SI8440AA-C-IS [SILICON]

Interface Circuit,;
SI8440AA-C-IS
型号: SI8440AA-C-IS
厂家: SILICON    SILICON
描述:

Interface Circuit,

文件: 总32页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8440/41/42/45  
ULTRA LOW POWER QUAD-CHANNEL DIGITAL ISOLATOR  
Features  
Pin Assignments  
High-speed operation:  
DC – 150 Mbps  
Low propagation delay:  
<10 ns typical  
Wide Operating Supply Voltage:  
2.75–5.5 V  
Precise timing:  
2 ns pulse width distortion  
1 ns channel-channel matching  
2 ns pulse width skew  
Up to 2500 VRMS isolation  
Wide Body SOIC  
VDD1  
VDD2  
GND2  
B1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Transient Immunity: 25 kV/µs  
Tri-state outputs with ENABLE  
control  
DC correct  
No start-up initialization required  
<30 µs startup time  
High temperature operation:  
125 °C at 150 Mbps  
Wide body and narrow body SOIC-  
16 packages  
GND1  
A1  
Ultra low power  
5 V Operation:  
A2  
B2  
I< 1.25 mA per channel at 1 Mbps  
I< 2 mA per channel at 10 Mbps  
I< 6 mA per channel at 100 Mbps  
2.75 V Operation:  
I< 1.25 mA per channel at 1 Mbps  
I< 2 mA per channel at 10 Mbps  
I< 4 mA per channel at 100 Mbps  
A3  
A4  
B3  
B4  
EN1/NC  
EN2/NC  
GND2  
GND1  
Top View  
Narrow Body SOIC  
Applications  
VDD1  
VDD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND2  
B1  
GND1  
A1  
Isolated switch mode supplies  
Isolated ADC, DAC  
Motor control  
Power factor correction systems  
A2  
B2  
A3  
A4  
B3  
Safety Regulatory Approvals*  
B4  
UL recognition: 2500 VRMS for 1  
Minute per UL1577  
VDE certification conformity  
IEC 60747-5-2  
EN1/NC  
EN2/NC  
GND2  
GND1  
(VDE0884 Part 2)  
CSA component acceptance notice  
Top View  
Description  
Silicon Lab's family of ultra low power digital isolators are CMOS devices  
that employ an RF coupler to transmit digital information across an isolation  
barrier. Very high speed operation at low power levels is achieved. These  
parts are available in 16-pin wide body and narrow body SOIC packages.  
Two speed grade options (1 and 150 Mbps) are available and achieve typical  
propagation delay of less than 10 ns.  
Block Diagram  
Si8440/45  
Si8441  
Si8442  
A1  
A2  
A3  
A4  
NC  
A1  
A2  
A3  
A4  
A1  
A2  
B1  
B2  
B1  
B2  
B1  
B2  
B3  
B4  
B3  
B4  
A3  
B3  
A4  
B4  
EN2/NC EN1  
EN2  
EN1  
EN2  
*Note: Pending.  
Rev. 0.64 1/09  
Copyright © 2009 by Silicon Laboratories  
Si8440/41/42/45  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si8440/41/42/45  
2
Rev. 0.64  
Si8440/41/42/45  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Performance Characteristics* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.3. Enable Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.4. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.5. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . .23  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
7. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
9. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Rev. 0.64  
3
Si8440/41/42/45  
1. Electrical Specifications  
Table 1. Electrical Characteristics1  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC; applies to narrow and wide-body SOIC packages)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
4.8  
0.2  
2
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Enable Input High Current  
Enable Input Low Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
µA  
µA  
L
I
V
= V  
ENx IH  
ENH  
I
V
= V  
IL  
2
ENL  
ENx  
DC Supply Current (All inputs 0 V or at Supply)  
Si8440Ax, Bx and Si8445Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
3
6
3
4
6
12  
6
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
Si8441Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
3
5
4
4
6
10  
8
DD1  
DD2  
DD1  
DD2  
Si8442Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
2
4
4
4
4
8
8
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8440Ax, Bx  
V
V
4
4
7
7
mA  
mA  
mA  
DD1  
DD2  
Si8441Ax, Bx  
V
V
4
4
7
7
DD1  
DD2  
Si8442Ax, Bx  
V
V
4
4
6
6
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8440Bx, Si8445Bx  
V
V
5
20  
10  
30  
mA  
mA  
DD1  
DD2  
Si8441Bx  
V
V
9
16  
14  
24  
DD1  
DD2  
4
Rev. 0.64  
Si8440/41/42/45  
Table 1. Electrical Characteristics1 (Continued)  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC; applies to narrow and wide-body SOIC packages)  
Parameter  
Si8442Bx  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
13  
13  
20  
20  
mA  
DD1  
DD2  
Timing Characteristics  
Si844xA  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
1
Mbps  
ns  
250  
35  
t
, t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Si844xB  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
5
8
150  
6
Mbps  
ns  
t
, t  
See Figure 2  
See Figure 2  
15  
3
ns  
PHL PLH  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
For All Models  
t
10  
3
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 2  
20  
2
2
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 2  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
Enable to Data Valid  
t
t
See Figure 1  
See Figure 1  
9
9
ns  
ns  
µs  
en1  
Enable to Data Tri-State  
en2  
3
Start-up Time  
t
30  
SU  
Notes:  
1. Electrical specification values are preliminary. Various specifications will be adjusted to reflect actual performance as  
final product characterization data becomes available.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 0.64  
5
Si8440/41/42/45  
ENABLE  
OUTPUTS  
ten1  
ten2  
Figure 1. ENABLE Timing Diagram  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
90%  
10%  
1.4 V  
10%  
Typical  
Output  
tr  
tf  
Figure 2. Propagation Delay Timing  
6
Rev. 0.64  
Si8440/41/42/45  
Table 2. Electrical Characteristics1  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 ºC; applies to narrow and wide-body SOIC packages)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
3.1  
0.2  
2
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Enable Input High Current  
Enable Input Low Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
µA  
µA  
L
I
V
= V  
ENx IH  
ENH  
I
V
= V  
IL  
2
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8440Ax, Bx and Si8445Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
3
6
3
4
6
12  
6
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
Si8441Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
3
5
4
4
6
10  
8
DD1  
DD2  
DD1  
DD2  
Si8442Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
2
4
4
4
4
8
8
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8440Ax, Bx  
V
V
4
4
7
7
mA  
mA  
mA  
DD1  
DD2  
Si8441Ax, Bx  
V
V
4
4
7
7
DD1  
DD2  
Si8442Ax, Bx  
V
V
4
4
6
6
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8440Bx, Si8445Bx  
V
V
4
13  
8
20  
mA  
mA  
mA  
DD1  
DD2  
Si8441Bx  
V
V
7
12  
11  
18  
DD1  
DD2  
Si8442Bx  
V
V
10  
10  
15  
15  
DD1  
DD2  
Rev. 0.64  
7
Si8440/41/42/45  
Table 2. Electrical Characteristics1 (Continued)  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 ºC; applies to narrow and wide-body SOIC packages)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si844xA  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
1
Mbps  
ns  
250  
35  
t
,t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Si844xB  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
5
8
150  
6
Mbps  
ns  
t
, t  
See Figure 2  
See Figure 2  
15  
3
ns  
PHL PLH  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
For All Models  
t
10  
3
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 2  
20  
2
2
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 2  
Common Mode Transient  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
Immunity at Logic Low Output  
Enable to Data Valid  
t
t
See Figure 1  
See Figure 1  
9
9
ns  
ns  
µs  
en1  
en2  
Enable to Data Tri-State  
3
Start-up Time  
t
30  
SU  
Notes:  
1. Electrical specification values are preliminary. Various specifications will be adjusted to reflect actual performance as  
final product characterization data becomes available.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
8
Rev. 0.64  
Si8440/41/42/45  
Table 3. Electrical Characteristics1  
(VDD1 = 2.75 V, VDD2 = 2.75 V, TA = –40 to 125 ºC; applies to narrow and wide-body SOIC packages)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
2.3  
0.2  
2
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Enable Input High Current  
Enable Input Low Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
µA  
µA  
L
I
V
= V  
ENx IH  
ENH  
I
V
= V  
IL  
2
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8440Ax, Bx and Si8445Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
3
6
3
4
6
12  
6
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
Si8441Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
3
5
4
4
6
10  
8
DD1  
DD2  
DD1  
DD2  
Si8442Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
2
4
4
4
4
8
8
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8440Ax, Bx  
V
V
4
4
7
7
mA  
mA  
mA  
DD1  
DD2  
Si8441Ax, Bx  
V
V
4
4
7
7
DD1  
DD2  
Si8442Ax, Bx  
V
V
4
4
6
6
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8440Bx, Si8445Bx  
V
V
4
12  
8
20  
mA  
mA  
mA  
DD1  
DD2  
Si8441Bx  
V
V
7
10  
11  
18  
DD1  
DD2  
Si8442Bx  
V
V
9
9
15  
15  
DD1  
DD2  
Rev. 0.64  
9
Si8440/41/42/45  
Table 3. Electrical Characteristics1 (Continued)  
(VDD1 = 2.75 V, VDD2 = 2.75 V, TA = –40 to 125 ºC; applies to narrow and wide-body SOIC packages)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si844xA  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
1
Mbps  
ns  
250  
35  
t
,t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Si844xB  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
5
8
150  
6
Mbps  
ns  
t
, t  
See Figure 2  
See Figure 2  
15  
3
ns  
PHL PLH  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
For All Models  
t
10  
3
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 2  
20  
2
2
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 2  
Common Mode Transient  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
Immunity at Logic Low Output  
Enable to Data Valid  
t
t
See Figure 1  
See Figure 1  
15  
15  
30  
ns  
ns  
µs  
en1  
Enable to Data Tri-State  
en2  
3
Start-up Time  
t
SU  
Notes:  
1. Electrical specification values are preliminary. Various specifications will be adjusted to reflect actual performance as  
final product characterization data becomes available.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the  
same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 0.64  
Si8440/41/42/45  
Table 4. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
6
Unit  
ºC  
ºC  
V
Storage Temperature  
Ambient Temperature Under Bias  
Supply Voltage  
T
STG  
T
A
V
, V  
DD2  
DD1  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s)  
L
10  
mA  
ºC  
260  
3600  
V
RMS  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum ratings for extended periods may degrade performance.  
Table 5. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
125  
5.5  
Unit  
ºC  
V
Ambient Operating Temperature*  
Supply Voltage  
T
150 Mbps, 15 pF, 5 V  
A
V
2.75  
2.75  
DD1  
DD2  
V
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 6. Regulatory Information*  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice. For more details, see File 232873.  
VDE  
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
*Note: Pending. All 2.5 kVRMS rated devices are production tested to >3.6 kVRMS for 1 sec. For more information, see  
"6. Ordering Guide" on page 25.  
Rev. 0.64  
11  
Si8440/41/42/45  
Table 7. Insulation and Safety-Related Specifications  
Value  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
NB  
SOIC-16 SOIC-16  
Minimum Air Gap (Clearance)  
L(IO1)  
L(IO2)  
7.7  
8.1  
5.0  
4.6  
mm  
mm  
mm  
V
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
0.008  
>175  
0.008  
>175  
Tracking Resistance (Comparative Tracking  
Index)  
CTI  
DIN IEC  
60112/VDE 0303  
Part 1  
1
12  
12  
Resistance (Input-Output)  
R
10  
10  
IO  
1
Capacitance (Input-Output)  
C
f = 1 MHz  
2
2
pF  
pF  
IO  
2
Input Capacitance  
C
4.0  
4.0  
I
Notes:  
1. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 are shorted  
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
2. Measured from input pin to ground.  
Table 8. IEC 60664-1 (VDE 0884 Part 2) Ratings  
Parameter  
Test Conditions  
Material Group  
Specification  
Basic isolation group  
IIIa  
I-IV  
I-III  
I-II  
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
RMS  
RMS  
RMS  
Installation Classification  
12  
Rev. 0.64  
Si8440/41/42/45  
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
Maximum Working Insulation Voltage  
VIORM  
560  
V peak  
Method a  
After Environmental Tests  
Subgroup 1  
896  
(VIORM x 1.6 = VPR, tm = 60 sec,  
Partial Discharge < 5 pC)  
Method b1  
VPR  
V peak  
Input to Output Test Voltage  
(VIORM x 1.875 = VPR, 100%  
Production Test, tm = 1 sec,  
Partial Discharge < 5 pC)  
1050  
After Input and/or Safety Test  
Subgroup 2/3  
(VIORM x 1.2 = VPR, tm = 60 sec,  
672  
Partial Discharge < 5 pC)  
Highest Allowable Overvoltage (Transient  
Overvoltage, tTR = 10 sec)  
4000  
V peak  
VTR  
Pollution Degree (DIN VDE 0110, Table 1)  
Insulation Resistance at TS, VIO = 500 V  
2
RS  
>109  
*Note: This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is  
ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21.  
Table 10. IEC Safety Limiting Values1  
Max  
Parameter  
Symbol  
Test Condition  
Min Typ  
Unit  
WB  
NB  
SOIC-16 SOIC-16  
Case Temperature  
T
I
150  
220  
150  
210  
°C  
S
Safety input, output, or  
supply current  
= 100 °C/W (WB SOIC-16),  
105 °C/W (NB SOIC-16),  
mA  
S
JA  
V = 5.5 V, T = 150 °C, T = 25 °C  
I
J
A
Device Power  
Dissipation  
P
275  
275  
mW  
D
2
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 3.  
2. The Si8440 is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
Rev. 0.64  
13  
Si8440/41/42/45  
Table 11. Thermal Characteristics  
Typ  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
WB  
NB  
SOIC-16 SOIC-16  
IC Junction-to-Case Ther-  
mal Resistance  
Thermocouple located at  
center of package  
30  
45  
ºC/W  
ºC/W  
JC  
IC Junction-to-Air Thermal  
Resistance  
100  
105  
JA  
500  
450  
400  
300  
200  
100  
0
370  
220  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 3. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
500  
430  
400  
350  
300  
210  
200  
100  
0
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 4. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
14  
Rev. 0.64  
Si8440/41/42/45  
2. Typical Performance Characteristics*  
6
14  
12  
10  
8
5.5  
5V  
5V  
5
3.3V  
2.75V  
4.5  
4
3.3V  
2.75V  
6
3.5  
3
4
2
2.5  
2
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 5. Si8440/45 Typical VDD1 Supply  
Current vs. Data Rate 5, 3.3, and 2.75 V  
Operation  
Figure 7. Si8441 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
30  
25  
5V  
5V  
25  
20  
20  
3.3V  
3.3V  
15  
15  
10  
2.75V  
2.75V  
10  
5
0
5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 6. Si8440/45 Typical VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.75 V  
Operation (15 pF Load)  
Figure 8. Si8441 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
(15 pF Load)  
20  
5V  
15  
3.3V  
10  
2.75V  
5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Figure 9. Si8442 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.75 V  
Operation (15 pF Load)  
Rev. 0.64  
15  
Si8440/41/42/45  
11  
10.5  
Falling Edge  
10  
9.5  
9
8.5  
8
Rising Edge  
7.5  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 10. Propagation Delay  
vs. Temperature 5 V Operation  
11  
10.5  
10  
Falling Edge  
9.5  
9
8.5  
8
Rising Edge  
7.5  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 11. Propagation Delay  
vs. Temperature 3.3 V Operation  
11  
10.5  
10  
Falling Edge  
9.5  
9
Rising Edge  
8.5  
8
7.5  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 12. Propagation Delay  
vs. Temperature 2.75 V Operation  
16  
Rev. 0.64  
Si8440/41/42/45  
3. Application Information  
3.1. Theory of Operation  
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in  
Figure 13.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 13. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 14 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 14. Modulation Scheme  
Rev. 0.64  
17  
Si8440/41/42/45  
3.2. Eye Diagram  
Figure 15 illustrates an eye-diagram taken on an Si8440. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8440 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.  
Figure 15. Eye Diagram  
18  
Rev. 0.64  
Si8440/41/42/45  
4. Layout Recommendations  
Dielectric isolation is a set of specifications produced by the safety regulatory agencies from around the world that  
describes the physical construction of electrical equipment that derives power from a high-voltage power system  
such as 100–240 V systems or industrial power systems. The dielectric test (or HIPOT test) given in the safety  
AC  
specifications places a very high voltage between the input power pins of a product and the user circuits and the  
user touchable surfaces of the product. For the IEC relating to products deriving their power from the 220–240 V  
power grids, the test voltage is 2500 V (or 3750 V —the peak equivalent voltage).  
AC  
DC  
There are two terms described in the safety specifications:  
Creepage—the distance along the insulating surface an arc may travel.  
Clearance—the distance through the shortest path through air that an arc may travel.  
Figure 16 illustrates the accepted method of providing the proper creepage distance along the surface. For a  
220–240 V application, this distance is 8 mm and the wide body SOIC package must be used. There must be no  
AC  
copper traces within this 8 mm exclusion area, and the surface should have a conformal coating such as solder  
resist. The digital isolator chip must straddle this exclusion area.  
IEC Specified  
Creepage  
Distance  
Figure 16. Creepage Distance  
4.1. Supply Bypass  
The Si844x requires a 1 µF bypass capacitor between V  
be placed as close as possible to the package.  
and GND1 and V  
and GND2. The capacitor should  
DD1  
DD2  
Rev. 0.64  
19  
Si8440/41/42/45  
4.2. Input and Output Characteristics  
The Si844x inputs and outputs are standard CMOS drivers/receivers. Table 12 details powered and unpowered  
operation of the Si84xx.  
Table 12. Si84xx Operation Table  
V
EN  
VDDI  
VDDO  
V
Comments  
I
O
1,2,3,4  
1,5,6  
1,5,6  
1,2  
1,2  
Input  
State  
State  
Input  
Output  
H
L
H or NC  
H or NC  
L
P
P
P
P
P
P
H
L
Enabled, normal operation  
X
X
P
Hi-Z  
L
Disabled  
H or NC  
UP  
Upon the transition of VDDI from unpowered to  
powered, V returns to the same state as V in  
O
I
less than 1 µs.  
X
X
L
UP  
P
P
Hi-Z  
L
Disabled  
X
UP  
Upon the transition of VDDI from unpowered to  
powered, V returns to the same state as V in  
O
I
less than 1 µs, if EN is in either the H or NC state.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN  
is the enable control input located on the same output side.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si84xx is  
operating in noisy environments.  
4. No Connect (NC) replaces EN1 on Si8440/45. No Connect replaces EN2 on the Si8445. No Connects are not internally  
connected and can be left floating, tied to VDD, or tied to GND.  
5. "Powered" state (P) is defined as 2.75 V < VDD < 5.5 V.  
6. "Unpowered" state (UP) is defined as VDD = 0 V.  
20  
Rev. 0.64  
Si8440/41/42/45  
4.3. Enable Inputs  
Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. EN1, EN2 logic  
operation is summarized for each isolator product in Table 13. These inputs are internally pulled-up to local VDD by  
a 3 µA current source allowing them to be connected to an external logic level (high or low) or left floating. To  
minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are  
unused, it is recommended they be connected to an external logic level, especially if the Si84xx is operating in a  
noisy environment.  
Table 13. Enable Input Truth Table  
P/N  
EN1*  
H
EN2*  
H
Operation  
Outputs B1, B2, B3, B4 are enabled.  
Si8440  
L
Outputs B1, B2, B3, B4 are disabled and in high impedance state.  
Output A4 enabled.  
Si8441  
Si8442  
Si8445  
X
L
X
Output A4 disabled and in high impedance state.  
Outputs B1, B2, B3 are enabled.  
X
H
X
L
Outputs B1, B2, B3 are disabled and in high impedance state.  
Outputs A3 and A4 are enabled.  
H
X
L
X
Outputs A3 and A4 are disabled and in high impedance state.  
Outputs B1 and B2 are enabled.  
X
H
X
L
Outputs B1 and B2 are disabled and in high impedance state.  
Outputs B1, B2, B3, B4 are enabled.  
*Note: X = not applicable; H = Logic High; L = Logic Low.  
Rev. 0.64  
21  
Si8440/41/42/45  
4.4. RF Radiated Emissions  
The Si8440 family uses a RF carrier frequency of approximately 700 MHz. This results in a small amount of  
radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but due to a small  
amount of RF energy driving the isolated ground planes which can act as a dipole antenna.  
The unshielded Si8440 evaluation board passes FCC requirements. Table 14 shows measured emissions  
compared to FCC requirements.  
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less  
efficient antenna.  
Table 14. Radiated Emissions*  
Frequency  
(GHz)  
Measured  
(dBµV/m)  
FCC Spec  
(dBµV/m) to Spec (dB)  
Compared  
2.094  
2.168  
4.210  
4.337  
6.315  
6.505  
8.672  
70.0  
68.3  
61.9  
60.7  
58.3  
60.7  
45.6  
74.0  
74.0  
74.0  
74.0  
74.0  
74.0  
74.0  
–4.0  
–5.7  
–12.1  
–13.3  
–15.7  
–13.3  
–28.4  
*Note: Data table to be updated pending final characterization.  
22  
Rev. 0.64  
Si8440/41/42/45  
4.5. RF Immunity and Common Mode Transient Immunity  
The Si8440 family has very high common mode transient immunity while transmitting data. This is typically  
measured by applying a square pulse with very fast rise/fall times between the isolated grounds. Measurements  
show no failures up to 25 kV/µs. During a high surge event the output may glitch low for up to 20–30 ns, but the  
output corrects immediately after the surge event.  
The Si844x family passes the industrial requirements of CISPR24 for RF immunity of 3 V/m using an unshielded  
evaluation board. As shown in Figure 17, the isolated ground planes form a parasitic dipole antenna, while  
Figure 18 shows the RMS common mode voltage versus frequency above which the Si844x becomes susceptible  
to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage below the  
envelope specified in Figure 18. The PCB should be laid-out to not act as an efficient antenna for the RF frequency  
of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal enclosure, or  
otherwise shielded.  
GND1  
GND2  
Isolator  
Dipole  
Antenna  
Figure 17. Dipole Antenna  
5
4
3
2
1
0
500  
1000  
Frequency (MHz)  
1500  
2000  
Figure 18. RMS Common Mode Voltage vs. Frequency  
(Data to be Updated Pending Final Characterization)  
Rev. 0.64  
23  
Si8440/41/42/45  
5. Pin Descriptions  
VDD1  
VDD2  
GND2  
B1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
A1  
A2  
B2  
B3  
A3  
A4  
B4  
EN1/NC  
EN2/NC  
GND2  
GND1  
Top View  
Narrow and Wide Body SOIC  
Name  
SOIC-16 Pin#  
Type  
Description  
V
1
2
Supply  
Side 1 power supply.  
DD1  
GND1  
A1  
Ground  
Side 1 ground.  
3
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital Input  
Ground  
Side 1 digital input.  
A2  
4
Side 1 digital input.  
A3  
5
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 active high enable. NC on Si8440/45.  
Side 1 ground.  
A4  
6
EN1/NC*  
GND1  
GND2  
EN2/NC*  
B4  
7
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
Digital I/O  
Digital I/O  
Side 2 active high enable. NC on Si8445.  
Side 2 digital input or output.  
Side 2 digital input or output.  
B3  
B2  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B1  
GND2  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
24  
Rev. 0.64  
Si8440/41/42/45  
6. Ordering Guide  
Si84XYSV-R-TPn  
Isolator Product  
Data channel count  
Reverse channel count  
Max Data Rate (A = 1 Mbps, B = 150 Mbps)  
Insulation Rating (A = 1 kV, B = 2.5 kV)  
Product Revision  
Temp Range (I = –40 to +125 ºC)  
Package Type (S = SOIC)  
Package Extension (1 = Narrow Body)  
Figure 19. Ordering Part Number (OPN) Convention  
Table 15. Ordering Guide  
Ordering Part Number of Number of Maximum Isolation Temp Range  
Package  
Type  
Legacy Part  
Equivalent  
Number (OPN)  
Inputs  
Inputs  
Data Rate Rating  
VDD1 Side VDD2 Side (Mbps)  
Si8440AA-C-IS  
Si8440BA-C-IS  
Si8441AA-C-IS  
Si8441BA-C-IS  
Si8442AA-C-IS  
Si8442BA-C-IS  
Si8445BA-C-IS  
Si8440AA-C-IS1  
Si8440BA-C-IS1  
Si8441AA-C-IS1  
Si8441BA-C-IS1  
Si8442AA-C-IS1  
Si8442BA-C-IS1  
Si8445BA-C-IS1  
4
4
3
3
2
2
4
4
4
3
3
2
2
4
0
0
1
1
2
2
0
0
0
1
1
2
2
0
1
150  
1
150  
1
1 kVrms –40 to 125 °C WB SOIC-16  
150  
150  
1
150  
1
150  
1
1 kVrms –40 to 125 °C NB SOIC-16  
150  
150  
Rev. 0.64  
25  
Si8440/41/42/45  
Table 15. Ordering Guide (Continued)  
Ordering Part Number of Number of Maximum Isolation Temp Range  
Package  
Type  
Legacy Part  
Equivalent  
Number (OPN)  
Inputs  
Inputs  
Data Rate Rating  
VDD1 Side VDD2 Side (Mbps)  
Si8440AB-C-IS  
Si8440BB-C-IS  
4
4
0
0
1
Si8440-A-IS  
150  
Si8440-B-IS,  
Si8440-C-IS  
Si8441AB-C-IS  
Si8441BB-C-IS  
3
3
1
1
1
Si8441-A-IS  
150  
Si8441-B-IS,  
Si8441-C-IS  
2.5 kVrms –40 to 125 °C WB SOIC-16  
Si8442AB-C-IS  
Si8442BB-C-IS  
2
2
2
2
1
Si8442-A-IS  
150  
Si8442-B-IS,  
Si8442-C-IS  
Si8445BB-C-IS  
Si8440AB-C-IS1  
Si8440BB-C-IS1  
Si8441AB-C-IS1  
Si8441BB-C-IS1  
Si8442AB-C-IS1  
Si8442BB-C-IS1  
Si8445BB-C-IS1  
4
4
4
3
3
2
2
4
0
0
0
1
1
2
2
0
150  
1
Si8445-B-IS  
150  
1
150  
1
2.5 kVrms –40 to 125 °C NB SOIC-16  
150  
150  
Note: All packages are Pb-free and RoHS compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260  
°C according to the JEDEC industry standard classifications, and peak solder temperature.  
26  
Rev. 0.64  
Si8440/41/42/45  
7. Package Outline: 16-Pin Wide Body SOIC  
Figure 20 illustrates the package details for the Quad-Channel Digital Isolator. Table 16 lists the values for the  
dimensions shown in the illustration.  
Figure 20. 16-Pin Wide Body SOIC  
Table 16. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
2.65  
0.3  
A
A1  
D
E
E1  
b
0.1  
10.3 BSC  
10.3 BSC  
7.5 BSC  
0.31  
0.51  
0.33  
c
0.20  
e
1.27 BSC  
h
0.25  
0.4  
0°  
0.75  
1.27  
7°  
L
Rev. 0.64  
27  
Si8440/41/42/45  
8. Package Outline: 16-Pin Narrow Body SOIC  
Figure 21 illustrates the package details for the Si84xx in a 16-pin narrow-body SOIC (SO-16). Table 17 lists the  
values for the dimensions shown in the illustration. All packages are Pb-free and RoHS compliant. Moisture  
sensitivity level is MSL3 with peak reflow temperature of 260 °C according to the JEDEC industry classification and  
peak solder temperature.  
Figure 21. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 17. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
28  
Rev. 0.64  
Si8440/41/42/45  
Table 17. Package Diagram Dimensions (Continued)  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-  
012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-  
STD-020C specification for Small Body Components.  
Rev. 0.64  
29  
Si8440/41/42/45  
9. Top Marking  
Si84XYSV  
YYWWTTTTTT  
e3  
TW  
Figure 22. Si8440/41/42/45 Top Marking  
Table 18. Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (4, 3, 2, 1)  
Y = # of reverse channels (2, 1, 0)  
S = Speed Grade  
A = 1 Mbps; B = 150 Mbps  
V = Insulation rating  
(See Ordering Guide for more  
information).  
A = 1 kV; B = 2.5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by Assembly House. Corresponds to the year  
and workweek of the mold date.  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly House  
“e3” Pb-Free Symbol  
Circle = 1.5 mm Diameter  
(Center-Justified)  
Country of Origin ISO Code  
Abbreviation  
TW = Taiwan  
30  
Rev. 0.64  
Si8440/41/42/45  
DOCUMENT CHANGE LIST  
Revision 0.62 to Revision 0.63  
Rev 0.63 is the first revision of this document that  
applies to the new series of ultra low power isolators  
featuring pinout and functional compatibility with  
previous isolator products.  
Updated “1. Electrical Specifications”.  
Updated “6. Ordering Guide”.  
Added “9. Top Marking”.  
Revision 0.63 to Revision 0.64  
Updated all specs to reflect latest silicon.  
Rev. 0.64  
31  
Si8440/41/42/45  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: PowerProducts@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
32  
Rev. 0.64  

相关型号:

SI8440AA-C-IS1R

Analog Circuit, CMOS, PDSO16
SILICON

SI8440AA-D-IS1

LOW-POWER QUAD-CHANNEL DIGITAL ISOLATOR
SILICON

SI8440AB-C-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8440AB-C-IS1R

Analog Circuit, CMOS, PDSO16
SILICON

SI8440AB-C-ISR

Analog Circuit, CMOS, PDSO16
SILICON

SI8440AB-D-IS

LOW-POWER QUAD-CHANNEL DIGITAL ISOLATOR
SILICON

SI8440AB-D-IS1

LOW-POWER QUAD-CHANNEL DIGITAL ISOLATOR
SILICON

SI8440AB-D-IS1R

Analog Circuit, CMOS, PDSO16
SILICON

SI8440AB-D-ISR

Analog Circuit, CMOS, PDSO16
SILICON

SI8440BA-C-IS

Interface Circuit,
SILICON

SI8440BA-C-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8440BA-C-IS1R

Analog Circuit, CMOS, PDSO16
SILICON