SI8422AB-B-IS [SILICON]

Analog Circuit, 1 Func, CMOS, PDSO8, ROHS COMPLIANT, SOIC-8;
SI8422AB-B-IS
型号: SI8422AB-B-IS
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, CMOS, PDSO8, ROHS COMPLIANT, SOIC-8

光电二极管
文件: 总37页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
LOW-POWER, SINGLE AND DUAL-CHANNEL  
DIGITAL ISOLATORS  
Features  
High-speed operation  
DC to 150 Mbps  
No start-up initialization required  
Wide Operating Supply Voltage:  
2.6–5.5 V  
Schmitt trigger inputs  
Selectable fail-safe mode  
Default high or low output  
Precise timing (typical)  
11 ns propagation delay max  
1.5 ns pulse width distortion  
0.5 ns channel-channel skew  
2 ns propagation delay skew  
5 ns minimum pulse width  
Transient immunity 45 kV/µs  
AEC-Q100 qualification  
Up to 5000 VRMS isolation  
High electromagnetic immunity  
Ultra low power (typical)  
5 V Operation:  
< 2.6 mA/channel at 1 Mbps  
< 6.8 mA/channel at 100 Mbps  
2.70 V Operation:  
Wide temperature range  
< 2.3 mA/channel at 1 Mbps  
< 4.6 mA/channel at 100 Mbps  
–40 to 125 °C at 150 Mbps  
RoHS compliant packages  
SOIC-16 wide body  
SOIC-8 narrow body  
Applications  
Industrial automation systems  
Medical electronics  
Hybrid electric vehicles  
Isolated ADC, DAC  
Motor control  
Power inverters  
Isolated switch mode supplies  
Communication systems  
Safety Regulatory Approvals  
Ordering Information:  
UL 1577 recognized  
Up to 5000 VRMS for 1 minute  
VDE certification conformity  
IEC 60747-5-5  
See page 29.  
(VDE0884 Part 5)  
EN60950-1 (reinforced insulation)  
CSA component notice 5A approval  
IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
Description  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering  
substantial data rate, propagation delay, power, size, reliability, and external BOM  
advantages when compared to legacy isolation technologies. The operating  
parameters of these products remain stable across wide temperature ranges and  
throughout device service life for ease of design and highly uniform performance.  
All device versions have Schmitt trigger inputs for high noise immunity and only  
require VDD bypass capacitors.  
Data rates up to 150 Mbps are supported, and all devices achieve worst-case  
propagation delays of less than 10 ns. Ordering options include a choice of  
isolation ratings (up to 5 kV) and a selectable fail-safe operating mode to control  
the default output state during power loss. All products are safety certified by UL,  
CSA, and VDE, and products in wide-body packages support reinforced insulation  
withstanding up to 5 kVRMS  
.
Rev. 1.3 3/14  
Copyright © 2014 by Silicon Laboratories  
Si8410/20/21 / Si8422/23  
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
2
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.2. Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4. Pin Descriptions (Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5. Pin Descriptions (Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
7. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
12. Top Marking: 8-Pin Narrow-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Rev. 1.3  
3
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
1. Electrical Specifications  
Table 1. Electrical Characteristics  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Symbol  
Test Condition  
, V rising  
Min  
Typ  
Max  
Unit  
Parameter  
VDD Undervoltage Threshold  
VDDUV+  
V
2.15  
45  
2.3  
75  
2.5  
95  
V
DD1  
DD2  
VDD Negative-Going Lockout  
Hysteresis  
VDD  
mV  
HYS  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.6  
1.1  
0.40  
2.0  
1.9  
1.4  
0.50  
V
V
V
0.45  
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
50  
O
DC Supply Current (All inputs 0 V or at Supply)  
Si8410Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.0  
3.0  
1.0  
1.5  
1.5  
4.5  
1.5  
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
mA  
mA  
Si8420Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.7  
5.8  
1.7  
2.0  
2.6  
8.7  
2.6  
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.7  
1.7  
3.7  
3.7  
2.6  
2.6  
5.6  
5.6  
DD1  
DD2  
DD1  
DD2  
Si8422Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
3.7  
3.7  
1.7  
1.7  
5.6  
5.6  
2.6  
2.6  
DD1  
DD2  
DD1  
DD2  
Si8423Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5.4  
1.7  
1.3  
1.7  
8.1  
2.6  
2.0  
2.6  
DD1  
DD2  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
4
Rev. 1.3  
 
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 1. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
1 Mbps Supply Current (All inputs = 500 kHz square wave, C = 15 pF on all outputs)  
L
Si8410Ax, Bx  
V
V
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Ax, Bx  
V
V
3.5  
1.9  
5.3  
2.9  
DD1  
DD2  
Si8421Ax, Bx  
V
V
2.8  
2.8  
4.2  
4.2  
DD1  
DD2  
Si8422Ax, Bx  
V
V
2.8  
2.8  
4.2  
4.2  
DD1  
DD2  
Si8423Ax, Bx  
V
V
3.4  
1.9  
5.1  
2.9  
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, C = 15 pF on all outputs)  
L
Si8410Bx  
V
V
2.1  
1.5  
3.1  
2.1  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3.6  
2.6  
5.4  
3.6  
DD1  
DD2  
Si8421Bx  
V
V
3.2  
3.2  
4.5  
4.5  
DD1  
DD2  
Si8422Bx  
V
V
3.2  
3.2  
4.5  
4.5  
DD1  
DD2  
Si8423Bx  
V
V
3.4  
2.5  
5.1  
3.5  
DD1  
DD2  
mA  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.3  
5
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 1. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
100 Mbps Supply Current (All inputs = 50 MHz square wave, C = 15 pF on all outputs)  
L
Si8410Bx  
V
V
2.1  
5.0  
3.1  
6.3  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3.7  
9.8  
5.4  
12.3  
DD1  
DD2  
Si8421Bx  
V
V
6.8  
6.8  
8.5  
8.5  
DD1  
DD2  
Si8422Bx  
V
V
6.8  
6.8  
8.5  
8.5  
DD1  
DD2  
Si8423Bx  
V
V
3.4  
9.2  
5.1  
11.5  
DD1  
DD2  
mA  
Timing Characteristics  
Si841xAx, Si842xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1.0  
250  
35  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Si841xBx, Si842xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
0
150  
6.0  
11  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
4.0  
8.0  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
1.5  
3.0  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.5  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
2.0  
2.0  
350  
4.0  
4.0  
ns  
ns  
ps  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 6  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
20  
45  
15  
kV/µs  
µs  
I
DD  
3
Start-up Time  
t
40  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
6
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing  
Rev. 1.3  
7
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 2. Electrical Characteristics  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
, V rising  
Min  
2.15  
45  
Typ  
2.3  
75  
Max  
2.5  
95  
Unit  
V
VDD Undervoltage Threshold  
VDDUV+ V  
DD1  
DD2  
VDD Negative-Going Lockout  
Hysteresis  
VDD  
mV  
HYS  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.6  
1.1  
0.40  
2.0  
1.9  
1.4  
0.50  
V
V
V
0.45  
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance (Si8410/20)  
Z
50  
O
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.0  
3.0  
1.0  
1.5  
1.5  
4.5  
1.5  
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
mA  
mA  
Si8420Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.7  
5.8  
1.7  
2.0  
2.6  
8.7  
2.6  
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.7  
1.7  
3.7  
3.7  
2.6  
2.6  
5.6  
5.6  
DD1  
DD2  
DD1  
DD2  
Si8422Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
3.7  
3.7  
1.7  
1.7  
5.6  
5.6  
2.6  
2.6  
DD1  
DD2  
DD1  
DD2  
Si8423Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5.4  
1.7  
1.3  
1.7  
8.1  
2.6  
2.0  
2.6  
DD1  
DD2  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
8
Rev. 1.3  
 
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1 Mbps Supply Current (All inputs = 500 kHz square wave, C = 15 pF on all outputs)  
L
Si8410Ax, Bx  
V
V
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Ax, Bx  
V
V
3.5  
1.9  
5.3  
2.9  
DD1  
DD2  
Si8421Ax, Bx  
V
V
2.8  
2.8  
4.2  
4.2  
DD1  
DD2  
Si8422Ax, Bx  
V
V
2.8  
2.8  
4.2  
4.2  
DD1  
DD2  
Si8423Ax, Bx  
V
V
3.4  
1.9  
5.1  
2.9  
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, C = 15 pF on all outputs)  
L
Si8410Bx  
V
V
2.0  
1.3  
3.0  
1.8  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3.5  
2.3  
5.3  
3.2  
DD1  
DD2  
Si8421Bx  
V
V
3.0  
3.0  
4.4  
4.4  
DD1  
DD2  
Si8422Bx  
V
V
3.0  
3.0  
4.4  
4.4  
DD1  
DD2  
Si8423Bx  
V
V
3.4  
2.2  
5.1  
3.1  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.3  
9
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
100 Mbps Supply Current (All inputs = 50 MHz square wave, C = 15 pF on all outputs)  
L
Si8410Bx  
V
V
2.0  
3.6  
3.0  
4.5  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
4.5  
7.0  
5.3  
8.8  
DD1  
DD2  
Si8421Bx  
V
V
5.3  
5.3  
6.6  
6.6  
DD1  
DD2  
Si8422Bx  
V
V
5.3  
5.3  
6.6  
6.6  
DD1  
DD2  
Si8423Bx  
V
V
3.4  
6.6  
5.1  
8.3  
DD1  
DD2  
Timing Characteristics  
Si841xAx, Si842xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1.0  
250  
35  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
– t  
|
PLH  
PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Si841xBx, Si842xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
0
150  
6.0  
11  
Mbps  
ns  
4.0  
t
, t  
See Figure 1  
See Figure 1  
8.0  
1.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
3.0  
ns  
|t  
– t  
|
PLH  
PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
2.0  
0.5  
3.0  
1.5  
ns  
ns  
PSK(P-P)  
t
PSK  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All Models  
Output Rise Time  
t
C = 15 pF  
20  
2.0  
2.0  
350  
45  
4.0  
4.0  
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
Peak Eye Diagram Jitter  
tJIT(PK)  
CMTI  
See Figure 6  
ps  
Common Mode Transient  
Immunity  
V = V or 0 V  
kV/µs  
I
DD  
3
Start-up Time  
t
15  
40  
µs  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.3  
11  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 3. Electrical Characteristics1  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Symbol  
Test Condition  
, V rising  
Min  
Typ  
Max  
Unit  
Parameter  
VDD Undervoltage Threshold  
VDDUV+  
V
2.15  
45  
2.3  
75  
2.5  
95  
V
DD1  
DD2  
VDD Negative-Going Lockout  
Hysteresis  
VDD  
mV  
HYS  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.6  
1.1  
0.40  
2.0  
1.9  
1.4  
0.50  
V
V
V
V
V
V
V
0.45  
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
V
IH  
V
0.8  
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.  
2.3  
OH  
DD1 DD2  
4
Low Level Output Voltage  
Input Leakage Current  
V
0.2  
0.4  
±10  
V
µA  
OL  
I
L
2
Output Impedance  
Z
50  
O
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.0  
3.0  
1.0  
1.5  
1.5  
4.5  
1.5  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
Si8420Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.7  
5.8  
1.7  
2.0  
2.6  
8.7  
2.6  
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.7  
1.7  
3.7  
3.7  
2.6  
2.6  
5.6  
5.6  
DD1  
DD2  
DD1  
DD2  
Si8422Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
3.7  
3.7  
1.7  
1.7  
5.6  
5.6  
2.6  
2.6  
DD1  
DD2  
DD1  
DD2  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
12  
Rev. 1.3  
 
 
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 3. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Si8423Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5.4  
1.7  
1.3  
1.7  
8.1  
2.6  
2.0  
2.6  
mA  
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, C = 15 pF on all outputs)  
L
Si8410Ax, Bx  
V
V
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Ax, Bx  
V
V
3.5  
1.9  
5.3  
2.9  
DD1  
DD2  
Si8421Ax, Bx  
V
V
2.8  
2.8  
4.2  
4.2  
DD1  
DD2  
Si8422Ax, Bx  
V
V
2.8  
2.8  
4.2  
4.2  
DD1  
DD2  
Si8423Ax, Bx  
V
V
3.3  
1.8  
5.0  
2.8  
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, C = 15 pF on all outputs)  
L
Si8410Bx  
V
V
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3.5  
2.1  
5.3  
3.0  
DD1  
DD2  
Si8421Bx  
V
V
2.9  
2.9  
4.3  
4.3  
DD1  
DD2  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.3  
13  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 3. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Si8422Bx  
V
V
2.9  
2.9  
4.3  
4.3  
mA  
DD1  
DD2  
Si8423Bx  
V
V
3.4  
2.0  
5.1  
2.9  
mA  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
V
V
2.0  
2.0  
3.0  
3.0  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3.5  
5.5  
5.3  
6.9  
DD1  
DD2  
Si8421Bx  
V
V
4.6  
4.6  
5.8  
5.8  
DD1  
DD2  
Si8422Bx  
V
V
4.6  
4.6  
5.8  
5.8  
DD1  
DD2  
Si8423Bx  
V
V
3.4  
5.2  
5.1  
6.5  
DD1  
DD2  
Timing Characteristics  
Si841xAx, Si842xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1.0  
250  
35  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
3
Propagation Delay Skew  
Channel-Channel Skew  
Si841xBx, Si842xBx  
Maximum Data Rate  
Notes:  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
0
150  
Mbps  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
14  
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 3. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Minimum Pulse Width  
Propagation Delay  
4.0  
6.0  
11  
ns  
ns  
ns  
t
, t  
See Figure 1  
See Figure 1  
8.0  
1.5  
PHL PLH  
Pulse Width Distortion  
PWD  
3.0  
|t  
- t  
|
PLH PHL  
3
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.5  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
Output Fall Time  
t
C = 15 pF  
2.0  
2.0  
4.0  
4.0  
ns  
ns  
r
L
t
C = 15 pF  
f
L
Peak Eye Diagram Jitter  
tJIT(PK)  
CMTI  
See Figure 6  
350  
45  
ps  
Common Mode Transient  
Immunity  
V = V or 0 V  
20  
kV/µs  
I
DD  
4
Start-up Time  
t
15  
40  
µs  
SU  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Table 4. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
Typ  
Max  
150  
125  
150  
6.0  
Unit  
C°  
C°  
°C  
V
2
Storage Temperature  
T
STG  
Operating Temperature  
Junction Temperature  
T
A
T
J
Supply Voltage  
V
, V  
–0.5  
–0.5  
–0.5  
DD1  
DD2  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s) NB SOIC-8  
Maximum Isolation Voltage (1 s) WB SOIC-16  
Notes:  
I
10  
mA  
C°  
O
260  
4500  
6500  
V
RMS  
RMS  
V
1. Permanent device damage may occur if the above absolute maximum ratings are exceeded. Functional operation  
should be restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
Rev. 1.3  
15  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 5. Recommended Operating Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter  
Ambient Operating Temperature*  
Supply Voltage  
T
–40  
2.70  
2.70  
25  
125  
5.5  
5.5  
C°  
V
A
V
DD1  
V
V
DD2  
*Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating  
channels, and supply voltage.  
Table 6. Regulatory Information*  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
RMS  
RMS  
RMS  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
60601-1: Up to 125 V  
reinforced insulation working voltage; up to 380 V  
basic insulation working voltage.  
RMS  
RMS  
VDE  
The Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.  
60747-5-5: Up to 891 V for basic insulation working voltage.  
peak  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
RMS  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V isolation voltage for basic insulation.  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see "6. Ordering Guide" on page 29.  
16  
Rev. 1.3  
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 7. Insulation and Safety-Related Specifications  
Value  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
NB  
SOIC-16 SOIC-8  
1
L(IO1)  
L(IO2)  
8.0 min 4.9 min  
8.0 min 4.01 min  
mm  
mm  
mm  
Nominal Air Gap (Clearance)  
1
Nominal External Tracking (Creepage)  
0.014  
600  
0.008  
600  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
V
RMS  
0.019  
0.040  
mm  
Erosion Depth  
1,2  
1,2  
2
R
10  
10  
Resistance (Input-Output)  
IO  
2
C
2.0  
4.0  
1.0  
4.0  
pF  
pF  
Capacitance (Input-Output)  
IO  
3
C
Input Capacitance  
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “7. Package Outline:  
16-Pin Wide Body SOIC”, “9. Package Outline: 8-Pin Narrow Body SOIC”. VDE certifies the clearance and creepage  
limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does  
not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and  
creepage limits as 3.9 mm minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 (1–4, NB SOIC-8)  
are shorted together to form the first terminal and pins 9–16 (5–8, NB SOIC-8) are shorted together to form the second  
terminal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 8. IEC 60664-1 (VDE 0844 Part 5) Ratings  
Specification  
Parameter  
Test Conditions  
NB SOIC8  
WB SOIC 16  
Basic Isolation Group  
Material Group  
I
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-IV  
I-III  
I-III  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Rev. 1.3  
17  
 
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 9. IEC 60747-5-5 Insulation Characteristics for Si84xxxx*  
Characteristic  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
SOIC-16  
NB SOIC-8  
Maximum Working Insulation  
Voltage  
V
891  
560  
Vpeak  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
1671  
1050  
Input to Output Test Voltage  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
V
t = 60 sec  
6000  
2
4000  
2
Vpeak  
Transient Overvoltage  
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
Insulation Resistance at T ,  
9
9
S
R
>10  
>10  
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of  
40/125/21.  
Table 10. IEC Safety Limiting Values1  
Max  
WB SOIC- NB SOIC-  
Parameter  
Symbol  
Test Condition  
Unit  
16  
8
Case Temperature  
T
I
150  
220  
150  
160  
°C  
S
Safety Input, Output, or  
Supply Current  
= 140 °C/W (NB SOIC-8), 100 °C  
(WB SOIC-16),  
mA  
S
JA  
V = 5.5 V, T = 150 °C, T = 25 °C  
I
J
A
2
Device Power Dissipation  
P
150  
150  
mW  
D
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 2 and 3.  
2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
18  
Rev. 1.3  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
Table 11. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-8  
Unit  
IC Junction-to-Air Thermal Resistance  
100  
140  
ºC/W  
JA  
500  
460  
VDD1, VDD2 = 2.70 V  
375  
360  
VDD1, VDD2 = 3.3 V  
250  
220  
VDD1, VDD2 = 5.5 V  
125  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5  
400  
320  
VDD1, VDD2 = 2.70 V  
300  
270  
V
DD1, VDD2 = 3.3 V  
200  
100  
0
160  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5  
Rev. 1.3  
19  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in  
Figure 4.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 4. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 5 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 5. Modulation Scheme  
20  
Rev. 1.3  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
2.2. Eye Diagram  
Figure 6 illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.  
Figure 6. Eye Diagram  
Rev. 1.3  
21  
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 7, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when  
power supply (VDD) is not present.  
Table 12. Si84xx Logic Operation Table  
1,4  
1,2,3  
1,2,3  
1,4  
Comments  
V Input  
VDDI State  
VDDO State  
V Output  
I
O
H
L
P
P
P
P
P
H
Normal operation.  
L
5
6
X
UP  
H (Si8422/23) Upon transition of VDDI from unpowered to  
L (Si8410/20/21)  
6
powered, V returns to the same state as V in  
O
I
less than 1 µs.  
5
X
P
UP  
Undetermined Upon transition of VDDO from unpowered to  
powered, V returns to the same state as V  
O
I
within 1 µs.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. Powered (P) state is defined as 2.72.60 V < VDD < 5.5 V.  
3. Unpowered (UP) state is defined as VDD = 0 V.  
4. X = not applicable; H = Logic High; L = Logic Low.  
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
6. See "6. Ordering Guide" on page 29 for details. This is the selectable fail-safe operating mode (ordering option). Some  
devices have default output state = H, and some have default output state = L, depending on the ordering part number  
(OPN).  
22  
Rev. 1.3  
 
 
 
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
3.1. Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this,  
the outputs follow the states of inputs.  
3.2. Under Voltage Lockout  
Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage  
lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters  
UVLO when V  
falls below V  
and exits UVLO when V  
rises above V . Side B operates  
DD1  
DD1(UVLO–)  
DD1  
DD1(UVLO+)  
the same as Side A with respect to its V  
supply.  
DD2  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 7. Device Behavior during Normal Operation  
Rev. 1.3  
23  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 6 on page 16 and Table 7 on page 17 detail the  
working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component  
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for  
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)  
requirements before starting any design that uses a digital isolator.  
3.3.1. Supply Bypass  
The Si841x/2x family requires a 0.1 µF bypass capacitor between V  
and GND1 and V  
and GND2. The  
DD1  
DD2  
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, it is further  
recommended that the user also add 1 µF bypass capacitors and include 100 resistors in series with the inputs  
and outputs if the system is excessively noisy.  
3.3.2. Pin Connections  
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
3.3.3. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3.4. Fail-Safe Operating Mode  
Si84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input  
supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 12 on  
page 22 and "6. Ordering Guide" on page 29 for more information.  
24  
Rev. 1.3  
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
3.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 1, 2, and 3 for actual specification limits.  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
5V  
5V  
3.3V  
3.3V  
2.70V  
2.70V  
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 11. Si8410 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 8. Si8410 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
30  
25  
30  
25  
20  
20  
5V  
5V  
15  
15  
3.3V  
3.3V  
10  
10  
2.70V  
2.70V  
5
5
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 9. Si8420 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
Figure 12. Si8420 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
30  
25  
30  
25  
5V  
20  
5V  
15  
20  
3.3V  
10  
15  
10  
5
3.3V  
5
2.70V  
0
2.70V  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
Data Rate (Mbps)  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Figure 10. Si8421 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation (15 pF Load)  
Figure 13. Si8422 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation (15 pF Load)  
Rev. 1.3  
25  
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
30  
25  
20  
5V  
15  
3.3V  
10  
2.70V  
5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Figure 14. Si8423 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
30  
25  
20  
5V  
15  
3.3V  
10  
2.70V  
5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Figure 15. Si8423 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
10  
Falling Edge  
9
8
7
6
5
Rising Edge  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 16. Propagation Delay  
vs. Temperature  
26  
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
4. Pin Descriptions (Wide-Body SOIC)  
GND2  
NC  
GND1  
NC  
GND2  
NC  
GND2  
NC  
GND1  
NC  
GND1  
NC  
GND2  
NC  
GND1  
NC  
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
VDD1  
A1  
VDD2  
B1  
VDD1  
A1  
VDD1  
A1  
VDD2  
B1  
VDD2  
B1  
VDD1  
A1  
VDD2  
B1  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RF  
RCVR  
NC  
RF  
RCVR  
RF  
XMITR  
NC  
A2  
NC  
B2  
A2  
NC  
B2  
A2  
NC  
B2  
XMITR  
NC  
GND1  
NC  
NC  
NC  
NC  
NC  
NC  
GND1  
NC  
NC  
GND1  
NC  
NC  
GND1  
NC  
NC  
GND2  
GND2  
GND2  
GND2  
Si8410 WB SOIC-16  
Si8420/23 WB SOIC-16  
Si8421 WB SOIC-16  
Si8422 WB SOIC-16  
Name  
SOIC-16 Pin# SOIC-16 Pin#  
Type  
Description  
Si8410  
Si842x  
GND1  
NC*  
1
1
Ground  
Side 1 ground.  
NC  
2, 5, 6, 8,10,  
11, 12, 15  
2, 6, 8,10,  
11, 15  
No Connect  
V
3
4
3
4
Supply  
Digital I/O  
Digital I/O  
Ground  
Side 1 power supply.  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 ground.  
DD1  
A1  
A2  
NC  
7
5
GND1  
GND2  
B2  
7
9
9
Ground  
Side 2 ground.  
NC  
13  
14  
16  
12  
13  
14  
16  
Digital I/O  
Digital I/O  
Supply  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
Side 2 ground.  
B1  
V
DD2  
GND2  
Ground  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
Rev. 1.3  
27  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
5. Pin Descriptions (Narrow-Body SOIC)  
VDD1  
VDD2  
VDD1  
VDD2  
B1  
I
s
o
l
a
t
I
s
o
l
a
t
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B1  
A1  
A2  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
B2  
B2  
i
i
o
n
o
n
GND2  
GND1  
GND2  
GND1  
Si8422 NB SOIC-8  
Si8423 NB SOIC-8  
Name  
SOIC-8 Pin#  
Si842x  
Type  
Description  
V
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
DD1  
GND1  
A1  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
A2  
B1  
B2  
V
DD2  
GND2  
Ground  
Side 2 ground.  
28  
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
6. Ordering Guide  
Table 13. Ordering Guide1,2,3  
Numberof Numberof Maximum Default  
Inputs Inputs DataRate Output  
VDD1 Side VDD2 Side (Mbps)  
Ordering Part  
Number (OPN)  
Isolation  
Rating  
Temp  
Range  
Package  
Type  
State  
High  
High  
High  
Si8422AB-D-IS  
Si8422BB-D-IS  
Si8423AB-D-IS  
Si8423BB-D-IS  
1
1
2
1
1
0
1
150  
1
2.5 kVrms –40 to 125 °C  
NB SOIC-8  
2
1
1
2
2
1
1
1
0
0
0
0
0
1
1
1
150  
1
High  
Low  
Low  
Low  
Low  
Low  
Low  
High  
4
Si8410AD-D-IS  
Si8410BD-D-IS  
Si8420AD-D-IS  
Si8420BD-D-IS  
Si8421AD-D-IS  
Si8421BD-D-IS  
4
4
4
4
4
150  
1
150  
1
5.0 kVrms –40 to 125 °C WB SOIC-16  
150  
1
Si8422AD-D-IS  
Si8422BD-D-IS  
Si8423AD-D-IS  
Si8423BD-D-IS  
Notes:  
1
2
2
1
0
0
150  
1
High  
High  
High  
150  
1. All devices >1 kVRMS are AEC-Q100 qualified.  
2. “Si” and “SI” are used interchangeably.  
3. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry  
standard classifications.  
4. Refer to Si8410/20/21 data sheet for information regarding 2.5 kV rated versions of these products.  
Rev. 1.3  
29  
 
 
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
7. Package Outline: 16-Pin Wide Body SOIC  
Figure 17 illustrates the package details for the Si84xx Digital Isolator. Table 14 lists the values for the dimensions  
shown in the illustration.  
Figure 17. 16-Pin Wide Body SOIC  
Table 14. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
2.65  
0.3  
A
A1  
D
E
E1  
b
0.1  
10.3 BSC  
10.3 BSC  
7.5 BSC  
0.31  
0.51  
0.33  
c
0.20  
e
1.27 BSC  
h
0.25  
0.4  
0°  
0.75  
1.27  
7°  
L
30  
Rev. 1.3  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
8. Land Pattern: 16-Pin Wide-Body SOIC  
Figure 18 illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. Table 15  
lists the values for the dimensions shown in the illustration.  
Figure 18. 16-Pin SOIC Land Pattern  
Table 15. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.3  
31  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
9. Package Outline: 8-Pin Narrow Body SOIC  
Figure 19 illustrates the package details for the Si84xx. Table 16 lists the values for the dimensions shown in the  
illustration.  
Figure 19. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 16. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.35  
1.75  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0  
6.20  
0.50  
1.27  
8  
L
32  
Rev. 1.3  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
10. Land Pattern: 8-Pin Narrow Body SOIC  
Figure 20 illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. Table 17  
lists the values for the dimensions shown in the illustration.  
Figure 20. PCB Land Pattern: 8-Pin Narrow Body SOIC  
Table 17. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.3  
33  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
11. Top Marking: 16-Pin Wide Body SOIC  
Si84XYSV  
YYWWTTTTTT  
e4  
TW  
Figure 21. Isolator Top Marking  
Table 18. Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (2, 1)  
Y = # of reverse channels (1, 0)  
S = Speed Grade  
A = 1 Mbps; B = 150 Mbps  
V = Insulation rating  
1,2  
(See Ordering Guide for more  
information).  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
TTTTTT = Mfg Code  
Manufacturing code from assembly house.  
“e4” Pb-Free Symbol.  
Circle = 1.7 mm Diameter  
(Center-Justified)  
Country of Origin ISO Code  
Abbreviation  
TW = Taiwan.  
Notes:  
1. The Si8422 has one reverse channel.  
2. The Si8423 has zero reverse channels.  
34  
Rev. 1.3  
 
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
12. Top Marking: 8-Pin Narrow-Body SOIC  
Si84XYSV  
YYWWRF  
e3  
AIXX  
Figure 22. Isolator Top Marking  
Table 19. Top Marking Explanations  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (2, 1)  
Y = # of reverse channels (1, 0)  
S = Speed Grade  
1,2  
(See Ordering Guide for more  
information).  
A = 1 Mbps; B = 150 Mbps  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to  
the year and workweek of the mold date.  
R = Product (OPN) Revision  
F = Wafer Fab  
Circle = 1.1 mm Diameter  
Left-Justified  
“e3” Pb-Free Symbol.  
First two characters of the manufacturing code.  
A = Assembly Site  
I = Internal Code  
Last four characters of the manufacturing code.  
XX = Serial Lot Number  
Notes:  
1. The Si8422 has one reverse channel.  
2. The Si8423 has zero reverse channels.  
Rev. 1.3  
35  
 
 
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
Updated “ Features” on page 1.  
Updated transient immunity  
Removed Block Diagram from page 1.  
Added chip graphics on page 1.  
Added Peak Eye Diagram jitter in Tables 1, 2, and 3.  
Updated transient immunity  
Moved Table 12 to page 22.  
Added "3. Device Operation" on page 22.  
Added "3.4. Fail-Safe Operating Mode" on page 24.  
Moved “Typical Performance Characteristics” to  
page 25.  
Deleted RF Radiated Emissions section.  
Deleted RF Magnetic and Common-Mode Transient  
Immunity section.  
Updated MSL rating to MSL2A.  
Revision 1.0 to Revision 1.1  
Numerous text edits.  
Added notes to Tables 18 and 19.  
Revision 1.1 to Revision 1.2  
Updated Timing Characteristics in Tables 1, 2, and 3.  
Revision 1.2 to Revision 1.3  
Added references to AEC-Q100 qualified throughout.  
Changed all 60747-5-2 references to 60747-5-5.  
Updated Table 13 “Ordering Guide”.  
Added table Notes 1 and 2.  
Removed references to moisture sensitivity levels.  
Added Revision D ordering information.  
Removed older revisions.  
Updated "11. Top Marking: 16-Pin Wide Body SOIC"  
on page 34.  
36  
Rev. 1.3  
Si8410/20/21 (5 kV)  
Si8422/23 (2.5 & 5 kV)  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
Rev. 1.3  
37  

相关型号:

SI8422AB-D-IS

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8422AB-D-ISR

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8422AD-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8422AD-D-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8422BB-B-IS

Analog Circuit, 1 Func, CMOS, PDSO8, ROHS COMPLIANT, SOIC-8
SILICON

SI8422BB-D-ISR

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8422BD-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8422BD-D-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8422BD-D-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8423

LOW-POWER, SINGLE AND DUAL-CHANNEL DIGITAL ISOLATORS
ETC

SI8423AB-D-IS

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8423AB-D-ISR

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON