figure below. (Zero delay mode is only available for clock inputs that are higher than 128 kHz.)  
This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the output drivers. Any one of the  
outputs can be fed back to the FB_IN pins, although using the output driver that achieves the shortest trace length will help to minimize  
the input-to-output delay. The OUT9 and FB_IN pins are recommended for the external feedback connection. The FB_IN input pins  
must be terminated and ac-coupled when zero delay mode is used. A differential external feedback path connection is necessary for  
best performance. Note that the hitless switching feature is not available when zero delay mode is enabled.  
IN0  
÷P0  
IN0b  
IN1  
DSPLL  
÷P1  
IN1b  
PD LPF  
IN2  
÷P2  
IN2b  
÷M  
÷5  
IN3/FB_IN  
÷P3  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
÷R1  
IN3/FB_INb  
OUT0  
OUT0b  
VDDO1  
OUT1  
OUT1b  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO2  
OUT2  
OUT2b  
÷R2  
VDDO7  
OUT7  
OUT7b  
÷R7  
÷R8  
VDDO8  
OUT8  
OUT8b  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
External Feedback Path  
Figure 4.15. Si5395 Zero Delay Mode Setup  
silabs.com | Building a more connected world.  
Rev. 1.1 | 22  
Si5395/94/92 Data Sheet  
Functional Description  
4.9.14 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers that are connected to the same N divider.  
4.10 Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the Si5395-94-92 Family Reference Manual and Clock-  
Builder Pro configuration utility for details.  
4.11 In-Circuit Programming  
The Si5395/94/92 is fully configurable using the serial interface (I2C or SPI). At power-up the device downloads its default register val-  
ues from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to  
generate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power  
supply voltages applied to its VDD and VDDA pins. The NVM is two time writable. Once a new configuration has been written to NVM,  
the old configuration is no longer accessible. Refer to the Si5395-94-92 Family Reference Manual for a detailed procedure for writing  
registers to NVM.  
4.12 Serial Interface  
Configuration and operation of the Si5395/94/92 is controlled by reading and writing registers using the I2C or SPI interface. The  
I2C_SEL pin selects I2C or SPI operation. Communication with both 3.3 V and 1.8 V host is supported. The SPI mode operates in  
either 4-wire or 3-wire. See the Si5395-94-92 Family Reference Manual for details.  
4.13 Custom Factory Preprogrammed Parts  
For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered  
with a specific configuration written into NVM. A factory preprogrammed part will generate clocks at power-up. Custom, factory-preprog-  
rammed devices are available. The ClockBuilder Pro custom part number wizard can be used to quickly and easily generate a custom  
part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your preprogrammed device will typically ship in about two weeks.  
4.14 Register Map  
The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains frequently accessible  
registers, such as alarm status, resets, device identification, etc. Other pages contain registers that need less frequent access such as  
frequency configuration, and general device settings. Refer to the Si5395-94-92 Family Reference Manual for a complete list of register  
descriptions and settings. It is strongly recommended that ClockBuilder Pro be used to create and manage register settings.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 23  
Si5395/94/92 Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions1  
Parameter  
Ambient Temperature  
Junction Temperature  
Symbol  
TA  
Min  
–40  
Typ  
25  
Max  
Unit  
°C  
°C  
V
85  
TJMAX  
VDD  
125  
1.71  
3.14  
3.14  
2.37  
1.71  
3.14  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
3.30  
1.80  
1.89  
3.47  
3.47  
2.62  
1.89  
3.47  
1.89  
Core Supply Voltage  
VDDA  
V
V
VDDO  
Clock Output Driver Supply Voltage  
V
V
V
VDDS  
Status Pin Supply Voltage  
V
Note:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 24  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.2. DC Characteristics  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDIO/VDDS = 3.3 V ±5%, 1.8 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to  
85 °C  
Parameter  
Symbol  
Test Condition  
Si5395  
Min  
Typ  
150  
125  
125  
115  
22  
Max  
300  
250  
140  
130  
26  
Unit  
mA  
mA  
mA  
mA  
mA  
IDD  
Si5394/92  
Si5395  
Core Supply Current1, 2, 3  
IDDA  
Si5394/92  
2.5 V LVPECL Output4  
2.5 V LVDS Output4  
3.3 V LVCMOS Output5  
2.5 V LVCMOS Output5  
1.8 V LVCMOS Output5  
Si53951  
15  
22  
18  
30  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
IDDOx  
Output Buffer Supply Current  
18  
23  
12  
16  
1000  
750  
680  
1400  
1100  
1000  
Total Power Dissipation6  
Si53942  
Pd  
Si53923  
Notes:  
1. Si5395 test configuration: 7 x 2.5 V LVDS outputs enabled at 156.25 MHz. Excludes power in termination resistors.  
2. Si5394 test configuration: 4 x 2.5 V LVDS outputs enabled at 156.25 MHz. Excludes power in termination resistors.  
3. Si5392 test configuration: 2 x 2.5 V LVDS outputs enabled at 156.25 MHz. Excludes power in termination resistors.  
4. Differential outputs enabled at 156.25 MHz and terminated into an ac-coupled 100 Ω load.  
Differential Output Test Configuration  
0.1 uF  
IDDO  
50  
OUT  
100 Ω  
OUTb  
50  
0.1 uF  
5. LVCMOS outputs enabled at 156.25 MHz and measured into a 5 inch 50 Ω PCB trace with 4.7 pF load. Measurements were  
made with OUTx_CMOS_DRV=3. See Reference Manual for more details on register settings.  
LVCMOS Output Test Configuration  
Trace length 5  
inches  
499  
50 Scope Input  
50 Scope Input  
50  
50  
IDDO  
OUTx  
56  
56  
4.7pF  
499  
OUTxb  
4.7pF  
6. Detailed power consumption for any configuration can be estimated using ClockBuilder Pro when an evaluation board (EVB) is  
not available. All EVBs support detailed current measurements for any configuration.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 25  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.3. Input Clock Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Differential or Single-Ended - AC Coupled Input Buffer (IN0/IN0b, IN1/IN1b, IN2/IN2b, IN3/FB_IN, IN3b/FB_INb)  
Differential  
0.008  
0.008  
750  
250  
MHz  
MHz  
fIN  
Input Frequency Range  
All Single-ended signals  
(including LVCMOS)  
Differential AC-coupled  
fIN < 250 MHz  
100  
225  
100  
1800  
1800  
3600  
mVpp_se  
mVpp_se  
mVpp_se  
Differential AC-coupled  
250 MHz < fIN < 750 MHz  
Single-ended AC-coupled  
fIN < 250 MHz  
Voltage Swing1  
VIN  
Slew Rate2, 3  
SR  
DC  
400  
40  
2.4  
16  
8
60  
V/µs  
%
Duty Cycle  
CIN  
Input Capacitance  
pF  
RIN_DIFF  
RIN_SE  
Input Resistance Differential  
Input Resistance Single-Ended  
kΩ  
kΩ  
LVCMOS / Pulsed CMOS DC-Coupled Input Buffer (IN0, IN1, IN2, IN3/FB_IN)4  
Standard CMOS &  
Non-standard CMOS  
0.008  
250  
MHz  
fIN_CMOS  
Input Frequency  
Input Voltage5  
Pulsed CMOS  
0.008  
1
MHz  
V
Standard CMOS  
0.5  
VIL  
Non-standard CMOS &  
Pulsed CMOS  
1.3  
0.8  
400  
40  
0.4  
V
V
Standard CMOS  
VIH  
SR  
DC  
Non-standard CMOS &  
Pulsed CMOS  
V
Slew Rate2, 3  
Duty Cycle  
V/µs  
Standard CMOS &  
Non-standard CMOS  
60  
95  
%
Pulsed CMOS  
Standard CMOS &  
5
Non-standard CMOS  
(250 MHz @ 40% Duty Cycle)  
1.6  
Minimum Pulse Width  
Input Resistance  
PW  
RIN  
ns  
Pulsed CMOS  
(1 MHz @ 40% Duty Cycle)  
50  
8
kΩ  
silabs.com | Building a more connected world.  
Rev. 1.1 | 26  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
REFCLK (Applied to XA/XB) (Grade A/B/C/D)  
Full operating range. Jitter per-  
formance may be reduced.  
24.97  
48  
54.06  
54  
MHz  
MHz  
Range for best jitter.  
fIN_REF  
REFCLK Frequency  
TCXO frequency for SyncE  
applications. Jitter perform-  
ance may be reduced.  
40  
MHz  
Input Single-ended Voltage  
Swing  
VIN_SE  
VIN_DIFF  
SR  
365  
2000  
mVpp_se  
Input Differential Voltage Swing  
365  
400  
40  
2500  
mVpp_diff  
V/µs  
Slew Rate2, 3  
Duty Cycle  
Note:  
DC  
60  
%
1. Voltage swing is specified as single-ended mVpp.  
OUTx  
Vcm  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
OUTxb  
2. Recommended for specified jitter performance. Slew rate can go lower, but jitter performance could degrade if the minimum slew  
rate specification is not met (see the Si5395-94-92 Family Reference Manual).  
3. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 – 0.2) x VIN_Vpp_se) / SR.  
4. Standard, Non-standard and Pulsed CMOS refer to different formats of CMOS each with a voltage swing of 1.8V, 2.5V or 3.3V  
+/-5%.  
• Standard CMOS refers to the industry standard LVCMOS signal.  
• Non-standard CMOS refers to a signal that has been attenuated/level-shifted in order to comply with the specified non-stand-  
ard VIL and VIH specifications.  
• Pulsed CMOS refers to a signal that has been attenuated/level-shifted and has a low/high duty cycle and must be dc coupled.  
A typical application example is a low-frequency video frame sync pulse.  
Refer to the Si5395-94-92 Family Reference Manual for the recommended connections/termination for the different modes.  
5. CMOS signals that exceed 3.3 V + 5% can be used as inputs as long as a resistive attenuation network is used to guarantee that  
the input voltage at the pin does not violate the device's input ratings. Please refer to the Si5395-94-92 Family Reference Manual  
for the recommended connections/termination for this mode.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 27  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.4. Serial and Control Input Pin Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDIO/VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5395 Serial and Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, A1/SDO, SCLK, A0/CSb, FINC, FDEC, SDA/SDIO)  
0.3 ×  
VDDIO  
VIL  
VIH  
V
V
1
Input Voltage  
0.7 ×  
VDDIO  
1
CIN  
RIN  
PW  
TUR  
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Update Rate  
2
pF  
kΩ  
ns  
µs  
20  
RSTb, FINC and FDEC  
FINC and FDEC  
100  
1
Si5394/92 Serial and Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, A1/SDO, SCLK, A0/CSb, SDA/SDIO)  
0.3 ×  
VDDIO  
VIL  
VIH  
V
V
1
Input Voltage  
0.7 ×  
VDDIO  
1
CIN  
RIN  
PW  
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Note:  
2
pF  
kΩ  
ns  
20  
RSTb  
100  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5395-94-92 Family Reference Manual for  
more details on the proper register settings.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 28  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.5. Differential Clock Output Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Si5395/94/92  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
0.0001  
733.33  
825  
720  
800.00  
1028  
720  
MHz  
MHz  
MHz  
MHz  
MultiSynth not used  
fOUT  
Output Frequency  
MultiSynth used  
MultiSynth used:  
fOUT < 400 MHz  
MultiSynth used:  
0.0001  
48  
52  
%
Duty Cycle1  
DC  
45  
25  
55  
75  
%
%
400 MHz < fOUT <= 720  
MHz  
MultiSynth not used:  
fOUT < 1028 MHz  
VDDO = 3.3 V,  
LVDS  
350  
630  
450  
780  
530  
950  
mVpp_se  
mVpp_se  
2.5 V, 1.8 V  
Output Voltage Swing2  
VOUT  
VDDO = 3.3 V,  
2.5 V  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVDS  
1.1  
1.9  
1.2  
2.0  
1.3  
2.1  
V
V
VDDO = 3.3 V  
Common Mode Voltage2, 3  
(100 Ω load line-to-line)  
VCM  
VDDO = 2.5 V  
VDDO = 1.8 V  
1.1  
1.2  
1.3  
V
sub-LVDS  
0.8  
0.9  
0
1.0  
75  
V
fOUT = 712.5 MHz  
Output-to-Output Skew  
(Same MultiSynth)  
TSKS  
ps  
(LVDS)  
Measured from positive to  
negative output pins (LVDS)  
Out-Outb Skew on one output  
TSK_OUT  
0
50  
ps  
ps  
fOUT > 100 MHz (20% to  
80%)  
Rise and Fall Times2  
tr/tf  
ZO  
100  
200  
Differential Output Impedance  
100  
–101  
–96  
–99  
–97  
–72  
–88  
Ω
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Si5395  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Power Supply Noise Rejec-  
tion3  
PSRR  
Output-to-Output Crosstalk4  
XTALK  
Si5394/92  
silabs.com | Building a more connected world.  
Rev. 1.1 | 29  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Notes:  
1. Duty cycle can vary depending on frequency plan (output frequency and divide ratios).  
2. Output amplitude and common-mode settings are programmable through register settings and can be stored in NVM. Each out-  
put driver can be programmed independently. Note that the maximum LVDS single-ended amplitude can be up to 110 mV higher  
than the TIA/EIA-644 maximum. Refer to the Si5395-94-92 Family Reference Manual for more suggested output settings. Not all  
combinations of voltage amplitude and common mode voltages settings are possible.  
OUTx  
Vcm  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
OUTxb  
Differential Output Test Configuration  
0.1 uF  
IDDO  
50  
OUT  
100 Ω  
OUTb  
50  
0.1 uF  
3. Measured for 156.25 MHz carrier frequency. 100 mVpp sinewave noise added to VDDO = 3.3 V and noise spur amplitude meas-  
ured.  
4. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor at 156.25  
MHz. Refer to “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems” for guidance on  
crosstalk optimization. Note that all active outputs must be terminated when measuring crosstalk.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 30  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.6. LVCMOS Clock Output Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
0.0001  
48  
Typ  
Max  
250  
52  
Unit  
MHz  
%
fOUT  
Output Frequency  
fOUT <100 MHz  
Duty Cycle  
DC  
100 MHz < fOUT < 250 MHz  
44  
56  
%
VDDO = 3.3 V  
IOH = –10 mA VDDO x 0.85  
IOH = –12 mA VDDO x 0.85  
IOH = –17 mA VDDO x 0.85  
VDDO = 2.5 V  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
Output Voltage High1, 2, 3  
VOH  
IOH = –6 mA  
IOH = –8 mA  
VDDO x 0.85  
VDDO x 0.85  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
IOH = –11 mA VDDO x 0.85  
VDDO = 1.8 V  
IOH = –4 mA  
IOH = –5 mA  
VDDO x 0.85  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
VDDO x 0.85  
VDDO = 3.3 V  
IOL = 10 mA  
IOL = 12 mA  
IOL = 17 mA  
VDDO x 0.15  
VDDO x 0.15  
VDDO x 0.15  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
VDDO = 2.5 V  
Output Voltage Low1, 2, 3  
VOL  
IOL = 6 mA  
IOL = 8 mA  
IOL = 11 mA  
VDDO x 0.15  
VDDO x 0.15  
VDDO x 0.15  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
VDDO = 1.8 V  
IOL = 4 mA  
IOL = 5 mA  
VDDO = 3.3V  
VDDO x 0.15  
VDDO x 0.15  
600  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
400  
450  
550  
ps  
ps  
ps  
Rise and Fall Times3  
tr/tf  
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
600  
750  
silabs.com | Building a more connected world.  
Rev. 1.1 | 31  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Note:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Si5395-94-92 Family Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the DC test configuration.  
DC Test Configuration  
IDDO  
IOL/IOH  
Zs  
VOL/VOH  
3. A series termination resistor (Rs) is recommended to help match the source impedance to a 50 Ω PCB trace. A 4.7 pF capacitive  
load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3, at 156.25 MHz.  
LVCMOS Output Test Configuration  
Trace length 5  
inches  
499  
50 Scope Input  
50 Scope Input  
50  
IDDO  
OUTx  
56  
56  
4.7pF  
499  
OUTxb  
50  
4.7pF  
silabs.com | Building a more connected world.  
Rev. 1.1 | 32  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.7. Output Status Pin Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDIO/VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5395 Status Output Pins (LOLb, INTRb, SDA/SDIO1, SDO)  
VDDIO2 x  
0.85  
VOH  
IOH = –2 mA  
V
V
Output Voltage  
VDDIO2 x  
0.15  
VOL  
Si5394/92 Status Output Pins (INTRb, SDA/SDIO11, SDO)  
VOH IOH = –2 mA  
IOL = 2 mA  
VDDIO2 x  
0.85  
V
V
Output Voltage  
VDDIO2 x  
0.15  
VOL  
IOL = 2 mA  
Si5394 Status Output Pins (LOLb, LOS_XAXBb)  
Si5392 Status Output Pins (LOLb, LOS_XAXBb, LOS0b, LOS1b, LOS2b, LOS3b)  
VOH  
VOL  
IOH = –2 mA  
IOL = 2 mA  
VDDS x 0.85  
V
V
Output Voltage  
VDDS x 0.15  
Notes:  
1. The VOH specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is unused  
with I2C_SEL pulled high. VOL remains valid in all cases.  
2. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5395-94-92 Family Reference Manual for  
more details on the proper register settings.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 33  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.8. Performance Characteristics  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
fBW  
Test Condition  
Min  
0.1  
Typ  
Max  
4000  
45  
Unit  
Hz  
PLL Loop Bandwidth Pro-  
gramming Range1  
Initial Start-Up Time  
tSTART  
Time from power-up to when Grade  
30  
ms  
the device generates  
free-running clocks  
A/B/C/D/J/K/L/M  
Grade P/E  
460  
280  
0.28  
71.4  
±1  
625  
300  
ms  
ms  
ps  
PLL Lock Time2  
tACQ  
With Fastlock enabled, fIN = 19.44 MHz  
fVCO = 14 GHz  
tDELAY_frac  
tDELAY_int  
tRANGE  
Output Dynamic Delay Ad-  
justment  
ps  
ms  
POR to Serial Interface  
Ready3  
tRDY  
15  
1.5  
0.3  
ms  
ns  
ns  
Single automatic/manual switch between two 8  
kHz inputs, DSPLL BW = 40 Hz  
Maximum Phase Transient  
During a Hitless Switch4  
tSWITCH  
Single automatic/manual switch between two 2  
MHz inputs, DSPLL BW = 400 Hz  
Zero Delay Mode  
Input-to-Output Delay Varia-  
tion5  
Between reference and feedback input with both  
clocks in LVDS differential format at 128 kHz.  
tZDELAY  
0.20  
0.1  
ns  
Measured with a frequency plan running a 25  
MHz input, 25 MHz output, and a Loop Band-  
width of 4 Hz  
JPK  
Jitter Peaking  
dB  
Compliant with G.8262 Options 1 and 2  
for 1G, 10G or 25G Synchronous Ethernet  
JTOL  
Jitter Tolerance  
Pull-in Range  
3180  
UI pk-pk  
Jitter Modulation Frequency = 10 Hz  
ωP  
500  
75  
100  
90  
ppm  
fs  
fin = fout = 312.5 MHz or 156.25 MHz  
fout = 156.25 MHz  
69  
fs  
fout = 312.5 MHz  
69  
95  
fs  
RMS Phase Jitter  
(Grade P)6  
JGEN  
fout = 100 MHz  
fin = 25 MHz  
150  
200  
80  
200  
300  
fs  
fout = 50/25 MHz  
fs  
fout = 644.531248  
MHz  
fs  
silabs.com | Building a more connected world.  
Rev. 1.1 | 34  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
82  
Max  
110  
100  
105  
200  
300  
Unit  
fs  
fin = fout = 312.5 MHz or 156.25 MHz  
fout = 156.25 MHz  
71  
fs  
fout = 312.5 MHz  
fout = 100 MHz  
fout = 50/25 MHz  
75  
fs  
RMS Phase Jitter  
(Grade E)6  
JGEN  
150  
200  
85  
fs  
fin = 25 MHz  
fs  
fout = 644.531248  
MHz  
fs  
RMS Phase Jitter  
(Grade A/B/C/D and  
J/K/L/M)7  
Output divider Integer Mode  
85  
120  
170  
fs  
fs  
JGEN  
Output divider Fractional Mode/DCO Mode  
115  
Note:  
1. Actual loop bandwidth might be lower; please refer to CBPro for actual value for your frequency plan.  
2. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL thresholds, etc. For this case, lock  
time was measured with nominal bandwidth set to 100 Hz, fastlock bandwidth set to 1 kHz, LOL set/clear thresholds of 6/0.6 ppm  
respectively, using IN0 as clock reference by removing the reference and enabling it again, then measuring the delta time be-  
tween the first rising edge of the clock reference and the LOL indicator deassertion.  
3. Measured as time from valid VDD/VDDA rails (90% of their value) to when the serial interface is ready to respond to commands.  
4. Higher input frequencies will typically result in higher Fpfd frequencies, which, in turn, will result in better hitless switching per-  
formance. It is recommended to use higher input frequencies for the best hitless switching performance.  
5. Zero-Delay-Mode is dependent on frequency configuration. Using Fpfd < 128 kHz will result in higher delay values. Ref clock rise  
time must be <200 ps. Initial Start-Up time can be much higher in Zero Delay mode.  
6. Grade P and E are calibrated for optimum performance in 56G/112G SerDes applications at frequencies of 312.5 MHz or 156.25  
MHz. Specific layout rules must be followed to achieve optimum performance. For more details, refer to 4.9.2 Grades P and E  
and the reference manual.  
7. Grades A/B/C/D and J/K/L/M are targeted for applications that require more flexibility and set the output divider to Integer or Frac-  
tional modes. Integer mode test conditions: fin = 19.44 MHz; fout = 155.52 MHz. Fractional mode test conditions: fin = 19.44 MHz;  
fout = 125 MHz. All outputs are assumed to be LVPECL. For more details, refer to 4.9.1 Grade A/B/C/D and J/K/L/M.  
Table 5.9. I2C Timing Specifications (SCL, SDA)  
VDD= 1.8 V ±5%, VDDA= 3.3 V ±5%, VDDS/VDDIO= 3.3 V ±5%, 1.8 V ±5%, TA= –40 to 85 °C  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
Parameter  
Symbol  
Test Condition  
Unit  
Min  
Max  
100  
35  
Min  
Max  
400  
35  
fSCL  
SCL Clock Frequency  
SMBus Timeout  
kHz  
ms  
25  
25  
Hold time (Repeated)  
START condition  
tHD:STA  
tLOW  
4.0  
4.7  
4.0  
0.6  
1.3  
0.6  
µs  
µs  
µs  
Low Period of the SCL Clock  
HIGH Period of the SCL  
Clock  
tHIGH  
Setup Time for a Repeated  
START Condition  
tSU:STA  
4.7  
0.6  
µs  
tHD:DAT  
tSU:DAT  
Data Hold Time  
Data Setup Time  
100  
250  
100  
100  
ns  
ns  
silabs.com | Building a more connected world.  
Rev. 1.1 | 35  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
Parameter  
Symbol  
Test Condition  
Unit  
Min  
Max  
Min  
Max  
Rise Time of both SDA and  
SCL Signals  
tr  
tf  
1000  
20  
300  
ns  
ns  
µs  
Fall Time of both SDA and  
SCL Signals  
300  
300  
Setup Time for STOP Condi-  
tion  
tSU:STO  
4.0  
0.6  
Bus Free Time between a  
STOP and START Condition  
tBUF  
4.7  
1.3  
µs  
µs  
µs  
tVD:DAT  
tVD:ACK  
Data Valid Time  
3.45  
3.45  
0.9  
0.9  
Data Valid Acknowledge  
Time  
Figure 5.1. I2C Serial Port Timing Standard and Fast Modes  
silabs.com | Building a more connected world.  
Rev. 1.1 | 36  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.10. SPI Timing Specifications (4-Wire)  
VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, VDDIO= 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
TC  
ns  
TD1  
Delay Time, SCLK Fall to SDO Active  
Delay Time, SCLK Fall to SDO  
Delay Time, CSb Rise to SDO Tri-State  
Setup Time, CSb to SCLK  
12.5  
10  
10  
18  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
Hold Time, SCLK Fall to CSb  
5
ns  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
5
ns  
5
ns  
TCS  
Delay Time Between Chip Selects (CSb)  
95  
ns  
TD1  
TC  
TSU1  
SCLK  
CSb  
TH1  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 5.2. 4-Wire SPI Serial Interface Timing  
silabs.com | Building a more connected world.  
Rev. 1.1 | 37  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.11. SPI Timing Specifications (3-Wire)  
VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, VDDIO= 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
TC  
ns  
TD1  
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CSb Rise to SDIO Tri-State  
Setup Time, CSb to SCLK  
12.5  
10  
10  
18  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
Hold Time, CSb to SCLK Fall  
5
ns  
Setup Time, SDI to SCLK Rise  
5
ns  
Hold Time, SDI to SCLK Rise  
5
ns  
TCS  
Delay Time Between Chip Selects (CSb)  
95  
ns  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CSb  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 5.3. 3-Wire SPI Serial Interface Timing  
silabs.com | Building a more connected world.  
Rev. 1.1 | 38  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.12. External Crystal Specifications for Grades A/B/C/D/P  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Full operating range. Jit-  
ter performance may be  
reduced.  
24.97  
54.06  
MHz  
fXTAL  
(A/B/C/D)  
Crystal Frequency Range  
Range for best jitter.  
±100 ppm crystal  
48  
48  
8
54  
48  
MHz  
MHz  
pF  
fXTAL (P)  
CL  
Load Capacitance  
Crystal Drive Level  
dL  
200  
µW  
rESR  
CO  
Equivalent Series Resistance  
Shunt Capacitance  
Note:  
Refer to the Si5395-94-92 Family Reference Manual to determine ESR and shunt  
capacitance values.  
1. Refer to the Si534x/8x/9x Jitter Attenuators Recommended Crystal, TCXO and OCXOs Reference Manual for recommended 48  
to 54 MHz crystals.  
Table 5.13. Internal Reference Specifications for Grade J/K/L/M/E1, 2  
Parameter  
Initial Accuracy  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
–8  
+8  
ppm  
Inclusive of temperature range  
of –40 to 125 °C, aging at 115  
°C and reflow  
Frequency Characteristics across  
Temperature  
–88  
–2  
+88  
+2  
ppm  
ppm  
Activity Dip  
Overall Accuracy  
Note:  
Frequency Perturbations  
Inclusive of Initial Accuracy,  
Frequency Characteristics  
Across Temperature and Activi-  
ty Dips (all items listed above)  
–98  
+98  
ppm  
1. These devices with integrated reference have been tuned with an internal 48 MHz reference to deliver optimum performance. It is  
important to note that connecting an external reference to a device that already has an integrated reference is not allowed. Doing  
so could lead to internal damage to the circuits.  
2. Clocks that feature the integrated crystal may require a slightly longer settling time compared to the external crystal device. See  
the Reference Manual for more details.  
Table 5.14. Thermal Characteristics 44-QFN and 44-LGA (Si5392 and Si5394)  
Parameter  
Symbol  
Test Condition  
Still Air1, 2  
44-QFN  
22.3  
44-LGA  
25.49  
Unit  
°C/W  
°C/W  
°C/W  
Thermal Resistance  
Air Flow 1 m/s1, 2  
Air Flow 2 m/s1, 2  
θJA  
19.4  
22.14  
Junction to Ambient  
18.4  
21.13  
Thermal Resistance  
Junction to Case  
θJC  
10.9  
9.87  
°C/W  
silabs.com | Building a more connected world.  
Rev. 1.1 | 39  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Parameter  
Thermal Resistance  
Symbol  
θJB  
Test Condition  
44-QFN  
9.3  
44-LGA  
9.52  
Unit  
°C/W  
°C/W  
Junction to Board  
Thermal Resistance  
Junction to Top Center  
Note:  
ΨJB  
9.2  
9.58  
ΨJT  
0.23  
0.81  
°C/W  
1. 44-QFN: Based on PCB Dimension: 3" x 4.5" PCB Thickness: 1.6 mm, PCB Land/Via: 36, Number of Cu Layers: 4.  
2. 44-LGA: Based on 4 layer PCB with dimension 4" x 4.5", PCB Thickness of 1.6 mm, per JEDEC. PCB Center Land with 16 Via to  
top internal plane of PCB.  
Table 5.15. Thermal Characteristics 64-QFN and 64-LGA (Si5395)  
Parameter  
Symbol  
Test Condition  
Still Air1, 2  
64-QFN  
22  
64-LGA  
22.3  
Unit  
°C/W  
°C/W  
°C/W  
Thermal Resistance  
Air Flow 1 m/s1, 2  
Air Flow 2 m/s1, 2  
θJA  
19.4  
18.3  
19.4  
Junction to Ambient  
18.4  
Thermal Resistance  
Junction to Case  
Thermal Resistance  
Junction to Board  
Thermal Resistance  
Junction to Top Center  
Note:  
θJC  
9.5  
10.9  
°C/W  
θJB  
9.4  
9.3  
9.3  
9.2  
°C/W  
°C/W  
ΨJB  
ΨJT  
0.2  
0.23  
°C/W  
1. 64-QFN: Based on PCB Dimension: 3" x 4.5" PCB Thickness: 1.6 mm, PCB Land/Via: 36, Number of Cu Layers: 4.  
2. 64-LGA: Based on 4 layer PCB with dimension 4" x 4.5", PCB Thickness of 1.6 mm, per JEDEC. PCB Center Land with 16 Via to  
top internal plane of PCB.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 40  
Si5395/94/92 Data Sheet  
Electrical Specifications  
Table 5.16. Absolute Maximum Ratings 1, 2, 3  
Parameter  
Symbol  
VDD  
Test Condition  
Value  
Unit  
V
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–1.0 to 3.8  
VDDA  
VDDO  
VDDS  
V
DC Supply Voltage  
V
V
4
VI1  
IN0–IN3/FB_IN  
V
IN_SEL1, IN_SEL0, RSTb,  
OEb, I2C_SEL, FINC, FDEC,  
SDI, SCLK, A0/CSb, A1,  
SDA/SDIO  
Input Voltage Range  
VI2  
–0.5 to 3.8  
–0.5 to 2.7  
V
V
VI3  
LU  
XA/XB  
Latch-up Tolerance  
JESD78 Compliant  
ESD Tolerance  
HBM  
TSTG  
TJCT  
100 pF, 1.5 kΩ  
2.0  
–55 to 150  
125  
kV  
°C  
°C  
Storage Temperature Range  
Maximum Junction Temperature in Operation  
Soldering Temperature  
TPEAK  
260  
°C  
s
(Pb-free profile)5  
Soldering Temperature Time at TPEAK  
TP  
20–40  
(Pb-free profile)5  
Note:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. 64-QFN/LGA and 44-QFN/LGA packages are RoHS compliant.  
3. For detailed packaging information, go to the Silicon Labs RoHS information page.  
4. The minimum voltage at these pins can be as low as –1.0 V when an ac input signal of 8 kHz or greater is applied. See Table  
5.3 Input Clock Specifications on page 26 for single-ended ac-coupled fIN < 250 MHz.  
5. The device is compliant with JEDEC J-STD-020.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 41  
Si5395/94/92 Data Sheet  
Typical Application Schematic  
6. Typical Application Schematic  
312.5 MHz  
4~6  
Backplane  
Clock  
PHYs  
25/50/100 MHz  
Si5395 Jitter  
Attenuator  
Switch  
SoC  
156.25 MHz  
4
Figure 6.1. Typical 56G SerDes Application  
Telecom or  
Ethernet  
Backplane  
Redundant  
Timing Cards  
Wander Filtering  
Hitless Switching  
Holdover  
LAN / WAN  
SyncE Line Card  
Tx Timing Path  
Hitless Switching  
Jitter Filtering  
PHY  
25/50GbE  
A
B
Frequency Translation  
BITS A  
BITS B  
Si5348  
155.52 MHz  
156.25 MHz  
161.1328125 MHz  
A
B
Si5395  
TCXO/  
OCXO  
8 kHz  
19.44 MHz  
25 MHz  
25/50GbE  
PHY  
Rx Timing Path  
Line  
Recovered  
Clocks  
8 kHz  
19.44 MHz  
25 MHz  
LAN / WAN  
SyncE Line Card  
Tx Timing Path  
Hitless Switching  
Jitter Filtering  
Frequency Translation  
25/50GbE  
PHY  
155.52 MHz  
156.25 MHz  
161.1328125 MHz  
A
B
Si5395  
25/50GbE  
PHY  
Rx Timing Path  
Line  
Recovered  
Clocks  
8 kHz  
19.44 MHz  
25 MHz  
Figure 6.2. SyncE Line Card  
silabs.com | Building a more connected world.  
Rev. 1.1 | 42  
Si5395/94/92 Data Sheet  
Detailed Block Diagrams  
7. Detailed Block Diagrams  
Si5395/94/92  
3
Integrated Reference  
(J/K/L/M/E)  
IN_SEL[1:0]  
IN0  
IN0b  
IN1  
P0n  
P0d  
P1n  
P1d  
P2n  
P2d  
÷
÷
÷
÷
DSPLL  
IN1b  
LPF  
PD  
IN2  
IN2b  
IN3/FB_IN  
IN3/FB_INb  
Mn  
Md  
P3n  
P3d  
÷
÷
5
Optional  
External  
Feedback  
VDDO0  
OUT0A  
OUT0A  
÷R0A  
Multi  
Synth  
N0n  
N0d  
OUT0  
OUT0  
÷
÷
÷
÷R0  
VDDO1  
OUT1  
OUT1  
Multi  
Synth  
N1n  
N1d  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
÷R9  
Multi  
Synth N2d  
VDDO2  
OUT2  
OUT2  
N2n  
Multi  
Synth  
N3n  
N3d  
VDDO3  
OUT3  
OUT3  
÷
÷
Multi  
Synth  
N4n  
N4d  
VDDO4  
OUT4  
OUT4  
VDDO5  
OUT5  
OUT5  
I2C_SEL  
VDDO6  
OUT6  
OUT6  
SDA/SDIO  
A1/SDO  
SCLK  
SPI/  
NVM  
I2C  
VDDO7  
OUT7  
OUT7  
A0/CSb  
VDDO8  
OUT8  
OUT8  
INTRb  
Status  
Monitors  
LOLb  
OUT9  
OUT9  
OUT9A  
OUT9A  
9A  
÷R  
VDDO9  
Figure 7.1. Si5392/94/95 Block Diagram  
silabs.com | Building a more connected world.  
Rev. 1.1 | 43  
Si5395/94/92 Data Sheet  
Typical Operating Characteristics  
8. Typical Operating Characteristics  
The phase noise plots below were taken under the following conditions: VDD = 1.8 V; VDDA = 3.3 V; VDDS = 3.3 V, 1.8 V; TA = 25 °C.  
Figure 8.1. Input = 25 MHz; Output = 156.25 MHz, 2.5 V LVDS (Si539x P-Grade)  
Figure 8.2. Input = 25 MHz; Output = 156.25 MHz, 2.5 V LVDS (Si539x E-Grade)  
silabs.com | Building a more connected world.  
Rev. 1.1 | 44  
Si5395/94/92 Data Sheet  
Typical Operating Characteristics  
Figure 8.3. Input = 25 MHz; Output = 312.5 MHz, 2.5 V LVDS (Integer Mode)  
Figure 8.4. Input = 25 MHz; Output = 155.52 MHz, 2.5 V LVDS (Fractional Mode)  
silabs.com | Building a more connected world.  
Rev. 1.1 | 45  
Si5395/94/92 Data Sheet  
Pin Descriptions  
9. Pin Descriptions  
Si5395 (64-QFN and 64-LGA)  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
IN1  
IN1b  
FINC  
LOLb  
3
IN_SEL0  
IN_SEL1  
RSVD  
VDD  
4
OUT6  
5
OUT6b  
VDDO6  
OUT5  
6
RSTb  
7
X1/NC  
XA/NC  
XB/NC  
X2/NC  
OEb  
8
OUT5b  
VDDO5  
I2C_SEL  
OUT4  
GND  
Pad  
9
10  
11  
INTRb 12  
OUT4b  
VDDO4  
OUT3  
13  
14  
15  
VDDA  
IN2  
IN2b  
OUT3b  
VDDO3  
SCLK 16  
Si5394 (44-QFN and 44-LGA)  
Top View  
Si5392 (44-QFN and 44-LGA)  
Top View  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
33  
IN1  
IN1b  
IN1  
IN1b  
INTRb  
VDD  
OUT2  
INTRb  
32  
VDD  
3
3
31  
30  
29  
28  
27  
26  
25  
24  
23  
LOS1b  
LOS0b  
VDDS  
IN_SEL0  
IN_SEL0  
4
4
OUT2b  
VDDO2  
LOS_XAXBb  
LOLb  
X1/NC  
XA/NC  
XB/NC  
X2/NC  
VDDA  
X1/NC  
XA/NC  
XB/NC  
X2/NC  
VDDA  
5
5
GND  
Pad  
GND  
Pad  
6
6
LOS_XAXBb  
LOLb  
7
7
VDDS  
VDDS  
8
8
OUT1  
OUT1  
9
9
VDDA  
IN2  
VDDA  
IN2  
10  
11  
10  
11  
OUT1b  
VDDO1  
OUT1b  
VDDO1  
IN2b  
IN2b  
Note: Grades A/B/C/D require external references so these pins can be connected to those references (XTAL, XO, VCXO, and so on).  
Note that connecting an external reference to a device that already has an internal reference is not recommended and could lead to  
internal damage to the circuits.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 46  
Si5395/94/92 Data Sheet  
Pin Descriptions  
Table 9.1. Si5395/94/92 Pin Descriptions  
Pin Number  
Si5394  
Pin Type1  
Si5392  
Pin Name  
Function  
Si5395  
Inputs  
XA/NC  
8
5
6
4
7
5
6
4
7
I
I
I
I
Crystal Input for Grade A/B/C/D/P. Input pins for external crys-  
tal (XTAL). Alternatively these pins can be driven with an external  
reference clock (REFCLK). An internal register bit selects XTAL  
or REFCLK mode. Default is XTAL mode.  
XB/NC  
X1/NC  
X2/NC  
9
7
NC (No-Connect) for Grades J/K/L/M/E. These devices have an  
integrated reference and these pins cannot be connected to an  
external reference. They should be left floating to avoid damage  
or interference to the internal reference.  
XTAL Shield for Grade A/B/C/D/P. Connect these pins directly  
to the XTAL ground pins. X1, X2 and the XTAL ground pins  
should be separated from the PCB ground plane. Refer to the  
Si5395-94-92 Family Reference Manual for layout guidelines.  
10  
NC (No-Connect) for Grades J/K/L/M/E or external reference  
clocks. These pins should be left disconnected for Grades  
J/K/L/M/E with integrated reference or when connecting XA/XB  
pins to an external reference clock (REFCLK)  
IN0  
IN0b  
63  
64  
1
43  
44  
1
43  
44  
1
I
I
I
I
I
I
I
Clock Inputs. These pins accept an input clock for synchronizing  
the device. They support both differential and single-ended clock  
signals. Refer to for input termination options. These pins are  
high-impedance and must be terminated externally. The negative  
side of the differential input must be grounded through a capaci-  
tor when accepting a single-ended clock.  
IN1  
IN1b  
2
2
2
IN2  
14  
15  
61  
10  
11  
41  
10  
11  
41  
IN2b  
IN3/FB_IN  
Clock Input 3/External Feedback Input. By default these pins  
are used as the fourth clock input (IN3/IN3b). They can also be  
used as the external feedback input (FB_IN/FB_INb) for the op-  
tional zero delay mode. See 4.9.13 Zero Delay Mode for details  
on the optional zero delay mode.  
IN3b/FB_INb  
62  
42  
42  
I
silabs.com | Building a more connected world.  
Rev. 1.1 | 47  
Si5395/94/92 Data Sheet  
Pin Descriptions  
Table 9.2. Si5395/94/92 Pin Descriptions  
Pin Number  
Si5394  
Pin Type1  
Si5392  
Pin Name  
Function  
Si5395  
Outputs  
OUT0Ab  
OUT0A  
OUT0  
20  
21  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
56  
55  
59  
58  
20  
19  
25  
24  
31  
30  
36  
35  
20  
19  
25  
24  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OUT0b  
OUT1  
OUT1b  
OUT2  
OUT2b  
OUT3  
OUT3b  
OUT4  
Output Clocks. These output clocks support a programmable  
signal swing and common mode voltage. Desired output signal  
format is configurable using register control. Termination recom-  
mendations are provided in the Si5395-94-92 Family Reference  
Manual. Unused outputs should be left unconnected.  
OUT4b  
OUT5  
OUT5b  
OUT6  
OUT6b  
OUT7  
OUT7b  
OUT8  
OUT8b  
OUT9  
OUT9b  
OUT9A  
OUT9Ab  
Serial Interface  
I2C Select2. This pin selects the serial interface mode as I2C  
(I2C_SEL = 1) or SPI (I2C_SEL = 0). This pin is internally pulled  
up by a ~ 20 kΩ resistor to the voltage selected by the  
IO_VDD_SEL register bit.  
I2C_SEL  
39  
18  
38  
13  
38  
13  
I
Serial Data Interface2  
This is the bidirectional data pin (SDA) for the I2C mode, or the  
bidirectional data pin (SDIO) in the 3-wire SPI mode, or the input  
data pin (SDI) in 4-wire SPI mode. When in I2C mode, this pin is  
an open-drain output and must be pulled up using an external re-  
sistor of at least 1 kΩ. No pull-up resistor is needed when in SPI  
mode as the output is a push-pull driver. Tie low when unused.  
SDA/SDIO  
I/O  
silabs.com | Building a more connected world.  
Rev. 1.1 | 48  
Si5395/94/92 Data Sheet  
Pin Descriptions  
Pin Number  
Si5394  
Pin Type1  
Pin Name  
Function  
Si5395  
Si5392  
Address Select 1/Serial Data Output2  
In I2C mode, this pin is open-drain and functions as the A1 ad-  
dress input pin. It does not have an internal pull-up or pull-down  
resistor. In 4-wire SPI mode this output is a push-pull driver and  
functions as the serial data output (SDO) pin. It drives high to the  
voltage selected by the IO_VDD_SEL bit. Leave disconnected  
when unused.  
A1/SDO  
17  
15  
15  
I/O  
Serial Clock Input2  
This pin functions as the serial clock input for both I2C and SPI  
SCLK  
16  
19  
14  
16  
14  
16  
I
I
modes. When in I2C mode, this pin must be pulled-up using an  
external resistor of at least 1 kΩ. No pull-up resistor is needed  
when in SPI mode. Tie high or low when unused.  
Address Select 0/Chip Select2  
This pin functions as the hardware controlled address A0 in I2C  
mode. In SPI mode, this pin functions as the chip select input (ac-  
tive low). This pin is internally pulled-up by a ~20 kΩ resistor and  
can be left unconnected when not in use.  
A0/CSb  
Control/Status  
Interrupt2  
INTRb  
12  
33  
17  
33  
17  
O
This pin is asserted low when a change in device status has oc-  
curred. It should be left unconnected when not in use.  
Device Reset2  
Active low input that performs power-on reset (POR) of the de-  
vice. Resets all internal logic to a known state and forces the de-  
vice registers to their default values. Clock outputs are disabled  
during reset. This pin is internally pulled-up and can be left un-  
connected when not in use.  
RSTb  
OEb  
6
I
Output Enable2  
11  
47  
12  
27  
12  
27  
I
This pin disables all outputs when held high. This pin is internally  
pulled low and can be left unconnected when not in use.  
Loss of Lock (Si5395)2  
O
O
This output pin indicates when the DSPLL is locked (high) or out-  
of-lock (low). It can be left unconnected when not in use.  
LOLb  
Loss of Lock (Si5394/92)3  
This output pin indicates when the DSPLL is locked (high) or out-  
of-lock (low). It can be left unconnected when not in use.  
Loss of Signal for IN03  
LOS0b  
LOS1b  
LOS2b  
30  
31  
35  
O
O
O
This pin indicate a loss of clock at the IN0 pin when low.  
Loss of Signal for IN13  
This pin indicate a loss of clock at the IN1 pin when low.  
Loss of Signal for IN23  
This pin indicate a loss of clock at the IN2 pin when low.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 49  
Si5395/94/92 Data Sheet  
Pin Descriptions  
Pin Number  
Si5394  
Pin Type1  
Pin Name  
LOS3b  
Function  
Si5395  
Si5392  
Loss of Signal for IN33  
36  
O
This pin indicate a loss of clock at the IN3 pin when low.  
Loss of Signal on XA/XB Pins3  
LOS_XAXBb  
28  
28  
O
I
This pin indicates a loss of signal at the XA/XB pins when low.  
Frequency Increment Pin2  
This pin is used to step-up the output frequency of a selected out-  
put. The affected output and its frequency change step size is  
register configurable. This pin is internally pulled low and can be  
left unconnected when not in use.  
FINC  
48  
Frequency Decrement Pin2  
This pin is used to step-down the output frequency of a selected  
output. The affected output driver and its frequency change step  
size is register configurable. This pin is internally pulled low and  
can be left unconnected when not in use.  
FDEC  
25  
I
Input Reference Select2  
IN_SEL0  
IN_SEL1  
3
4
3
3
I
I
The IN_SEL[1:0] pins are used in manual pin controlled mode to  
select the active clock input as shown in Table 4.1 Manual Input  
Selection Using IN_SEL[1:0] Pins on page 13. These pins are in-  
ternally pulled low.  
37  
37  
Reserved  
RSVD  
5
These pins are connected to the die. Leave disconnected.  
No Connect  
NC  
22  
22  
These pins are not connected to the die. Leave disconnected.  
Power  
32  
46  
60  
13  
21  
32  
39  
40  
8
21  
32  
39  
40  
8
P
P
P
P
P
Core Supply Voltage  
The device operates from a 1.8 V supply. A 1.0 µF bypass capac-  
itor should be placed very close to this pin. See the Si5395-94-92  
Family Reference Manual for power supply filtering recommenda-  
tions.  
VDD  
Core Supply Voltage 3.3 V  
This core supply pin requires a 3.3 V power source. A 1 µF by-  
pass capacitor should be placed very close to this pin. See the  
Si5395-94-92 Family Reference Manual for power supply filtering  
recommendations.  
VDDA  
9
9
P
26  
26  
29  
P
P
Status Output Voltage  
The voltage on this pin determines VOL/VOH on the Si5392/94  
LOLb and LOL_XAXBb. It also determines the levels on the  
LOS0b, LOS1b, LOS2b, and LOS3b outputs of the Si5392. Con-  
nect to either 3.3 V or 1.8 V. A 1.0 µF bypass capacitor should be  
placed very close to this pin. This voltage must match the IO op-  
erating voltage selected for the frequency plan in CBPro.  
VDDS  
34  
P
silabs.com | Building a more connected world.  
Rev. 1.1 | 50  
Si5395/94/92 Data Sheet  
Pin Descriptions  
Pin Number  
Pin Type1  
Pin Name  
Function  
Si5395  
22  
Si5394  
18  
Si5392  
18  
23  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
P
P
P
P
P
P
P
P
P
P
26  
23  
29  
29  
33  
34  
Output Clock Supply Voltage  
36  
Supply voltage (3.3 V, 2.5 V, 1.8 V) for OUTn, OUTn outputs. For  
unused outputs, leave VDDO pins unconnected. An alternative  
option is to connect the VDDO pin to a power supply and disable  
the output driver to minimize current consumption.  
40  
43  
49  
52  
57  
Ground Pad  
This pad provides connection to ground and must be connected  
for proper operation. Use as many vias as practical, and keep the  
via length to an internal ground plane as short as possible.  
GND PAD  
P
Note:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5395-94-92 Family Reference Manual for more information on register setting names.  
5. All status pins except I2C and SPI are push-pull.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 51  
Si5395/94/92 Data Sheet  
Package Outlines  
10. Package Outlines  
10.1 Si5395 A/B/C/D/P (External Reference) 9x9 mm 64-QFN Package Diagram  
The following figure illustrates the package details for the Si5395 A/B/C/D/P. The table lists the values for the dimensions shown in the  
illustration.  
Figure 10.1. 64-Pin Quad Flat No-Lead (QFN)  
Table 10.1. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
9.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
L
5.10  
0.30  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 52  
Si5395/94/92 Data Sheet  
Package Outlines  
10.2 Si5395 J/K/L/M/E (Internal Reference) 9x9 mm 64-LGA Package Diagram  
The following figure illustrates the package details for the Si5395 J/K/L/M/E. The table lists the values for the dimensions shown in the  
illustration.  
Figure 10.2. 64-Pin LGA  
Table 10.2. Package Dimensions  
Dimension  
Min  
Nom  
1
Max  
A
A1  
A2  
b
0.9  
1.1  
0.26 REF  
0.70 REF  
0.25  
0.2  
0.8  
0.3  
0.9  
b1  
D
0.85  
9 BSC  
9 BSC  
0.5 BSC  
1.0 BSC  
0.365  
0.080 REF  
0.1  
E
e
e1  
L
0.315  
0.415  
L1  
aaa  
bbb  
ccc  
ddd  
0.2  
0.1  
0.08  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 53  
Si5395/94/92 Data Sheet  
Package Outlines  
10.3 Si5394 and Si5392 A/B/C/D/P (External Reference) 7x7 mm 44-QFN Package Diagram  
The following figure illustrates the package details for the Si5394 and Si5392. The table lists the values for the dimensions shown in the  
illustration.  
Figure 10.3. 44-Pin Quad Flat No-Lead (QFN)  
Table 10.3. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
7.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
7.00 BSC  
5.20  
E
E2  
L
5.10  
0.30  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 54  
Si5395/94/92 Data Sheet  
Package Outlines  
10.4 Si5394 and Si5392 J/K/L/M/E (Internal Reference) 7x7 mm 44-LGA Package Diagram  
The following figure illustrates the package details for the Si5394J and Si5392J. The table lists the values for the dimensions shown in  
the illustration.  
Figure 10.4. 44-Pin LGA  
Table 10.4. Package Dimensions  
Dimension  
Min  
Nom  
Max  
A
A1  
A2  
b
1.10  
0.26 REF  
0.7 REF  
0.25  
0.20  
5.10  
0.30  
5.30  
D
7.00 BSC  
5.20  
D2  
e
0.50 BSC  
7.00 BSC  
5.20  
E
E2  
L
5.10  
0.35  
5.30  
0.45  
0.10  
0.20  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.08  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 55  
Si5395/94/92 Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
The following figure illustrates the PCB land pattern details for the devices. The table lists the values for the dimensions shown in the  
illustration.  
Si5395  
Si5394 and Si5392  
Figure 11.1. PCB Land Pattern  
silabs.com | Building a more connected world.  
Rev. 1.1 | 56  
Si5395/94/92 Data Sheet  
PCB Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Si5395 (Max)  
8.90  
Si5394/92 (Max)  
C1  
C2  
E
6.90  
6.90  
0.50  
0.30  
0.85  
5.30  
5.30  
8.90  
0.50  
X1  
Y1  
X2  
Y2  
0.30  
0.85  
5.30  
5.30  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is calculated based on a fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electropolished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. While the same land pattern design can be used for both QFN and LGA package types, the stencil design will need to match the  
respective ground pads as shown in the Package outline.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 57  
Si5395/94/92 Data Sheet  
Top Marking  
12. Top Marking  
Figure 12.1. Top Marking  
Table 12.1. Top Marking Explanation  
Line  
Characters  
Description  
Base part number and Device Grade for Any-frequency, Any-output, Jitter  
Cleaning Clock (single PLL):  
f = 5: 12-output Si5395: 64-QFN  
f = 4: 4-output Si5394: 44-QFN  
f = 2: 2-output Si5392: 44-QFN  
1
Si539fg-  
g = Device Grade (A/B/C/D/P/J/K/L/M/E). See 3. Ordering Guide for more infor-  
mation.  
– = Dash character.  
R = Product revision. (Refer to 3. Ordering Guide for latest revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code as-  
signed for custom, factory pre-programmed devices.  
2
3
Rxxxxx-GM  
Characters are not included for standard, factory default configured devices.  
See 3. Ordering Guide for more information.  
-GM = Package (QFN) and temperature range (–40 to +85 °C)  
YYWW = Characters correspond to the year (YY) and work week (WW) of  
package assembly.  
YYWWTTTTTT  
TTTTTT = Manufacturing trace code.  
Pin 1 indicator; left-justified  
Circle w/ 1.6 mm (64-QFN) or 1.4  
mm (44-QFN) diameter  
4
CC  
CC = TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Building a more connected world.  
Rev. 1.1 | 58  
Si5395/94/92 Data Sheet  
Revision History  
13. Revision History  
Revision 1.1  
June, 2019  
• Added Integrated reference options J/K/L/M/E.  
Revision 1.0  
April, 2019  
• Updated Figure 4.3. Crystal Resonator and External Reference Clock Connection Options  
• Updated section 4.9.2 Grade P section to support up to 3 time domains for Si5395, 2 domains for Si5394 and 1 domain for Si5392  
(previous version only specified 2 domains for Si5395)  
• Table 5.2 DC Characteristics  
• Core supply current IDD/IDDA limits clarified for each device  
• Output Buffer supply conditions clarified  
• Total power dissipation numbers updated  
• Updated test configuration diagrams  
• Table 5.3 Input clock specifications  
• Updated Input voltage section of "LVCMOS / Pulsed CMOS DC-Coupled Input Buffer" to include standard CMOS  
• Table 5.5 Differential Clock Output Specifications  
• Clarified duty cycle specs for when MultiSynth is used/not used  
• Increased max Rise and Fall times from 150ps to 200ps based on final characterization  
• Table 5.6. LVCMOS Clock Output Specifications  
• Updated Min and Max limits for duty cycle  
• Updated test configuration diagrams  
• Table 5.8. Performance Characteristics  
• Updated Initial startup time for P-grade devices  
• Updated P-grade jitter numbers to include more domains and finalize test conditions  
• Updated Table 5.10. SPI Timing Specifications (4-Wire) table and timing diagram  
• Updated Table 5.11. SPI Timing Specifications (3-Wire)  
• Changed NC/XA, NC/XB, NC/X1, NC/X2 to XA, XB, X1, X2 respectively since integrated crystal devices are getting their own data  
sheet  
Revision 0.96  
June, 2018  
• Preliminary data sheet.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 59  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without  
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior  
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance  
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to  
design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required  
or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails,  
can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs  
disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko  
OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®,  
and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered  
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5394P-A10075-GM

Processor Specific Clock Generator,
SILICON

SI5394P-A10075-GMR

Processor Specific Clock Generator,
SILICON

SI5395B-A10490-GM

Processor Specific Clock Generator,
SILICON

SI5395B-A10490-GMR

Processor Specific Clock Generator,
SILICON

SI5395B-A10833-GM

Processor Specific Clock Generator,
SILICON

SI5395B-A10878-GM

Processor Specific Clock Generator,
SILICON

SI5395C-A-GM

Processor Specific Clock Generator,
SILICON

SI5395K-A10591-GM

Processor Specific Clock Generator,
SILICON

SI5395P-A10339-GM

Processor Specific Clock Generator,
SILICON

SI5395P-A10339-GMR

Processor Specific Clock Generator,
SILICON

SI54

SMT Power Inductor
DELTA

SI54-100

SMT Power Inductor
DELTA