SI8451AB-A-IS1R [SILICON]

Interface Circuit;
SI8451AB-A-IS1R
型号: SI8451AB-A-IS1R
厂家: SILICON    SILICON
描述:

Interface Circuit

文件: 总35页 (文件大小:768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8450/51/52/55  
LOW POWER FIVE-CHANNEL DIGITAL ISOLATOR  
Features  
High-speed operation  
DC to 150 Mbps  
Up to 2500 V  
isolation  
RMS  
60-year life at rated working  
No start-up initialization required  
voltage  
Wide Operating Supply Voltage:  
Precise timing (typical)  
2.70–5.5 V  
<10 ns worst case  
Ultra-low-power (typical)  
1.5 ns pulse width distortion  
0.5 ns channel-channel skew  
2 ns propagation delay skew  
6 ns minimum pulse width  
Transient Immunity 25 kV/µs  
5 V Operation:  
< 1.6 mA per channel at 1 Mbps  
< 6 mA per channel at 100 Mbps  
2.70 V Operation:  
Ordering Information:  
< 1.4 mA per channel at 1 Mbps  
< 4 mA per channel at 100 Mbps  
High electromagnetic immunity  
Wide temperature range  
–40 to 125 °C at 150 Mbps  
RoHS-compliant packages  
SOIC-16 narrow body  
See page 28.  
Applications  
Industrial automation systems  
Hybrid electric vehicles  
Isolated ADC, DAC  
Motor control  
Isolated switch mode supplies  
Power inverters  
Communications systems  
Safety Regulatory Approvals  
UL 1577 recognized  
VDE certification conformity  
Up to 2500 VRMS for 1 minute  
IEC 60747-5-2  
(VDE0884 Part 2)  
CSA component notice 5A  
approval  
IEC 60950-1, 61010-1  
(reinforced insulation)  
Description  
Silicon Lab's family of ultra-low-power digital isolators are CMOS  
devices offering substantial data rate, propagation delay, power, size,  
reliability, and external BOM advantages when compared to legacy  
isolation technologies. The operating parameters of these products  
remain stable across wide temperature ranges throughout their  
service life. For ease of design, only VDD bypass capacitors are  
required.  
Data rates up to 150 Mbps are supported, and all devices achieve  
worst-case propagation delays of less than 10 ns. All products are  
safety certified by UL, CSA, and VDE and support withstand voltages  
of up to 2.5 kVrms. These devices are available in a 16-pin narrow-  
body SOIC package.  
Rev. 1.6 4/18  
Copyright © 2018 by Silicon Laboratories  
Si8450/51/52/55  
Si8450/51/52/55  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3. Errata and Design Migration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.1. Enable Pin Causes Outputs to Go Low (Revision A Only) . . . . . . . . . . . . . . . . . . . .25  
3.2. Power Supply Bypass Capacitors (Revision A and Revision B) . . . . . . . . . . . . . . . .25  
3.3. Latch Up Immunity (Revision A Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4. Pin Descriptions (Si8450/51/52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5. Pin Descriptions (Si8455) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
7. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
9. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9.1. 16-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Rev. 1.6  
2
Si8450/51/52/55  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature*  
Supply Voltage  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
125  
5.5  
Unit  
°C  
V
T
150 Mbps, 15 pF, 5 V  
A
V
2.70  
2.70  
DD1  
DD2  
V
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 2. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
5.75  
6.0  
Unit  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Ambient Temperature Under Bias  
T
A
3
Supply Voltage (Revision A)  
V
V
, V  
, V  
DD1  
DD1  
DD2  
DD2  
3
Supply Voltage (Revision B)  
V
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s)  
Notes:  
I
10  
mA  
°C  
O
260  
3600  
V
RMS  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
3. See "6. Ordering Guide" on page 28 for more information.  
Rev. 1.6  
3
Si8450/51/52/55  
Table 3. Electrical Characteristics  
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
85  
O
Enable Input High Current  
Enable Input Low Current  
I
V
= V  
IH  
2.0  
2.0  
µA  
µA  
ENH  
ENx  
I
V
= V  
IL  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at Supply)  
Si8450Ax, Bx, Si8455Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.6  
2.9  
7.0  
3.1  
2.4  
4.4  
10.5  
4.7  
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
Si8451Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2.0  
3.0  
6.0  
4.1  
3.0  
4.5  
9.0  
6.2  
DD1  
DD2  
DD1  
DD2  
Si8452Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2.3  
2.7  
5.4  
4.7  
3.5  
4.1  
8.1  
7.1  
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8450Ax, Bx, Si8455Bx  
V
V
4.3  
3.5  
6.5  
5.3  
mA  
mA  
mA  
DD1  
DD2  
Si8451Ax, Bx  
V
V
4.1  
4.0  
6.2  
6.0  
DD1  
DD2  
Si8452Ax, Bx  
V
V
4.1  
4.0  
6.2  
6.0  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
4. Start-up time is the time period from the application of power to valid data at the output.  
4
Rev. 1.6  
Si8450/51/52/55  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)  
Parameter  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8450Bx, Si8455Bx  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
4.3  
4.8  
6.5  
6.7  
mA  
mA  
mA  
DD1  
DD2  
Si8451Bx  
V
V
4.4  
5.0  
6.2  
7.0  
DD1  
DD2  
Si8452Bx  
V
V
4.6  
4.8  
6.4  
6.7  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8450Bx, Si8455Bx  
V
V
4.6  
24  
6.9  
30  
mA  
mA  
mA  
DD1  
DD2  
Si8451Bx  
V
V
8.6  
20.4  
10.8  
25.5  
DD1  
DD2  
Si8452Bx  
V
V
12.6  
16.5  
15.8  
20.6  
DD1  
DD2  
Timing Characteristics  
Si845xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
1.0  
250  
35  
Mbps  
ns  
t
, t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.6  
5
Si8450/51/52/55  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si845xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
150  
6.0  
9.5  
2.5  
Mbps  
ns  
3.0  
t
, t  
See Figure 2  
See Figure 2  
6.0  
1.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.8  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 2  
3.8  
2.8  
25  
5.0  
3.7  
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 2  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
kV/µs  
I
DD  
3
Enable to Data Valid  
t
t
See Figure 1  
See Figure 1  
5.0  
7.0  
15  
8.0  
9.2  
40  
ns  
ns  
µs  
en1  
3
Enable to Data Tri-State  
en2  
3,4  
Start-up Time  
t
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
4. Start-up time is the time period from the application of power to valid data at the output.  
6
Rev. 1.6  
Si8450/51/52/55  
ENABLE  
OUTPUTS  
ten1  
ten2  
Figure 1. ENABLE Timing Diagram  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 2. Propagation Delay Timing  
Rev. 1.6  
7
Si8450/51/52/55  
Table 4. Electrical Characteristics  
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
85  
O
Enable Input High Current  
Enable Input Low Current  
I
V
= V  
IH  
2.0  
2.0  
µA  
µA  
ENH  
ENx  
I
V
= V  
IL  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8450Ax, Bx, Si8455Bx  
V
V
V
V
All inputs 0 dc  
All inputs 0 dc  
All inputs 1 dc  
All inputs 1 dc  
1.6  
2.9  
7.0  
3.1  
2.4  
4.4  
10.5  
4.7  
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
Si8451Ax, Bx  
V
V
V
V
All inputs 0 dc  
All inputs 0 dc  
All inputs 1 dc  
All inputs 1 dc  
2.0  
3.0  
6.0  
4.1  
3.0  
4.5  
9.0  
6.2  
DD1  
DD2  
DD1  
DD2  
Si8452Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2.3  
2.7  
5.4  
4.7  
3.5  
4.1  
8.1  
7.1  
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8450Ax, Bx, Si8455Bx  
V
V
4.3  
3.5  
6.5  
5.3  
mA  
mA  
mA  
DD1  
DD2  
Si8451Ax, Bx  
V
V
4.1  
4.0  
6.2  
6.0  
DD1  
DD2  
Si8452Ax, Bx  
V
V
4.1  
4.0  
6.2  
6.0  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
4. Start-up time is the time period from the application of power to valid data at the output.  
8
Rev. 1.6  
Si8450/51/52/55  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)  
Parameter  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8450Bx, Si8455Bx  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
4.3  
4.8  
6.5  
6.7  
mA  
mA  
mA  
DD1  
DD2  
Si8451Bx  
V
V
4.4  
5.0  
6.2  
7.0  
DD1  
DD2  
Si8452Bx  
V
V
4.6  
4.8  
6.4  
6.7  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8450Bx, Si8455Bx  
V
V
4.4  
16.8  
6.6  
21  
mA  
mA  
mA  
DD1  
DD2  
Si8451Bx  
V
V
6.9  
14.5  
8.6  
18.1  
DD1  
DD2  
Si8452Bx  
V
V
9.5  
12  
11.9  
15  
DD1  
DD2  
Timing Characteristics  
Si845xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
1.0  
250  
35  
Mbps  
ns  
t
,t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.6  
9
Si8450/51/52/55  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si845xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
150  
6.0  
9.5  
2.5  
Mbps  
ns  
3.0  
t
, t  
See Figure 2  
See Figure 2  
6.0  
1.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.8  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 2  
4.3  
3.0  
25  
6.1  
4.3  
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 2  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
kV/µs  
I
DD  
3
Enable to Data Valid  
t
t
See Figure 1  
See Figure 1  
5.0  
7.0  
15  
8.0  
9.2  
40  
ns  
ns  
µs  
en1  
3
Enable to Data Tri-State  
en2  
3,4  
Start-up Time  
t
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
4. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 1.6  
Si8450/51/52/55  
Table 5. Electrical Characteristics1  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
l
= –4 mA  
V
,V  
– 0.4  
2.3  
0.2  
V
OH  
OH  
DD1 DD2  
V
I
= 4 mA  
0.4  
±10  
V
OL  
OL  
I
µA  
L
2
Output Impedance  
Z
85  
O
Enable Input High Current  
Enable Input Low Current  
I
V
= V  
IH  
2.0  
2.0  
µA  
µA  
ENH  
ENx  
I
V
= V  
IL  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8450Ax, Bx, Si8455Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.6  
2.9  
7.0  
3.1  
2.4  
4.4  
10.5  
4.7  
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
Si8451Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2.0  
3.0  
6.0  
4.1  
3.0  
4.5  
9.0  
6.2  
DD1  
DD2  
DD1  
DD2  
Si8452Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2.3  
2.7  
5.4  
4.7  
3.5  
4.1  
8.1  
7.1  
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8450Ax, Bx, Si8455Bx  
V
V
4.3  
3.5  
6.5  
5.3  
mA  
mA  
mA  
DD1  
DD2  
Si8451Ax, Bx  
V
V
4.1  
4.0  
6.2  
6.0  
DD1  
DD2  
Si8452Ax, Bx  
V
V
4.1  
4.0  
6.2  
6.0  
DD1  
DD2  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the  
same supply voltages, load, and ambient temperature.  
4. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
5. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.6  
11  
Si8450/51/52/55  
Table 5. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8450Bx, Si8455Bx  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
4.3  
4.8  
6.5  
6.7  
mA  
mA  
mA  
DD1  
DD2  
Si8451Bx  
V
V
4.4  
5.0  
6.2  
7.0  
DD1  
DD2  
Si8452Bx  
V
V
4.6  
4.8  
6.4  
6.7  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8450Bx, Si8455Bx  
V
V
4.3  
13.3  
6.5  
16.6  
mA  
mA  
mA  
DD1  
DD2  
Si8451Bx  
V
V
6.2  
11.7  
7.8  
14.6  
DD1  
DD2  
Si8452Bx  
V
V
8.0  
9.9  
10  
12.4  
DD1  
DD2  
Timing Characteristics  
Si845xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
1.0  
250  
35  
Mbps  
ns  
t
,t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
3
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the  
same supply voltages, load, and ambient temperature.  
4. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
5. Start-up time is the time period from the application of power to valid data at the output.  
12  
Rev. 1.6  
Si8450/51/52/55  
Table 5. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si845xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
150  
6.0  
9.5  
2.5  
Mbps  
ns  
3.0  
t
, t  
See Figure 2  
See Figure 2  
6.0  
1.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
- t  
|
PLH PHL  
3
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.8  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 2  
4.8  
3.2  
25  
6.5  
4.6  
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 2  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
kV/µs  
I
DD  
4
Enable to Data Valid  
t
t
See Figure 1  
See Figure 1  
5.0  
7.0  
15  
8.0  
9.2  
40  
ns  
ns  
µs  
en1  
4
Enable to Data Tri-State  
en2  
4,5  
Start-up Time  
t
SU  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the  
same supply voltages, load, and ambient temperature.  
4. See "3. Errata and Design Migration Guidelines" on page 25 for more details.  
5. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.6  
13  
Si8450/51/52/55  
Table 6. Regulatory Information*  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 300 V  
60950-1: Up to 130 V  
VDE  
reinforced insulation working voltage; up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
basic insulation working voltage.  
RMS  
RMS  
RMS  
RMS  
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 560 V  
for basic insulation working voltage.  
peak  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 2500 V isolation voltage for basic insulation.  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
For more information, see "6. Ordering Guide" on page 28.  
Table 7. Insulation and Safety-Related Specifications  
Value  
Parameter  
Symbol  
Test Condition  
Unit  
NB SOIC-16  
4.9  
1
Nominal Air Gap (Clearance)  
L(IO1)  
L(IO2)  
mm  
mm  
mm  
1
Nominal External Tracking (Creepage)  
4.01  
Minimum Internal Gap (Internal Clearance)  
0.008  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
V
RMS  
0.019  
mm  
Erosion Depth  
2
12  
Resistance (Input-Output)  
R
10  
IO  
2
Capacitance (Input-Output)  
C
2.0  
4.0  
pF  
pF  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in "7. Package Outline:  
16-Pin Narrow Body SOIC" on page 30. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the  
NB SOIC-16 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA  
certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-16 package.  
2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 are shorted  
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
3. Measured from input pin to ground.  
14  
Rev. 1.6  
Si8450/51/52/55  
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Test Condition  
Specification  
Basic Isolation Group  
Material Group  
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*  
Parameter  
Symbol  
Test Condition  
Characteristic Unit  
V
560  
V peak  
V peak  
Maximum Working Insulation Voltage  
Input to Output Test Voltage  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
V
1050  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
V
t = 60 sec  
4000  
2
V peak  
Transient Overvoltage  
IOTM  
Pollution Degree (DIN VDE 0110, Table 1)  
Insulation Resistance at T , V = 500 V  
9
R
>10  
S
S
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of  
40/125/21.  
Table 10. IEC Safety Limiting Values1  
Max  
Unit  
Parameter  
Symbol  
Test Condition  
Min Typ  
NB SOIC-16  
150  
Case Temperature  
T
I
°C  
S
Safety input, output, or  
supply current  
= 105 °C/W (NB SOIC-16),  
JA  
215  
mA  
S
V = 5.5 V, T = 150 °C, T = 25 °C  
I
J
A
Device Power Dissipa-  
tion  
P
415  
mW  
D
2
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 3.  
2. The Si845x is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
Rev. 1.6  
15  
Si8450/51/52/55  
Table 11. Thermal Characteristics  
Typ  
NB SOIC-16  
105  
Parameter  
Symbol  
Unit  
IC Junction-to-Air Thermal Resistance  
°C/W  
JA  
500  
430  
V
DD1, VDD2 = 2.70 V  
400  
300  
200  
100  
0
360  
215  
VDD1, VDD2 = 3.6 V  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 3. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
16  
Rev. 1.6  
Si8450/51/52/55  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si845x channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si845x channel is shown in  
Figure 4.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 4. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 5 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 5. Modulation Scheme  
Rev. 1.6  
17  
Si8450/51/52/55  
2.2. Eye Diagram  
Figure 6 illustrates an eye-diagram taken on an Si8450. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8450 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.  
Figure 6. Eye Diagram  
18  
Rev. 1.6  
Si8450/51/52/55  
2.3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Table 12. Table 13 provides an  
overview of the output states when the Enable pins are active.  
Table 12. Si845x Logic Operation Table  
1,2  
V
EN  
VDDI  
VDDO  
Comments  
I
V Output  
O
1,2,3,4  
1,5,6  
1,5,6  
1,2  
Input  
State  
State  
Input  
H
L
H or NC  
H or NC  
L
P
P
P
P
P
P
H
L
Enabled, normal operation.  
7
8
X
P
Hi-Z or L  
L
Disabled.  
7
X
H or NC  
UP  
Upon transition of VDDI from unpowered to pow-  
ered, V returns to the same state as V in less  
O
I
than 1 µs.  
7
8
X
L
UP  
P
P
Hi-Z or L  
Disabled.  
7
7
X
X
UP  
Undetermined Upon transition of VDDO from unpowered to pow-  
ered, V returns to the same state as V within  
O
I
1 µs, if EN is in either the H or NC state. Upon tran-  
sition of VDDO from unpowered to powered, V  
returns to Hi-Z within 1 µs if EN is L.  
O
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN  
is the enable control input located on the same output side.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si845x is  
operating in noisy environments.  
4. No Connect (NC) replaces EN1 on Si8450. No Connects are not internally connected and can be left floating, tied to  
VDD, or tied to GND.  
5. “Powered” state (P) is defined as 2.70 V < VDD < 5.5 V.  
6. “Unpowered” state (UP) is defined as VDD = 0 V.  
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
8. When using the enable pin (EN) function, the output pin state is driven to a logic low state when the EN pin is disabled  
(EN = 0) in Revision A. Revision B outputs go into a high-impedance state when the EN pin is disabled (EN = 0). See  
"3. Errata and Design Migration Guidelines" on page 25 for more details.  
Rev. 1.6  
19  
Si8450/51/52/55  
Table 13. Enable Input Truth Table1  
Operation  
1,2  
1,2  
P/N  
EN1  
EN2  
H
Si8450  
Outputs B1, B2, B3, B4, B5 are enabled and follow input state.  
L
Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance  
3
state.  
Si8451  
Si8452  
Si8455  
H
L
X
X
H
L
Output A5 enabled and follow input state.  
3
Output A5 disabled and Logic Low or in high impedance state.  
X
X
H
L
Outputs B1, B2, B3, B4 are enabled and follow input state.  
Outputs B1, B2, B3, B4 are disabled and Logic Low or in high impedance state.  
Outputs A4 and A5 are enabled and follow input state.  
3
X
X
H
L
3
Outputs A4 and A5 are disabled and Logic Low or in high impedance state.  
X
X
Outputs B1, B2, B3 are enabled and follow input state.  
3
Outputs B1, B2, B3 are disabled and Logic Low or in high impedance state.  
Outputs B1, B2, B3, B4, B5 are enabled and follow input state.  
Notes:  
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are  
internally pulled-up to local VDD by a 3 µA current source allowing them to be connected to an external logic level (high  
or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If  
EN1, EN2 are unused, it is recommended they be connected to an external logic level, especially if the Si845x is  
operating in a noisy environment.  
2. X = not applicable; H = Logic High; L = Logic Low.  
3. When using the enable pin (EN) function, the output pin state is driven to a logic low state when the EN pin is disabled  
(EN = 0) in Revision A. Revision B outputs go into a high-impedance state when the EN pin is disabled (EN = 0). See  
"3. Errata and Design Migration Guidelines" on page 25 for more details.  
20  
Rev. 1.6  
Si8450/51/52/55  
2.4. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 6 on page 14 and Table 7 on page 14 detail the  
working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component  
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for  
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, etc.)  
requirements before starting any design that uses a digital isolator.  
The following sections detail the recommended bypass and decoupling components necessary to ensure robust  
overall performance and reliability for systems using the Si84xx digital isolators.  
2.4.1. Supply Bypass  
Digital integrated circuit components typically require 0.1 µF (100 nF) bypass capacitors when used in electrically  
quiet environments. However, digital isolators are commonly used in hazardous environments with excessively  
noisy power supplies. To counteract these harsh conditions, it is recommended that an additional 1 µF bypass  
capacitor be added between VDD and GND on both sides of the package. The capacitors should be placed as  
close as possible to the package to minimize stray inductance. If the system is excessively noisy, it is  
recommended that the designer add 50 to 100 resistors in series with the VDD supply voltage source and 50 to  
300 resistors in series with the digital inputs/outputs (see Figure 7). For more details, see "3. Errata and Design  
Migration Guidelines" on page 25.  
All components upstream or downstream of the isolator should be properly decoupled as well. If these components  
are not properly decoupled, their supply noise can couple to the isolator inputs and outputs, potentially causing  
damage if spikes exceed the maximum ratings of the isolator (6 V). In this case, the 50 to 300 resistors protect  
the isolator's inputs/outputs (note that permanent device damage may occur if the absolute maximum ratings are  
exceeded). Functional operation should be restricted to the conditions specified in Table 1, “Recommended  
Operating Conditions,” on page 3.  
2.4.2. Pin Connections  
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
2.4.3. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces. The series termination resistor values should be scaled appropriately while keeping in  
mind the recommendations described in “2.4.1. Supply Bypass” above.  
V Source 2  
R2 (50 – 100 )  
V Source 1  
R1 (50 – 100 )  
C1  
VDD1  
A1  
VDD2  
B1  
C4  
50 – 300   
50 – 300   
0.1 F  
0.1 F  
C2  
C3  
Input/Output  
Input/Output  
1 F  
1 F  
Ax  
Bx  
50 – 300   
50 – 300   
GND1  
GND2  
Figure 7. Recommended Bypass Components for the Si84xx Digital Isolator Family  
Rev. 1.6  
21  
Si8450/51/52/55  
2.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 3, 4, and 5 for actual specification limits.  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
5V  
5V  
3.3V  
3.3V  
2.70V  
2.70V  
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 11. Si8450/55 Typical VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation (15 pF Load)  
Figure 8. Si8450/55 Typical VDD1 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation  
35  
35  
30  
5V  
25  
30  
25  
20  
15  
10  
5
5V  
3.3V  
20  
3.3V  
15  
2.70V  
10  
5
2.70V  
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 12. Si8451 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 9. Si8451 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
35  
30  
35  
30  
25  
5V  
25  
20  
15  
10  
5
3.3V  
5V  
20  
15  
10  
5
3.3V  
2.70V  
2.70V  
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 13. Si8452 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 10. Si8452 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Rev. 1.6  
22  
Si8450/51/52/55  
10  
Falling Edge  
9
8
7
6
5
Rising Edge  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 14. Propagation Delay  
vs. Temperature  
23  
Rev. 1.6  
Si8450/51/52/55  
Figure 15. Si84xx Time-Dependent Dielectric Breakdown  
24  
Rev. 1.6  
Si8450/51/52/55  
3. Errata and Design Migration Guidelines  
The following errata apply to Revision A devices only. See "6. Ordering Guide" on page 28 for more details. No  
errata exist for Revision B devices.  
3.1. Enable Pin Causes Outputs to Go Low (Revision A Only)  
When using the enable pin (EN1, EN2) function on the 5-channel (Si8450/1/2) isolators, the corresponding output  
pin states (pin = An, Bn, where n can be 1…5) are driven to a logic low (to ground) when the enable pin is disabled  
(EN1 or EN2 = 0). This functionality is different from the legacy 3-channel (Si8430/1) and 4-channel (Si8440/1/2)  
isolators. On those devices, the isolator outputs go into a high-impedance state (Hi-Z) when the enable pin is  
disabled (EN1 = 0 or EN2 = 0).  
3.1.1. Resolution  
The enable pin functionality causing the outputs to go low is supported in production for Revision A of the Si845x  
devices. Revision B corrects the enable pin functionality (i.e., the outputs will go into the high-impedance state to  
match the legacy isolator products). Refer to the Ordering Guide sections of the data sheet(s) for more information.  
3.2. Power Supply Bypass Capacitors (Revision A and Revision B)  
When using the Si845x isolators with power supplies > 4.5 V, sufficient VDD bypass capacitors must be present on  
both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/µs (which is > 9 µs for a > 4.5 V  
supply). Although rise time is power supply dependent, > 1 µF capacitors are required on both power supply pins  
(VDD1, VDD2) of the isolator device.  
3.2.1. Resolution  
For recommendations on resolving this issue, see "2.4.1. Supply Bypass" on page 21. Additionally, refer to "6.  
Ordering Guide" on page 28 for current ordering information.  
3.3. Latch Up Immunity (Revision A Only)  
Latch up immunity generally exceeds ± 200 mA per pin. Exceptions: Certain pins provide < 100 mA of latch-up  
immunity. To increase latch-up immunity on these pins, 100 of equivalent resistance must be included in series  
with all of the pins listed in Table 14. The 100 equivalent resistance can be comprised of the source driver's  
output resistance and a series termination resistor.  
3.3.1. Resolution  
This issue has been corrected with Revision B of the device. Refer to the Ordering Guide for more information.  
Table 14. Affected Ordering Part Numbers (Revision A Only)  
Device  
Affected Ordering Part Numbers*  
Pin#  
Name  
Pin Type  
Revision  
2
6
A1  
A5  
Input  
Input or Output  
Input  
SI8450SV-A-IS/IS1, SI8451SV-A-IS/IS1,  
SI8452SV-A-IS/IS1  
A
10  
14  
2
EN2  
B2  
Output  
A1  
Input  
SI8455SV-A-IS/IS1  
A
6
A5  
Input  
14  
B2  
Output  
*Note: SV = Speed Grade/Isolation Rating (AA, AB, BA, BB).  
Rev. 1.6  
25  
Si8450/51/52/55  
4. Pin Descriptions (Si8450/51/52)  
VDD1  
VDD2  
B1  
VDD1  
A1  
VDD1  
VDD2  
B1  
VDD2  
B1  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
A1  
A2  
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
B2  
B2  
A2  
B2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A3  
A4  
B3  
A3  
A4  
A5  
B3  
A3  
B3  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
RF  
XMITR  
RF  
RCVR  
B4  
B4  
A4  
B4  
XMITR  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
A5  
B5  
B5  
A5  
B5  
EN2/NC  
GND2  
NC  
EN2  
GND2  
EN2  
EN1  
EN1  
GND1  
GND1  
GND1  
GND2  
Si8450  
Si8452  
Si8451  
Name  
SOIC-16 Pin#  
Type  
Supply  
Description  
V
1
2
Side 1 power supply.  
Side 1 digital input.  
DD1  
A1  
A2  
Digital Input  
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital Input  
Ground  
3
Side 1 digital input.  
A3  
4
Side 1 digital input.  
A4  
5
Side 1 digital input or output.  
Side 1 digital input or output.  
A5  
6
EN1/NC*  
GND1  
GND2  
EN2  
B5  
7
Side 1 active high enable. NC on Si8450.  
Side 1 ground.  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
Digital I/O  
Digital I/O  
Side 2 active high enable.  
Side 2 digital input or output.  
Side 2 digital input or output.  
B4  
B3  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B2  
B1  
V
Supply  
Side 2 power supply.  
DD2  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
26  
Rev. 1.6  
Si8450/51/52/55  
5. Pin Descriptions (Si8455)  
VDD1  
VDD2  
GND2  
B1  
GND1  
A1  
I
s
o
l
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A2  
B2  
a
t
RF  
XMITR  
RF  
RCVR  
B3  
A3  
i
o
n
RF  
XMITR  
RF  
RCVR  
A4  
B4  
RF  
XMITR  
RF  
RCVR  
A5  
B5  
GND1  
GND2  
Si8455  
Name  
SOIC-16 Pin#  
Type  
Description*  
V
1
2
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
DD1  
GND1  
A1  
3
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Ground  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 ground.  
A2  
4
A3  
5
A4  
6
A5  
7
GND1  
GND2  
B5  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B4  
B3  
B2  
B1  
GND2  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
*Note: For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15  
must also be connected to external ground.  
Rev. 1.6  
27  
Si8450/51/52/55  
6. Ordering Guide  
These devices are not recommended for new designs. Please see the Si865x data sheet for replacement options.  
Table 15. Ordering Guide for Valid OPNs1  
Ordering Part  
Number  
Alternative Part Number of  
Number of  
Maximum Isolation Package Type  
Number  
(APN)  
Inputs VDD1 Inputs VDD2 Data Rate  
Rating  
(OPN)  
Side  
Side  
(Mbps)  
2
Revision B Devices  
Si8450AA-B-IS1  
Si8450BA-B-IS1  
Si8451AA-B-IS1  
Si8451BA-B-IS1  
Si8452AA-B-IS1  
Si8452BA-B-IS1  
Si8455BA-B-IS1  
Si8450AB-B-IS1  
Si8450BB-B-IS1  
Si8451AB-B-IS1  
Si8451BB-B-IS1  
Si8452AB-B-IS1  
Si8452BB-B-IS1  
Si8650AB-B-IS1  
Si8650BB-B-IS1  
Si8651AB-B-IS1  
Si8651BB-B-IS1  
Si8652AB-B-IS1  
Si8652BB-B-IS1  
Si8655BB-B-IS1  
Si8650AB-B-IS1  
Si8650BB-B-IS1  
Si8651AB-B-IS1  
Si8651BB-B-IS1  
Si8652AB-B-IS1  
Si8652BB-B-IS1  
Si8655BB-B-IS1  
5
5
4
4
3
3
5
5
5
4
4
3
3
5
0
0
1
1
2
2
0
0
0
1
1
2
2
0
1
150  
1
150  
1
1 kVrms  
NB SOIC-16  
150  
150  
1
150  
1
150  
1
2.5 kVrms NB SOIC-16  
150  
150  
Si8455BB-B-IS1  
Notes:  
1. All packages are RoHS-compliant.  
2. Revision A and Revision B devices are supported for existing designs.  
28  
Rev. 1.6  
Si8450/51/52/55  
Table 15. Ordering Guide for Valid OPNs1 (Continued)  
Ordering Part  
Number  
Alternative Part Number of  
Number of  
Maximum Isolation Package Type  
Number  
(APN)  
Inputs VDD1 Inputs VDD2 Data Rate  
Rating  
(OPN)  
Side  
Side  
(Mbps)  
2
Revision A Devices  
Si8450AA-A-IS1  
Si8450BA-A-IS1  
Si8451AA-A-IS1  
Si8451BA-A-IS1  
Si8452AA-A-IS1  
Si8452BA-A-IS1  
Si8455BA-A-IS1  
Si8450AB-A-IS1  
Si8450BB-A-IS1  
Si8451AB-A-IS1  
Si8451BB-A-IS1  
Si8452AB-A-IS1  
Si8452BB-A-IS1  
Si8650AB-B-IS1  
Si8650BB-B-IS1  
Si8651AB-B-IS1  
Si8651BB-B-IS1  
Si8652AB-B-IS1  
Si8652BB-B-IS1  
Si8655BB-B-IS1  
Si8650AB-B-IS1  
Si8650BB-B-IS1  
Si8651AB-B-IS1  
Si8651BB-B-IS1  
Si8652AB-B-IS1  
Si8652BB-B-IS1  
Si8655BB-B-IS1  
5
5
4
4
3
3
5
5
5
4
4
3
3
5
0
0
1
1
2
2
0
0
0
1
1
2
2
0
1
150  
1
150  
1
1 kVrms  
NB SOIC-16  
150  
150  
1
150  
1
150  
1
2.5 kVrms NB SOIC-16  
150  
150  
Si8455BB-A-IS1  
Notes:  
1. All packages are RoHS-compliant.  
2. Revision A and Revision B devices are supported for existing designs.  
Rev. 1.6  
29  
Si8450/51/52/55  
7. Package Outline: 16-Pin Narrow Body SOIC  
Figure 16 illustrates the package details for the Si845x in a 16-pin narrow-body SOIC (SO-16). Table 16 lists the  
values for the dimensions shown in the illustration.  
Figure 16. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 16. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
0.25 BSC  
30  
Rev. 1.6  
Si8450/51/52/55  
Table 16. Package Diagram Dimensions (Continued)  
Dimension  
Min  
0.25  
0°  
Max  
0.50  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012,  
Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.6  
31  
Si8450/51/52/55  
8. Land Pattern: 16-Pin Narrow Body SOIC  
Figure 17 illustrates the recommended land pattern details for the Si845x in a 16-pin narrow-body SOIC. Table 17  
lists the values for the dimensions shown in the illustration.  
Figure 17. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 17. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
32  
Rev. 1.6  
Si8450/51/52/55  
9. Top Marking: 16-Pin Narrow Body SOIC  
9.1. 16-Pin Narrow Body SOIC Top Marking  
Si84XYSV  
YYWWTTTTTT  
e3  
9.2. Top Marking Explanation  
Table 18. 16-Pin Narrow Body SOIC Top Marking Table  
Si84 = Isolator product series  
XY = Channel Configuration  
Base Part Number  
Ordering Options  
X = # of data channels (5, 4, 3, 2, 1)  
Y = # of reverse channels (2, 1, 0)*  
S = Speed Grade  
A = 1 Mbps; B = 150 Mbps  
V = Insulation rating  
A = 1 kV; B = 2.5 kV  
Line 1 Marking:  
(See Ordering Guide for more  
information).  
Circle = 1.2 mm Diameter  
“e3” Pb-Free Symbol  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the  
year and work week of the mold date.  
Line 2 Marking:  
Manufacturing Code from Assembly Purchase Order  
form.  
TTTTTT = Mfg code  
Circle = 1.2 mm diameter  
“e3” Pb-Free Symbol.  
*Note: Si8455 has 0 reverse channels.  
Rev. 1.6  
33  
Si8450/51/52/55  
Revision 1.3 to Revision 1.4  
DOCUMENT CHANGE LIST  
Removed wide-body SOIC-16 package information  
Revision 0.1 to Revision 0.2  
and references throughout document.  
Updated all specs to reflect latest silicon.  
Updated "2.4.1. Supply Bypass" on page 21.  
Added "3. Errata and Design Migration Guidelines"  
Added Figure 7, “Recommended Bypass  
Components for the Si84xx Digital Isolator Family,”  
on page 21.  
on page 25.  
Added "9. Top Marking: 16-Pin Narrow Body SOIC"  
on page 33.  
Updated "3.2. Power Supply Bypass Capacitors  
(Revision A and Revision B)" on page 25.  
Revision 0.2 to Revision 1.0  
Revision 1.4 to Revision 1.5  
Updated document to reflect availability of Revision  
B silicon.  
Updated "6. Ordering Guide" on page 28 to include  
new title note and “ Alternative Part Number (APN)”  
column.  
Updated Tables 3,4, and 5.  
Updated all supply currents and channel-channel skew.  
Updated Table 2.  
Updated absolute maximum supply voltage.  
Updated Table 7.  
Revision 1.5 to Revision 1.6  
Deleted references to MSL ratings throughout  
document to eliminate redundancy and maintain  
compliance with corporate data sheet format  
requirements. The MSL ratings are specified in the  
Qualification Report for the product.  
Updated clearance and creepage dimensions.  
Updated Table 12.  
Updated Note 7.  
Updated Table 13.  
Updated Note 3.  
Updated "3. Errata and Design Migration Guidelines"  
on page 25.  
Updated "6. Ordering Guide" on page 28.  
Revision 1.0 to Revision 1.1  
Updated Tables 3, 4, and 5.  
Updated notes in both tables to reflect output  
impedance of 85 .  
Updated rise and fall time specifications.  
Updated CMTI value.  
Revision 1.1 to Revision 1.2  
Updated document throughout to include MSL  
improvements to MSL2A.  
Updated "6. Ordering Guide" on page 28.  
Updated Note 1 in ordering guide table to reflect  
improvement and compliance to MSL2A moisture  
sensitivity level.  
Revision 1.2 to Revision 1.3  
Updated " Features" on page 1.  
Moved Tables 1 and 2 to page 3.  
Updated Tables 6, 7, 8, and 9.  
Updated Table 12 footnotes.  
Added Figure 15, “Si84xx Time-Dependent  
Dielectric Breakdown,” on page 24.  
Rev. 1.6  
34  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI8451AB-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8451AB-B-IS1R

Interface Circuit
SILICON

SI8451BA-A-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
SILICON

SI8451BA-A-IS1R

Interface Circuit
SILICON

SI8451BA-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8451BA-B-IS1R

Interface Circuit
SILICON

SI8451BB-A-IS1R

Interface Circuit
SILICON

SI8451BB-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8452

LOW POWER FIVE-CHANNEL DIGITAL ISOLATOR
ETC

SI8452AA-A-IS1

暂无描述
SILICON

SI8452AA-A-IS1R

Interface Circuit
SILICON

SI8452AA-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON