SI8234 [SILICON]

0.5 AND 4.0 AMP ISODRIVERS;
SI8234
型号: SI8234
厂家: SILICON    SILICON
描述:

0.5 AND 4.0 AMP ISODRIVERS

驱动
文件: 总57页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si823x  
0.5 AND 4.0 AMP ISODRIVERS (2.5 AND 5 KVRMS  
)
Features  
Two completely isolated drivers 60 ns propagation delay (max)  
in one package  
Independent HS and LS inputs or  
Up to 5 kVRMS input-to-output  
isolation  
PWM input versions  
Transient immunity >45 kV/µs  
Up to 1500 VDC peak driver-to-  
driver differential voltage  
HS/LS and dual driver versions  
Overlap protection and  
programmable dead time  
AEC-Q100 qualification  
Up to 8 MHz switching frequency  
0.5 A peak output (Si8230/1/2/7)  
Wide operating range  
–40 to +125 °C  
RoHS-compliant packages  
4.0 A peak output  
(Si8233/4/5/6/8)  
High electromagnetic immunity  
SOIC-16 wide body  
SOIC-16 narrow body  
LGA-14  
Applications  
Power delivery systems  
Motor control systems  
Lighting control systems  
Plasma displays  
Isolated dc-dc power supplies  
Solar and industrial inverters  
Safety Approval  
UL 1577 recognized  
Up to 5000 Vrms for 1 minute  
CSA component notice 5A  
approval  
VDE certification conformity  
IEC 60747-5-5 (VDE 0884 Part 5)  
EN 60950-1 (reinforced  
insulation)  
CQC certification approval  
GB4943.1  
IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
Ordering Information:  
Description  
See page 39.  
The Si823x isolated driver family combines two independent, isolated  
drivers into a single package. The Si8230/1/3/4 are high-side/low-side  
drivers, and the Si8232/5/6/7/8 are dual drivers. Versions with peak  
output currents of 0.5 A (Si8230/1/2/7) and 4.0 A (Si8233/4/5/6/8) are  
available. All drivers operate with a maximum supply voltage of 24 V.  
The Si823x drivers utilize Silicon Labs' proprietary silicon isolation  
technology, which provides up to 5 kV  
withstand voltage per UL1577  
RMS  
and fast 60 ns propagation times. Driver outputs can be grounded to the  
same or separate grounds or connected to a positive or negative voltage.  
The TTL level compatible inputs with >400 mV hysteresis are available in  
individual control input (Si8230/2/3/5/6/7/8) or PWM input (Si8231/4)  
configurations. High integration, low propagation delay, small installed  
size, flexibility, and cost-effectiveness make the Si823x family ideal for a  
wide range of isolated MOSFET/IGBT gate drive applications.  
Rev. 1.7 4/15  
Copyright © 2015 by Silicon Laboratories  
Si823x  
Si823x  
2
Rev. 1.7  
Si823x  
TABLE OF CONTENTS  
Section  
Page  
1. Top-Level Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
2.1. Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.1. Typical Operating Characteristics (0.5 Amp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.2. Typical Operating Characteristics (4.0 Amp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.3. Family Overview and Logic Operation During Startup . . . . . . . . . . . . . . . . . . . . . . .21  
3.4. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.5. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.6. Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.7. Undervoltage Lockout Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.8. Programmable Dead Time and Overlap Protection . . . . . . . . . . . . . . . . . . . . . . . . .28  
4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.1. High-Side/Low-Side Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.2. Dual Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.3. Dual Driver with Thermally Enhanced Package (Si8236) . . . . . . . . . . . . . . . . . . . . .31  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
8. Land Pattern: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
9. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
10. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
11. Package Outline: 14 LD LGA (5 x 5 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
12. Land Pattern: 14 LD LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
13. Package Outline: 14 LD LGA with Thermal Pad (5 x 5 mm) . . . . . . . . . . . . . . . . . . . . .50  
14. Land Pattern: 14 LD LGA with Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
15. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
15.1. Si823x Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
15.2. Top Marking Explanation (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .52  
15.3. Si823x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . .53  
15.4. Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . .53  
15.5. Si823x Top Marking (14 LD LGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
15.6. Top Marking Explanation (14 LD LGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Rev. 1.7  
3
Si823x  
1. Top-Level Block Diagrams  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
PROTECTION  
DT  
VDDI  
VDDI  
VDDI  
VDDB  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
VIB  
GNDI  
Si8230/3  
Figure 1. Si8230/3 Two-Input High-Side/Low-Side Isolated Drivers  
VDDI  
VDDA  
PWM  
LPWM  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
DT  
PROTECTION  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
LPWM  
GNDI  
Si8231/4  
Figure 2. Si8231/4 Single-Input High-Side/Low-Side Isolated Drivers  
4
Rev. 1.7  
Si823x  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
VDDI  
VDDI  
UVLO  
VDDI  
VDDB  
DISABLE  
VOB  
UVLO  
GNDB  
VIB  
GNDI  
Si8232/5/6/7/8  
Figure 3. Si8232/5/6/7/8 Dual Isolated Drivers  
Rev. 1.7  
5
Si823x  
2. Electrical Specifications  
Table 1. Electrical Characteristics1  
2.7 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Specifications  
Si8230/1/2/3/4/5/6  
Si8237/8  
4.5  
2.7  
5.5  
5.5  
Input-side Power Supply  
Voltage  
VDDI  
V
V
Voltage between VDDA and  
VDDA, VDDB GNDA, and VDDB and GNDB  
(See “6. Ordering Guide” )  
6.5  
24  
Driver Supply Voltage  
Si8230/2/3/5/6/7/8  
2
3
5
mA  
mA  
Input Supply Quiescent  
Current  
IDDI(Q)  
Si8231/4  
3.5  
IDDA(Q),  
Output Supply Quiescent  
Current  
Current per channel  
IDDB(Q)  
3.5  
6
3.0  
mA  
mA  
mA  
IDDI  
Input freq = 500 kHz, no load  
Input Supply Active Current  
Output Supply Active Current  
IDDA  
IDDB  
Current per channel with  
Input freq = 500 kHz, no load  
IVIA, IVIB,  
IPWM  
–10  
+10  
µA dc  
Input Pin Leakage Current  
IDISABLE  
VIH  
–10  
2.0  
+10  
µA dc  
V
Input Pin Leakage Current  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
VIL  
0.8  
V
VIHYST  
Si8230/1/2/3/4/5/6/7/8  
IOA, IOB = –1 mA  
400  
450  
mV  
(VDDA  
/VDDB)  
— 0.04  
VOAH,  
VOBH  
V
Logic High Output Voltage  
Logic Low Output Voltage  
VOAL, VOBL  
IOA, IOB = 1 mA  
Si8230/1/2/7, Figure 4  
Si8233/4/5/6/8, Figure 4  
Si8230/1/2/7, Figure 5  
Si8233/4/5/6/8, Figure 5  
Si8230/1/2/7  
0.5  
4.0  
0.25  
2.0  
5.0  
1.0  
0.04  
V
A
A
A
A
IOA(SCL),  
IOB(SCL)  
Output Short-Circuit Pulsed  
Sink Current  
IOA(SCH),  
IOB(SCH)  
Output Short-Circuit Pulsed  
Source Current  
RON(SINK)  
Output Sink Resistance  
Si8233/4/5/6/8  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 k..  
6
Rev. 1.7  
Si823x  
Table 1. Electrical Characteristics1 (Continued)  
2.7 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
Test Condition  
Si8230/1/2/7  
Min  
Typ  
15  
Max  
Unit  
RON(SOURCE)  
Output Source Resistance  
Si8233/4/5/6/8  
2.7  
VDDI rising  
(Si8230/1/2/3/4/5/6)  
VDDIUV+  
VDDIUV–  
3.60  
3.30  
4.0  
4.45  
4.15  
V
V
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDI falling  
(Si8230/1/2/3/4/5/6)  
3.70  
VDDIHYS  
VDDIUV+  
VDDIUV–  
VDDIHYS  
(Si8230/1/2/3/4/5/6)  
VDDI rising (Si8237/8)  
VDDI falling (Si8237/8)  
(Si8237/8)  
2.15  
2.10  
250  
2.3  
2.5  
2.40  
mV  
V
VDDI Lockout Hysteresis  
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDI Lockout Hysteresis  
2.22  
75  
V
mV  
VDDAUV+  
VDDBUV+  
,
VDDA, VDDB Undervoltage  
Threshold  
VDDA, VDDB rising  
See Figure 37 on page 27.  
See Figure 38 on page 27.  
See Figure 39 on page 27.  
See Figure 40 on page 27.  
5.20  
7.50  
9.60  
12.4  
5.80  
8.60  
11.1  
13.8  
6.30  
9.40  
12.2  
14.8  
V
V
V
V
5 V Threshold  
8 V Threshold  
10 V Threshold  
12.5 V Threshold  
VDDAUV–  
,
VDDA, VDDB Undervoltage  
Threshold  
VDDA, VDDB falling  
VDDBUV–  
See Figure 37 on page 27.  
See Figure 38 on page 27.  
See Figure 39 on page 27.  
See Figure 40 on page 27.  
4.90  
7.20  
9.40  
11.6  
5.52  
8.10  
10.1  
12.8  
6.0  
V
V
V
V
5 V Threshold  
8 V Threshold  
10 V Threshold  
12.5 V Threshold  
8.70  
10.9  
13.8  
VDDAHYS  
,
VDDA, VDDB  
Lockout Hysteresis  
UVLO voltage = 5 V  
UVLO voltage = 8 V  
280  
600  
mV  
mV  
mV  
VDDBHYS  
VDDAHYS  
,
VDDA, VDDB  
Lockout Hysteresis  
VDDBHYS  
VDDAHYS  
,
VDDA, VDDB  
Lockout Hysteresis  
UVLO voltage = 10 V or 12.5 V  
1000  
VDDBHYS  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 k..  
Rev. 1.7  
7
Si823x  
Table 1. Electrical Characteristics1 (Continued)  
2.7 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
AC Specifications  
Minimum Pulse Width  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
10  
30  
60  
ns  
ns  
ns  
tPHL, tPLH  
PWD  
CL = 200 pF  
Propagation Delay  
Pulse Width Distortion  
5.60  
|t  
- t  
|
PLH PHL  
Minimum Overlap Time2  
TDD  
DT  
DT = VDDI, No-Connect  
Figure 42, RDT = 100 k  
Figure 42, RDT = 6 k  
0.4  
900  
70  
20  
12  
ns  
ns  
Programmed Dead Time3  
ns  
ns  
ns  
CL = 200 pF (Si8230/1/2/7)  
CL = 200 pF (Si8233/4/5/6/8)  
tR,tF  
Output Rise and Fall Time  
Shutdown Time from  
Disable True  
tSD  
60  
60  
40  
ns  
ns  
µs  
Restart Time from  
Disable False  
tRESTART  
tSTART  
Time from VDD_ = VDD_UV+  
to VOA, VOB = VIA, VIB  
Device Start-up Time  
VIA, VIB, PWM = VDDI or 0 V  
VCM = 1500 V (see Figure 6)  
Common Mode  
Transient Immunity  
CMTI  
20  
45  
kV/µs  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 k..  
8
Rev. 1.7  
Si823x  
2.1. Test Circuits  
Figures 4, 5, and 6 depict sink current, source current, and common-mode transient immunity test circuits,  
respectively.  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si823x  
INPUT  
SCHOTTKY  
+
8 V  
VSS  
100 µF  
_
1 µF  
1 µF  
CER  
10 µF  
EL  
Measure  
50 ns  
RSNS  
0.1  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 4. IOL Sink Current Test Circuit  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si823x  
INPUT  
SCHOTTKY  
1 µF  
+
5.5 V  
VSS  
100 µF  
_
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 5. IOH Source Current Test Circuit  
Rev. 1.7  
9
Si823x  
12 V  
Supply  
Si823x  
VDDA  
VDDI  
Input Signal  
Switch  
INPUT  
VOA  
5V  
DISABLE GNDA  
Isolated  
Supply  
DT  
VDDB  
VOB  
Oscilloscope  
100k  
GNDI  
GNDB  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 6. Common Mode Transient Immunity Test Circuit  
10  
Rev. 1.7  
Si823x  
Table 2. Regulatory Information1,2,3,4  
CSA  
The Si823x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
RMS  
RMS  
RMS  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
60601-1: Up to 125 V  
reinforced insulation working voltage; up to 380 V  
basic insulation working voltage.  
RMS  
RMS  
VDE  
The Si823x is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.  
60747-5-5: Up to 891 V for basic insulation working voltage.  
peak  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
RMS  
UL  
The Si823x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V  
isolation voltage for basic protection.  
RMS  
CQC  
The Si823x is certified under GB4943.1-2011. For more details, see certificates CQC13001096106 and  
CQC13001096108.  
Rated up to 600 V  
reinforced insulation working voltage; up to 1000 V  
basic insulation working voltage.  
RMS  
RMS  
Notes:  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
2. Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec.  
3. Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
4. For more information, see "6. Ordering Guide" on page 39.  
Rev. 1.7  
11  
Si823x  
Table 3. Insulation and Safety-Related Specifications  
Value  
WBSOIC-16  
14 LD  
LGA with  
Pad  
Test  
Condition  
14 LD  
LGA  
Parameter  
Symbol  
Unit  
WBSOIC-16  
NBSOIC-16  
2.5 kV  
5 kV  
RMS  
2.5 kV  
RMS  
RMS  
1.0 kV  
RMS  
Nominal Air Gap  
(Clearance)  
L(1O1)  
L(1O2)  
8.0  
8.0/4.01  
8.0/4.01  
0.014  
3.5  
3.5  
1.75  
1.75  
mm  
mm  
mm  
1
Nominal External Tracking  
8.0  
1
(Creepage)  
Minimum Internal Gap  
(Internal Clearance)  
0.014  
0.014  
0.014  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
600  
600  
600  
V
mm  
0.019  
0.019  
0.021  
0.021  
Erosion Depth  
Resistance  
12  
12  
12  
12  
R
10  
10  
10  
10  
IO  
2
(Input-Output)  
Capacitance  
(Input-Output)  
C
1.4  
4.0  
1.4  
4.0  
1.4  
4.0  
1.4  
4.0  
pF  
pF  
IO  
2
3
C
Input Capacitance  
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “7. Package Outline:  
16-Pin Wide Body SOIC” , “9. Package Outline: 16-Pin Narrow Body SOIC” , “11. Package Outline: 14 LD LGA  
(5 x 5 mm)” , and “13. Package Outline: 14 LD LGA with Thermal Pad (5 x 5 mm)” . VDE certifies the clearance and  
creepage limits as 4.7 mm minimum for the NB SOIC-16 and 8.5 mm minimum for the WB SOIC-16 package. UL  
does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance  
and creepage limits as 3.9 mm minimum for the NB SOIC 16 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si823x is converted into a 2-terminal device. Pins 1–8 (1-7, 14 LD LGA)  
are shorted together to form the first terminal and pins 9–16 (8-14, 14 LD LGA) are shorted together to form the  
second terminal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 4. IEC 60664-1 (VDE 0884 Part 5) Ratings  
Specification  
14 LD  
Parameter  
Test Condition  
WB  
NB  
14 LD  
LGA  
LGA  
SOIC-16 SOIC-16  
with Pad  
Basic Isolation Group  
Material Group  
I
I
I
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-III  
I-II  
I-I  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
12  
Rev. 1.7  
Si823x  
Table 5. IEC 60747-5-5 Insulation Characteristics*  
Characteristic  
NB SOIC-16 14 LD LGA  
SOIC-16 14 LD LGA with Pad  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
Maximum Working Insulation  
Voltage  
V
891  
560  
373  
V peak  
V peak  
IORM  
Method b1  
(V  
x 1.875 = V  
100%  
,
PR  
IORM  
V
Production Test,  
t = 1 sec,  
1671  
1050  
700  
Input to Output Test Voltage  
Transient Overvoltage  
PR  
m
Partial Discharge < 5  
pC)  
V
t = 60 sec  
6000  
2
4000  
2
2650  
2
V peak  
IOTM  
Pollution Degree (DIN VDE  
0110, Table 1)  
Insulation Resistance at T ,  
9
9
9
S
R
>10  
>10  
>10  
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si823x provides a climate classification of  
40/125/21.  
Table 6. IEC Safety Limiting Values1  
14 LD  
LGAwith Unit  
Pad  
WB  
NB  
14 LD  
Parameter Symbol  
Case  
Test Condition  
SOIC-16 SOIC-16 LGA  
T
150  
50  
150  
50  
150  
50  
150  
100  
1.2  
°C  
mA  
W
S
Temperature  
= 100 °C/W (WB SOIC-16),  
105 °C/W (NB SOIC-16, 14 LD LGA),  
50 °C/W (14 LD LGA with Pad)  
JA  
Safety Input  
Current  
I
S
V
= 5.5 V,  
DDI  
V
= V  
= 24 V,  
DDA  
DDB  
T = 150 °C, T = 25 °C  
J
A
Device Power  
Dissipation  
P
1.2  
1.2  
1.2  
D
2
Notes:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figures 7 and 8.  
2. The Si82xx is tested with VDDI = 5.5 V, VDDA = VDDB = 24 V, TJ = 150 ºC, CL = 100 pF, input 2 MHz 50% duty cycle  
square wave.  
Rev. 1.7  
13  
Si823x  
Table 7. Thermal Characteristics  
Parameter  
14 LD  
LGA with  
Pad  
WB  
SOIC-16  
NB  
SOIC-16  
14 LD  
LGA  
Symbol  
Unit  
IC Junction-to-Air  
Thermal Resistance  
100  
105  
105  
50  
°C/W  
JA  
Table 8. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
Max  
+150  
+125  
+150  
6.0  
Unit  
°C  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Ambient Temperature under Bias  
Junction Temperature  
T
A
T
J
Input-side Supply Voltage  
VDDI  
–0.6  
–0.6  
–0.5  
Driver-side Supply Voltage  
VDDA, VDDB  
30  
V
Voltage on any Pin with respect to Ground  
V
VDD + 0.5  
V
IO  
Peak Output Current (t  
(0.5 Amp versions)  
= 10 µs, duty cycle = 0.2%)  
PW  
I
0.5  
A
OPK  
Peak Output Current (t  
(4.0 Amp versions)  
= 10 µs, duty cycle = 0.2%)  
PW  
I
4.0  
260  
A
OPK  
Lead Solder Temperature (10 sec.)  
°C  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
V
V
V
V
V
V
V
V
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
Maximum Isolation (Output to Output) (1 sec)  
WB SOIC-16  
2500  
4500  
2500  
3850  
650  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-16  
Maximum Isolation (Output to Output) (1 sec)  
NB SOIC-16  
Maximum Isolation (Input to Output) (1 sec)  
14 LD LGA without Thermal Pad  
Maximum Isolation (Output to Output) (1 sec)  
14 LD LGA without Thermal Pad  
Maximum Isolation (Input to Output) (1 sec)  
14 LD LGA with Thermal Pad  
1850  
0
Maximum Isolation (Output to Output) (1 sec)  
14 LD LGA with Thermal Pad  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. VDE certifies storage temperature from –40 to 150 °C.  
14  
Rev. 1.7  
Si823x  
60  
50  
40  
30  
20  
10  
0
VDDI = 5.5 V  
VDDA, VDDB = 24 V  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 7. WB SOIC-16, NB SOIC-16, 14 LD LGA Thermal Derating Curve, Dependence of Safety  
Limiting Values with Case Temperature per DIN EN 60747-5-5  
120  
VDDI = 5.5 V  
VDDA, VDDB = 24 V  
100  
80  
60  
40  
20  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 8. 14 LD LGA with Pad Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5  
Rev. 1.7  
15  
Si823x  
3. Functional Description  
The operation of an Si823x channel is analogous to that of an optocoupler and gate driver, except an RF carrier is  
modulated instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si823x channel is shown in  
Figure 9.  
Transmitter  
Receiver  
Driver  
VDD  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
Dead  
time  
control  
B
MODULATOR  
DEMODULATOR  
A
0.5 to 4 A  
peak  
Gnd  
Figure 9. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 10 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 10. Modulation Scheme  
16  
Rev. 1.7  
Si823x  
3.1. Typical Operating Characteristics (0.5 Amp)  
The typical performance characteristics depicted in Figures 11 through 22 are for information purposes only. Refer  
to Table 1 on page 6 for actual specification limits.  
10  
7
Duty Cycle = 50%  
8
6
4
2
0
1MHz  
6
5
4
3
2
1
0
CL = 100 pF  
1 Channel Switching  
Tfall  
500kHz  
100kHz  
Trise  
50 kHz  
VDD=12V, 25°C  
CL = 100 pF  
9
14  
19  
24  
VDDA Supply Voltage (V)  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Figure 14. Supply Current vs. Supply Voltage  
Figure 11. Rise/Fall Time vs. Supply Voltage  
30  
25  
5
4
H-L  
20  
3
VDDA = 15V,  
f = 250kHz, CL = 0 pF  
Duty Cycle = 50%  
2 Channels Switching  
L-H  
2
1
15  
VDD=12V, 25°C  
CL = 100 pF  
10  
-50  
0
50  
Temperature (°C)  
100  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Figure 15. Supply Current vs. Temperature  
Figure 12. Propagation Delay vs. Supply  
Voltage  
40  
35  
Trise  
4
30  
Duty Cycle = 50%  
CL = 0 pF  
1 Channel Switching  
3.5  
3
25  
1MHz  
20  
15  
10  
5
Tfall  
500kHz  
100kHz  
2.5  
2
1.5  
1
VDD=12V, 25°C  
50 kHz  
0
0.0  
0.5  
1.0  
Load (nF)  
1.5  
2.0  
9
14  
19  
24  
VDDA Supply Voltage (V)  
Figure 16. Rise/Fall Time vs. Load  
Figure 13. Supply Current vs. Supply Voltage  
Rev. 1.7  
17  
Si823x  
50  
45  
40  
35  
30  
25  
20  
15  
4ϳϱ  
ϰϱϬ  
ϰϮϱ  
ϰϬϬ  
ϯϳϱ  
ϯϱϬ  
ϯϮϱ  
ϯϬϬ  
Ϯϳϱ  
L-H  
H-L  
VDD=12V, Vout=VDD-5V  
VDD=12V, 25°C  
10  
0.0  
0.5  
1.0  
Load (nF)  
1.5  
2.0  
10  
15  
20  
25  
6XSSO\ꢀ9ROWDJHꢀꢁ9ꢂ  
Figure 17. Propagation Delay vs. Load  
Figure 20. Output Source Current vs. Supply  
Voltage  
30  
ϴϱϬ  
ϴϮϱ  
ϴϬϬ  
ϳϳϱ  
ϳϱϬ  
7Ϯϱ  
ϳϬϬ  
ϲϳϱ  
ϲϱϬ  
ϲϮϱ  
ϲϬϬ  
25  
20  
15  
10  
L-H  
H-L  
VDD=12V, Load = 200pF  
ϱϳϱ  
VDD=12V, Vout=5V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
ϱϱϬ  
-40  
-10  
20  
50  
80  
110  
Temperature (°C)  
7HPSHUDWXUHꢀꢁ°&ꢂ  
Figure 18. Propagation Delay vs. Temperature  
Figure 21. Output Sink Current vs. Temperature  
ϭϭϮϱ  
ϭϬϬϬ  
ϴϳϱ  
ϰϮ5  
ϰϬϬ  
3ϳϱ  
ϯϱϬ  
ϯϮ5  
ϯϬϬ  
ϳϱϬ  
ϲϮϱ  
VDD=12V, Vout=5V  
ϱϬϬ  
VDD=12V, Vout=VDD-5V  
10  
12  
14  
16  
18  
20  
22  
24  
Ϯϳϱ  
6XSSO\ꢀ9ROWDJHꢀꢁ9ꢂ  
-40  
-10  
20  
50  
80  
110  
7HPSHUDWXUHꢀꢁ°&ꢂ  
Figure 19. Output Sink Current vs. Supply  
Voltage  
Figure 22. Output Source Current vs.  
Temperature  
18  
Rev. 1.7  
Si823x  
3.2. Typical Operating Characteristics (4.0 Amp)  
The typical performance characteristics depicted in Figures 23 through 34 are for information purposes only. Refer  
to Table 1 on page 6 for actual specification limits.  
10  
14  
12  
10  
8
Duty Cycle = 50%  
CL = 100 pF  
1 Channel Switching  
1MHz  
8
6
4
2
0
Tfall  
500kHz  
6
Trise  
100kHz  
50 kHz  
4
2
0
9
14  
19  
24  
VDD=12V, 25°C  
CL = 100 pF  
VDDA Supply Voltage (V)  
Figure 26. Supply Current vs. Supply Voltage  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
10  
8
Figure 23. Rise/Fall Time vs. Supply Voltage  
30  
6
VDDA = 15V,  
f = 250kHz, CL = 0 pF  
4
25  
Duty Cycle = 50%  
2 Channels Switching  
2
L-H  
0
20  
-50  
0
50  
100  
Temperature (°C)  
H-L  
15  
Figure 27. Supply Current vs. Temperature  
VDD=12V, 25°C  
CL = 100 pF  
10  
40  
35  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Trise  
30  
Figure 24. Propagation Delay vs. Supply  
Voltage  
25  
20  
15  
10  
5
Tfall  
14  
12  
10  
8
Duty Cycle = 50%  
CL = 0 pF  
1 Channel Switching  
1MHz  
VDD=12V, 25°C  
0
500kHz  
0
1
2
3
4
5
6
7
8
9
10  
6
4
Load (nF)  
100kHz  
50 kHz  
2
Figure 28. Rise/Fall Time vs. Load  
0
9
14  
19  
24  
VDDA Supply Voltage (V)  
Figure 25. Supply Current vs. Supply Voltage  
Rev. 1.7  
19  
Si823x  
50  
45  
40  
35  
30  
25  
20  
15  
10  
4
3.75  
3.5  
3.25  
3
H-L  
L-H  
2.75  
2.5  
2.25  
2
VDD=12V, Vout=VDD-5V  
VDD=12V, 25°C  
10  
15  
20  
25  
0
1
2
3
4
5
6
7
8
9
10  
Supply Voltage (V)  
Load (nF)  
Figure 32. Output Source Current vs. Supply  
Voltage  
Figure 29. Propagation Delay vs. Load  
30  
7
6.75  
6.5  
H-L  
25  
20  
15  
10  
6.25  
6
L-H  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
VDD=12V, Load = 200pF  
VDD=12V, Vout=5V  
4
-40  
-10  
20  
50  
80  
110  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 33. Output Sink Current vs. Temperature  
Figure 30. Propagation Delay vs. Temperature  
3.5  
3.25  
3
9
8
7
6
5
2.75  
2.5  
2.25  
VDD=12V, Vout=5V  
VDD=12V, Vout=VDD-5V  
4
2
10  
12  
14  
16  
18  
20  
22  
24  
-40  
-10  
20  
50  
80  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 31. Output Sink Current vs. Supply  
Voltage  
Figure 34. Output Source Current vs.  
Temperature  
20  
Rev. 1.7  
Si823x  
3.3. Family Overview and Logic Operation During Startup  
The Si823x family of isolated drivers consists of high-side, low-side, and dual driver configurations.  
3.3.1. Products  
Table 9 shows the configuration and functional overview for each product in this family.  
Table 9. Si823x Family Overview  
Part Number  
Configuration  
Overlap  
Protection  
Programmable  
Dead Time  
Inputs  
Peak Output  
Current (A)  
Si8230  
Si8231  
High-Side/Low-Side  
High-Side/Low-Side  
Dual Driver  
VIA, VIB  
PWM  
0.5  
0.5  
0.5  
4.0  
4.0  
4.0  
Si8232/7  
Si8233  
VIA, VIB  
VIA, VIB  
PWM  
High-Side/Low-Side  
High-Side/Low-Side  
Dual Driver  
Si8234  
Si8235/6/8  
VIA, VIB  
3.3.2. Device Behavior  
Table 10 consists of truth tables for the Si8230/3, Si8231/4, and Si8232/5/6 families.  
Table 10. Si823x Family Truth Table1  
Si8230/3 (High-Side/Low-Side) Truth Table  
Inputs  
Output  
VDDI State Disable  
Notes  
VIA  
VIB  
VOA  
VOB  
Output transition occurs after internal dead time  
expires.  
L
L
L
Powered  
Powered  
Powered  
Powered  
L
L
L
L
L
L
L
Output transition occurs after internal dead time  
expires.  
H
L
H
L
L
Output transition occurs after internal dead time  
expires.  
H
H
H
L
Invalid state. Output transition occurs after internal  
dead time expires.  
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
2
2
X
X
Unpowered  
Powered  
X
H
L
L
L
L
X
X
Device is disabled.  
Si8231/4 (PWM Input High-Side/Low-Side) Truth Table  
Output  
PWM Input  
VDDI State Disable  
Notes  
VOA  
VOB  
Output transition occurs after internal dead time  
expires.  
H
L
Powered  
Powered  
L
L
H
L
Output transition occurs after internal dead time  
expires.  
L
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
2
X
Unpowered  
Powered  
X
H
L
L
L
L
X
Device is disabled.  
Notes:  
1. This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see "3.7.2.  
Undervoltage Lockout" on page 26 for more information.  
2. Note that an input can power the input die through an internal diode if its source has adequate current.  
Rev. 1.7  
21  
Si823x  
Table 10. Si823x Family Truth Table1 (Continued)  
Si8232/5/6/7/8 (Dual Driver) Truth Table  
Output  
Inputs  
VDDI State Disable  
Notes  
VIA  
VIB  
VOA  
VOB  
Output transition occurs immediately  
(no internal dead time).  
L
L
Powered  
Powered  
Powered  
Powered  
L
L
L
L
L
L
Output transition occurs immediately  
(no internal dead time).  
L
H
H
H
L
L
H
H
H
L
Output transition occurs immediately  
(no internal dead time).  
Output transition occurs immediately  
(no internal dead time).  
H
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
2
2
X
X
Unpowered  
Powered  
X
H
L
L
L
L
X
X
Device is disabled.  
Notes:  
1. This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see "3.7.2.  
Undervoltage Lockout" on page 26 for more information.  
2. Note that an input can power the input die through an internal diode if its source has adequate current.  
22  
Rev. 1.7  
Si823x  
3.4. Power Supply Connections  
Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these  
supplies must be placed as close to the VDD and GND pins of the Si823x as possible. The optimum values for  
these capacitors depend on load current and the distance between the chip and the regulator that powers it. Low  
effective series resistance (ESR) capacitors, such as Tantalum, are recommended.  
3.5. Power Dissipation Considerations  
Proper system design must assure that the Si823x operates within safe thermal limits across the entire load  
range.The Si823x total power dissipation is the sum of the power dissipated by bias supply current, internal  
parasitic switching losses, and power dissipated by the series gate resistor and load. Equation 1 shows total  
Si823x power dissipation.  
Rp  
Rn  
2
--------------------  
Rp + Rg  
--------------------  
Rn + Rg  
PD = VDDIIDDI+ 2IDD2VDD2+ fQTLVDD2  
where:  
+ fQTLVDD2  
+ 2fCintVDD2  
PD is the total Si823x device power dissipation (W)  
IDDI is the input-side maximum bias current (3 mA)  
IDD2 is the driver die maximum bias current (2.5 mA)  
Cint is the internal parasitic capacitance (75 pF for the 0.5 A driver and 370 pF for the 4.0 A driver)  
VDDI is the input-side VDD supply voltage (2.7 to 5.5 V)  
VDD2 is the driver-side supply voltage (10 to 24 V)  
f is the switching frequency (Hz)  
QTLis the total highside bootstrap charge (see Section 2.2 of AN486)  
RG is the external gate resistor  
RP is the RDSONof the driver pull-up switch: (Rp=15for the 0.5A driver; Rp=2.7for the 4.0A driver)  
Rn is the RDSONof the driver pull-down switch: (Rn=5for the 0.5A driver and 1for the 4.0A driver)  
Equation 1.  
Power dissipation example for 0.5 A driver using Equation 1 with the following givens:  
V
V
= 5.0 V  
= 12 V  
DDI  
DD2  
f = 350 kHz  
R = 22   
G
Q = 25 nC  
G
15  
15 + 22  
5
Pd = 0.015 + 0.060 + 350 10325 10912  
+ 350 10325 10912  
-------------------  
---------------  
5 + 22  
+ 2350 10375 1012144= 145 mW  
From which the driver junction temperature is calculated using Equation 2, where:  
Pd is the total Si823x device power dissipation (W)  
ja is the thermal resistance from junction to air (105 °C/W in this example)  
TA is the ambient temperature  
Rev. 1.7  
23  
Si823x  
Tj = Pd  ja + TA  
= (0.145)(105) + 20  
= 35.2 °C  
The maximum power dissipation allowable for the Si823x is a function of the package thermal resistance, ambient  
temperature, and maximum allowable junction temperature, as shown in Equation 2:  
T
jmax TA  
---------------------------  
PDmax  
where:  
ja  
P
T
Dmax = Maximum Si823x power dissipation (W)  
jmax = Si823x maximum junction temperature (150 °C)  
TA = Ambient temperature (°C)  
ja = Si823x junction-to-air thermal resistance (105 °C/W)  
f = Si823x switching frequency (Hz)  
Equation 2.  
Substituting values for P  
T
, T , and into Equation 2 results in a maximum allowable total power  
Dmax jmax A ja  
dissipation of 1.19 W. Maximum allowable load is found by substituting this limit and the appropriate data sheet  
values from Table 1 on page 6 into Equation 1 and simplifying. The result is Equation 3 (0.5 A driver) and  
Equation 4 (4.0 A driver), both of which assume VDDI = 5 V and VDDA = VDDB = 18 V.  
1.4 103  
11  
CL(MAX) = -------------------------- 7.5 10  
f
Equation 3.  
1.4 103  
10  
CL(MAX) = -------------------------- 3.7 10  
f
Equation 4.  
Equation 3 and Equation 4 are graphed in Figure 35 where the points along the load line represent the package  
dissipation-limited value of CL for the corresponding switching frequency.  
24  
Rev. 1.7  
Si823x  
1 6 ,0 0 0  
1 4 ,0 0 0  
1 2 ,0 0 0  
1 0 ,0 0 0  
8 ,0 0 0  
6 ,0 0 0  
4 ,0 0 0  
2 ,0 0 0  
0
0 .5 A D rive r (p F )  
4 A D rive r (p F )  
F re q u e n c y (K h z )  
Figure 35. Max Load vs. Switching Frequency  
Rev. 1.7  
25  
Si823x  
3.6. Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the Si823x VDD lines. Care must be taken to  
minimize parasitic inductance in these paths by locating the Si823x as close to the device it is driving as possible.  
In addition, the VDD supply and ground trace paths must be kept short. For this reason, the use of power and  
ground planes is highly recommended. A split ground plane system having separate ground and VDD planes for  
power devices and small signal components provides the best overall noise performance.  
3.7. Undervoltage Lockout Operation  
Device behavior during start-up, normal operation and shutdown is shown in Figure 36, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Note that outputs VOA and VOB default low  
when input side power supply (VDDI) is not present.  
3.7.1. Device Startup  
Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period  
tSTART. Following this, the outputs follow the states of inputs VIA and VIB.  
3.7.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. The input (control) side, Driver A and Driver B, each have  
their own undervoltage lockout monitors.  
The Si823x input side enters UVLO when VDDI < VDDI  
, and exits UVLO when VDDI > VDDI  
. The driver  
UV+  
UV–  
outputs, VOA and VOB, remain low when the input side of the Si823x is in UVLO and their respective VDD supply  
(VDDA, VDDB) is within tolerance. Each driver output can enter or exit UVLO independently. For example, VOA  
unconditionally enters UVLO when VDDA falls below VDDA  
and exits UVLO when VDDA rises above  
UV–  
VDDA  
.
UV+  
UVLO+  
VDDHYS  
UVLO-  
VDDI  
UVLO+  
UVLO-  
VDDHYS  
VDDA  
VIA  
DISABLE  
tSD  
tRESTART  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
VOA  
Figure 36. Device Behavior during Normal Operation and Shutdown  
26  
Rev. 1.7  
Si823x  
3.7.3. Undervoltage Lockout (UVLO)  
The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Referring to Figures 37  
through 40, upon power up, the Si823x is maintained in UVLO until VDD rises above VDD . During power down,  
UV+  
the Si823x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD < VDD  
UV+  
VDD  
).  
HYS  
VDDUV+ (Typ)  
VDDUV+ (Typ)  
3.5  
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
8.5  
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5  
Supply Voltage (VDD - VSS) (V)  
Supply Voltage (VDD - VSS) (V)  
Figure 37. Si823x UVLO Response (5 V)  
Figure 39. Si823x UVLO Response (10 V)  
VDDUV+ (Typ)  
VDDUV+ (Typ)  
11.3 11.8 12.3 12.8 13.3 13.8 14.3 14.8 15.3  
6.0  
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
Supply Voltage (VDD - VSS) (V)  
Supply Voltage (VDD - VSS) (V)  
Figure 40. Si823x UVLO Response (12.5 V)  
Figure 38. Si823x UVLO Response (8 V)  
Rev. 1.7  
27  
Si823x  
3.7.4. Control Inputs  
VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB  
causes the corresponding output to go high. For PWM input versions (Si8231/4), VOA is high and VOB is low when  
the PWM input is high, and VOA is low and VOB is high when the PWM input is low.  
3.7.5. Disable Input  
When brought high, the DISABLE input unconditionally drives VOA and VOB low regardless of the states of VIA  
and VIB. Device operation terminates within tSD after DISABLE = V and resumes within tRESTART after  
IH  
DISABLE = V . The DISABLE input has no effect if VDDI is below its UVLO level (i.e., VOA, VOB remain low).  
IL  
3.8. Programmable Dead Time and Overlap Protection  
All high-side/low-side drivers (Si8230/1/3/4) include programmable overlap protection to prevent outputs VOA and  
VOB from being high at the same time. These devices also include programmable dead time, which adds a user-  
programmable delay between transitions of VOA and VOB. When enabled, dead time is present on all transitions,  
even after overlap recovery. The amount of dead time delay (DT) is programmed by a single resistor (RDT)  
connected from the DT input to ground per Equation 5. Note that the dead time pin can be tied to VDDI or left  
floating to provide a nominal dead time at approximately 400 ps.  
DT 10 RDT  
where:  
DT= dead time (ns)  
and  
RDT= dead time programming resistor (k  
Equation 5.  
The device driving VIA and VIB should provide a minimum dead time of TDD to avoid activating overlap protection.  
Input/output timing waveforms for the two-input drivers are shown in Figure 41, and dead time waveforms are  
shown in Figure 42.  
Ref  
A
B
C
D
E
Description  
VIA/  
PWM  
Normal operation: VIA high, VIB low.  
Normal operation: VIB high, VIA low.  
Contention: VIA = VIB = high.  
VIB  
Recovery from contention: VIA transitions low.  
Normal operation: VIA = VIB = low.  
Normal operation: VIA high, VIB low.  
Contention: VIA = VIB = high.  
VOA  
VOB  
F
G
H
I
Recovery from contention: VIB transitions low.  
Normal operation: VIB transitions high.  
A
B
C
D
E
F
G
H
I
Figure 41. Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers  
28  
Rev. 1.7  
Si823x  
OVERLAP  
OVERLAP  
VOB  
VIA/  
PWM  
VIA/  
PWM  
VIB  
50%  
VIB  
DT  
DT  
DT  
DT  
90%  
VOA  
VOA  
10%  
DT  
DT  
90%  
VOB  
VOB  
10%  
B. Dead Time Operation During Overlap  
A. Typical Dead Time Operation  
Figure 42. Dead Time Waveforms for High-Side/Low-Side Two-Input Drivers  
Rev. 1.7  
29  
Si823x  
4. Applications  
The following examples illustrate typical circuit configurations using the Si823x.  
4.1. High-Side/Low-Side Driver  
Figure 43A shows the Si8230/3 controlled using the VIA and VIB input signals, and Figure 43B shows the Si8231/4  
controlled by a single PWM signal.  
VDD2  
C3  
VDD2  
C3  
D1  
D1  
VDDI  
1 µF  
VDDI  
1 µF  
VDDI  
GNDI  
VDDI  
GNDI  
C1  
1 µF  
C2  
0.1 µF  
1500 V max  
1500 V max  
C1  
1 µF  
C2  
0.1 µF  
VDDA  
VDDA  
CB  
CB  
Q1  
Q1  
OUT1  
OUT2  
VIA  
VIB  
PWMOUT  
CONTROLLER  
I/O  
PWM  
DT  
VOA  
VOA  
GNDA  
GNDA  
DT  
RDT  
RDT  
CONTROLLER  
Si8230/3  
Si8231/4  
VDDB  
VDDB  
C4  
0.1 µF  
C5  
10 µF  
C4  
0.1 µF  
C5  
10 µF  
I/O  
DISABLE  
DISABLE  
GNDB  
VOB  
GNDB  
VOB  
VDDB  
Q2  
Q2  
A
B
Figure 43. Si823x in Half-Bridge Application  
For both cases, D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver  
for Q1, which has a maximum drain voltage of 1500 V. The boot-strap start up time will depend on the CB cap  
chosen. See “AN486: High-Side Bootstrap Design Using Si823x ISODrivers in Power Delivery Systems”. VOB is  
connected as a conventional low-side driver, and, in most cases, VDD2 is the same as VDDB. Note that the input  
side of the Si823x requires VDD in the range of 4.5 to 5.5 V (2.7 to 5.5 V for Si8237/8), while the VDDA and VDDB  
output side supplies must be between 6.5 and 24 V with respect to their respective grounds. It is recommended  
that bypass capacitors of 0.1 and 1 µF value be used on the Si823x input side and that they be located as close to  
the chip as possible. Moreover, it is recommended that 0.1 and 10 µF bypass capacitors, located as close to the  
chip as possible, be used on the Si823x output side to reduce high-frequency noise and maximize performance.  
30  
Rev. 1.7  
Si823x  
4.2. Dual Driver  
Figure 44 shows the Si823x configured as a dual driver. Note that the drain voltages of Q1 and Q2 can be  
referenced to a common ground or to different grounds with as much as 1500 V dc between them.  
VDDI  
VDDI  
Q1  
C1  
C2  
VOA  
1 µF  
0.1 µF  
GNDI  
VDDA  
VDDA  
GNDA  
VIA  
VIB  
PH1  
PH2  
C3  
0.1 µF  
C4  
10 µF  
Si8232/5/7/8  
CONTROLLER  
I/O  
VDDB  
VDDB  
GNDB  
C5  
0.1 µF  
C6  
10 µF  
DISABLE  
Q2  
VOB  
Figure 44. Si8232/5/7/8 in a Dual Driver Application  
Because each output driver resides on its own die, the relative voltage polarities of VOA and VOB can reverse  
without damaging the driver. That is, the voltage at VOA can be higher or lower than that of VOB by VDD without  
damaging the driver. Therefore, a dual driver in a low-side high side/low side drive application can use either VOA  
or VOB as the high side driver. Similarly, a dual driver can operate as a dual low-side or dual high-side driver and is  
unaffected by static or dynamic voltage polarity changes.  
4.3. Dual Driver with Thermally Enhanced Package (Si8236)  
The thermal pad of the Si8236 must be connected to a heat spreader to lower thermal resistance. Generally, the  
larger the thermal shield’s area, the lower the thermal resistance. It is recommended that thermal vias also be used  
to add mass to the shield. Vias generally have much more mass than the shield alone and consume less space,  
thus reducing thermal resistance more effectively. While the heat spreader is not generally a circuit ground, it is a  
good reference plane for the Si8236 and is also useful as a shield layer for EMI reduction.  
2
With a 10mm thermal plane on the outer layers (including 20 thermal vias), the thermal impedance of the Si8236  
was measured at 50 °C/W. This is a significant improvement over the Si8235 which does not include a thermal  
pad. The Si8235’s thermal resistance was measured at 105 °C /W. In addition, note that the GNDA and GNDB pins  
for the Si8236 are connected together through the thermal pad.  
Rev. 1.7  
31  
Si823x  
5. Pin Descriptions  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
2
16  
15  
14  
16  
15  
14  
13  
12  
11  
10  
9
1
2
VIA  
VIB  
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
DISABLE  
DT  
VDDI  
GNDI  
DISABLE  
DT  
Si8230  
Si8233  
Si823013  
Si8233 12  
NC  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
VDDB  
VOB  
GNDB  
NC  
NC  
VDDI  
VDDI  
Table 11. Si8230/3 Two-Input HS/LS Isolated Driver (SOIC-16)  
Pin  
1
Name  
VIA  
Description  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
2
VIB  
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground sets the  
dead time between output transitions of VOA and VOB. Defaults to 400 ps dead time when con-  
nected to VDDI or left open (see "3.8. Programmable Dead Time and Overlap Protection" on  
page 28).  
7
NC  
No connection.  
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDB Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
VOB Driver B output (low-side driver).  
VDDB Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver A output (high-side driver).  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
32  
Rev. 1.7  
Si823x  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
2
16  
15  
14  
13  
12  
11  
10  
9
1
2
16  
15  
14  
PWM  
NC  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
VDDI  
GNDI  
DISABLE  
DT  
Si8231  
Si8234  
Si823113  
Si8234 12  
DISABLE  
DT  
NC  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
VDDB  
VOB  
GNDB  
NC  
NC  
VDDI  
VDDI  
Table 12. Si8231/4 PWM Input HS/LS Isolated Driver (SOIC-16)  
Description  
Pin  
1
Name  
PWM PWM input.  
2
NC  
No connection.  
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground sets the  
dead time between output transitions of VOA and VOB. Defaults to 400 ps dead time when con-  
nected to VDDI or left open (see "3.8. Programmable Dead Time and Overlap Protection" on  
page 28).  
7
NC  
No connection.  
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDB Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
VOB Driver B output (low-side driver).  
VDDB Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver A output (high-side driver).  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Rev. 1.7  
33  
Si823x  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
2
16  
15  
16  
15  
14  
13  
12  
11  
10  
9
1
2
VIA  
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
VIB  
Si8232 14  
Si823513  
Si8237  
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
VDDI  
Si8232  
Si8235  
Si8237  
Si8238  
GNDI  
DISABLE  
DISABLE  
Si8238 12  
NC  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
VDDB  
VOB  
GNDB  
NC  
NC  
NC  
NC  
VDDI  
VDDI  
Table 13. Si8232/5/7/8 Dual Isolated Driver (SOIC-16)  
Description  
Pin  
1
Name  
VIA  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
2
VIB  
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V, (2.7 to 5.5 V for Si8237/8).  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
NC  
NC  
No connection.  
No connection.  
7
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V, (2.7 to 5.5 V for Si8237/8).  
GNDB Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
VOB  
Driver B output.  
VDDB Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver A output.  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
34  
Rev. 1.7  
Si823x  
LGA-14 (5 x 5 mm)  
1
2
3
4
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
GNDA  
NC  
VIB  
VDDI  
Si8233  
DISABLE 5  
VDDB  
6
7
8
DT  
VOB  
7
VDDI  
GNDB  
Table 14. Si8233 Two-Input HS/LS Isolated Driver (14 LD LGA)  
Pin  
GNDI  
VIA  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
Non-inverting logic input terminal for Driver A.  
VIB  
Non-inverting logic input terminal for Driver B.  
VDDI  
DISABLE  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
DT  
6
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps  
dead time when connected to VDDI or left open (see"3.8. Programmable Dead Time  
and Overlap Protection" on page 28).  
VDDI  
GNDB  
VOB  
7
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Rev. 1.7  
35  
Si823x  
LGA-14 (5 x 5 mm)  
1
2
3
4
14  
13  
12  
11  
10  
GNDI  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
VDDI  
Si8234  
DISABLE 5  
VDDB  
6
7
8
DT  
VOB  
7
VDDI  
GNDB  
Table 15. Si8234 PWM Input HS/LS Isolated Driver (14 LD LGA)  
Pin  
GNDI  
PWM  
NC  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
PWM input.  
No connection.  
VDDI  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
DT  
6
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 400 ps  
dead time when connected to VDDI or left open (see "3.8. Programmable Dead Time  
and Overlap Protection" on page 28).  
VDDI  
GNDB  
VOB  
7
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
36  
Rev. 1.7  
Si823x  
LGA-14 (5 x 5 mm)  
1
2
3
4
5
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
GNDA  
NC  
VIB  
Si8235  
VDDI  
DISABLE  
VDDB  
6
7
7
8
NC  
VOB  
VDDI  
GNDB  
Table 16. Si8235 Dual Isolated Driver (14 LD LGA)  
Pin  
GNDI  
VIA  
Name  
Description  
Input-side ground terminal.  
1
2
3
4
5
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
VIB  
VDDI  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
NC  
6
7
No connection.  
VDDI  
GNDB  
VOB  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Rev. 1.7  
37  
Si823x  
LGA-14 (5 x 5 mm)  
1
2
3
4
14  
13  
GNDI  
VIA  
VDDA  
VOA  
12  
11  
10  
7
GNDA  
NC  
VIB  
Si8236  
VDDI  
DISABLE 5  
VDDB  
6
NC  
VOB  
7
8
VDDI  
GNDB  
Table 17. Si8236 Dual Isolated Driver (14 LD LGA)  
Pin  
GNDI  
VIA  
Name  
Description  
Input-side ground terminal.  
1
2
3
4
5
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
VIB  
VDDI  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
NC  
6
7
8
No connection.  
VDDI  
GNDB  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B. GNDA and GNDB pins for the Si8236 are connected together  
through the thermal pad.  
VOB  
VDDB  
NC  
9
Driver B output (low-side driver).  
10  
11  
12  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
Ground terminal for Driver A.GNDA and GNDB pins for the Si8236 are connected together  
through the thermal pad.  
VOA  
13  
14  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
38  
Rev. 1.7  
Si823x  
6. Ordering Guide  
Table 18. Ordering Part Numbers1,2  
Legacy  
Ordering Part  
Number (OPN)  
Peak  
Current Voltage  
UVLO  
Isolation  
Rating  
Temperature Package Ordering Part  
Inputs Configuration  
Range  
Type  
Number (OPN)  
2.5 kV Only  
Wide Body (WB) Package Options  
High Side/  
Low Side  
Si8230BB-D-IS VIA, VIB  
Si8230-A-IS  
High Side/  
Low Side  
0.5 A  
8 V  
Si8231BB-D-IS  
Si8232BB-D-IS  
Si8234CB-D-IS  
PWM  
VIA,VIB  
PWM  
Si8231-A-IS  
Si8232-A-IS  
N/A  
Dual Driver  
SOIC-16  
Wide  
Body  
High Side/  
Low Side  
10 V  
2.5 kVrms –40 to +125 °C  
High Side/  
Low Side  
Si8233BB-D-IS  
VIA,VIB  
Si8233-B-IS  
Si8234-B-IS  
4.0 A  
High Side/  
Low Side  
8 V  
Si8234BB-D-IS  
Si8235BB-D-IS  
PWM  
VIA,VIB  
Dual Driver  
Si8235-B-IS  
N/A  
Si8230AB-D-IS VIA, VIB  
Si8231AB-D-IS PWM  
High Side/  
Low Side  
0.5 A  
4.0 A  
5 V  
5 V  
N/A  
SOIC-16  
Wide  
Body  
Si8232AB-D-IS VIA,VIB  
Si8233AB-D-IS VIA,VIB  
Dual Driver  
N/A  
2.5 kVrms –40 to +125 °C  
N/A  
High Side/  
Low Side  
Si8234AB-D-IS  
PWM  
N/A  
Si8235AB-D-IS VIA,VIB  
Dual Driver  
N/A  
Notes:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
Rev. 1.7  
39  
Si823x  
Table 18. Ordering Part Numbers1,2 (Continued)  
Legacy  
Temperature Package Ordering Part  
Ordering Part  
Number (OPN)  
Peak  
Current Voltage  
UVLO  
Isolation  
Rating  
Inputs Configuration  
Range  
Type  
Number (OPN)  
2.5 kV Only  
Narrow Body (NB) Package Options  
High Side/  
Si8230BB-D-IS1 VIA,VIB  
Low Side  
High Side/  
Low Side  
0.5 A  
8 V  
Si8231BB-D-IS1  
PWM  
Si8232BB-D-IS1 VIA,VIB  
Si8233BB-D-IS1 VIA,VIB  
Dual Driver  
SOIC-16  
–40 to +125 °C Narrow  
Body  
2.5 kVrms  
High Side/  
Low Side  
N/A  
High Side/  
Low Side  
Si8234BB-D-IS1  
PWM  
4.0 A  
8 V  
Si8235BB-D-IS1 VIA,VIB  
Si8235BA-D-IS1 VIA,VIB  
Si8230AB-D-IS1 VIA,VIB  
Dual Driver  
Dual Driver  
1.0 kVrms  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
High Side/  
Low Side  
Si8231AB-D-IS1  
PWM  
0.5 A  
4.0 A  
5 V  
5 V  
SOIC-16  
Si8232AB-D-IS1 VIA,VIB  
Si8233AB-D-IS1 VIA,VIB  
Dual Driver  
2.5 kVrms –40 to +125 °C Narrow  
Body  
High Side/  
Low Side  
Si8234AB-D-IS1  
PWM  
Si8235AB-D-IS1 VIA,VIB  
Dual Driver  
Notes:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
40  
Rev. 1.7  
Si823x  
Table 18. Ordering Part Numbers1,2 (Continued)  
Legacy  
Ordering Part  
Number (OPN)  
Peak  
Current Voltage  
UVLO  
Isolation  
Rating  
Temperature Package Ordering Part  
Inputs Configuration  
Range  
Type  
Number (OPN)  
2.5 kV Only  
LGA Package Options  
Si8233CB-D-IM  
10 V  
8 V  
5 V  
8 V  
5 V  
N/A  
Si8233-B-IM  
N/A  
Si8233BB-D-IM VIA,VIB  
Si8233AB-D-IM  
High Side/  
Low Side  
LGA-14  
5x5 mm  
Si8234BB-D-IM  
PWM  
Si8234AB-D-IM  
2.5 kVrms  
Si8234-B-IM  
N/A  
4.0 A  
8 V  
–40 to +125 °C  
Si8235BB-D-IM  
Si8235AB-D-IM  
Si8235-B-IM  
N/A  
5 V  
8 V  
5 V  
Si8236BA-D-IM  
VIA,VIB  
LGA-14  
5x5 mm  
with  
Thermal  
Pad  
Si8236-B-IM  
Dual Driver  
1.0 kVrms  
Si8236AA-D-IM  
N/A  
5 kV Ordering Options  
High Side/  
Low Side  
Si8230BD-D-IS VIA, VIB  
High Side/  
Low Side  
0.5 A  
Si8231BD-D-IS  
PWM  
SOIC-16  
Wide  
Body  
Si8232BD-D-IS VIA, VIB  
Si8233BD-D-IS VIA, VIB  
Dual Driver  
8 V  
5.0 kVrms –40 to +125 °C  
N/A  
High Side/  
Low Side  
High Side/  
Low Side  
4.0 A  
Si8234BD-D-IS  
PWM  
Si8235BD-D-IS VIA, VIB  
Si8230AD-D-IS VIA, VIB  
Dual Driver  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
High Side/  
Low Side  
Si8231AD-D-IS  
PWM  
0.5 A  
4.0 A  
5 V  
5 V  
SOIC-16  
Wide  
Body  
Si8232AD-D-IS VIA, VIB  
Si8233AD-D-IS VIA, VIB  
Dual Driver  
5.0 kVrms –40 to +125 °C  
High Side/  
Low Side  
Si8234AD-D-IS  
PWM  
Si8235AD-D-IS VIA, VIB  
3 V VDDI Ordering Options  
Notes:  
Dual Driver  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
Rev. 1.7  
41  
Si823x  
Table 18. Ordering Part Numbers1,2 (Continued)  
Legacy  
Temperature Package Ordering Part  
Ordering Part  
Number (OPN)  
Peak  
Current Voltage  
UVLO  
Isolation  
Rating  
Inputs Configuration  
Range  
Type  
Number (OPN)  
2.5 kV Only  
Si8237ABDIS1 VIA, VIB  
Si8237BBDIS1 VIA, VIB  
Si8238ABDIS1 VIA, VIB  
Si8238BBDIS1 VIA, VIB  
Si8237ADDIS VIA, VIB  
Si8237BDDIS VIA, VIB  
Si8238ADDIS VIA, VIB  
Si8238BDDIS VIA, VIB  
Notes:  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
Dual Driver  
5 V  
0.5 A  
SOIC-16  
Narrow  
Body  
8 V  
2.5 kVrms  
5.0 kVrms  
5 V  
4.0 A  
8 V  
40 to +125 °C  
N/A  
5 V  
0.5 A  
SOIC-16  
Wide  
Body  
8 V  
5 V  
4.0 A  
8 V  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
42  
Rev. 1.7  
Si823x  
7. Package Outline: 16-Pin Wide Body SOIC  
Figure 45 illustrates the package details for the Si823x in a 16-Pin Wide Body SOIC. Table 19 lists the values for  
the dimensions shown in the illustration.  
Figure 45. 16-Pin Wide Body SOIC  
Rev. 1.7  
43  
Si823x  
Table 19. Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for  
small body, lead-free components.  
44  
Rev. 1.7  
Si823x  
8. Land Pattern: 16-Pin Wide Body SOIC  
Figure 46 illustrates the recommended land pattern details for the Si823x in a 16-pin wide-body SOIC. Table 20  
lists the values for the dimensions shown in the illustration.  
Figure 46. 16-Pin SOIC Land Pattern  
Table 20. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.7  
45  
Si823x  
9. Package Outline: 16-Pin Narrow Body SOIC  
Figure 47 illustrates the package details for the Si823x in a 16-pin narrow-body SOIC (SO-16). Table 21 lists the  
values for the dimensions shown in the illustration.  
Figure 47. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 21. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
Dimension  
Min  
Max  
A
A1  
A2  
b
L
0.40  
1.27  
0.10  
1.25  
0.31  
0.17  
L2  
0.25 BSC  
h
0.25  
0°  
0.50  
8°  
0.51  
0.25  
θ
c
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
46  
Rev. 1.7  
Si823x  
10. Land Pattern: 16-Pin Narrow Body SOIC  
Figure 48 illustrates the recommended land pattern details for the Si823x in a 16-pin narrow-body SOIC. Table 22  
lists the values for the dimensions shown in the illustration.  
Figure 48. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 22. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.7  
47  
Si823x  
11. Package Outline: 14 LD LGA (5 x 5 mm)  
Figure 49 illustrates the package details for the Si823x in an LGA outline. Table 23 lists the values for the  
dimensions shown in the illustration.  
Figure 49. Si823x LGA Outline  
Table 23. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0.25  
NOM  
0.84  
MAX  
0.94  
0.35  
A
b
0.30  
D
5.00 BSC  
4.15 BSC  
0.65 BSC  
5.00 BSC  
3.90 BSC  
0.75  
D1  
e
E
E1  
L
0.70  
0.05  
0.80  
0.15  
0.10  
0.10  
0.08  
0.15  
0.08  
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
48  
Rev. 1.7  
Si823x  
12. Land Pattern: 14 LD LGA  
Figure 50 illustrates the recommended land pattern details for the Si823x in a 14-pin LGA. Table 24 lists the values  
for the dimensions shown in the illustration.  
Figure 50. 14-Pin LGA Land Pattern  
Table 24. 14-Pin LGA Land Pattern Dimensions  
Dimension  
(mm)  
4.20  
0.65  
0.80  
0.40  
C1  
E
X1  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.7  
49  
Si823x  
13. Package Outline: 14 LD LGA with Thermal Pad (5 x 5 mm)  
Figure 51 illustrates the package details for the Si8236 ISOdriver in an LGA outline. Table 25 lists the values for the  
dimensions shown in the illustration.  
Figure 51. Si823x LGA Outline with Thermal Pad  
Table 25. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0.25  
NOM  
0.84  
MAX  
0.94  
0.35  
A
b
0.30  
D
5.00 BSC  
4.15 BSC  
0.65 BSC  
5.00 BSC  
3.90 BSC  
0.75  
D1  
e
E
E1  
L
0.70  
0.05  
1.40  
4.15  
0.80  
0.15  
1.50  
4.25  
0.10  
0.10  
0.08  
0.15  
0.08  
L1  
P1  
P2  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
1.45  
4.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
50  
Rev. 1.7  
Si823x  
14. Land Pattern: 14 LD LGA with Thermal Pad  
Figure 52 illustrates the recommended land pattern details for the Si8236 in a 14-pin LGA with thermal pad.  
Table 26 lists the values for the dimensions shown in the illustration.  
Figure 52. 14-Pin LGA with Thermal Pad Land Pattern  
Table 26. 14-Pin LGA with Thermal Pad Land Pattern Dimensions  
Dimension  
(mm)  
4.20  
1.50  
4.25  
0.65  
0.80  
0.40  
C1  
C2  
D2  
E
X1  
Y1  
Notes:  
General:  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05 mm.  
Solder Mask Design:  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Stencil Design:  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly:  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.7  
51  
Si823x  
15. Top Markings  
15.1. Si823x Top Marking (16-Pin Wide Body SOIC)  
Si823YUV  
YYWWTTTTTT  
e4  
TW  
15.2. Top Marking Explanation (16-Pin Wide Body SOIC)  
Si823 = ISOdriver product series  
Y = Peak output current  
0, 1, 2, 7 = 0.5 A  
Base Part Number  
Ordering Options  
3, 4, 5, 8 = 4.0 A  
Line 1 Marking:  
U = UVLO level  
A = 5 V; B = 8 V; C = 10 V; D = 12.5 V  
V = Isolation rating  
See Ordering Guide for more  
information.  
B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the  
year and workweek of the mold date.  
Line 2 Marking:  
Line 3 Marking:  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order form.  
“e4” Pb-Free Symbol  
Circle = 1.5 mm Diameter  
(Center Justified)  
Country of Origin  
ISO Code Abbreviation  
TW = Taiwan  
52  
Rev. 1.7  
Si823x  
15.3. Si823x Top Marking (16-Pin Narrow Body SOIC)  
Si823YUV  
YYWWTTTTTT  
e4  
15.4. Top Marking Explanation (16-Pin Narrow Body SOIC)  
Si823 = ISOdriver product series  
Y = Peak output current  
0, 1, 2, 7 = 0.5 A  
3, 4, 5, 8 = 4.0 A  
U = UVLO level  
A = 5 V; B = 8 V; C = 10 V; D = 12.5 V  
V = Isolation rating  
Base Part Number  
Ordering Options  
Line 1 Marking:  
Line 2 Marking:  
See Ordering Guide for more  
information.  
B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the  
year and workweek of the mold date.  
Manufacturing Code from Assembly Purchase Order  
form.  
TTTTTT = Mfg Code  
Rev. 1.7  
53  
Si823x  
15.5. Si823x Top Marking (14 LD LGA)  
Si823Y  
UV-IM  
TTTTTT  
YYWW  
15.6. Top Marking Explanation (14 LD LGA)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si823 = ISOdriver product series  
Y = Peak output current  
0, 1, 2 = 0.5 A  
See Ordering Guide for more  
information.  
3, 4, 5, 6 = 4.0 A  
Line 2 Marking:  
Ordering options  
U = UVLO level  
A = 5 V; B = 8 V; C = 10 V; D = 12.5 V  
V = Isolation rating  
A = 1.0 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
I = –40 to +125 °C ambient temperature range  
M = LGA package type  
Line 3 Marking:  
Line 4 Marking:  
TTTTTT  
Manufacturing Code from Assembly  
Pin 1 identifier  
Circle = 1.5 mm diameter  
YYWW  
Manufacturing date code  
54  
Rev. 1.7  
Si823x  
Updated Table 8 on page 14.  
Added junction temperature spec.  
DOCUMENT CHANGE LIST  
Updated Table 2 on page 11 with new notes.  
Added Table 17 and pinout.  
Revision 0.11 to Revision 0.2  
Updated all specs to reflect latest silicon revision.  
Updated Figures 19, 20, 21, and 22 to reflect correct  
Updated Table 1 on page 6 to include new UVLO  
y-axis scaling.  
options.  
Updated Figure 44 on page 31.  
Updated Table 8 on page 14 to reflect new maximum  
Updated "4.3. Dual Driver with Thermally Enhanced  
package isolation ratings  
Package (Si8236)" on page 31.  
Added Figures 34, 35, and 36.  
Updated "7. Package Outline: 16-Pin Wide Body  
Updated Ordering Guide to reflect new package  
SOIC" on page 43.  
offerings.  
Updated Table 19, “Package Diagram Dimensions,”  
Added "3.7.3. Undervoltage Lockout (UVLO)" on  
on page 44.  
page 27 to describe UVLO operation.  
Change references to 1.5 kV  
rated devices to  
RMS  
Revision 0.2 to Revision 0.3  
1.0 kV  
throughout.  
RMS  
Moved Sections 2, 3, and 4 to after Section 5.  
Updated Tables 14, 15, and 17.  
Updated "3.5. Power Dissipation Considerations" on  
page 23.  
Removed Si8230, Si8231, and Si8232 from pinout and  
Revision 1.2 to Revision 1.3  
from title.  
Updated and added Ordering Guide footnotes.  
Updated UVLO specifications in Table 1 on page 6.  
Added Si8237/8 throughout.  
Updated Table 1 on page 6.  
Updated Figure 4 on page 9.  
UpdatedFigure 5 on page 9.  
Added Figure 6 on page 10.  
Added PWD and Output Supply Active Current  
specifications in Table 1.  
Updated and added typical operating condition  
graphs in "3.1. Typical Operating Characteristics  
(0.5 Amp)" on page 17 and "3.2. Typical Operating  
Characteristics (4.0 Amp)" on page 19.  
Updated Table 10 on page 21.  
Created Notes 1 and 2.  
Updated "3.8. Programmable Dead Time and  
Overlap Protection" on page 28.  
Revision 0.3 to Revision 1.0  
Removed references to Figures 26A and 26B.  
Updated Table 18 on page 39.  
Updated Tables 2, 3, 4, and 5.  
Updated “6. Ordering Guide” .  
Added 5 V UVLO ordering options  
Added Device Marking sections.  
Added Si8235-BA-C-IS1 ordering part number.  
Added table note.  
Revision 1.3 to Revision 1.4  
Revision 1.0 to Revision 1.1  
Updated "6. Ordering Guide" on page 39.  
Updated “ 3 V VDDI Ordering Options” .  
Updated " Features" on page 1.  
Updated CMTI specification.  
Updated Table 1 on page 6.  
Updated CMTI specification.  
Revision 1.4 to Revision 1.5  
Updated Table 1, input and output supply current.  
Updated Table 5, “IEC 60747-5-5 Insulation  
Characteristics*,” on page 13.  
Added references to AEC-Q100 qualified  
throughout.  
Updated "4.2. Dual Driver" on page 31.  
Updated "6. Ordering Guide" on page 39.  
Changed all 60747-5-2 references to 60747-5-5.  
Added references to CQC throughout.  
Updated pin descriptions throughout.  
Corrected dead time default to 400 ps from 1 ns.  
Updated Table 18, Ordering Part Numbers.  
Removed moisture sensitivity level table notes.  
Replaced pin descriptions on page 1 with chip  
graphics.  
Revision 1.1 to Revision 1.2  
Updated "6. Ordering Guide" on page 39.  
Updated moisture sensitivity level (MSL) for all package  
types.  
Rev. 1.7  
55  
Si823x  
Revision 1.5 to Revision 1.6  
Updated Table 18, Ordering Part Numbers.  
Added Revision D Ordering Part Numbers.  
Removed all Ordering Part Numbers of previous  
revisions.  
Revision 1.6 to Revision 1.7  
Updated Table 2 on page 11  
Added CQC certificate numbers.  
Updated Table 3 on page 12  
Updated Erosion Depth.  
Updated Table 5 on page 13  
Updated VPR for WBSOIC-16.  
Updated Table 8 on page 14  
Removed Io and added Peak Output Current  
specifications.  
Updated Equation 1 example on page 23.  
Updated Figure 43 on page 30.  
Updated Figure 44 on page 31.  
Updated Ordering Guide Table 18 on page 39.  
Removed Note 2.  
56  
Rev. 1.7  
Si823x  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
Rev. 1.7  
57  

相关型号:

SI8234AB-AS1R

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8234AB-D-IM

Buffer/Inverter Based Peripheral Driver, 4A, PBGA14, LGA-14
SILICON

SI8234AB-D-IM1

Peripheral Driver,
SILICON

SI8234AB-D-IS

Buffer/Inverter Based Peripheral Driver, 4A, PDSO16, SOIC-16
SILICON

SI8234AB-D-IS1

暂无描述
SILICON

SI8234AB-D-ISR

Peripheral Driver, PDSO16,
SILICON

SI8234AD-AS3R

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8234AD-ASR

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8234AD-D-IS

Buffer/Inverter Based Peripheral Driver, 4A, PDSO16, SOIC-16
SILICON

SI8234AD-D-ISR

Peripheral Driver, PDSO16,
SILICON

SI8234BB-AS

Buffer/Inverter Based Peripheral Driver,
SILICON

SI8234BB-AS1

Buffer/Inverter Based Peripheral Driver,
SILICON