SI7005-B-FMR [SILICON]

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR;
SI7005-B-FMR
型号: SI7005-B-FMR
厂家: SILICON    SILICON
描述:

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR

文件: 总41页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si7005  
DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR  
Features  
2
Relative Humidity Sensor  
± 4.5 % RH (maximum @ 0–80% RH)  
Temperature Sensor  
±0.5 ºC accuracy (typical)  
±1 ºC accuracy (maximum @ 0 to 70 °C)  
0 to 100% RH operating range  
I C host interface  
Integrated on-chip heater  
4x4 mm QFN package  
Excellent long term stability  
Factory calibrated  
Optional factory-installed  
–40 to +85 °C (GM) or 0 to +70 °C  
cover  
Low-profile  
Protection during reflow  
Excludes liquids and  
particulates  
operating range (FM)  
Wide operating voltage range  
Ordering Information  
(2.1 to 3.6 V)  
See Ordering Guide.  
Low Power Consumption  
240 µA during RH conversion  
(hydrophobic/oleophobic)  
Patent protected; patents pending  
Applications  
Pin Assignments  
Industrial HVAC/R  
Thermostats/humidistats  
Respiratory therapy  
White goods  
Micro-environments/data centers  
Automotive climate control and  
de-fogging  
Asset and goods tracking  
1
2
3
4
5
6
18 DNC  
17 DNC  
GND  
DNC  
Description  
DNC  
CS  
16  
15  
14  
13  
SCL  
SDA  
DNC  
DNC  
The Si7005 is a digital relative humidity and temperature sensor. This  
monolithic CMOS IC integrates temperature and humidity sensor  
elements, an analog-to-digital converter, signal processing, calibration  
DNC  
DNC  
2
data, and an I C host interface. The patented use of industry-standard,  
low-K polymeric dielectrics for sensing humidity enables the construction  
of a low-power, monolithic CMOS sensor IC with low drift and hysteresis  
and excellent long term stability.  
Both the temperature and humidity sensors are factory-calibrated and the  
calibration data is stored in the on-chip non-volatile memory. This ensures  
that the sensors are fully interchangeable, with no recalibration or  
software changes required.  
The Si7005 is packaged in a 4x4 mm QFN package and is reflow  
solderable. The optional factory-installed protective cover offers a low-  
profile, convenient means of protecting the sensor during assembly (e.g.,  
reflow soldering) and throughout the life of the product, excluding liquids  
(hydrophobic/oleophobic) and particulates.  
The Si7005 offers an accurate, low-power, factory-calibrated digital  
solution ideal for measuring temperature, humidity, and dew-point in  
applications ranging from HVAC/R and asset tracking to industrial and  
consumer platforms.  
Rev. 1.2 1/14  
Copyright © 2014 by Silicon Laboratories  
Si7005  
Si7005  
Functional Block Diagram  
VDD  
VDD  
NV CAL  
VDD  
32 kHz Osc  
Humidity  
Sensor  
CEXT  
SCL  
PXx  
PXy  
PXz  
I2C  
Serial  
IF  
Logic  
MUX  
ADC  
SDA  
CS  
Temperature  
Sensor  
GND  
Microcontroller  
Si7005  
2
Rev. 1.2  
Si7005  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.2. Relative Humidity Sensor Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.3. Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.4. Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.5. Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.6. Prolonged Exposure to High Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.7. PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.8. Protecting the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.9. Bake/Hydrate Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.10. Long Term Drift/Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2
5.1. I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2
5.2. I C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6. Si7005 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
7. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7.1. Register Detail (Defaults in Bold) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8. Pin Descriptions: Si7005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
10. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
10.1. 24-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
10.2. 24-Pin QFN with Protective Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
11. PCB Land Pattern and Solder Mask Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
12.1. Si7005 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
12.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
13. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Rev. 1.2  
3
Si7005  
1. Electrical Specifications  
Unless otherwise specified, all min/max specifications apply over the recommended operating conditions.  
Table 1. Recommended Operating Conditions  
Symbol  
Test Condition  
Min  
2.1  
–40  
0
Typ  
3.3  
Max  
3.6  
85  
Unit  
V
Parameter  
Power Supply  
V
DD  
Operating Temperature  
Operating Temperature  
T
G grade  
F grade  
°C  
°C  
A
T
70  
A
Table 2. General Specifications  
2.1 VDD 3.6 V; TA = 0 to 70 °C (F grade) or –40 to 85 °C (G grade) unless otherwise noted.  
Parameter  
Input Voltage High  
Input Voltage Low  
Input Voltage Range  
Symbol  
Test Condition  
CS, SCL, SDA pins  
CS, SCL, SDA pins  
Min  
Typ  
Max  
Unit  
V
V
0.7xV  
IH  
DD  
V
0.3xV  
V
IL  
DD  
V
SCL, SDA pins with respect  
to GND  
0.0  
3.6  
V
IN  
CS, C  
pin with respect to  
GND  
0.0  
V
V
EXT  
DD  
Input Leakage  
I
CS, SCL, SDA pins  
±1  
µA  
V
IL  
Output Voltage Low  
V
SDA pin; I = 8.5 mA;  
0.6  
OL  
OL  
V
= 3.3 V  
DD  
SDA pin; I = 3.5 mA;  
0.4  
V
OL  
V
= 2.1 V  
DD  
Notes:  
1. Si7005 can draw excess current if VDD and CS are ramped high together. To enter the lowest power mode, either hold  
CS low while VDD ramps or pulse CS low after VDD reaches its final value.  
2. SDA and SCL pins have an internal 75 kpull-up resistor to VDD  
4
Rev. 1.2  
 
Si7005  
Table 2. General Specifications (Continued)  
2.1 VDD 3.6 V; TA = 0 to 70 °C (F grade) or –40 to 85 °C (G grade) unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
240  
320  
Max  
Unit  
µA  
Power Consumption  
I
RH conversion in progress  
560  
565  
DD  
Temperature conversion in  
progress  
µA  
Average for 1 temperature  
and 1 RH conversion /  
minute  
1
µA  
µA  
CS < V ; no conversion in  
150  
IL  
progress; V = 3.3 V;  
DD  
SDA = SCL V  
IH  
CS > V  
100  
31  
µA  
IH  
CS < V ; no conversion in  
24  
IL  
progress; V = 3.3 V;  
mA  
DD  
SDA = SCL V ; HEAT = 1  
IH  
Conversion Time  
t
14-bit temperature; 12-bit RH  
(Fast = 0)  
35  
18  
10  
10  
40  
21  
15  
15  
CONV  
ms  
13-bit temperature; 11-bit RH  
(Fast = 1)  
Wake Up Time  
Power Up Time  
Notes:  
t
t
From CS < VIL to ready for a  
temp/RH conversion  
ms  
ms  
CS  
PU  
From V 2.1V to ready for  
DD  
a temp/RH conversion  
1. Si7005 can draw excess current if VDD and CS are ramped high together. To enter the lowest power mode, either hold  
CS low while VDD ramps or pulse CS low after VDD reaches its final value.  
2. SDA and SCL pins have an internal 75 kpull-up resistor to VDD  
Rev. 1.2  
5
Si7005  
Table 3. I2C Interface Specifications*  
2.1VDD 3.6 V; TA = 0 to 70 °C (F grade) or –40 to +85 °C (G grade) unless otherwise noted.  
Parameter  
Hysteresis  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High-to-low versus low-to- 0.05 x V  
high transition  
V
HYS  
DD  
SCLK Frequency  
SCL high time  
f
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
SCL  
t
0.6  
1.3  
0.6  
0.6  
0.6  
SKH  
SCL low time  
t
SKL  
Start hold time  
t
STH  
Start setup time  
Stop setup time  
Bus free time  
t
STS  
SPS  
BUF  
t
t
Between Stop and Start  
1.3  
100  
100  
SDA setup time  
SDA hold time  
t
DS  
t
DH  
SDA valid time  
SDA acknowledge valid time  
t
From SCL low to data valid  
From SCL low to data valid  
0.9  
0.9  
VD;DAT  
VD;ACK  
t
*Note: All values are referenced to VIL and/or VIH.  
tSKH  
tSKL  
1/fSCL  
SCL  
tBUF  
tSTH  
tDS  
tDH  
tSPS  
D7  
D6  
D5  
D0  
R/W  
ACK  
SDA  
Start Bit  
tSTS  
Stop Bit  
tVD  
:
ACK  
2
Figure 1. I C Interface Timing Diagram  
6
Rev. 1.2  
Si7005  
Table 4. Humidity Sensor  
2.1 VDD 3.6 V; TA = 25 °C; tCONV = 35 ms unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
Unit  
%RH  
bit  
1
Operating Range  
Non-condensing  
100  
12  
2
Resolution  
3,4  
Accuracy  
20–80% RH  
0–100% RH  
±3.0  
±4.5  
%RH  
See Figure 2  
0.05  
Repeatability—Noise  
%RH  
RMS  
5
Response Time  
63%  
1 m/s airflow  
18  
±1  
s
Hysteresis  
%RH  
4
Long Term Stability  
0.25  
%RH/yr  
Notes:  
1. Recommended humidity operating range is 20 to 80% RH (non-condensing) over 0 to 60 °C. Prolonged operation  
beyond these ranges may result in a shift of sensor reading, with slow recovery time.  
2. The Si7005 has a nominal output of 16 codes per %RH, with 0h0000 = –24%RH.  
3. Excludes hysteresis, long term drift, and certain other factors and is applicable to non-condensing environments only.  
See section “4.2. Relative Humidity Sensor Accuracy” for more details.  
4. May be impacted by dust, vaporized solvents or other contaminants, e.g., out-gassing tapes, adhesives, packaging  
materials, etc. See section “4.10. Long Term Drift/Aging”.  
5. Time for sensor output to reach 63% of its final value after a step change.  
RHAccuracy  
Max.RHError( %)  
Typ.RHError( %)  
10  
9
8
7
6
5
4
3
2
1
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100  
RelativeHumidity(%)  
Figure 2. RH Accuracy at 30 °C  
Rev. 1.2  
7
 
 
 
 
 
 
 
Si7005  
Table 5. Temperature Sensor  
2.1 VDD 3.6 V; TA = 0 to 70 °C (F grade) or –40 to +85 °C (G grade); tCONV = 35 ms unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
Max  
85  
Unit  
°C  
Operating Range  
1
Resolution  
14  
Bit  
°C  
±0.5  
1/32  
±1.0  
2
Accuracy  
Typical at 25 °C  
Maximum  
°C  
See Figure 3.  
0.1  
°C  
Repeatability—Noise  
°C  
RMS  
3
Response Time  
Time to reach 63% of final value  
1.5  
s
Long Term Stability  
<0.05  
°C/yr  
Notes:  
1. The Si7005 has a nominal output of 32 codes /°C, with 0000 = –50 °C  
2. Temperature sensor accuracy is for VDD = 2.3 to 3.6 V.  
3. Actual response times will vary dependent on system thermal mass and air-flow.  
TemperatureAccuracy  
Max.TError(°C)  
Typ.TError(°C)  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
Temperature(°C)  
Figure 3. Temperature Accuracy  
8
Rev. 1.2  
 
 
 
 
 
Si7005  
Table 6. Thermal Characteristics  
Symbol  
Test Condition  
QFN-24  
Unit  
°C/W  
°C/W  
Parameter  
Junction-to-Air Thermal Resistance  
Junction-to-Air Thermal Resistance  
JEDEC 4-layer board  
55  
JA  
2-layer evaluation PCB with  
minimal thermal pad  
110  
JA  
Table 7. Absolute Maximum Ratings1,2  
Symbol  
Test Condition  
Min  
–55  
–65  
–0.3  
Typ  
Max  
Unit  
°C  
°C  
V
Parameter  
Ambient Temperature under Bias  
Storage Temperature  
125  
150  
3.9  
Voltage on SDA or SCL pin with  
respect to GND  
Voltage on CS pin with respect to  
GND  
–0.3  
VDD + 0.3  
V
Voltage on V with respect to GND  
–0.3  
4.2  
3
V
kV  
V
DD  
ESD Tolerance  
HBM  
CDM  
MM  
750  
300  
V
Notes:  
1. Absolute maximum ratings are stress ratings only; operation at or beyond these conditions is not implied and may  
shorten the life of the device or alter its performance.  
2. For best accuracy, after removal from the sealed shipping bags, the Si7005 should be stored in climate controlled  
conditions (10 to 35 °C, 20 to 60 %RH). Exposure to high temperature and/or high humidity environments can cause a  
small upwards shift in RH readings.  
Rev. 1.2  
9
 
 
 
Si7005  
2. Typical Application Circuits  
Note: If the Si7005 shares an I2C bus with other slave devices, it should be powered down when the master controller is com-  
municating with the other slave devices.  
The Si7005 can be powered down either by setting the CS signal to logic high or setting the VDD pin to 0 V. Refer to  
Figure 5 for an illustration of this method of powering the Si7005 from an MCU GPIO (the Si7005 VDD is powered from  
an MCU port pin).  
VDD  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
DNC  
SCL  
SDA  
DNC  
DNC  
DNC  
DNC  
DNC  
CS  
R1  
10K  
R2  
10K  
U1  
SCL  
SDA  
Si7005  
DNC  
DNC  
CSb  
C1  
4.7uF  
C2  
0.1uF  
GND  
Figure 4. Typical Application Circuit  
VDD  
R3  
15.0  
1
Port Pin  
18  
17  
16  
15  
14  
13  
GND  
DNC  
DNC  
DNC  
CS  
R1  
10K  
R2  
2
3
4
5
6
10K  
DNC  
SCL  
SDA  
DNC  
DNC  
U2  
SCL  
SDA  
Si7005  
DNC  
DNC  
C1  
4.7uF  
C2  
0.1uF  
GND  
Figure 5. Typical Application Circuit for Battery-Powered Applications  
Rev. 1.2  
10  
 
 
Si7005  
3. Bill of Materials  
Table 8. Typical Application Circuit BOM  
Reference  
Description  
Mfr Part Number  
Manufacturer  
Venkel  
C1  
C2  
Capacitor, 4.7 µF, 6.3 V, X5R, 0603  
Capacitor, 0.1 µF, 6.3 V, X7R, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
IC, digital temperature/humidity sensor  
C0603X5R6R3-475M  
C0603X7R6R3-104M  
CR0603-16W-1002J  
CR0603-16W-1002J  
Si7005  
Venkel  
*
R1  
R2  
Venkel  
*
Venkel  
U1  
Silicon Labs  
*Note: Typical value shown. Optimal value depends on bus capacitance and speed of bus operation; not needed if present  
elsewhere in the system.  
Table 9. Typical Application Circuit for Battery-Powered Applications BOM  
Reference  
Description  
Mfr Part Number  
C0805X5R160-475M  
C0603X7R6R3-104M  
CR0603-16W-1002J  
CR0603-16W-1002J  
CR0603-16W-15R0J  
Si7005  
Manufacturer  
Venkel  
C1  
C2  
Capacitor, 4.7 µF, 6.3 V, X5R, 0805  
Capacitor, 0.1 µF, 6.3 V, X7R, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 15 , ±5%, 1/16W, 0603  
IC, digital temperature/humidity sensor  
Venkel  
*
R1  
Venkel  
*
R2  
Venkel  
R3  
U1  
Venkel  
Silicon Labs  
*Note: Typical value shown. Optimal value depends on bus capacitance and speed of bus operation; not needed if present  
elsewhere in the system.  
Rev. 1.2  
11  
 
Si7005  
4. Functional Description  
VDD  
VDD  
NV CAL  
VDD  
32 kHz Osc  
Humidity  
Sensor  
CEXT  
SCL  
SDA  
CS  
PXx  
PXy  
PXz  
I2C  
Serial  
IF  
Logic  
MUX  
ADC  
Temperature  
Sensor  
GND  
Microcontroller  
Si7005  
Figure 6. Si7005 Functional Block Diagram  
4.1. Overview  
The Si7005 is a digital relative humidity and temperature sensor. This monolithic CMOS IC integrates temperature  
2
and humidity sensor elements, an analog-to-digital converter, signal processing, calibration data, and an I C host  
interface. Both the temperature and humidity sensors on each unit are factory-calibrated and the calibration data is  
stored in the on-chip non-volatile memory. This ensures that the sensors are fully interchangeable, with no  
recalibration or software changes required.  
While the Si7005 is largely a conventional mixed-signal CMOS integrated circuit, relative humidity sensors in  
general and those based on capacitive sensing using polymeric dielectric have unique application and use  
requirements that are not common to conventional (non-sensor) ICs. Chief among those are:  
The need to protect the sensor during board assembly, i.e., solder reflow, and the need to subsequently  
rehydrate the sensor.  
The need to protect the sensor from damage or contamination during the product life-cycle  
The impact of prolonged exposure to extremes of temperature and/or humidity and their potential affect on  
sensor accuracy  
The effects of humidity sensor “memory”  
The need to apply temperature correction and linearization to the humidity readings  
Each of these items is discussed in more detail in the following sections.  
12  
Rev. 1.2  
Si7005  
4.2. Relative Humidity Sensor Accuracy  
To determine the accuracy of a relative humidity sensor, it is placed in a temperature and humidity controlled  
chamber. The temperature is set to a convenient fixed value (typically 30 °C) and the relative humidity is swept  
from 20 to 80% and back to 20% in the following steps: 20% – 40% – 60% – 80% – 80% – 60% – 40% – 20%. At  
each set-point, the chamber is allowed to settle for a period of 30 minutes before a reading is taken from the  
sensor. Prior to the sweep, the device is allowed to stabilize to 50%RH. The solid top and bottom trace in Figure 7,  
“Measuring Sensor Accuracy Including Hysteresis,” shows the result of a typical sweep after non-linearity  
compensation.  
Hysteresis  
Figure 7. Measuring Sensor Accuracy Including Hysteresis  
Rev. 1.2  
13  
 
Si7005  
The RH accuracy is defined as the center (dashed) line shown in Figure 7, which is the average of the two data  
points at each relative humidity set-point. In this case, the sensor shows an accuracy of 0.25%RH. The Si7005  
accuracy specification (Table 4) includes:  
Unit-to-unit and lot-to-lot variation in non-linearity compensation  
Accuracy of factory calibration  
Margin for shifts that can occur during solder reflow (compensation for shift due to reflow is included in the  
linearization procedure below).  
The accuracy specification does not include:  
Hysteresis (typically ±1%)  
Effects from long term exposure to very humid conditions  
Contamination of the sensor by particulates, chemicals, etc.  
Other aging related shifts (“Long-term stability”)  
Variations due to temperature (a temperature compensation method is described in section “4.4.  
Temperature Compensation”). After application of temperature compensation, RH readings will typically  
vary by less than ±0.05%/°C.  
14  
Rev. 1.2  
Si7005  
4.3. Linearization  
Capacitive relative humidity sensors require linearization. The Si7005 accuracy specification (Table 4) applies after  
correction of non-linearity errors. The recommended linearization technique is to correct the measured relative  
humidity value with a 2nd order polynomial; the linear relative humidity (RH) value is calculated as follows:  
RHLinear = RHValue RHValue2 A2 + RHValue A1 + A0  
Where:  
RH  
RH  
is the corrected relative humidity value in %RH  
Linear  
Value  
is the uncorrected (measured) relative humidity value in %RH  
A , A , and A are unit-less correction coefficients derived through characterization of Si7005s by Silicon  
2
1
0
Laboratories; their values depend on whether compensation for a typical solder reflow is required  
The values for the correction coefficients are shown in Table 10.  
Table 10. Linearization Coefficients  
Coefficient  
Value  
–4.7844  
0.4008  
A
A
A
0
1
2
–0.00393  
Rev. 1.2  
15  
 
Si7005  
4.4. Temperature Compensation  
The Si7005 relative humidity sensor is calibrated at a temperature of 30 °C; it is at this temperature that the sensor  
will give the most accurate relative humidity readings. For relative humidity measurements at other temperatures,  
the RH reading from the Si7005 must be compensated for the change in temperature relative to 30 °C.  
Temperature compensated relative humidity readings can be calculated as follows:  
RHTempCompensated = RHLinear + Temperature 30  RHLinear Q1 + Q0  
Where:  
RH  
RH  
is the temperature compensated relative humidity value in %RH.  
TempCompensated  
is the linear corrected relative humidity value in %RH.  
Linear  
Temperature is the ambient temperature in °C as measured by the Si7005 on chip temperature sensor.  
Q and Q are unit-less correction coefficients derived through characterization of Si7005s by Silicon  
1
0
Laboratories.  
This temperature compensation is most accurate in the range of 15–50 °C. The values for the correction  
coefficients are shown in Table 11.  
Table 11. Linearization Coefficients  
Coefficient  
Value  
0.1973  
0.00237  
Q
Q
0
1
4.5. Hysteresis  
The moisture absorbent film (polymeric dielectric) of the humidity sensor will carry a memory of its exposure  
history, particularly its recent or extreme exposure history. A sensor exposed to relatively low humidity will carry a  
negative offset relative to the factory calibration, and a sensor exposed to relatively high humidity will carry a  
positive offset relative to the factory calibration. This factor causes a hysteresis effect illustrated by the solid top  
and bottom traces in Figure 7. The hysteresis value is the difference in %RH between the maximum absolute error  
on the decreasing humidity ramp and the maximum absolute error on the increasing humidity ramp at a single  
relative humidity Setpoint and is expressed as a bipolar quantity relative to the average, the center dashed trace in  
Figure 7. In the case of Figure 7, the measurement uncertainty due to the hysteresis effect is ±1.05%RH.  
4.6. Prolonged Exposure to High Humidity  
Prolonged exposure to high humidity will result in a gradual upward drift of the RH reading. The shift in sensor  
reading resulting from this drift will generally disappear slowly under normal ambient conditions. The amount of  
shift is proportional to the magnitude of relative humidity and the length of exposure. In the case of lengthy  
exposure to high humidity, some of the resulting shift may persist indefinitely under typical conditions. It is generally  
possible to substantially reverse this affect by baking the device (see section “4.9. Bake/Hydrate Procedure”).  
16  
Rev. 1.2  
 
Si7005  
4.7. PCB Assembly  
4.7.1. Soldering  
Like most ICs, Si7005 devices are shipped from the factory vacuum-packed with an enclosed desiccant to avoid  
any drift during storage and to prevent any moisture-related issues during solder reflow. Devices should be  
soldered using reflow and a “no clean” solder process, as a water or solvent rinse after soldering may affect  
accuracy. See "11. PCB Land Pattern and Solder Mask Design" on page 34 for the recommended card reflow  
profile.  
It is essential that the exposed polymer sensing film be kept clean and undamaged. It is recommended that a  
®
protective cover of some kind be in place during PCB assembly. Kapton * polyimide tape is recommended as a  
protective cover. See Table 12 below for examples of tape products that may be used for protection during the  
soldering operation.  
Alternatively, Si7005s may be ordered with a factory-fitted, solder-resistant protective cover that can be left in place  
for the lifetime of the product, preventing liquids, dust, or other contaminants from coming into contact with the  
polymer sensor film. See "9. Ordering Guide" on page 31 for a list of ordering part numbers that include the cover.  
4.7.2. Rehydration  
The measured humidity value will generally shift slightly after solder reflow. A portion of this shift is permanent and  
is accounted for when using the linearization procedure given above. After soldering, an Si7005 should be allowed  
to equilibrate under controlled RH conditions (room temperature, 45–55%RH) for at least 48 hours to eliminate the  
remainder of the shift and return the device to its specified accuracy performance.  
4.7.3. Rework  
To maintain the specified sensor performance, care must be taken during rework to minimize the exposure of the  
device to excessive heat and to avoid damage/contamination or a shift in the sensor reading due to liquids, solder  
flux, etc. Manual touch-up using a soldering iron is permissible under the following guidelines:  
The exposed polymer sensing film must be kept clean and undamaged. A protective cover is  
®
recommended during any rework operation (Kapton tape or the factory-installed cover).  
Flux must not be allowed to contaminate the sensor; liquid flux is not recommended even with a cover in  
place. Conventional lead-free solder with rosin core is acceptable for touch-up as long as a cover is in  
place during the rework.  
Avoid water or solvent rinses after touch-up.  
Minimize the heating of the device. It is recommended that soldering iron temperatures not exceed 350 °C  
and that the contact time per pin does not exceed five seconds.  
Hot air rework is not recommended. If a device must be replaced, remove the device by hot air and solder a new  
part in its place by reflow following the guidelines above.  
*Note: All trademarks are the property of their respective owners.  
Table 12. Tape Products for Protection During Soldering  
Manufacturer Part Number*  
KPPD-1/8  
Manufacturer  
Kaptontape.com  
*Note: Provided for information only.  
Figure 8. Si7005 with Factory-Installed Protective Cover  
Rev. 1.2  
17  
 
 
Si7005  
4.8. Protecting the Sensor  
Because the sensor operates on the principal of measuring a change in capacitance, any changes to the dielectric  
constant of the polymer film will be detected as a change in relative humidity. Therefore, it is important to minimize  
the probability of contaminants coming into contact with the sensor. Dust and other particles as well as liquids can  
affect the RH reading. It is recommended that a filter cover is employed in the end system that blocks contaminants  
but allows water vapor to pass through. Depending on the needs of the application, this can be as simple as plastic  
or metallic gauze for basic protection against particulates or something more sophisticated such as a hydrophobic  
membrane providing up to IP67 compliant protection.  
Si7005s may be ordered with a factory fitted, solder-resistant cover, which can be left in place for the lifetime of the  
product. It is very low-profile, hydrophobic and oleophobic, and excludes particulates down to 0.35 microns in size.  
See section “9. Ordering Guide” for a list of ordering part numbers that include the cover. A dimensioned drawing of  
the IC with the cover is included in section “10. Package Outline”. Other characteristics of the cover are listed in  
Table 13. The sensor should be protected from direct sunlight to prevent heating effects as well as possible  
material degradation.  
Table 13. Specifications of Protective Cover  
Parameter  
Value  
ePTFE  
2.7 bar  
0.35µ  
Material  
Water Entry Pressure  
Pore Size  
Operating Temperature  
Maximum Reflow Temperature  
Oleophobicity (AATCC 118 – 1992)  
IP Rating (per IEC 529)  
–40 to +125 °C  
260 °C  
7
IP67  
4.9. Bake/Hydrate Procedure  
After exposure to extremes of temperature and/or humidity for prolonged periods, the polymer sensor film can  
become either very dry or very wet, in each case the result is either high or low relative humidity readings. Under  
normal operating conditions, the induced error will diminish over time. From a very dry condition, such as after  
shipment and soldering, the error will diminish over a few days at typical controlled ambient conditions, e.g., 48  
hours of 45 %RH 55. However, from a very wet condition, recovery may take significantly longer. To accelerate  
recovery from a wet condition, a bake and hydrate cycle can be implemented. This operation consists of the  
following steps:  
Baking the sensor at 125 °C for 12 hours  
Hydration at 30 °C in 75 %RH for 10 hours  
Following this cycle, the sensor will return to normal operation in typical ambient conditions after a few days.  
4.10. Long Term Drift/Aging  
Over long periods of time, the sensor readings may drift due to aging of the device. Standard accelerated life  
testing of the Si7005 has resulted in the specifications for long-term drift shown in Table 4 and Table 5. This  
contribution to the overall sensor accuracy accounts only for the long-term aging of the device in an otherwise  
benign operating environment and does not include the affects of damage, contamination, or exposure to extreme  
environmental conditions.  
18  
Rev. 1.2  
 
Si7005  
5. Host Interface  
2
5.1. I C Interface  
2
The Si7005 has an I C serial interface with a 7-bit address of 0x40. The Si7005 is a slave device supporting data  
transfer rates up to 400 kHz. Table 24 shows the register summary of the Si7005.  
5.1.1. Performing a Relative Humidity Measurement  
The following steps should be performed in sequence to take a relative humidity measurement:  
1. Set START (D0) in CONFIG to begin a new conversion  
2. Poll RDY (D0) in STATUS (register 0) until it is low (= 0)  
3. Read the upper and lower bytes of the RH value from DATAh and DATAl (registers 0x01 and 0x02),  
respectively. Table 14 shows the format of the 12-bit relative humidity result.  
4. Convert the RH value to %RH using the following equation:  
RH  
--------  
%RH =  
24  
16  
where RH is the measured value returned in DATAh:DATAI  
5. Apply temperature compensation and/or linearization as discussed elsewhere in this data sheet  
Table 15 shows the 12-bit values that correspond to various measured RH levels.  
Table 14. 12-Bit Relative Humidity Result Available in Registers 1 and 2  
DATAh  
D4 D3  
12-Bit Relative Humidity Code  
DATAI  
D4 D3  
D7  
D6  
D5  
D2  
D1  
D0  
D7  
D6  
D5  
D2  
D1  
D0  
0
0
0
0
Table 15. Typical %RH Measurement Codes for 0 to 100% RH Range  
%RH  
12 Bit Code  
Dec  
384  
Hex  
180  
220  
2C0  
360  
400  
4A0  
540  
5E0  
680  
720  
7C0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
544  
704  
864  
1024  
1184  
1344  
1504  
1664  
1824  
1984  
The above sequence assumes normal mode, i.e., t  
mode. See section “5.1.3. Fast Conversion Mode”.  
= 35 ms (typical). Conversions may be performed in fast  
CONV  
Rev. 1.2  
19  
 
 
Si7005  
5.1.2. Performing a Temperature Measurement  
The following steps should be performed in sequence to take a temperature measurement:  
6. Set START (D0) and TEMP (D4) in CONFIG (register 0x03) to begin a new conversion, i.e., write CONFIG with  
0x11  
7. Poll RDY (D0) in STATUS (register 0) until it is low (=0)  
8. Read the upper and lower bytes of the temperature value from DATAh and DATAl (registers 0x01 and 0x02),  
respectively  
Table 16 shows the format of the 14-bit temperature result. This value may be converted to °C using the following  
equation:  
TEMP  
32  
-----------------  
TemperatureC=  
50  
where TEMP is the measured value returned in DATAh:DATAI.  
Table 17 shows the 14-bit values that correspond to various measured temperature levels.  
Table 16. 14-Bit Temperature Result Available in Registers 1 and 2  
DATAh  
D4 D3  
DATAI  
D4 D3  
D7  
D6  
D5  
D2  
D1  
D0  
D7  
D6  
D5  
D2  
D1  
D0  
14-Bit Temperature Code  
0
0
The above sequence assumes normal mode, i.e., t  
mode. See section “5.1.3. Fast Conversion Mode”.  
= 35 ms (typical). Conversions may be performed in fast  
CONV  
20  
Rev. 1.2  
 
Si7005  
Table 17. Typical Temperature Measurement Codes for the –40 °C to 100 °C Range  
Temp(°C)  
14 Bit Code  
Dec  
320  
Hex  
0140  
0280  
03C0  
0500  
0640  
0780  
08C0  
0A00  
0B40  
0C80  
0DC0  
0F00  
1040  
1180  
12C0  
–40  
–30  
–20  
–10  
0
640  
960  
1280  
1600  
1920  
2240  
2560  
2880  
3200  
3520  
3840  
4160  
4480  
4800  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Rev. 1.2  
21  
Si7005  
5.1.3. Fast Conversion Mode  
The time needed to perform a temperature or RH measurement can be reduced from 35 ms (typical) to 18 ms  
(typical) by setting FAST (D5) in CONFIG (register 0x03). Fast mode reduces the total power consumed during a  
conversion or the average power consumed by the Si7005 when making periodic conversions. It also reduces the  
resolution of the measurements. Table 18 is a comparison of the normal and fast modes.  
Table 18. Normal vs. Fast Mode  
Parameter  
Value  
Normal Mode  
Fast Mode  
18 ms  
t
(typical)  
35 ms  
14-bit  
12-bit  
CONV  
Temperature resolution  
RH resolution  
13-bit  
11-bit  
5.1.4. Heater  
The Si7005 relative humidity sensor contains an integrated, resistive heating element that may be used to raise the  
temperature of the humidity sensor. This element can be used to drive off condensation or to implement dew-point  
measurement when the Si7005 is used in conjunction with a separate temperature sensor such as another Si7005.  
The heater can be activated by setting HEAT (D1) in CONFIG (register 0x03). Turning on the heater will reduce the  
tendency of the humidity sensor to accumulate an offset due to “memory” of sustained high humidity conditions.  
When the heater is enabled, the reading of the on-chip temperature sensor will be affected (increased).  
5.1.5. Device Identification  
The Si7005 device and its revision level can be determined by reading ID (register 0x11). Table 19 lists the values  
for the various device revisions and may include revisions not yet in existence.  
Table 19. Device ID Revision Values  
Device ID Value  
Device  
Type  
Revision  
Level  
D[7:4]  
0101  
D[3:0]  
0000  
Si7005  
B
22  
Rev. 1.2  
 
 
 
Si7005  
2
5.2. I C Operation  
2
2
The Si7005 uses a digital I C interface. If the Si7005 shares an I C bus with other slave devices, it should be  
powered down when the master controller is communicating with the other slave devices. The Si7005 can be  
powered down either by setting the CS signal to logic high or setting the VDD pin to 0 V. A method of achieving this  
by powering the Si7005 from an MCU GPIO is shown in Figure 5.  
The format of the address byte is shown in Table 20.  
Table 20. I2C Slave Address Byte  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
1
0
0
0
0
0
0
1/0  
2
5.2.1. I C Write Operation  
To write to a register on the Si7005, the master should issue a start command (S) followed by the slave address,  
0x40. The slave address is followed by a 0 to indicate that the operation is a write. Upon recognizing its slave  
address, the Si7005 issues an acknowledge (A) by pulling the SDA line low for the high duration of the ninth SCL  
cycle. The next byte the master places on the bus is the register address pointer, selecting the register on the  
Si7005 to which the data should be transferred. After the Si7005 acknowledges this byte, the master places a data  
byte on the bus. This byte will be written to the register selected by the address pointer. The Si7005 will  
acknowledge the data byte, after which the master issues a Stop command (P). See Table 21.  
Master Slave  
Table 21. I2C Write Sequence  
Sequence to Write to a Register  
S
S
S
Slave Address  
W
A
Address Pointer  
A
Register Data  
A
A
A
P
P
P
Sequence to Start a Relative Humidity Conversion  
0x03 0x01  
0x40  
0x40  
0
A
A
Sequence to Start a Temperature Conversion  
0
A
0x03  
A
0x11  
Rev. 1.2  
23  
 
 
Si7005  
2
5.2.2. I C Read Operation  
To read a register on the Si7005, the master must first set the address pointer to indicate the register from which  
the data is to be transferred. Therefore, the first communication with the Si7005 is a write operation. The master  
should issue a start command (S) followed by the slave address, 0x40. The slave address is followed by a 0 to  
indicate that the operation is a write. Upon recognizing its slave address, the Si7005 will issue an acknowledge (A)  
by pulling the SDA line low for the high duration of the ninth SCL cycle. The next byte the master places on the bus  
is the register address pointer selecting the register on the Si7005 from which the data should be transferred. After  
the Si7005 acknowledges this byte, the master issues a repeated start command (Sr) indicating that a new transfer  
is to take place. The Si7005 is addressed once again with the R/W bit set to 1, indicating a read operation. The  
Si7005 will acknowledge its slave address and output data from the previously-selected register onto the data bus  
under the control of the SCL signal, the master should not acknowledge (A) the data byte and issue a stop (P)  
command (see Table 22). However, if a RH or Temperature conversion result (two bytes) is to be read, the master  
should acknowledge (A) the first data byte and continue to activate the SCL signal. The Si7005 will automatically  
output the second data byte. Upon receiving the second byte, the master should issue a not Acknowledge (A)  
followed by a stop command. (See Table 23).  
Table 22. I2C Read Sequence for a Single Register  
Sequence to Read from a Single Register  
S
S
S
Slave Address  
W
0
A
A
A
Address Pointer  
A
Sr Slave Address  
R
1
1
A
A
A
Register Data  
A
A
A
P
P
P
Sequence to Read Device ID  
0x11 Sr 0x40  
0x40  
A
ID  
Sequence to Read RDY bit  
0x00 Sr 0x40  
0x40  
0
A
RDY  
Table 23. I2C Read Sequence for RH or Temperature Conversion Result  
Sequence to Read Conversion Result  
S
S
Slave  
Address  
W
A
Address  
Pointer  
A
Sr  
Slave  
Address  
R
A
Register 1  
Data  
A
Register 2  
Data  
A
A
P
P
0x40  
0
A
0x01  
A
Sr  
0x40  
1
A
Data H  
A
Data L  
24  
Rev. 1.2  
 
 
Si7005  
6. Si7005 Connection Diagrams  
The Si7005 is a simple-to-use device requiring a minimum of external components. Figure 9 shows the typical  
connection diagram for the Si7005 connected to an MCU. (Refer to section “8. Pin Descriptions: Si7005” for full pin  
2
2
descriptions). The values for the two I C pull-up resistors depend on the capacitance of the I C bus lines and the  
2
desired speed of operation. Refer to the I C specification for further details. In this diagram CS is shown controlled  
by the MCU, allowing the Si7005 to be placed in standby mode when not in use. A detailed schematic and bill-of-  
materials for this circuit can be found in section “2. Typical Application Circuits” and section “3. Bill of Materials”.  
2.1 to 3.6 V  
0.1 µF  
VDD  
VDD  
SCL  
SDA  
CS  
SCL  
Si7005  
SDA  
Px.x  
CEXT  
GND  
MCU  
C8051Fxxx  
4.7µF  
GND  
Figure 9. Typical Connection Diagram  
For ultra-low-power operation, such as in battery-powered applications, connection as shown in Figure 10 is  
recommended. In this case, the Si7005 is powered from one of the MCU’s GPIOs. The GPIO can be driven high to  
powerup the Si7005, once the measurement results are obtained, the GPIO can be driven low to power-down the  
Si7005, reducing its current consumption to zero. The GPIO must be capable of sourcing 320 µA for the duration of  
the conversion time (<200 ms for relative humidity and temperature conversions) and up to 40 mA for a period of  
5 ms at power-up. The GPIO must also be capable of sinking up to 40 mA for a period of 5 ms at powerdown. If the  
GPIO is not capable of sourcing/sinking 40 mA, then the Si7005 will take longer to powerup and powerdown. The  
purpose of the 15 resistor is to isolate the Si7005 from potential high-frequency switching noise present on the  
MCU GPIO. A detailed schematic and bill-of-materials for this circuit can be found in section “2. Typical Application  
Circuits” and section “3. Bill of Materials”.  
Rev. 1.2  
25  
 
Si7005  
2.1 to 3.6 V  
VDD  
15 Ohm  
0.1 µF  
Px.x  
VDD  
SCL  
SDA  
CS  
SCL  
SDA  
Si7005  
CEXT  
GND  
MCU  
C8051Fxxx  
4.7µF  
GND  
Figure 10. Recommended Connection Diagram for Low-Power Battery Operation  
26  
Rev. 1.2  
Si7005  
7. Control Registers  
Table 24 contains a summary of the Si7005 register set. Each register is described in more detail below.  
Table 24. Si7005 Register Summary  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2
I C Register Summary  
0
STATUS  
DATAh  
DATAl  
CONFIG  
ID  
RSVD RSVD RSVD RSVD RSVD RSVD  
RSVD  
/RDY  
1
2
Relative Humidity or Temperature, High Byte  
Relative Humidity or Temperature, Low Byte  
3
RSVD RSVD FAST TEMP RSVD RSVD  
ID3 ID2 ID1 ID0  
HEAT START  
17  
0
0
0
0
Notes:  
1. Any register address not listed here is reserved and must not be written.  
2. Reserved register bits (RSVD) must always be written as zero; the result of a read operation on these bits is  
undefined.  
7.1. Register Detail (Defaults in Bold)  
Register 0. STATUS  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
/RDY  
R
Name  
Type  
Reset Settings = 0000_0001  
Bit  
7:1  
0
Name  
Reserved Reserved. Reads undefined.  
/RDY Ready.  
Function  
0 = conversion complete; results available in DATAh:DATAl.  
1 = conversion in progress.  
Rev. 1.2  
27  
 
Si7005  
Register 1. DATAh  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Relative Humidity or Temperature, High Byte  
R
Reset Settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DATAh  
Data, High Byte.  
Eight most significant bits of a temperature or humidity measurement. See Table 14 or  
Table 16 for the measurement format.  
Register 2. DATAI  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Relative Humidity or Temperature, Low Byte  
Read  
Type  
Reset Settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DATAl  
Data, Low Byte.  
Eight least significant bits of a temperature or humidity measurement. See Table 14 or  
Table 16 for the measurement format.  
28  
Rev. 1.2  
Si7005  
Register 3. CONFIG  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
START  
R/W  
Name  
Type  
FAST  
R/W  
TEMP  
R/W  
HEAT  
Reset Settings = 0000_0000  
Bit  
7:6  
5
Name  
Function  
Reserved Reserved. Reads undefined. Always write as zero.  
FAST  
Fast Mode Enable.  
0 = 35ms (typical)  
1 = 18ms (typical)  
4
TEMP  
Temperature Enable.  
0 = Relative humidity  
1 = Temperature  
3:2  
1
Reserved Reserved. Reads undefined. Always write as zero.  
HEAT  
Heater Enable.  
0 = heater off  
1 = heater on  
0
START  
Conversion Start.  
0 = do not start a conversion  
1 = start a conversion  
Register 17. ID  
Bit  
D7  
ID7  
R
D6  
ID6  
R
D5  
ID5  
R
D4  
ID4  
R
D3  
ID3  
R
D2  
ID2  
R
D1  
ID1  
R
D0  
ID0  
R
Name  
Type  
Reset Settings = 0101_0000  
Bit  
Name  
Function  
7:0  
ID  
Identification.  
See section “5.1.5. Device Identification”.  
Rev. 1.2  
29  
Si7005  
8. Pin Descriptions: Si7005  
1
18 DNC  
GND  
DNC  
DNC  
DNC  
CS  
2
3
4
5
6
17  
16  
15  
14  
13  
SCL  
SDA  
DNC  
DNC  
DNC  
DNC  
Table 25. Pin Descriptions  
Pin #  
Pin Name  
GND  
Pin Type*  
Description  
1, 8, 11, 19  
G
Ground.  
2, 5–7, 12–14,  
16–18, 20–24  
DNC  
Do Not Connect.  
Do not connect any of these pins to supply, ground or any other  
signal. Internal pull-ups or pull-downs will prevent any of these pins  
from floating.  
2
3
4
SCL  
SDA  
I
I C Clock Signal.  
This pin is voltage-tolerant. See Table 2.  
2
I/O  
I C Data Signal.  
This pin is voltage-tolerant. See Table 2.  
9
V
S
I
V
Power Supply (2.1 V < V < 3.6 V).  
DD DD  
DD  
10  
C
Decoupling Input for Internal Circuitry.  
EXT  
Connect a 4.7 µF capacitor between this pin and GND.  
15  
CS  
I
Chip Select—Active Low Signal.  
Thermal Paddle.  
Epad  
T
G
GND  
This pad is connected to GND internally. The pad can be con-  
nected to GND externally or it can be left open-circuit and used as  
a thermal input to the on-chip temperature sensor.  
*Note: G = Ground, S = Power Supply, I = Digital Input, O = Digital Output, I/O = Input/Output.  
30  
Rev. 1.2  
Si7005  
9. Ordering Guide  
Table 26. Si7005 Device Ordering Guide  
Typ. Accuracy  
Pkg  
Operating  
Range (°C)  
Filter  
Cover  
Packing  
Format  
P/N  
Description  
Temp  
RH  
Si7005-B-FM1  
Si7005-B-GM1  
Si7005-B-FMR  
Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24  
0 to 70 °C  
Y
Y
N
Y
N
Y
N
N
Cut Tape  
Cut Tape  
Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24 –40 to +85 °C  
Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24  
0 to 70 °C  
0 to 70 °C  
Tape-and-reel  
Tape-and-reel  
Tape-and-reel  
Tape-and-reel  
Tube  
Si7005-B-FM1R Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24  
Si7005-B-GMR Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24 –40 to +85 °C  
Si7005-B-GM1R Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24 –40 to +85 °C  
Si7005-B-FM  
Si7005-B-GM  
Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24  
0 to 70 °C  
Digital temperature/humidity sensor ±0.5 °C ±3% QFN-24 –40 to +85 °C  
USB demonstration/evaluation board  
Tube  
Si7005USB-  
DONGLE  
Si7005-EVB  
Si7005 daughter card with flex cable  
Si7005EVB-UDP Si7005 UDP plug-in daughter card  
Si7005EVB-  
UDP-F960  
Low-power data logger demo/devel-  
opment kit with C8051F960 MCU  
Rev. 1.2  
31  
Si7005  
10. Package Outline  
10.1. 24-Pin QFN  
Figure 11 illustrates the package details for the Si7005. Tables 27 and 28 list the values for the dimensions shown  
in the illustration. There are two package variants with slightly different height dimensions. The two package  
variants are otherwise interchangeable.  
Figure 11. 24-Pin Quad Flat No Lead (QFN)  
Table 27. 24-Pin Package Diagram Dimensions  
Dimension  
Min  
0.00  
0.18  
Nom  
0.02  
Max  
0.05  
0.30  
Dimension  
Min  
Nom  
1.08  
1.68 REF  
0.35  
Max  
A1  
H1  
H2  
L
1.03  
1.13  
b
D
0.25  
4.00 BSC.  
2.65  
0.30  
0.40  
0.15  
0.15  
0.08  
D2  
2.55  
2.55  
2.75  
2.75  
aaa  
bbb  
ccc  
e
0.50 BSC.  
4.00 BSC.  
2.65  
E
E2  
ddd  
0.10  
Notes:  
1. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
2. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Table 28. Package Variants  
Variant A  
Nom  
Variant B  
Nom  
Dimension  
Min  
Max  
Min  
Max  
A
0.80  
0.90  
1.00  
0.70  
0.75  
0.80  
Note: All Dimensions are in mm unless otherwise noted.  
32  
Rev. 1.2  
 
 
Si7005  
10.2. 24-Pin QFN with Protective Cover  
Figure 12 illustrates the package details for the Si7005 with the optional protective cover. Tables 29 and 30 list the  
values for the dimensions shown in the illustration. There are two package variants with slightly different height  
dimensions. The two package variants are otherwise interchangeable.  
Figure 12. 24-Pin Quad Flat No Lead (QFN) With Protective Cover  
Table 29. 24-Pin Package Diagram Dimensions  
Dimension  
Min  
0.00  
0.18  
Nom  
0.02  
Max  
0.05  
0.30  
Dimension  
Min  
0.76  
0.30  
0.45  
Nom  
0.83  
0.35  
0.50  
Max  
0.90  
0.40  
0.55  
0.15  
0.15  
0.08  
0.10  
A1  
h
b
D
025  
L
4.00 BSC.  
2.65  
R1  
aaa  
bbb  
ccc  
D2  
e
2.55  
2.75  
0.50 BSC.  
4.00 BSC.  
2.65  
E
E2  
2.55  
3.70  
3.70  
2.75  
3.90  
3.90  
ddd  
F1  
3.80  
F2  
3.80  
Notes:  
1. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
2. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Table 30. Package Variants  
Variant A  
Nom  
Variant B  
Nom  
Dimension  
Min  
Max  
1.41  
1.00  
Min  
Max  
1.21  
0.80  
A
A2  
0.80  
0.90  
0.70  
0.75  
Note: All Dimensions are in mm unless otherwise noted.  
Rev. 1.2  
33  
 
 
Si7005  
11. PCB Land Pattern and Solder Mask Design  
Figure 13 illustrates the recommended PCB land pattern for use with the Si7005's 4x4 mm QFN package.  
Figure 13. Typical QFN-24 PCB Land Pattern  
34  
Rev. 1.2  
 
Si7005  
Table 31. PCB Land Pattern Dimensions  
Symbol  
mm  
4.00  
4.00  
0.50  
2.75  
2.75  
0.30  
0.75  
C1  
C2  
E
P1  
P2  
X1  
Y1  
Notes:  
General  
1. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication Allowance of  
0.05 mm.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60m minimum, all the  
way around the pad.  
Stencil Design  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter  
pins.  
7. A 2x2 array of 0.95 mm square openings on 1.35 mm pitch should be used  
for the center ground pad.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.2  
35  
Si7005  
12. Top Marking  
12.1. Si7005 Top Marking  
7005  
YYWW  
12.2. Top Marking Explanation  
Location  
Marking  
Explanation  
Upper Left  
7005  
Part Number  
Upper Right  
Lower Left  
Lower Right  
TTTT  
(Dot)  
Manufacturing trace code  
Pin 1 Identifier  
YYWW  
Manufacturing date code  
YY = year  
WW = week  
Note: The top mark may not be visible if the optional protective cover is installed. If needed, the device can be identified by  
reading the identification register as explained in section “5.1.5. Device Identification”.  
36  
Rev. 1.2  
Si7005  
13. Additional Reference Resources  
Si7005USB Dongle User’s Guide  
Si7005EVB-UDP User's Guide  
AN607: Si70xx Humidity Sensor Designer’s Guide  
Rev. 1.2  
37  
Si7005  
Added Linearization Coefficients Table 10,11  
Updated Host Interface  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
2
Updated I C Operation  
Updated Table 2, “General Specifications*,” on  
Amended Connection Diagram  
Amended Ordering Guide  
page 4.  
Updated Table 4, “Humidity Sensor,” on page 7.  
Expanded Additional Reference Resources  
New Note 1.  
Revision 1.0 to Revision 1.1  
Added Table 6, “Thermal Characteristics,” on  
Updated Figures 2 and 3.  
page 9.  
1 2  
Clarified RH and temperature accuracy graphs.  
Updated Figure 7.  
Updated Table 7, “Absolute Maximum Ratings , ,”  
on page 9.  
Replaced with black and white version.  
Updated “4.7 Soldering” to “4.7. PCB Assembly”.  
Updated max value for “Voltage on SDA or SCL pin with  
respect to GND” parameter.  
Updated Table 19, “Device ID Revision Values,” on  
Updated Figure 2 on page 7.  
Updated Figure 3 on page 8.  
page 22.  
Corrected title.  
Updated "2.1.1. Steps to Perform Relative Humidity  
Measurement" on page 9.  
Revision 1.1 to Revision 1.2  
Updated Table 12, “14-Bit Temperature Result  
Available in Registers 1 and 2,” on page 10.  
Revised title.  
Updated Table 4, “Humidity Sensor,” on page 7.  
Updated typical response time.  
1 2  
Updated Table 7, “Absolute Maximum Ratings , ,”  
Added "2.1.6. RSVD" on page 11.  
on page 9.  
Added ESD tolerance specs.  
Updated "2.2. I2C Operation" on page 12.  
Updated Table 22, “I2C Read Sequence for a Single  
Register,” on page 24.  
Updated Table 23, “I2C Read Sequence for RH or  
Temperature Conversion Result,” on page 24.  
Revision 0.2 to Revision 0.9  
Updated Features/Applications/Description  
Added pinout drawing to front page  
Updated Electrical Specifications  
Clarified voltage tolerance of CS, SDA, and SCL  
pins  
Updated Typical Application Circuits and BOMs  
Updated and expanded Functional Description  
Updated Host Interface  
Updated register descriptions  
Added drawing and photo of device with cover  
Updated and expanded Ordering Guide  
Expanded Additional Reference Resources  
Revision 0.9 to Revision 1.0  
Updated and expanded General Specification  
Table 2  
Updated and expanded General Specification  
Table 3  
Updated Figure 1.  
Updated Figure 2.  
Updated Bill of Materials  
38  
Rev. 1.2  
Si7005  
NOTES:  
Rev. 1.2  
39  
Si7005  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
40  
Rev. 1.2  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
Silicon Laboratories:  
Si7005-B-FM Si7005-EVB Si7005EVB-UDP Si7005-B-GM Si7005EVB-UDP-F960 Si7005-B-FM1 Si7005-B-GM1  

相关型号:

SI7005-B-GM

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005-B-GM1

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005-B-GM1R

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005-B-GMR

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005-EVB

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005EVB-UDP

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005EVB-UDP-F960

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

SI7005USB-DONGLE

DIGITAL I2C HUMIDITY AND TEMPERATURE SENSOR
SILICON

Si7006-A10-IM

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

Si7006-A10-IM1

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

Si7006-A10-IM1R

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

Si7006-A10-IMR

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON