SI8233AB-D-IM1 [SILICON]

0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kVRMS);
SI8233AB-D-IM1
型号: SI8233AB-D-IM1
厂家: SILICON    SILICON
描述:

0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kVRMS)

驱动 接口集成电路
文件: 总59页 (文件大小:1005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si823x Data Sheet  
0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kV  
)
RMS  
KEY FEATURES  
The Si823x isolated driver family combines two independent, isolated drivers into a sin-  
gle package. The Si8230/1/3/4 are high-side/low-side drivers, while the Si8232/5/7/8 are  
dual drivers. Versions with peak output currents of 0.5 A (Si8230/1/2/7) and 4.0 A  
(Si8233/4/5/8) are available. All drivers operate with a maximum supply voltage of 24 V.  
• Two completely isolated drivers in one  
package  
• Up to 5 kV  
input-to-output isolation  
RMS  
• Up to 1500 V peak driver-to-driver  
differential voltage  
DC  
The Si823x drivers utilize Silicon Labs' proprietary silicon isolation technology, which  
provides up to 5 kVRMS withstand voltage per UL1577 and fast 45 ns propagation times.  
Driver outputs can be grounded to the same or separate grounds or connected to a pos-  
itive or negative voltage. The TTL level compatible inputs with >400 mV hysteresis are  
available in individual control input (Si8230/2/3/5/7/8) or PWM input (Si8231/4) configu-  
rations. High integration, low propagation delay, small installed size, flexibility, and cost-  
effectiveness make the Si823x family ideal for a wide range of isolated MOSFET/IGBT  
gate drive applications.  
• HS/LS and dual driver versions  
• Up to 8 MHz switching frequency  
• 0.5 A peak output (Si8230/1/2/7)  
• 4.0 A peak output (Si8233/4/5/8)  
• High electromagnetic immunity  
• RoHS-compliant packages:  
• SOIC-14/16 wide body  
Automotive Grade is available for certain part numbers. These products are built using  
automotive-specific flows at all steps in the manufacturing process to ensure the robust-  
ness and low defectivity required for automotive applications.  
• SOIC-16 narrow body  
• LGA-14  
• QFN-14 (pin to pin compatible with  
LGA-14 packages)  
Automotive Applications  
Industrial Applications  
• On-board chargers  
• Power delivery systems  
• AEC-Q100 qualification  
• Battery management systems  
• Automotive-grade OPNs available  
• AIAG compliant PPAP documentation  
support  
• Motor control systems  
• Charging stations  
• Isolated dc-dc power supplies  
• Traction inverters  
• Lighting control systems  
• IMDS and CAMDS listing support  
• Hybrid Electric Vehicles  
• Plasma displays  
• Battery Electric Vehicles  
• Solar and industrial inverters  
Safety Regulatory Approvals  
• UL 1577 recognized  
• Up to 5000 VRMS for 1 minute  
• CSA component notice 5A approval  
• IEC 60950-1, 62368-1, 60601-1 (re-  
inforced insulation)  
• VDE certification conformity  
• VDE 0884-10  
• EN60950-1 (reinforced insulation)  
• CQC certification approval  
• GB4943.1  
silabs.com | Building a more connected world.  
Rev. 2.1.1  
Si823x Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Si823x Ordering Guide 1, 2, 3  
Legacy  
Ordering  
Part Number  
(OPN)  
Ordering Part  
Number (OPN)  
Peak  
Current  
UVLO  
Voltage Rating  
Isolation  
Inputs  
Configuration  
Temp Range Package Type  
2.5 kV Only  
Wide Body (WB) Package Options  
High Side/  
Si8230BB-D-IS VIA, VIB  
Si8230-A-IS  
Low Side  
High Side/  
Low Side  
0.5 A  
8 V  
Si8231BB-D-IS  
Si8232BB-D-IS  
Si8234CB-D-IS  
PWM  
VIA,VIB  
PWM  
Si8231-A-IS  
Si8232-A-IS  
N/A  
Dual Driver  
High Side/  
Low Side  
SOIC-16  
Wide Body  
10 V  
8 V  
2.5 kVrms –40 to +125 °C  
High Side/  
Low Side  
Si8233BB-D-IS  
VIA,VIB  
Si8233-B-IS  
Si8234-B-IS  
4.0 A  
High Side/  
Low Side  
Si8234BB-D-IS  
Si8235BB-D-IS  
PWM  
VIA,VIB  
Dual Driver  
Si8235-B-IS  
N/A  
Si8230AB-D-IS VIA, VIB  
High Side/  
Low Side  
Si8231AB-D-IS  
Si8232AB-D-IS  
Si8233AB-D-IS  
Si8234AB-D-IS  
Si8235AB-D-IS  
PWM  
VIA,VIB  
VIA,VIB  
PWM  
0.5 A  
4.0 A  
5 V  
5 V  
N/A  
Dual Driver  
N/A  
SOIC-16  
Wide Body  
2.5 kVrms –40 to +125 °C  
N/A  
High Side/  
Low Side  
N/A  
VIA,VIB  
Dual Driver  
N/A  
Narrow Body (NB) Package Options  
High Side/  
Low Side  
Si8230BB-D-IS1 VIA,VIB  
High Side/  
Low Side  
0.5 A  
8 V  
Si8231BB-D-IS1  
PWM  
Si8232BB-D-IS1 VIA,VIB  
Si8233BB-D-IS1 VIA,VIB  
Dual Driver  
2.5 kVrms  
SOIC-16  
Narrow Body  
High Side/  
Low Side  
–40 to +125 °C  
N/A  
High Side/  
Low Side  
Si8234BB-D-IS1  
PWM  
4.0 A  
8 V  
Si8235BB-D-IS1 VIA,VIB  
Si8235BA-D-IS1 VIA,VIB  
Dual Driver  
Dual Driver  
1.0 kVrms  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 2  
Si823x Data Sheet  
Ordering Guide  
Legacy  
Ordering  
Part Number  
(OPN)  
Ordering Part  
Number (OPN)  
Peak  
Current  
UVLO  
Voltage Rating  
Isolation  
Inputs  
Configuration  
Temp Range Package Type  
2.5 kV Only  
Si8230AB-D-IS1 VIA,VIB  
Si8231AB-D-IS1 PWM  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
High Side/  
Low Side  
0.5 A  
4.0 A  
5 V  
5 V  
Si8232AB-D-IS1 VIA,VIB  
Si8233AB-D-IS1 VIA,VIB  
Dual Driver  
SOIC-16  
Narrow Body  
2.5 kVrms –40 to +125 °C  
High Side/  
Low Side  
Si8234AB-D-IS1  
PWM  
Si8235AB-D-IS1 VIA,VIB  
LGA Package Options  
Si8233CB-D-IM  
Dual Driver  
10 V  
8 V  
N/A  
Si8233-B-IM  
N/A  
Si8233BB-D-IM VIA,VIB  
Si8233AB-D-IM  
High Side/  
Low Side  
5 V  
LGA-14 5x5  
mm  
Si8234BB-D-IM  
PWM  
Si8234AB-D-IM  
4.0 A  
8 V  
5 V  
8 V  
5 V  
2.5 kVrms –40 to +125 °C  
Si8234-B-IM  
N/A  
Si8235BB-D-IM  
VIA,VIB  
Si8235AB-D-IM  
Si8235-B-IM  
N/A  
Dual Driver  
QFN Package Options  
SI8233AB-D-IM1  
VIA,VIB  
5 V  
8 V  
5 V  
8 V  
5 V  
8 V  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
SI8233BB-D-IM1  
High Side/  
Low Side  
SI8234AB-D-IM1  
PWM  
SI8234BB-D-IM1  
4.0 A  
2.5 kVrms –40 to +125 °C  
QFN-14  
SI8235AB-D-IM1  
VIA,VIB  
SI8235BB-D-IM1  
Dual Driver  
5 kV Ordering Options  
High Side/  
Low Side  
Si8230BD-D-IS VIA, VIB  
High Side/  
Low Side  
0.5 A  
4.0 A  
Si8231BD-D-IS  
PWM  
Si8232BD-D-IS VIA, VIB  
Si8233BD-D-IS VIA, VIB  
Dual Driver  
SOIC-16  
Wide Body  
8 V  
5.0 kVrms –40 to +125 °C  
N/A  
High Side/  
Low Side  
High Side/  
Low Side  
Si8234BD-D-IS  
PWM  
Si8235BD-D-IS VIA, VIB  
Dual Driver  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 3  
Si823x Data Sheet  
Ordering Guide  
Legacy  
Ordering  
Part Number  
(OPN)  
Ordering Part  
Number (OPN)  
Peak  
Current  
UVLO  
Voltage Rating  
Isolation  
Inputs  
Configuration  
Temp Range Package Type  
2.5 kV Only  
Si8230AD-D-IS VIA, VIB  
Si8231AD-D-IS PWM  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
High Side/  
Low Side  
0.5 A  
5 V  
Si8232AD-D-IS VIA, VIB  
Si8233AD-D-IS VIA, VIB  
Dual Driver  
SOIC-16  
Wide Body  
High Side/  
Low Side  
Si8234AD-D-IS  
PWM  
4.0 A  
0.5 A  
4.0 A  
5 V  
Si8235AD-D-IS VIA, VIB  
SI8230AD-D-IS3 VIA, VIB  
SI8230BD-D-IS3 VIA, VIB  
SI8233AD-D-IS3 VIA, VIB  
SI8233BD-D-IS3 VIA, VIB  
SI8235AD-D-IS3 VIA, VIB  
SI8235BD-D-IS3 VIA, VIB  
3 V VDDI Ordering Options  
Si8237AB-D-IS1 VIA, VIB  
Si8237BB-D-IS1 VIA, VIB  
Si8238AB-D-IS1 VIA, VIB  
Si8238BB-D-IS1 VIA, VIB  
Si8237AD-D-IS VIA, VIB  
Si8237BD-D-IS VIA, VIB  
Si8238AD-D-IS VIA, VIB  
Si8238BD-D-IS VIA, VIB  
SI8238AD-D-IS3 VIA, VIB  
SI8238BD-D-IS3 VIA, VIB  
Dual Driver  
5.0 kVrms –40 to +125 °C  
High Side/  
Low Side  
SOIC-14 Wide  
Body with  
8 V  
5 V  
8 V  
5 V  
8 V  
increased  
creepage  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
5 V  
8 V  
0.5 A  
4.0 A  
0.5 A  
SOIC-16  
Narrow Body  
2.5 kVrms  
5 V  
8 V  
5 V  
8 V  
5 V  
8 V  
5 V  
8 V  
SOIC-16  
Wide Body  
–40 to +125 °C  
N/A  
5.0 kVrms  
SOIC-14 Wide  
Body with  
4.0 A  
increased  
creepage  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
3. An "R" at the end of the part number denotes tape and reel packaging option.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 4  
Si823x Data Sheet  
Ordering Guide  
Automotive Grade OPNs  
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and  
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-  
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-  
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-  
duction steps.  
Table 1.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5  
Ordering Part Num-  
ber (OPN)  
Peak Cur-  
rent  
UVLO  
Voltage  
Isolation  
Rating  
Inputs  
Configuration  
Temp Range  
Package Type  
Wide Body (WB) Package Options  
Si8233BB-AS VIA, VIB High Side/Low Side  
4.0 A  
8 V  
2.5 kVrms  
–40 to +125 °C  
SOIC-16 Wide  
Body  
Narrow Body (NB) Package Options  
Si8230BB-AS1  
Si8233BB-AS1  
Si8235BB-AS1  
Si8233AB-AS1  
VIA, VIB High Side/Low Side  
0.5 A  
4.0 A  
4.0 A  
4.0 A  
8 V  
8 V  
8 V  
5 V  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
–40 to +125 °C  
–40 to +125 °C  
–40 to +125 °C  
–40 to +125 °C  
SOIC-16 Narrow  
Body  
VIA, VIB High Side/Low Side  
VIA, VIB High Side/Low Side  
VIA, VIB High Side/Low Side  
SOIC-16 Narrow  
Body  
SOIC-16 Narrow  
Body  
SOIC-16 Narrow  
Body  
LGA Package Option  
Si8235BB-AM  
VIA, VIB  
Dual Driver  
4.0 A  
8 V  
2.5 kVrms  
–40 to +125 °C  
LGA-14  
5x5 mm  
5 kV Ordering Options  
Si8233BD-AS  
VIA, VIB High Side/Low Side  
4.0 A  
4.0 A  
8 V  
8 V  
5.0  
5.0  
–40 to +125 °C  
–40 to +125 °C  
SOIC-16 Wide  
Body  
Si8235BD-AS  
VIA, VIB  
Dual Driver  
SOIC-16 Wide  
Body  
3 V VDDI Ordering Options  
Si8238BB-AS1  
VIA, VIB  
Dual Driver  
Dual Driver  
4.0 A  
4.0 A  
8 V  
8 V  
2.5 kVrms  
5.0 kVrms  
–40 to +125 °C  
–40 to +125 °C  
SOIC-16 Narrow  
Body  
Si8238BD-AS  
VIA, VIB  
SOIC-16 Wide  
Body  
Note:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions.  
2. “Si” and “SI” are used interchangeably.  
3. An "R" at the end of the part number denotes tape and reel packaging option.  
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters  
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive  
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is  
included on shipping labels.  
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-  
tative for further information.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 5  
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 Top Level Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.3 Typical Operating Characteristics (0.5 Amp). . . . . . . . . . . . . . . . . . . .11  
2.4 Typical Operating Characteristics (4.0 Amp). . . . . . . . . . . . . . . . . . . .14  
2.5 Family Overview and Logic Operation During Startup . . . . . . . . . . . . . . . .16  
2.5.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.5.2 Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.6 Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.7 Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . .19  
2.8 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.9 Undervoltage Lockout Operation . . . . . . . . . . . . . . . . . . . . . . .21  
2.9.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.9.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.9.3 Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . .21  
2.9.4 Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
2.9.5 Disable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
2.10 Programmable Dead Time and Overlap Protection . . . . . . . . . . . . . . . . .23  
3. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.1 Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.1 High-Side/Low-Side Driver . . . . . . . . . . . . . . . . . . . . . . . . .34  
4.2 Dual Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.1 Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . .42  
6.2 Package Outline: 14-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . .44  
6.3 Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . .46  
6.4 Package Outline: 14 LD LGA (5 x 5 mm) . . . . . . . . . . . . . . . . . . . . .47  
6.5 Package Outline: 14 LD QFN. . . . . . . . . . . . . . . . . . . . . . . . .48  
7. Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
7.1 Land Pattern: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . .49  
7.2 Land Pattern: 14-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . .50  
7.3 Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . .51  
7.4 Land Pattern: 14 LD LGA/QFN . . . . . . . . . . . . . . . . . . . . . . . .52  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 6  
8. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.1 Si823x Top Marking (14/16-Pin Wide Body SOIC). . . . . . . . . . . . . . . . . .53  
8.2 Si823x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . .54  
8.3 Si823x Top Marking (14 LD LGA/QFN) . . . . . . . . . . . . . . . . . . . . .55  
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 7  
Si823x Data Sheet  
System Overview  
2. System Overview  
2.1 Top Level Block Diagrams  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
DT CONTROL &  
OVERLAP  
PROTECTION  
DT  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
VIB  
GNDI  
Si8230/3  
Figure 2.1. Si8230/3 Two-Input High-Side/Low-Side Isolated Drivers  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 8  
Si823x Data Sheet  
System Overview  
VDDI  
VDDA  
PWM  
LPWM  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
PROTECTION  
DT  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
LPWM  
GNDI  
Si8231/4  
Figure 2.2. Si8231/4 Single-Input High-Side/Low-Side Isolated Drivers  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
VDDI  
VDDI  
UVLO  
VDDI  
VDDB  
DISABLE  
VOB  
UVLO  
GNDB  
VIB  
GNDI  
Si8232/5/7/8  
Figure 2.3. Si8232/5/7/8 Dual Isolated Drivers  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 9  
Si823x Data Sheet  
System Overview  
2.2 Functional Description  
The operation of an Si823x channel is analogous to that of an optocoupler and gate driver, except an RF carrier is modulated instead of  
light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A  
simplified block diagram for a single Si823x channel is shown in the figure below.  
Transmitter  
Receiver  
Driver  
VDD  
RF OSCILLATOR  
MODULATOR  
Semiconductor-  
Based Isolation  
Barrier  
Dead  
time  
control  
B
DEMODULATOR  
A
0.5 to 4 A  
peak  
Gnd  
Figure 2.4. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the  
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that  
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying  
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to  
magnetic fields. See the figure below for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 2.5. Modulation Scheme  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 10  
Si823x Data Sheet  
System Overview  
2.3 Typical Operating Characteristics (0.5 Amp)  
The typical performance characteristics depicted in Figure 2.6 Rise/Fall Time vs. Supply Voltage on page 11 through Figure  
2.15 Output Source Current vs. Temperature on page 12 are for information purposes only. Refer to Table 3.1 Electrical Characteris-  
tics1 on page 25 for actual specification limits.  
10  
8
30  
25  
20  
15  
10  
Tfall  
H-L  
L-H  
6
4
Trise  
2
25 °C  
CL = 100 pF  
25 °C  
CL = 100 pF  
0
9
12  
15  
18  
21  
24  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
VDDA Supply (V)  
Figure 2.6. Rise/Fall Time vs. Supply Voltage  
Figure 2.7. Propagation Delay vs. Supply Voltage  
50  
45  
40  
40  
35  
Trise  
30  
25  
L- H  
35  
Tfall  
30  
20  
H-L  
25  
20  
15  
10  
15  
5
VDD=12 V, 25°C  
VDD=12 V, 25 °C  
0
10  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Load (nF)  
Load (nF)  
Figure 2.8. Rise/Fall Time vs. Load  
Figure 2.9. Propagation Delay vs. Load  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 11  
Si823x Data Sheet  
System Overview  
30  
25  
20  
15  
10  
5
4
3
2
1
L-H  
H-L  
VDDA = 15 V,  
f = 250 kHz, CL = 0 pF  
Duty Cycle = 50%  
2 Channels Switching  
VDD=12 V, Load = 200 pF  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (° C)  
Temperature (°C)  
Figure 2.10. Propagation Delay vs. Temperature  
Figure 2.11. Supply Current vs. Temperature  
3.5  
7
Duty Cycle = 50%  
Duty Cycle = 50%  
1 MHz  
CL = 100 pF  
1 Channel Switching  
= 0 pF  
CL  
1 Channel Switching  
3
2.5  
2
6
1 MHz  
5
500 kHz  
100 kHz  
4
500 kHz  
3
1.5  
1
100 kHz  
50 kHz  
2
50 kHz  
1
0.5  
0
0
9
14  
19  
24  
9
14  
19  
VDDA Supply Voltage (V)  
24  
VDDA Supply Voltage (V)  
Figure 2.12. Supply Current vs. Supply Voltage  
Figure 2.13. Supply Current vs. Supply Voltage  
500  
450  
400  
350  
425  
400  
375  
350  
325  
300  
300  
VDD=12 V, Vout=VDD -5 V  
275  
Vout=VDD-5 V  
250  
250  
-45  
-20  
5
30  
55  
80  
105  
130  
9
14  
19  
Supply Voltage (V)  
24  
Temperature (°C)  
Figure 2.14. Output Source Current vs. Supply Voltage  
Figure 2.15. Output Source Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 12  
Si823x Data Sheet  
System Overview  
1125  
1000  
875  
900  
800  
700  
600  
500  
750  
VDD=12 V, Vout=5 V  
625  
Vout=5 V  
500  
-45  
-20  
5
30  
55  
80  
105  
130  
9
14  
19  
24  
Temperature (°C)  
Supply Voltage (V)  
Figure 2.16. Output Sink Current vs. Supply Voltage  
Figure 2.17. Output Sink Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 13  
Si823x Data Sheet  
System Overview  
2.4 Typical Operating Characteristics (4.0 Amp)  
The typical performance characteristics depicted in Figure 2.18 Rise/Fall Time vs. Supply Voltage on page 14 through Figure  
2.27 Output Source Current vs. Temperature on page 15 are for information purposes only. Refer to Table 3.1 Electrical Characteris-  
tics1 on page 25 for actual specification limits.  
10  
8
30  
25  
20  
15  
10  
25° C  
25°C  
CL= 100 pF  
C = 100 pF  
L
Tfall  
L-H  
6
Trise  
4
H -L  
2
0
9
12  
15  
18  
21  
24  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
VDDA Supply (V)  
Figure 2.18. Rise/Fall Time vs. Supply Voltage  
Figure 2.19. Propagation Delay vs. Supply Voltage  
40  
50  
VDD=12V,  
25°C  
VDD=12V  
°
C
, 25  
H-L  
30  
20  
10  
0
40  
Trise  
L-H  
Tfall  
30  
20  
10  
0
2
4
6
8
10  
0
2
4
6
8
10  
Load (nF)  
Load (nF)  
Figure 2.20. Rise/Fall Time vs. Load  
Figure 2.21. Propagation Delay vs. Load  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 14  
Si823x Data Sheet  
System Overview  
10  
8
30  
25  
20  
15  
10  
VDDA = 15V,  
f = 250kHz,C= 0 pF  
VDD=12V,  
L
Load = 200pF  
Duty Cycle = 50%  
2 Channels Switching  
H-L  
6
L-H  
4
2
0
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature ( °C)  
Figure 2.22. Propagation Delay vs. Temperature  
Figure 2.23. Supply Current vs. Temperature  
Duty Cycle = 50%  
Duty Cycle = 50%  
14  
14  
= 0 pF  
1 Channel Switching  
CL  
CL = 100 pF  
1 Channel Switching  
1MHz  
12  
10  
8
12  
10  
8
1MHz  
500kHz  
500kHz  
6
6
4
4
100kHz  
50 kHz  
100kHz  
50 kHz  
2
2
0
0
9
12  
15  
18  
21  
24  
9
12  
15  
18  
21  
24  
VDDA Supply Voltage (V)  
VDDA Supply Voltage (V)  
Figure 2.24. Supply Current vs. Supply Voltage  
Figure 2.25. Supply Current vs. Supply Voltage  
4
3.5  
VDD=12V,  
Vout=VDD 5V  
Vout=VDD-5V  
-
3.75  
3.25  
3
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
2.75  
2.5  
2.25  
2
9
12  
15  
18  
21  
24  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Supply Voltage (V)  
Figure 2.26. Output Source Current vs. Supply Voltage  
Figure 2.27. Output Source Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 15  
Si823x Data Sheet  
System Overview  
9
8
7
6
5
4
7
6.75  
6.5  
6.25  
6
VDD=12V,  
Vout=5V  
Vout=5V  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
9
12  
15  
18  
21  
24  
-45  
-20  
5
30  
55  
80  
105  
130  
Supply Voltage (V)  
Temperature (°C)  
Figure 2.28. Output Sink Current vs. Supply Voltage  
Figure 2.29. Output Sink Current vs. Temperature  
2.5 Family Overview and Logic Operation During Startup  
The Si823x family of isolated drivers consists of high-side, low-side, and dual driver configurations.  
2.5.1 Products  
The table below shows the configuration and functional overview for each product in this family.  
Table 2.1. Si823x Family Overview  
Part Number  
Configuration  
Overlap Protection  
Programmable  
Dead Time  
Inputs  
Peak Output Cur-  
rent (A)  
Si8230  
Si8231  
Si8232/7  
Si8233  
Si8234  
Si8235/8  
High-Side/Low-Side  
High-Side/Low-Side  
Dual Driver  
VIA, VIB  
PWM  
0.5  
0.5  
0.5  
4.0  
4.0  
4.0  
VIA, VIB  
VIA, VIB  
PWM  
High-Side/Low-Side  
High-Side/Low-Side  
Dual Driver  
VIA, VIB  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 16  
Si823x Data Sheet  
System Overview  
2.5.2 Device Behavior  
The table below consists of truth tables for the Si8230/3, Si8231/4, and Si8232/5/7/8 families.  
Table 2.2. Si823x Family Truth Table1  
Si8230/3 (High-Side/Low-Side) Truth Table  
Inputs  
VIA  
VDDI State Disable  
Output  
Notes  
VIB  
L
VOA  
VOB  
L
L
Powered  
Powered  
Powered  
Powered  
L
L
L
L
L
L
L
H
L
Output transition occurs after internal dead time expires.  
Output transition occurs after internal dead time expires.  
Output transition occurs after internal dead time expires.  
H
H
H
L
H
L
H
L
Invalid state. Output transition occurs after internal dead  
time expires.  
X2  
X2  
Unpowered  
Powered  
X
H
L
L
L
L
Output returns to input state within 7 µs of VDDI power re-  
storation.  
X
X
Device is disabled.  
Si8231/4 (PWM Input High-Side/Low-Side) Truth Table  
PWM Input  
VDDI State Disable  
Output  
Notes  
VOA  
VOB  
H
L
Powered  
Powered  
L
L
X
H
L
L
L
H
L
Output transition occurs after internal dead time expires.  
Output transition occurs after internal dead time expires.  
X2  
Unpowered  
Output returns to input state within 7 µs of VDDI power re-  
storation.  
X
Powered  
H
L
L
Device is disabled.  
Si8232/5/7/8 (Dual Driver) Truth Table  
Inputs VDDI State Disable  
Output  
Notes  
VIA  
VIB  
VOA  
VOB  
L
L
Powered  
Powered  
Powered  
Powered  
Unpowered  
Powered  
L
L
L
L
Output transition occurs immediately  
(no internal dead time).  
L
H
L
L
H
H
L
H
L
Output transition occurs immediately  
(no internal dead time).  
H
H
L
Output transition occurs immediately  
(no internal dead time).  
H
L
H
L
Output transition occurs immediately  
(no internal dead time).  
X2  
X2  
X
X
H
Output returns to input state within 7 µs of VDDI power re-  
storation.  
X
L
L
Device is disabled.  
Notes:  
1. This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see 2.9 Undervoltage  
Lockout Operation for more information.  
2. Note that an input can power the input die through an internal diode if its source has adequate current.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 17  
Si823x Data Sheet  
System Overview  
2.6 Power Supply Connections  
Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these supplies must be  
placed as close to the VDD and GND pins of the Si823x as possible. The optimum values for these capacitors depend on load current  
and the distance between the chip and the regulator that powers it. Low effective series resistance (ESR) capacitors, such as Tantalum,  
are recommended.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 18  
Si823x Data Sheet  
System Overview  
2.7 Power Dissipation Considerations  
Proper system design must assure that the Si823x operates within safe thermal limits across the entire load range.The Si823x total  
power dissipation is the sum of the power dissipated by bias supply current, internal parasitic switching losses, and power dissipated by  
the series gate resistor and load. Equation 1 shows total Si823x power dissipation.  
R
R
p
p
2
P
= V  
I
+ 2 I  
V
+ f Q  
( )(  
V
+ f Q  
( )(  
V
+ 2fCintV  
DD2  
(
)(  
)
(
)(  
)
D
DDI DDI  
DD2  
DD2  
TL  
DD2  
TL  
DD2  
)(  
)
)(  
)
R + R  
R + R  
p
g
p g  
where:  
PD is the total Si823x device power dissipation (W)  
IDDI is the input-side maximum bias current (3 mA)  
IDD2 is the driver die maximum bias current (2.5 mA)  
Cint is the internal parasitic capacitance (75 pF for the 0.5 A driver and 370 pF for the 4.0 A driver)  
VDDI is the input-side VDD supply voltage (2.7 to 5.5 V)  
VDD2 is the driver-side supply voltage (10 to 24 V)  
f is the switching frequency (Hz)  
QTL is the gate charge of the FET being driven  
RG is the external gate resistor  
RP is the RDS(ON) of the driver pull-up switch: (Rp = 15 Ω for the 0.5 A driver; Rp = 2.7 Ω for the 4.0 A driver)  
Rn is the RDS(ON) of the driver pull-down switch: (Rn = 5 Ω for the 0.5 A driver and 1 Ω for the 4.0 A driver)  
Equation 1  
Power dissipation example for 0.5 A driver using Equation 1 with the following givens:  
VDDI = 5.0 V  
VDD2 = 12 V  
f = 350 kHz  
RG = 22 Ω  
QTL = 25 nC  
5
3
)
9  
3
12  
(
)
(
)(  
)
Pd = 0.015 + 0.060 + 350 × 10 25 × 10  
12  
+ 2 350 × 10 75 × 10  
(144) = 145 mW  
(
(
)
5 + 22  
From which the driver junction temperature is calculated using Equation 2, where:  
Pd is the total Si823x device power dissipation (W)  
θja is the thermal resistance from junction to air (105 °C/W in this example)  
TA is the ambient temperature  
o
(
)(  
)
T = P × Θ × T = 0.145 105 + 20 = 35.2 C  
j
d
ja  
A
The maximum power dissipation allowable for the Si823x is a function of the package thermal resistance, ambient temperature, and  
maximum allowable junction temperature, as shown in Equation 2:  
T
T  
A
Θja  
jmax  
P
Dmax  
where:  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 19  
Si823x Data Sheet  
System Overview  
PDmax = Maximum Si823x power dissipation (W)  
Tjmax = Si823x maximum junction temperature (150 °C)  
TA = Ambient temperature (°C)  
Θja = Si823x junction-to-air thermal resistance (105 °C/W)  
f = Si823x switching frequency (Hz)  
Equation 2  
Substituting values for PDmax Tjmax, TA, and θja into Equation 2 results in a maximum allowable total power dissipation of 1.19 W. Maxi-  
mum allowable load is found by substituting this limit and the appropriate data sheet values from Table 3.1 Electrical Characteristics1  
on page 25 into Equation 1 and simplifying. The result is Equation 3 (0.5 A driver) and Equation 4 (4.0 A driver), both of which as-  
sume VDDI = 5 V and VDDA = VDDB = 18 V.  
3  
1.4 × 10  
f
11  
10  
C
C
=
=
7.5 × 10  
3.7 × 10  
L(MAX)  
L(MAX)  
Equation 3  
3  
1.4 × 10  
f
Equation 4  
Equation 3 and Equation 4 are graphed in the figure below, where the points along the load line represent the package dissipation-  
limited value of CL for the corresponding switching frequency.  
2.8 Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the Si823x VDD lines. Care must be taken to minimize parasitic  
inductance in these paths by locating the Si823x as close to the device it is driving as possible. In addition, the VDD supply and ground  
trace paths must be kept short. For this reason, the use of power and ground planes is highly recommended. A split ground plane sys-  
tem having separate ground and VDD planes for power devices and small signal components provides the best overall noise perform-  
ance.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 20  
Si823x Data Sheet  
System Overview  
2.9 Undervoltage Lockout Operation  
Device behavior during start-up, normal operation and shutdown is shown in Figure 2.30 Device Behavior during Normal Operation and  
Shutdown on page 21, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Note that outputs  
VOA and VOB default low when input side power supply (VDDI) is not present.  
2.9.1 Device Startup  
Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period tSTART. Following this,  
the outputs follow the states of inputs VIA and VIB.  
2.9.2 Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its  
specified operating circuits range. The input (control) side, Driver A and Driver B, each have their own undervoltage lockout monitors.  
The Si823x input side enters UVLO when VDDI < VDDIUV–, and exits UVLO when VDDI > VDDIUV+. The driver outputs, VOA and VOB,  
remain low when the input side of the Si823x is in UVLO and their respective VDD supply (VDDA, VDDB) is within tolerance. Each  
driver output can enter or exit UVLO independently. For example, VOA unconditionally enters UVLO when VDDA falls below VDDAUV–  
and exits UVLO when VDDA rises above VDDAUV+  
.
UVLO+  
VDDHYS  
UVLO-  
VDDI  
UVLO+  
VDDHYS  
UVLO-  
VDDA  
VIA  
DISABLE  
tSD  
tRESTART  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
VOA  
Figure 2.30. Device Behavior during Normal Operation and Shutdown  
2.9.3 Undervoltage Lockout (UVLO)  
The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Upon power up, the Si823x is maintained in  
UVLO until VDD rises above VDDUV+. During power down, the Si823x enters UVLO when VDD falls below the UVLO threshold plus  
hysteresis (i.e., VDD < VDDUV+ – VDDHYS).  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 21  
Si823x Data Sheet  
System Overview  
2.9.4 Control Inputs  
VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB causes the corresponding  
output to go high. For PWM input versions (Si8231/4), VOA is high and VOB is low when the PWM input is high, and VOA is low and  
VOB is high when the PWM input is low.  
2.9.5 Disable Input  
When brought high, the DISABLE input unconditionally drives VOA and VOB low regardless of the states of VIA and VIB. Device opera-  
tion terminates within tSD after DISABLE =VIH and resumes within tRESTART after DISABLE = VIL. The DISABLE input has no effect if  
VDDI is below its UVLO level (i.e., VOA, VOB remain low).  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 22  
Si823x Data Sheet  
System Overview  
2.10 Programmable Dead Time and Overlap Protection  
All high-side/low-side drivers (Si8230/1/3/4) include programmable overlap protection to prevent outputs VOA and VOB from being high  
at the same time. These devices also include programmable dead time, which adds a user-programmable delay between transitions of  
VOA and VOB. When enabled, dead time is present on all transitions, even after overlap recovery. The amount of dead time delay (DT)  
is programmed by a single resistor (RDT) connected from the DT input to ground per Equation 5. Note that the dead time pin can be  
tied to VDDI or left floating to provide a nominal dead time at approximately 400 ps.  
DT ≈ 10 × RDT  
where:  
DT = dead time (ns) and  
RDT = dead time programing resistor (kΩ)  
Equation 5  
The device driving VIA and VIB should provide a minimum dead time of TDD to avoid activating overlap protection. Input/output timing  
waveforms for the two-input drivers are shown in Figure 2.31 Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers on  
page 23, and dead time waveforms are shown in Figure 2.32 Dead Time Waveforms for High-Side / Low-Side Two-input Drivers on  
page 24.  
Figure 2.31. Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 23  
Si823x Data Sheet  
System Overview  
OVERLAP  
OVERLAP  
VOB  
VIA/  
PWM  
VIA/  
PWM  
VIB  
50%  
VIB  
DT  
DT  
DT  
DT  
90%  
VOA  
VOA  
VOB  
10%  
DT  
DT  
90%  
VOB  
10%  
B. Dead Time Operation During Overlap  
A. Typical Dead Time Operation  
Figure 2.32. Dead Time Waveforms for High-Side / Low-Side Two-input Drivers  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 24  
Si823x Data Sheet  
Electrical Specifications  
3. Electrical Specifications  
Table 3.1. Electrical Characteristics1  
2.7 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V, TA = –40 to +125 °C, Typical specs at 25 °C, TJ = -40 to +150 °C  
Parameter  
Symbol  
VDDI  
Test Condition  
Min  
Typ  
Max  
Unit  
V
DC Specifications  
Input-side Power Supply  
Voltage  
Si8230/1/2/3/4/5  
Si8237/8  
4.5  
2.7  
6.5  
5.5  
5.5  
24  
Driver Supply Voltage  
VDDA, VDDB  
Voltage between VDDA and  
GNDA, and VDDB and GNDB  
(See 1. Ordering Guide)  
V
Input Supply Quiescent  
Current  
IDDI(Q)  
Si8230/2/3/5/7/8  
Si8231/4  
2
3
5
mA  
mA  
mA  
3.5  
Output Supply Quiescent  
Current  
IDDA(Q), IDDB(Q)  
Current per channel  
3.0  
Input Supply Active Current  
Output Supply Active Current  
IDDI  
IDDA  
Input freq = 500 kHz, no load  
Current per channel with  
3.5  
6
mA  
mA  
IDDB  
Input freq = 500 kHz, no load  
Input Pin Leakage Current  
IVIA, IVIB, IPWM  
IDISABLE  
–10  
–10  
+10  
+10  
µA dc  
µA dc  
Input Pin Leakage Current  
(Si8230/1/2/3/4/5)  
Input Pin Leakage Current  
(Si8237/8)  
-1000  
+1000  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
VIH  
VIL  
2.0  
0.8  
V
V
VIHYST  
Si8230/1/2/3/4/5/7/8  
IOA, IOB = –1 mA  
400  
450  
mV  
V
Logic High Output Voltage  
VOAH, VOBH  
(VDDA /  
VDDB)  
— 0.04  
Logic Low Output Voltage  
VOAL, VOBL  
IOA, IOB = 1 mA  
0.04  
V
A
Output Short-Circuit Pulsed  
Sink Current  
IOA(SCL), IOB(SCL)  
Si8230/1/2/7, Figure 3.1 IOL  
Sink Current Test Circuit on  
page 28  
0.5  
Si8233/4/5/8, Figure 3.1 IOL  
Sink Current Test Circuit on  
page 28  
4.0  
0.25  
2.0  
A
A
A
Output Short-Circuit Pulsed  
Source Current  
IOA(SCH),  
IOB(SCH)  
Si8230/1/2/7, Figure 3.2 IOH  
Source Current Test Circuit on  
page 28  
Si8233/4/5/8, Figure 3.2 IOH  
Source Current Test Circuit on  
page 28  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 25  
Si823x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Si8230/1/2/7  
Min  
Typ  
5.0  
1.0  
15  
Max  
Unit  
Ω
Output Sink Resistance  
RON(SINK)  
Si8233/4/5/8  
Ω
Output Source Resistance  
RON(SOURCE)  
Si8230/1/2/7  
Ω
Si8233/4/5/8  
2.7  
4.0  
3.70  
Ω
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDIUV+  
VDDIUV–  
VDDI rising (Si8230/1/2/3/4/5)  
VDDI falling  
3.60  
3.30  
4.45  
4.15  
V
V
(Si8230/1/2/3/4/5)  
(Si8230/1/2/3/4/5)  
VDDI rising (Si8237/8)  
VDDI falling (Si8237/8)  
(Si8237/8)  
VDDI Lockout Hysteresis  
VDDIHYS  
VDDIUV+  
2.15  
2.10  
250  
2.3  
2.5  
2.40  
mV  
V
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDI Lockout Hysteresis  
VDDIUV–  
2.22  
75  
V
VDDIHYS  
mV  
VDDA, VDDB Undervoltage  
Threshold  
VDDAUV+, VDDBUV+  
VDDA, VDDB rising  
5 V Threshold  
8 V Threshold  
10 V Threshold  
12.5 V Threshold  
5.20  
7.50  
9.60  
12.4  
5.80  
8.60  
11.1  
13.8  
6.30  
9.40  
12.2  
14.8  
V
V
V
V
VDDA, VDDB Undervoltage  
Threshold  
VDDAUV–, VDDBUV–  
VDDA, VDDB falling  
5 V Threshold  
8 V Threshold  
10 V Threshold  
12.5 V Threshold  
4.90  
7.20  
9.40  
11.6  
5.52  
8.10  
10.1  
12.8  
280  
6.0  
8.70  
10.9  
13.8  
V
V
V
V
VDDA, VDDB  
Lockout Hysteresis  
VDDAHYS  
VDDBHYS  
,
UVLO voltage = 5 V  
UVLO voltage = 8 V  
mV  
VDDA, VDDB  
Lockout Hysteresis  
VDDAHYS  
VDDBHYS  
,
600  
mV  
mV  
VDDA, VDDB  
VDDAHYS  
,
UVLO voltage = 10 V or 12.5 V  
1000  
Lockout Hysteresis  
VDDBHYS  
AC Specifications  
Minimum Pulse Width  
Propagation Delay  
10  
30  
45  
ns  
ns  
ns  
tPHL, tPLH  
PWD  
CL = 200 pF  
Pulse Width Distortion  
5.60  
|tPLH - tPHL  
|
Minimum Overlap Time2  
TDD  
DT = VDDI, No-Connect  
0.4  
ns  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 26  
Si823x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Programmed Dead Time3  
DT  
Figure 2.32 Dead Time Wave-  
forms for High-Side / Low-Side  
Two-input Drivers on page 24,  
RDT = 100 k  
730  
900  
1170  
ns  
Figure 2.32 Dead Time Wave-  
forms for High-Side / Low-Side  
Two-input Drivers on page 24,  
RDT = 6 k  
55  
70  
75  
ns  
Output Rise and Fall Time  
tR,tF  
CL = 200 pF (Si8230/1/2/7)  
CL = 200 pF (Si8233/4/5/8)  
20  
12  
60  
ns  
ns  
ns  
Shutdown Time from  
Disable True  
tSD  
Restart Time from  
Disable False  
tRESTART  
tSTART  
CMTI  
20  
45  
60  
40  
ns  
µs  
Device Start-up Time  
Time from VDD_ = VDD_UV+ to  
VOA, VOB = VIA, VIB  
Common Mode  
VIA, VIB, PWM = VDDI or 0 V  
VCM = 1500 V  
kV/µs  
Transient Immunity  
(see Figure 3.3 Common Mode  
Transient Immunity Test Circuit  
on page 29)  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 kΩ.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 27  
Si823x Data Sheet  
Electrical Specifications  
3.1 Test Circuits  
Figures Figure 3.1 IOL Sink Current Test Circuit on page 28, Figure 3.2 IOH Source Current Test Circuit on page 28, and Figure  
3.3 Common Mode Transient Immunity Test Circuit on page 29 depict sink current, source current, and common-mode transient im-  
munity test circuits, respectively.  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si823x  
INPUT  
SCHOTTKY  
+
_
8 V  
VSS  
100 µF  
1 µF  
1 µF  
CER  
10 µF  
EL  
Measure  
50 ns  
RSNS  
0.1  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 3.1. IOL Sink Current Test Circuit  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si823x  
INPUT  
SCHOTTKY  
+
5.5 V  
VSS  
100 µF  
1 µF  
_
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 3.2. IOH Source Current Test Circuit  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 28  
Si823x Data Sheet  
Electrical Specifications  
12 V  
Supply  
Si823x  
VDDI  
VDDA  
Input Signal  
Switch  
INPUT  
VOA  
5V  
DISABLE GNDA  
Isolated  
Supply  
DT  
VDDB  
VOB  
Oscilloscope  
100k  
GNDI  
GNDB  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 3.3. Common Mode Transient Immunity Test Circuit  
Table 3.2. Regulatory Information1  
CSA  
The Si823x is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873.  
60950-1, 62368-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
60601-1: Up to 250 VRMS working voltage and 2 MOPP (Means of Patient Protection).  
VDE  
The Si823x is certified according to VDE 0884-10 and EN 60950-1. For more details, see certificates 40018443, 40030763.  
0884-10: Up to 891 Vpeak for basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
UL  
The Si823x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
CQC  
The Si823x is certified under GB4943.1-2011. For more details, see certificates CQC13001096106, CQC13001096108, and CQC  
17001178087.  
Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 29  
Si823x Data Sheet  
Electrical Specifications  
Note:  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. Regulatory Certifi-  
cations apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec. Regulatory Certifications apply to  
5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see 1. Ordering Guide.  
Table 3.3. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WBSOIC-14/16  
5 kVRMS  
WBSOIC-14/16  
NBSOIC-16  
2.5 kVRMS  
14 LD LGA  
/QFN  
2.5 kVRMS  
Nominal External Air  
Gap  
(Clearance)1  
CLR  
8.0  
8.0/4.01  
3.5  
mm  
Nominal External Track-  
ing (Creepage)1  
CPG  
DTI  
8.0  
8.0/4.01  
0.014  
3.5  
mm  
mm  
Minimum Internal Gap  
(Internal Clearance)  
Tracking Resistance  
Erosion Depth  
0.014  
0.014  
CTI or PTI  
ED  
IEC60112  
f = 1 ΜΗz  
600  
600  
600  
V
mm  
Ω
0.019/0.122  
0.019/0.122  
0.021  
1012  
1012  
1012  
Resistance  
(Input-Output)2  
RIO  
Capacitance  
(Input-Output)2  
CIO  
CI  
1.4  
1.4  
1.4  
pF  
pF  
Input Capacitance3  
4.0  
4.0  
4.0  
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in 6.1 Package Outline: 16-Pin  
Wide Body SOIC, 6.2 Package Outline: 14-Pin Wide Body SOIC, 6.3 Package Outline: 16-Pin Narrow Body SOIC, 6.4 Package  
Outline: 14 LD LGA (5 x 5 mm), 6.5 Package Outline: 14 LD QFN. VDE certifies the clearance and creepage limits as 4.7 mm  
minimum for the NB SOIC and 8.5 mm minimum for the WB SOIC package. UL does not impose a clearance and creepage mini-  
mum for component level certifications. CSA certifies the clearance and creepage of the WB SOIC package with designation  
"IS3" as 8 mm minimum. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC and 7.6 mm mini-  
mum for the WB SOIC package with package designation "IS" as listed in the data sheet.  
2. To determine resistance and capacitance, the Si823x is converted into a 2-terminal device. Pins 1–8 (1–7, 14 LD LGA/QFN) are  
shorted together to form the first terminal and pins 9–16 (8–14, 14 LD LGA/QFN) are shorted together to form the second termi-  
nal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 30  
Si823x Data Sheet  
Electrical Specifications  
Table 3.4. IEC 60664-1 Ratings  
Test Condition  
Parameter  
Specification  
WB SOIC-14/16 NB SOIC-16  
14 LD  
LGA/QFN  
Basic Isolation Group  
Material Group  
I
I
I
Installation Classification  
Rated Mains Voltages < 150 VRMS  
Rated Mains Voltages < 300 VRMS  
Rated Mains Voltages < 400 VRMS  
Rated Mains Voltages < 600 VRMS  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-III  
I-II  
I-II  
Table 3.5. VDE 0884-10 Insulation Characteristics1  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
WB  
SOIC-14/16  
NB SOIC-16  
14 LD  
LGA/QFN  
Maximum Working Insu-  
lation Voltage  
VIORM  
891  
560  
V peak  
V peak  
Input to Output Test Volt-  
age  
VPR  
Method b1  
(VIORM x 1.875 = VPR  
100%  
1671  
1050  
,
Production Test, tm = 1  
sec,  
Partial Discharge < 5 pC)  
Transient Overvoltage  
Surge Voltage  
VIOTM  
t = 60 s  
6000  
4000  
V peak  
Tested per IEC 60065  
with surge voltage of 1.2  
µs/50 µs  
VIOSM  
Vpeak  
Si823xxB/C/D tested with  
4000 V  
3077  
2
3077  
2
3077  
Ω
Pollution Degree (DIN  
VDE 0110, Table 1)  
>109  
>109  
Insulation Resistance at  
TS, VIO = 500 V  
RS  
*Note:  
1. Maintenance of the safety data is ensured by protective circuits. The Si823x provides a climate classification of  
40/125/21.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 31  
Si823x Data Sheet  
Electrical Specifications  
Table 3.6. VDE 0884-10 Safety Limiting Values1  
Parameter  
Symbol  
Test  
WB SOIC-14/16  
NB SOIC-16  
14 LD  
Unit  
LGA/QFN  
Condition  
Case  
Temperature  
TS  
150  
50  
150  
50  
150  
50  
°C  
Safety Input Current  
ΙS  
θJA = 100 °C/W (WB SO-  
IC-14/16),  
mA  
105 °C/W (NB SOIC-16,  
14 LD LGA/QFN)  
VDDI = 5.5 V,  
VDDA = VDDB = 24 V,  
TJ = 150 °C, TA = 25 °C  
Device Power Dissipa-  
tion2  
PD  
1.2  
1.2  
1.2  
W
Notes:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figures Figure 3.4 WB SOIC, NB SOIC,  
14 LD LGA/QFN Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE 0884-10 on  
page 32.  
2. The Si82xx is tested with VDDI = 5.5 V, VDDA = VDDB = 24 V, TJ = 150 ºC, CL = 100 pF, input 2 MHz 50% duty cycle square wave.  
Table 3.7. Thermal Characteristics  
Parameter  
Symbol  
WB  
NB  
14 LD LGA/QFN  
Unit  
SOIC-14/16  
SOIC-16  
IC Junction-to-Air  
θJA  
100  
105  
105  
°C/W  
Thermal Resistance  
60  
50  
40  
30  
20  
10  
0
VDDI = 5.5 V  
VDDA, VDDB = 24 V  
0
50  
100  
Case Temperature (ºC)  
150  
200  
Figure 3.4. WB SOIC, NB SOIC, 14 LD LGA/QFN Thermal Derating Curve, Dependence of Safety Limiting Values with Case  
Temperature per VDE 0884-10  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 32  
Si823x Data Sheet  
Electrical Specifications  
Table 3.8. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
Max  
Unit  
Storage Temperature2  
TSTG  
–65  
+150  
°C  
Ambient Temperature under Bias  
Junction Temperature  
TA  
TJ  
–40  
+125  
+150  
°C  
°C  
V
Input-side Supply Voltage  
Driver-side Supply Voltage  
VDDI  
–0.6  
–0.6  
–0.5  
6.0  
VDDA, VDDB  
VIO  
30  
V
Voltage on any Pin with respect to  
Ground  
VDD + 0.5  
V
Peak Output Current (tPW = 10 µs,  
duty cycle = 0.2%)  
IOPK  
0.5  
4.0  
A
A
(0.5 Amp versions)  
Peak Output Current (tPW = 10 µs,  
duty cycle = 0.2%)  
IOPK  
(4.0 Amp versions)  
Lead Solder Temperature (10 s)  
260  
°C  
Maximum Isolation (Input to Out-  
put) (1 s)  
6500  
VRMS  
WB SOIC  
Maximum Isolation (Output to Out-  
put) (1 s)  
WB SOIC  
2500  
4500  
2500  
3850  
650  
VRMS  
VRMS  
VRMS  
VRMS  
VRMS  
Maximum Isolation (Input to Out-  
put) (1 s)  
NB SOIC  
Maximum Isolation (Output to Out-  
put) (1 s)  
NB SOIC  
Maximum Isolation (Input to Out-  
put) (1 s)  
14 LD LGA/QFN  
Maximum Isolation (Output to Out-  
put) (1 s)  
14 LD LGA/QFN  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. VDE certifies storage temperature from –40 to 150 °C.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 33  
Si823x Data Sheet  
Applications  
4. Applications  
The following examples illustrate typical circuit configurations using the Si823x.  
4.1 High-Side/Low-Side Driver  
The Figure A in the drawing below shows the Si8230/3 controlled using the VIA and VIB input signals, and Figure B shows the Si8231/4  
controlled by a single PWM signal.  
VDD2  
VDD2  
D1  
D1  
C3  
1 µF  
C3  
1 µF  
VDDI  
VDDI  
VDDI  
GNDI  
VDDI  
GNDI  
C1  
1 µF  
C2  
0.1 µF  
1500 V max  
1500 V max  
Q1  
C1  
1 µF  
C2  
0.1 µF  
VDDA  
VDDA  
CB  
CB  
Q1  
OUT1  
OUT2  
VIA  
VIB  
PWMOUT  
PWM  
DT  
VOA  
VOA  
GNDA  
GNDA  
DT  
RDT  
RDT  
CONTROLLER  
CONTROLLER  
Si8230/3  
Si8231/4  
VDDB  
VDDB  
C4  
0.1 µF  
C5  
10 µF  
C4  
0.1 µF  
C5  
10 µF  
I/O  
DISABLE  
I/O  
DISABLE  
GNDB  
VOB  
GNDB  
VOB  
VDDB  
Q2  
Q2  
A
B
Figure 4.1. Si823x in Half-Bridge Application  
For both cases, D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver for Q1, which has a  
maximum drain voltage of 1500 V. The boot-strap start up time will depend on the CB cap chosen. See application note, “AN486: High-  
Side Bootstrap Design Using Si823x ISODrivers in Power Delivery Systems”. VOB is connected as a conventional low-side driver, and,  
in most cases, VDD2 is the same as VDDB. Note that the input side of the Si823x requires VDD in the range of 4.5 to 5.5 V (2.7 to 5.5  
V for Si8237/8), while the VDDA and VDDB output side supplies must be between 6.5 and 24 V with respect to their respective  
grounds. It is recommended that bypass capacitors of 0.1 and 1 µF value be used on the Si823x input side and that they be located as  
close to the chip as possible. Moreover, it is recommended that 0.1 and 10 µF bypass capacitors, located as close to the chip as possi-  
ble, be used on the Si823x output side to reduce high-frequency noise and maximize performance.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 34  
Si823x Data Sheet  
Applications  
4.2 Dual Driver  
The figure below shows the Si823x configured as a dual driver. Note that the drain voltages of Q1 and Q2 can be referenced to a com-  
mon ground or to different grounds with as much as 1500 V dc between them.  
VDDI  
VDDI  
Q1  
C1  
C2  
VOA  
1 µF  
0.1 µF  
GNDI  
VDDA  
VDDA  
GNDA  
VIA  
VIB  
PH1  
PH2  
C3  
0.1 µF  
C4  
10 µF  
Si8232/5/7/8  
CONTROLLER  
VDDB  
VDDB  
GNDB  
C5  
0.1 µF  
C6  
10 µF  
I/O  
DISABLE  
Q2  
VOB  
Figure 4.2. Si8232/5/7/8 in a Dual Driver Application  
Because each output driver resides on its own die, the relative voltage polarities of VOA and VOB can reverse without damaging the  
driver. That is, the voltage at VOA can be higher or lower than that of VOB by VDD without damaging the driver. Therefore, a dual  
driver in a low-side high side/low side drive application can use either VOA or VOB as the high side driver. Similarly, a dual driver can  
operate as a dual low-side or dual high-side driver and is unaffected by static or dynamic voltage polarity changes.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 35  
Si823x Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
2
16  
15  
14  
13  
12  
11  
10  
9
1
2
16  
15  
14  
13  
12  
11  
10  
9
VIA  
VIB  
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
DISABLE  
DT  
VDDI  
GNDI  
DISABLE  
DT  
GNDA  
NC  
Si8230  
Si8233  
Si8230  
Si8233  
NC  
NC  
VDDB  
VOB  
VDDB  
VOB  
GNDB  
NC  
NC  
VDDI  
VDDI  
GNDB  
Table 5.1. Si8230/3 Two-Input HS/LS Isolated Driver (SOIC-16). WB SOIC-14 with IS3 package designation, has pins 12 & 13  
missing  
Pin  
1
Name  
VIA  
Description  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Input-side ground terminal.  
2
VIB  
3
VDDI  
4
GNDI  
DISABLE  
5
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It  
is strongly recommended that this input be connected to external logic level to avoid er-  
roneous operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead  
time when connected to VDDI or left open (see 2.10 Programmable Dead Time and  
Overlap Protection).  
7
NC  
VDDI  
GNDB  
VOB  
VDDB  
NC  
No connection.  
8
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
Driver B output (low-side driver).  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
NC  
No connection.  
GNDA  
VOA  
VDDA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 36  
Si823x Data Sheet  
Pin Descriptions  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
2
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
1
2
PWM  
NC  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
VDDI  
GNDI  
DISABLE  
DT  
Si8231  
Si8234  
Si8231  
Si8234  
DISABLE  
DT  
NC  
NC  
VDDB  
VOB  
VDDB  
VOB  
GNDB  
NC  
NC  
VDDI  
VDDI  
GNDB  
Table 5.2. Si8231/4 PWM Input HS/LS Isolated Driver (SOIC-16). WB SOIC-14 with IS3 package designation, has pins 12 & 13  
missing  
Pin  
1
Name  
PWM  
Description  
PWM input.  
2
NC  
No connection.  
3
VDDI  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Input-side ground terminal.  
4
GNDI  
DISABLE  
5
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It  
is strongly recommended that this input be connected to external logic level to avoid er-  
roneous operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead  
time when connected to VDDI or left open (see 2.10 Programmable Dead Time and  
Overlap Protection).  
7
NC  
VDDI  
GNDB  
VOB  
VDDB  
NC  
No connection.  
8
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
Driver B output (low-side driver).  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
NC  
No connection.  
GNDA  
VOA  
VDDA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 37  
Si823x Data Sheet  
Pin Descriptions  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
2
16  
15  
14  
13  
12  
11  
10  
9
1
2
16  
15  
14  
13  
12  
11  
10  
9
VIA  
VIB  
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
VDDI  
Si8232  
Si8235  
Si8237  
Si8238  
Si8232  
Si8235  
Si8237  
Si8238  
GNDI  
DISABLE  
DISABLE  
NC  
NC  
VDDB  
VOB  
VDDB  
VOB  
NC  
NC  
NC  
NC  
VDDI  
VDDI  
GNDB  
GNDB  
Table 5.3. Si8232/5/7/8 Dual Isolated Driver (SOIC-16). WB SOIC-14 with IS3 package designation, has pins 12 & 13 missing  
Pin  
1
Name  
VIA  
Description  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
2
VIB  
3
VDDI  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V, (2.7 to 5.5 V for  
Si8237/8).  
4
5
GNDI  
Input-side ground terminal.  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It  
is strongly recommended that this input be connected to external logic level to avoid er-  
roneous operation due to capacitive noise coupling.  
6
7
8
NC  
NC  
No connection.  
No connection.  
VDDI  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V, (2.7 to 5.5 V for  
Si8237/8).  
9
GNDB  
VOB  
VDDB  
NC  
Ground terminal for Driver B.  
10  
11  
12  
13  
14  
15  
16  
Driver B output.  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
NC  
No connection.  
GNDA  
VOA  
VDDA  
Ground terminal for Driver A.  
Driver A output.  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 38  
Si823x Data Sheet  
Pin Descriptions  
LGA-14 and QFN-14 (5 x 5 mm)  
1
2
3
4
5
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
GNDA  
NC  
VIB  
VDDI  
Si8233  
DISABLE  
VDDB  
6
7
9
8
DT  
VOB  
VDDI  
GNDB  
Table 5.4. Si8233 Two-Input HS/LS Isolated Driver (14 LD LGA and QFN)  
Pin  
GNDI  
VIA  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
VIB  
VDDI  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It  
is strongly recommended that this input be connected to external logic level to avoid er-  
roneous operation due to capacitive noise coupling.  
DT  
6
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead  
time when connected to VDDI or left open (see2.10 Programmable Dead Time and  
Overlap Protection).  
VDDI  
GNDB  
VOB  
7
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 39  
Si823x Data Sheet  
Pin Descriptions  
LGA-14 and QFN-14 (5 x 5 mm)  
1
2
3
4
5
14  
13  
12  
11  
10  
GNDI  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
VDDI  
Si8234  
DISABLE  
VDDB  
6
7
9
8
DT  
VOB  
VDDI  
GNDB  
Table 5.5. Si8234 PWM Input HS/LS Isolated Driver (14 LD LGA and QFN)  
Pin  
GNDI  
PWM  
NC  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
PWM input.  
No connection.  
VDDI  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It  
is strongly recommended that this input be connected to external logic level to avoid er-  
roneous operation due to capacitive noise coupling.  
DT  
6
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps dead  
time when connected to VDDI or left open (see 2.10 Programmable Dead Time and  
Overlap Protection).  
VDDI  
GNDB  
VOB  
7
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 40  
Si823x Data Sheet  
Pin Descriptions  
LGA-14 and QFN-14 (5 x 5 mm)  
1
2
3
4
5
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
GNDA  
NC  
VIB  
Si8235  
VDDI  
DISABLE  
VDDB  
6
7
9
8
NC  
VOB  
VDDI  
GNDB  
Table 5.6. Si8235 Dual Isolated Driver (14 LD LGA and QFN)  
Pin  
GNDI  
VIA  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
VIB  
VDDI  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It  
is strongly recommended that this input be connected to external logic level to avoid er-  
roneous operation due to capacitive noise coupling.  
NC  
6
7
No connection.  
VDDI  
GNDB  
VOB  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 41  
Si823x Data Sheet  
Package Outlines  
6. Package Outlines  
6.1 Package Outline: 16-Pin Wide Body SOIC  
Figure 6.1 16-Pin Wide Body SOIC on page 42 illustrates the package details for the Si823x in a 16-Pin Wide Body SOIC. Table  
6.1 Package Diagram Dimensions on page 42 lists the values for the dimensions shown in the illustration.  
Figure 6.1. 16-Pin Wide Body SOIC  
Table 6.1. Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
E
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 42  
Si823x Data Sheet  
Package Outlines  
Dimension  
ααα  
Min  
Max  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
bbb  
ccc  
ddd  
eee  
fff  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 43  
Si823x Data Sheet  
Package Outlines  
6.2 Package Outline: 14-Pin Wide Body SOIC  
Figure 6.2 Si823x 14-pin WB SOIC Outline on page 44 illustrates the package details for the Si823x in a 14-Pin Wide Body SOIC.  
Table 6.2 Package Diagram Dimensions on page 44 lists the values for the dimensions shown in the illustration.  
Figure 6.2. Si823x 14-pin WB SOIC Outline  
Table 6.2. Package Diagram Dimensions  
Dimension  
MIN  
MAX  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
E
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E1  
e
L
0.40  
0.25  
1.27  
0.75  
h
ͦ
ͦ
Θ
0
8
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 44  
Si823x Data Sheet  
Package Outlines  
Dimension  
MIN  
MAX  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 45  
Si823x Data Sheet  
Package Outlines  
6.3 Package Outline: 16-Pin Narrow Body SOIC  
Figure 6.3 16-pin Small Outline Integrated Circuit (SOIC) Package on page 46 illustrates the package details for the Si823x in a 16-  
pin narrow-body SOIC. Table 6.3 Package Diagram Dimensions on page 46 lists the values for the dimensions shown in the illustra-  
tion.  
Figure 6.3. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 6.3. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
Dimension  
Min  
Max  
A
L
0.40  
0.25 BSC  
0.25  
0°  
1.27  
A1  
0.10  
L2  
h
A2  
1.25  
0.50  
8°  
b
0.31  
0.51  
0.25  
θ
c
0.17  
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 46  
Si823x Data Sheet  
Package Outlines  
6.4 Package Outline: 14 LD LGA (5 x 5 mm)  
Figure 6.4 Si823x LGA Outline on page 47 illustrates the package details for the Si823x in an LGA outline. Table 6.4 Package Dia-  
gram Dimensions on page 47 lists the values for the dimensions shown in the illustration.  
Figure 6.4. Si823x LGA Outline  
Table 6.4. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0.25  
NOM  
0.84  
MAX  
0.94  
0.35  
A
b
0.30  
D
5.00 BSC  
4.15 BSC  
0.65 BSC  
5.00 BSC  
3.90 BSC  
0.75  
D1  
e
E
E1  
L
0.70  
0.05  
0.80  
0.15  
0.10  
0.10  
0.08  
0.15  
0.08  
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 47  
Si823x Data Sheet  
Package Outlines  
6.5 Package Outline: 14 LD QFN  
Figure 6.5 Si823x 14-pin LD QFN Outline on page 48 illustrates the package details for the Si823x in an QFN outline. Table  
6.5 Package Diagram Dimensions on page 48 lists the values for the dimensions shown in the illustration.  
Figure 6.5. Si823x 14-pin LD QFN Outline  
Table 6.5. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0
NOM  
0.85  
MAX  
0.90  
0.05  
0.35  
A
A1  
b
0.025  
0.25  
0.30  
D
5.00 BSC  
0.65 BSC  
5.00 BSC  
3.60 BSC  
0.60  
e
E
E1  
L
0.50  
0.70  
L13  
ccc  
ddd  
0.10 BSC  
0.08  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. L1 shall not be less than 0.01 mm.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 48  
Si823x Data Sheet  
Land Patterns  
7. Land Patterns  
7.1 Land Pattern: 16-Pin Wide Body SOIC  
Figure 7.1 16-Pin SOIC Land Pattern on page 49 illustrates the recommended land pattern details for the Si823x in a 16-pin wide-  
body SOIC. Table 7.1 16-Pin Wide Body SOIC Land Pattern Dimensions on page 49 lists the values for the dimensions shown in the  
illustration.  
Figure 7.1. 16-Pin SOIC Land Pattern  
Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-  
sion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 49  
Si823x Data Sheet  
Land Patterns  
7.2 Land Pattern: 14-Pin Wide Body SOIC  
Figure 7.2 14-Pin WB SOIC Land Pattern on page 50 illustrates the recommended land pattern details for the Si823x in a 14-pin Wide  
Body SOIC. Table 7.2 14-Pin WB SOIC Land Pattern Dimensions on page 50 lists the values for the dimensions shown in the  
illustration.  
Figure 7.2. 14-Pin WB SOIC Land Pattern  
Table 7.2. 14-Pin WB SOIC Land Pattern Dimensions  
Dimension  
Feature  
(mm)  
4.20  
1.50  
4.25  
0.65  
C1  
E
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-  
sion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 50  
Si823x Data Sheet  
Land Patterns  
7.3 Land Pattern: 16-Pin Narrow Body SOIC  
Figure 7.3 16-Pin Narrow Body SOIC PCB Land Pattern on page 51 illustrates the recommended land pattern details for the Si823x in  
a 16-pin narrow-body SOIC. Table 7.3 16-Pin Narrow Body SOIC Land Pattern Dimensions on page 51 lists the values for the dimen-  
sions shown in the illustration.  
Figure 7.3. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 7.3. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 51  
Si823x Data Sheet  
Land Patterns  
7.4 Land Pattern: 14 LD LGA/QFN  
Figure 7.4 14-Pin LGA/QFN Land Pattern on page 52 illustrates the recommended land pattern details for the Si823x in a 14-pin LGA/  
QFN. Table 7.4 14-Pin LGA/QFN Land Pattern Dimensions on page 52 lists the values for the dimensions shown in the illustration.  
Figure 7.4. 14-Pin LGA/QFN Land Pattern  
Table 7.4. 14-Pin LGA/QFN Land Pattern Dimensions  
Dimension  
(mm)  
4.20  
0.65  
0.80  
0.40  
C1  
E
X1  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-  
cation Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 52  
Si823x Data Sheet  
Top Markings  
8. Top Markings  
8.1 Si823x Top Marking (14/16-Pin Wide Body SOIC)  
Table 8.1. Top Marking Explanation (14/16-Pin Wide Body SOIC)  
Line 1 Marking: Base Part Number  
Si823 = ISOdriver product series  
Y = Peak output current  
0, 1, 2, 7 = 0.5 A  
Ordering Options  
See Ordering Guide for more information.  
3, 4, 5, 8 = 4.0 A  
U = UVLO level  
A = 5 V; B = 8 V; C = 10 V; D = 12.5 V  
V = Isolation rating  
B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
Line 2 Marking: YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the year and  
workweek of the mold date.  
TTTTTT = Mfg Code  
Line 3 Marking: Circle = 1.5 mm Diameter  
(Center Justified)  
Manufacturing Code from Assembly Purchase Order form.  
“e4” Pb-Free Symbol  
Country of Origin  
TW = Taiwan (as shown), TH = Thailand  
ISO Code Abbreviation  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 53  
Si823x Data Sheet  
Top Markings  
8.2 Si823x Top Marking (16-Pin Narrow Body SOIC)  
Line 1 Marking: Base Part Number  
Si823 = ISOdriver product series  
Y = Peak output current  
0, 1, 2, 7 = 0.5 A  
Ordering Options  
See Ordering Guide for more information.  
3, 4, 5, 8 = 4.0 A  
U = UVLO level  
A = 5 V; B = 8 V; C = 10 V; D = 12.5 V  
V = Isolation rating  
A = 1.0 kV; B = 2.5 kV; C = 3.75 kV  
Line 2 Marking: YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the year and  
workweek of the mold date.  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order form.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 54  
Si823x Data Sheet  
Top Markings  
8.3 Si823x Top Marking (14 LD LGA/QFN)  
Line 1 Marking: Base Part Number  
Si823 = ISOdriver product series  
Y = Peak output current  
0, 1, 2 = 0.5 A  
Ordering Options  
See Ordering Guide for more information.  
3, 4, 5 = 4.0 A  
Line 2 Marking: Ordering options  
U = UVLO level  
A = 5 V; B = 8 V; C = 10 V; D = 12.5 V  
V = Isolation rating  
A = 1.0 kV; B = 2.5 kV; C = 3.75 kV  
I = –40 to +125 °C ambient temperature range  
M = LGA package type  
M1 = QFN package type  
Manufacturing Code from Assembly  
Pin 1 identifier  
Line 3 Marking: TTTTTT  
Line 4 Marking: Circle = 1.5 mm diameter  
YYWW  
Manufacturing date code  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 55  
Si823x Data Sheet  
Revision History  
9. Revision History  
Revision 2.1.1  
January 2018  
• Added new table to Ordering Guide for Automotive-Grade OPN options.  
Revision 2.1  
October 2017  
• Added IS3 and IM1 packaging options  
• Added IEC 62368-1 references throughout  
• Changed max propagation delay spec from 60 ns to 45 ns based on new test limits  
• Removed references to IEC 61010  
• Removed references to IEC 60747, replaced with references to VDE 0884-10  
Revision 2.0  
August 7, 2017  
Revision 1.9  
July 7, 2017  
• Updated 1. Ordering Guide to designate tape and reel packaging option.  
Revision 1.8  
May 17, 2016  
• Converted document from Framemaker to DITA.  
Revision 1.7  
• Updated 3.1 Test Circuits  
• Added CQC certificate numbers.  
• Updated Table 3.3 Insulation and Safety-Related Specifications on page 30  
• Updated Erosion Depth.  
Updated Table 3.5 VDE 0884-10 Insulation Characteristics1 on page 31  
• Updated VPR for WBSOIC-16.  
Updated Table 3.8 Absolute Maximum Ratings1 on page 33  
• Removed Io and added Peak Output Current specifications.  
• Updated Equation 1.  
• Updated Figure 4.1 Si823x in Half-Bridge Application on page 34.  
• Updated Figure 4.2 Si8232/5/7/8 in a Dual Driver Application on page 35.  
Updated Ordering Guide Table 1.1 Si823x Ordering Guide 1, 2, 3 on page 2  
Revision 1.6  
Updated Table 1.1 Si823x Ordering Guide 1, 2, 3 on page 2, Ordering Part Numbers.  
• Added Revision D Ordering Part Numbers.  
• Removed all Ordering Part Numbers of previous revisions.  
Revision 1.5  
Updated Table 3.1 Electrical Characteristics1 on page 25, input and output supply current.  
• Added references to AEC-Q100 qualified throughout.  
• Changed all 60747-5-2 references to 60747-5-5.  
• Added references to CQC throughout.  
• Updated pin descriptions throughout.  
• Corrected dead time default to 400 ps from 1 ns.  
Updated Table 1.1 Si823x Ordering Guide 1, 2, 3 on page 2, Ordering Part Numbers.  
• Removed moisture sensitivity level table notes.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 56  
Si823x Data Sheet  
Revision History  
Revision 1.4  
• Updated 1. Ordering Guide.  
• Updated "3 V VDDI Ordering Options".  
Revision 1.3  
• Added Si8237/8 throughout.  
Updated Table 3.1 Electrical Characteristics1 on page 25.  
• Updated Figure 3.1 IOL Sink Current Test Circuit on page 28.  
• UpdatedFigure 3.2 IOH Source Current Test Circuit on page 28.  
• Added Figure 3.3 Common Mode Transient Immunity Test Circuit on page 29.  
• Updated Si823x Family Truth Table to include notes 1 and 2.  
• Updated 2.10 Programmable Dead Time and Overlap Protection.  
• Removed references to Figures 26A and 26B.  
Updated Table 1.1 Si823x Ordering Guide 1, 2, 3 on page 2.  
• Added Si8235-BA-C-IS1 ordering part number.  
• Added table note.  
Revision 1.2  
• Updated 1. Ordering Guide.  
• Updated moisture sensitivity level (MSL) for all package types.  
Updated Table 3.8 Absolute Maximum Ratings1 on page 33.  
• Added junction temperature spec.  
• Updated 3.1 Test Circuits with new notes.  
• Updated Figures Figure 2.16 Output Sink Current vs. Supply Voltage on page 13, Figure 2.14 Output Source Current vs. Supply  
Voltage on page 12, Figure 2.17 Output Sink Current vs. Temperature on page 13, and Figure 2.15 Output Source Current vs. Tem-  
perature on page 12 to reflect correct y-axis scaling.  
• Updated Figure 4.2 Si8232/5/7/8 in a Dual Driver Application on page 35.  
• Updated .  
• Updated 6.1 Package Outline: 16-Pin Wide Body SOIC.  
• Updated Table 6.1 Package Diagram Dimensions on page 42.  
• Change references to 1.5 kVRMS rated devices to 1.0 kVRMS throughout.  
• Updated 2.7 Power Dissipation Considerations.  
Revision 1.1  
• Updated .  
• Updated CMTI specification.  
Updated Table 3.1 Electrical Characteristics1 on page 25.  
• Updated CMTI specification.  
Updated Table 3.5 VDE 0884-10 Insulation Characteristics1 on page 31.  
• Updated 4.2 Dual Driver.  
• Updated 1. Ordering Guide.  
• Replaced pin descriptions on page 1 with chip graphics.  
Revision 1.0  
• Updated Tables 3.1 Test Circuits, Table 3.3 Insulation and Safety-Related Specifications on page 30, Table 3.4 IEC 60664-1 Rat-  
ings on page 31, and Table 3.5 VDE 0884-10 Insulation Characteristics1 on page 31.  
• Updated 1. Ordering Guide.  
• Added 5 V UVLO ordering options  
• Added Device Marking sections.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 57  
Si823x Data Sheet  
Revision History  
Revision 0.3  
• Moved Sections 2, 3, and 4 to after Section 5.  
• Updated Tables Table 5.4 Si8233 Two-Input HS/LS Isolated Driver (14 LD LGA and QFN) on page 39, Table 5.5 Si8234 PWM Input  
HS/LS Isolated Driver (14 LD LGA and QFN) on page 40.  
• Removed Si8230, Si8231, and Si8232 from pinout and from title.  
• Updated and added Ordering Guide footnotes.  
Updated UVLO specifications in Table 3.1 Electrical Characteristics1 on page 25.  
Added PWD and Output Supply Active Current specifications in Table 3.1 Electrical Characteristics1 on page 25.  
• Updated and added typical operating condition graphs in 2.3 Typical Operating Characteristics (0.5 Amp) and 2.4 Typical Operating  
Characteristics (4.0 Amp).  
Revision 0.2  
• Updated all specs to reflect latest silicon revision.  
Updated Table 3.1 Electrical Characteristics1 on page 25 to include new UVLO options.  
Updated Table 3.8 Absolute Maximum Ratings1 on page 33 to reflect new maximum package isolation ratings  
• Added Figures 34, 35, and 36.  
• Updated Ordering Guide to reflect new package offerings.  
• Added "Undervoltage Lockout (UVLO)" section to describe UVLO operation.  
Revision 0.11  
• Initial release.  
silabs.com | Building a more connected world.  
Rev. 2.1.1 | 58  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI8233AB-D-IMR

Peripheral Driver,
SILICON

Si8233AB-D-IS

0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kVRMS)
SILICON

SI8233AB-D-IS1

Buffer/Inverter Based Peripheral Driver, 4A, PDSO16, SOIC-16
SILICON

SI8233AB-D-IS1R

Peripheral Driver, PDSO16,
SILICON

SI8233AC-AS1R

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8233AC-D-IS1

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8233AD-AS3R

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8233AD-D-IS

Buffer/Inverter Based Peripheral Driver, 4A, PDSO16, SOIC-16
SILICON

SI8233AD-D-IS3

Peripheral Driver,
SILICON

SI8233AD-D-ISR

Peripheral Driver, PDSO16,
SILICON

Si8233BB-AS

0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kVRMS)
SILICON

Si8233BB-AS1

0.5 and 4.0 Amp ISOdrivers (2.5 and 5 kVRMS)
SILICON