SI8622EC-A-ISR [SILICON]

Analog Circuit, CMOS, PDSO8;
SI8622EC-A-ISR
型号: SI8622EC-A-ISR
厂家: SILICON    SILICON
描述:

Analog Circuit, CMOS, PDSO8

光电二极管
文件: 总36页 (文件大小:461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8610/20/21/22  
LOW-POWER SINGLE AND DUAL-CHANNEL DIGITAL ISOLATORS  
Features  
High-speed operation  
DC to 150 Mbps  
No start-up initialization required  
Selectable fail-safe mode  
Default high or low output  
(ordering option)  
Precise timing (typical)  
Wide Operating Supply Voltage  
2.5–5.5 V  
Up to 5000 VRMS isolation  
10 ns propagation delay  
1.5 ns pulse width distortion  
0.5 ns channel-channel skew  
2 ns propagation delay skew  
5 ns minimum pulse width  
Transient Immunity 50 kV/µs  
AEC-Q100 qualification  
Wide temperature range  
–40 to 125 °C  
60-year life at rated working voltage  
High electromagnetic immunity  
Ultra low power (typical)  
5 V Operation  
1.6 mA per channel at 1 Mbps  
5.5 mA per channel at 100 Mbps  
2.5 V Operation  
1.5 mA per channel at 1 Mbps  
3.5 mA per channel at 100 Mbps  
Schmitt trigger inputs  
RoHS-compliant packages  
SOIC-16 wide body  
SOIC-8 narrow body  
Applications  
Industrial automation systems  
Medical electronics  
Hybrid electric vehicles  
Isolated ADC, DAC  
Motor control  
Power inverters  
Ordering Information:  
Isolated switch mode supplies  
Communications systems  
See page 27.  
Safety Regulatory Approvals  
UL 1577 recognized  
Up to 5000 VRMS for 1 minute  
VDE certification conformity  
IEC 60747-5-2  
(VDE0884 Part 2)  
EN60950-1  
CSA component notice 5A approval  
IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
(reinforced insulation)  
Description  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices  
offering substantial data rate, propagation delay, power, size, reliability, and  
external BOM advantages over legacy isolation technologies. The operating  
parameters of these products remain stable across wide temperature ranges  
and throughout device service life for ease of design and highly uniform  
performance. All device versions have Schmitt trigger inputs for high noise  
immunity and only require VDD bypass capacitors.  
Data rates up to 150 Mbps are supported, and all devices achieve propagation  
delays of less than 10 ns. Ordering options include a choice of isolation ratings  
(3.75 and 5 kV) and a selectable fail-safe operating mode to control the default  
output state during power loss. All products >1 kVRMS are safety certified by  
UL, CSA, and VDE, and products in wide-body packages support reinforced  
insulation withstanding up to 5 kVRMS  
.
Rev. 1.1 9/11  
Copyright © 2011 by Silicon Laboratories  
Si8610/20/21/22  
Si8610/20/21/22  
2
Rev. 1.1  
Si8610/20/21/22  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Pin Descriptions (Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5. Pin Descriptions (Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
11.1. 16-Pin Wide Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
12. Top Marking: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
12.1. 8-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
12.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.1  
3
Si8610/20/21/22  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
2.5  
Typ  
25  
Max  
125*  
5.5  
Unit  
°C  
V
Ambient Operating Temperature*  
T
150 Mbps, 15 pF, 5 V  
A
V
DD1  
Supply Voltage  
V
2.5  
5.5  
V
DD2  
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 2. Electrical Characteristics  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
VDDUV+  
VDDUV–  
Test Condition  
Min  
1.95  
1.88  
50  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
V
, V  
rising  
falling  
DD1  
DD2  
DD2  
V
, V  
V
DD1  
VDD Negative-Going Lockout  
Hysteresis  
VDD  
mV  
HYS  
Positive-Going Input Threshold  
VT+  
VT–  
All inputs rising  
1.4  
1.0  
1.67  
1.23  
1.9  
1.4  
V
V
Negative-Going Input  
Threshold  
All inputs falling  
Input Hysteresis  
V
0.38  
2.0  
0.44  
0.50  
V
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
50  
O
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
4
Rev. 1.1  
Si8610/20/21/22  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Supply Current (All inputs 0 V or at Supply)  
Si8610Bx, Ex  
V = 0(Bx), 1(Ex)  
I
V
V
V
V
0.6  
0.8  
1.8  
0.8  
1.2  
1.5  
2.9  
1.5  
DD1  
DD2  
DD1  
DD2  
V = 0(Bx), 1(Ex)  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8620Bx, Ex  
V = 0(Bx), 1(Ex)  
I
V
V
V
V
0.8  
1.4  
3.3  
1.4  
1.4  
2.2  
5.3  
2.2  
DD1  
DD2  
DD1  
DD2  
V = 0(Bx), 1(Ex)  
mA  
mA  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8621Bx, Ex  
V = 0(Bx), 1(Ex)  
I
V
V
V
V
1.2  
1.2  
2.4  
2.4  
1.9  
1.9  
3.8  
3.8  
DD1  
DD2  
DD1  
DD2  
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8622Bx, Ex  
V = 0(Bx), 1(Ex)  
I
V
V
V
V
2.6  
3.3  
4.0  
4.8  
4.2  
5.3  
6.4  
7.7  
DD1  
DD2  
DD1  
DD2  
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
1.2  
0.9  
2.0  
1.5  
mA  
mA  
mA  
mA  
VDD2  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
1.6  
3.1  
2.4  
Si8621Bx, Ex  
VDD1  
VDD2  
1.9  
1.9  
2.9  
2.9  
Si8622Bx, Ex  
VDD1  
VDD2  
3.4  
4.2  
5.1  
6.2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.1  
5
Si8610/20/21/22  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
1.2  
1.2  
2.0  
2.0  
mA  
mA  
mA  
mA  
VDD2  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
2.2  
3.1  
3.3  
Si8621Bx, Ex  
VDD1  
VDD2  
2.2  
2.2  
3.3  
3.3  
Si8622Bx, Ex  
VDD1  
VDD2  
3.7  
4.4  
5.5  
6.7  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
VDD2  
1.2  
4.8  
2.0  
6.7  
mA  
mA  
mA  
mA  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
8.9  
3.1  
12.5  
Si8621Bx, Ex  
VDD1  
VDD2  
5.8  
5.8  
8.1  
8.1  
Si8622Bx, Ex  
VDD1  
VDD2  
7.6  
8.2  
10.6  
11.4  
Timing Characteristics  
Si861x/2x Bx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
150  
5.0  
13  
Mbps  
ns  
5.0  
t
, t  
See Figure 1  
See Figure 1  
8.0  
0.2  
ns  
PHL PLH  
PWD  
4.5  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
2.0  
0.4  
4.5  
2.5  
ns  
ns  
PSK(P-P)  
t
PSK  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
6
Rev. 1.1  
Si8610/20/21/22  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
All Models  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
CL = 15 pF  
See Figure 1  
tr  
2.5  
4.0  
ns  
Output Rise Time  
CL = 15 pF  
tf  
35  
2.5  
350  
50  
4.0  
ns  
ps  
Output Fall Time  
See Figure 1  
Peak Eye Diagram Jitter  
tJIT(PK)  
CMTI  
tSU  
See Figure 6  
Common Mode Transient  
Immunity  
Startup Time3  
VI = VDD or 0 V  
kV/µs  
µs  
15  
40  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing  
Rev. 1.1  
7
Si8610/20/21/22  
Table 3. Electrical Characteristics  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
1.95  
1.88  
50  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
VDDUV+ VDD1, VDD2 rising  
VDDUV–  
VDDHYS  
V
DD1, VDD2 falling  
V
VDD Negative-Going Lockout  
Hysteresis  
mV  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
VHYS  
VIH  
All inputs rising  
1.4  
1.67  
1.23  
0.44  
1.9  
1.4  
0.50  
V
V
All inputs falling  
1.0  
0.38  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Impedance1  
2.0  
V
VIL  
0.8  
V
VOH  
VOL  
IL  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD2 – 0.4  
3.1  
0.2  
V
0.4  
±10  
V
µA  
ZO  
50  
DC Supply Current (All inputs 0 V or at supply)  
Si8610Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
0.6  
0.8  
1.8  
0.8  
1.2  
1.5  
2.9  
1.5  
VDD2  
mA  
mA  
mA  
mA  
VDD1  
VDD2  
Si8620Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
0.8  
1.4  
3.3  
1.4  
1.4  
2.2  
5.3  
2.2  
VDD2  
VDD1  
VDD2  
Si8621Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
1.2  
1.2  
2.4  
2.4  
1.9  
1.9  
3.8  
3.8  
VDD2  
VDD1  
VDD2  
Si8622Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
2.6  
3.3  
4.0  
4.8  
4.2  
5.3  
6.4  
7.7  
VDD2  
VDD1  
VDD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
8
Rev. 1.1  
Si8610/20/21/22  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
1.2  
0.9  
2.0  
1.5  
mA  
mA  
mA  
mA  
VDD2  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
1.6  
3.1  
2.4  
Si8621Bx, Ex  
VDD1  
VDD2  
1.9  
1.9  
2.9  
2.9  
Si8622Bx, Ex  
VDD1  
VDD2  
3.4  
4.2  
5.1  
6.2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
1.2  
1.0  
2.0  
1.8  
mA  
mA  
mA  
mA  
VDD2  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
1.9  
3.1  
2.8  
Si8621Bx, Ex  
VDD1  
VDD2  
2.0  
2.0  
3.0  
3.0  
Si8622Bx, Ex  
VDD1  
VDD2  
3.5  
4.3  
5.3  
6.4  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
1.2  
3.4  
2.0  
5.1  
mA  
mA  
mA  
mA  
VDD2  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
6.3  
3.1  
8.8  
Si8621Bx, Ex  
VDD1  
VDD2  
4.4  
4.4  
6.1  
6.1  
Si8622Bx, Ex  
VDD1  
VDD2  
5.9  
6.6  
8.2  
9.3  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.1  
9
Si8610/20/21/22  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si861x/2x Bx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
150  
5.0  
13  
Mbps  
ns  
5.0  
t
PHL, tPLH  
See Figure 1  
See Figure 1  
8.0  
0.2  
ns  
PWD  
4.5  
ns  
|tPLH - tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
All Models  
tPSK(P-P)  
tPSK  
2.0  
0.4  
4.5  
2.5  
ns  
ns  
CL = 15 pF  
See Figure 1  
Output Rise Time  
tr  
2.5  
4.0  
ns  
CL = 15 pF  
Output Fall Time  
tf  
35  
2.5  
350  
50  
4.0  
ns  
ps  
See Figure 1  
Peak Eye Diagram Jitter  
tJIT(PK)  
CMTI  
tSU  
See Figure 6  
Common Mode Transient  
Immunity  
Start-up Time3  
VI = VDD or 0 V  
kV/µs  
µs  
15  
40  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 1.1  
Si8610/20/21/22  
Table 4. Electrical Characteristics  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
VDD1, VDD2 rising  
Min  
1.95  
1.88  
50  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
VDDUV+  
VDDUV– VDD1, VDD2 falling  
VDDHYS  
V
VDD Negative-Going Lockout  
Hysteresis  
mV  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
VHYS  
VIH  
All inputs rising  
All inputs falling  
1.6  
1.9  
1.4  
0.50  
V
V
1.1  
0.40  
0.45  
V
2.0  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Impedance1  
VIL  
0.8  
V
VOH  
VOL  
IL  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD2 – 0.4  
2.3  
0.2  
V
0.4  
±10  
V
µA  
ZO  
50  
DC Supply Current (All inputs 0 V or at supply)  
Si8610Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
DD1  
DD2  
DD1  
DD2  
I
0.6  
0.8  
1.8  
0.8  
1.2  
1.5  
2.9  
1.5  
V = 0(Bx), 1(Ex)  
mA  
mA  
mA  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8620Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
DD1  
DD2  
DD1  
DD2  
I
0.8  
1.4  
3.3  
1.4  
1.4  
2.2  
5.3  
2.2  
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8621Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
DD1  
DD2  
DD1  
DD2  
I
1.2  
1.2  
2.4  
2.4  
1.9  
1.9  
3.8  
3.8  
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8622Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
DD1  
DD2  
DD1  
DD2  
I
2.6  
3.3  
4.0  
4.8  
4.2  
5.3  
6.4  
7.7  
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.1  
11  
Si8610/20/21/22  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
VDD1  
1.2  
0.9  
2.0  
1.5  
mA  
mA  
mA  
mA  
VDD2  
Si8620Bx, Ex  
VDD1  
VDD2  
2.1  
1.6  
3.1  
2.4  
Si8621Bx, Ex  
VDD1  
VDD2  
1.9  
1.9  
2.9  
2.9  
Si8622Bx, Ex  
VDD1  
VDD2  
3.4  
4.2  
5.1  
6.2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
V
V
1.2  
1.0  
2.0  
1.6  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8620Bx, Ex  
V
V
2.1  
1.7  
3.1  
2.6  
DD1  
DD2  
Si8621Bx, Ex  
V
V
2.0  
2.0  
2.9  
2.9  
DD1  
DD2  
Si8622Bx, Ex  
V
V
3.5  
4.2  
5.2  
6.3  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8610Bx, Ex  
V
V
1.2  
2.7  
2.0  
4.4  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8620Bx, Ex  
V
V
2.1  
5.1  
3.1  
7.1  
DD1  
DD2  
Si8621Bx, Ex  
V
V
3.7  
3.7  
5.2  
5.2  
DD1  
DD2  
Si8622Bx, Ex  
V
V
5.2  
6.0  
7.3  
8.4  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
12  
Rev. 1.1  
Si8610/20/21/22  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si861x/2x Bx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
150  
5.0  
14  
Mbps  
ns  
5.0  
t
, t  
See Figure 1  
See Figure 1  
8.0  
0.2  
ns  
PHL PLH  
PWD  
5.0  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.4  
5.0  
2.5  
ns  
ns  
PSK(P-P)  
t
PSK  
CL = 15 pF  
tr  
tf  
2.5  
4.0  
ns  
Output Rise Time  
See Figure 1  
CL = 15 pF  
See Figure 1  
35  
2.5  
350  
50  
4.0  
ns  
ps  
Output Fall Time  
Peak Eye Diagram Jitter  
tJIT(PK)  
CMTI  
tSU  
See Figure 6  
Common Mode Transient  
Immunity  
Start-Up Time3  
VI = VDD or 0 V  
kV/µs  
µs  
15  
40  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver  
FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately  
terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units  
operating at the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.1  
13  
Si8610/20/21/22  
Table 5. Regulatory Information*  
CSA  
The Si861x/2x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
RMS  
RMS  
RMS  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
60601-1: Up to 125 V  
reinforced insulation working voltage; up to 380 V  
basic insulation working voltage.  
RMS  
RMS  
VDE  
The Si861x/2x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 1200 V for basic insulation working voltage.  
peak  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
RMS  
UL  
The Si861x/2x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V isolation voltage for basic protection.  
RMS  
*Note: Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec.  
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see "6. Ordering Guide" on page 27.  
Table 6. Insulation and Safety-Related Specifications  
Value  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
NB  
SOIC-16  
SOIC-8  
1
Nominal Air Gap (Clearance)  
L(IO1)  
L(IO2)  
8.0  
8.0  
4.9  
4.01  
0.011  
mm  
mm  
mm  
1
Nominal External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
0.014  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
600  
V
RMS  
0.019  
0.040  
mm  
Erosion Depth  
2
12  
12  
Resistance (Input-Output)  
R
10  
10  
IO  
2
Capacitance (Input-Output)  
C
2.0  
4.0  
2.0  
4.0  
pF  
pF  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “7. Package Outline:  
16-Pin Wide Body SOIC”, “9. Package Outline: 8-Pin Narrow Body SOIC”. VDE certifies the clearance and creepage  
limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does  
not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and  
creepage limits as 3.9 mm minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 (1–4, NB SOIC-8)  
are shorted together to form the first terminal and pins 9–16 (5–8, NB SOIC-8) are shorted together to form the second  
terminal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
14  
Rev. 1.1  
Si8610/20/21/22  
Table 7. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Test Conditions  
Specification  
NB SOIC-8  
WB SOIC-16  
Basic Isolation Group  
Material Group  
I
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-IV  
I-III  
I-III  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Table 8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*  
Characteristic  
Symbol  
Test Condition  
Unit  
Parameter  
WB  
NB  
SOIC-16  
SOIC-8  
Maximum Working Insulation  
Voltage  
V
V
1200  
2250  
630  
Vpeak  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
V
1182  
Input to Output Test Voltage  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
t = 60 sec  
6000  
2
6000  
2
Vpeak  
Transient Overvoltage  
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
Insulation Resistance at T ,  
9
9
S
R
>10  
>10  
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of  
40/125/21.  
Table 9. IEC Safety Limiting Values1  
Max  
Parameter  
Symbol  
Test Condition  
Min Typ  
Unit  
WB  
NB  
SOIC-16  
SOIC-8  
T
150  
150  
°C  
Case Temperature  
S
= 140 °C/W (NB SOIC-8),  
100 °C (WB SOIC-16),  
JA  
Safety Input, Output,  
or Supply Current  
I
220  
160  
mA  
S
V = 5.5 V, T = 150 °C, T = 25 °C  
I
J
A
Device Power  
Dissipation  
P
150  
150  
mW  
2
D
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 2 and 3.  
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
Rev. 1.1  
15  
Si8610/20/21/22  
Table 10. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
WB SOIC-16 NB SOIC-8  
Unit  
IC Junction-to-Air Thermal  
Resistance  
100  
140  
ºC/W  
JA  
500  
375  
250  
125  
0
460  
360  
VDD1, VDD2 = 2.5 V  
V
DD1, VDD2 = 3.3 V  
220  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
400  
320  
VDD1, VDD2 = 2.5 V  
300  
270  
V
DD1, VDD2 = 3.3 V  
200  
100  
0
160  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
16  
Rev. 1.1  
Si8610/20/21/22  
Table 11. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
7.0  
Unit  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Operating Temperature  
Supply Voltage  
T
A
V
, V  
DD2  
DD1  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
I
10  
mA  
°C  
O
260  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-8  
4500  
V
RMS  
RMS  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
V
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
Rev. 1.1  
17  
Si8610/20/21/22  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si861x/2x channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si861x/2x channel is shown in  
Figure 4.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 4. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 5 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 5. Modulation Scheme  
18  
Rev. 1.1  
Si8610/20/21/22  
2.2. Eye Diagram  
Figure 6 illustrates an eye-diagram taken on an Si8610. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8610 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.  
Figure 6. Eye Diagram  
Rev. 1.1  
19  
Si8610/20/21/22  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 7, where UVLO+ and UVLO–  
are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when  
power supply (VDD) is not present.  
Table 12. Si86xx Logic Operation  
V
VDDI  
VDDO  
I
1,2  
Comments  
V Output  
O
1,3,4  
1,3,4  
1,2  
State  
State  
Input  
H
L
P
P
P
P
H
L
Normal operation.  
6
L
Upon transition of VDDI from unpowered to powered,  
V returns to the same state as V in less than 1 µs.  
5
X
UP  
P
6
H
O
I
Upon transition of VDDO from unpowered to powered,  
V returns to the same state as V within 1 µs, if EN is in  
Undetermined either the H or NC state. Upon transition of VDDO from  
O
I
5
X
P
UP  
unpowered to powered, V returns to Hi-Z with 1 µs if  
O
EN is L.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.  
4. “Unpowered” state (UP) is defined as VDD = 0 V.  
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
6. See "6. Ordering Guide" on page 27 for details. This is the selectable fail-safe operating mode (ordering option). Some  
devices have default output state = H, and some have default output state = L, depending on the ordering part number  
(OPN). For default high devices, the data channels have pull-ups on inputs/outputs. For default low devices, the data  
channels have pull-downs on inputs/outputs.  
20  
Rev. 1.1  
Si8610/20/21/22  
3.1. Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following  
this, the outputs follow the states of inputs.  
3.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own  
undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A  
unconditionally enters UVLO when V  
falls below V  
and exits UVLO when V rises above  
DD1  
DD1(UVLO–)  
DD1  
V
. Side B operates the same as Side A with respect to its V  
supply.  
DD2  
DD1(UVLO+)  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 7. Device Behavior during Normal Operation  
Rev. 1.1  
21  
Si8610/20/21/22  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 5 on page 14 and Table 6 on page 14 detail the  
working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component  
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for  
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)  
requirements before starting any design that uses a digital isolator.  
3.3.1. Supply Bypass  
The Si861x/2x family requires a 0.1 µF bypass capacitor between V  
and GND1 and V  
and GND2. The  
DD1  
DD2  
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, it is further  
recommended that the user also add 1 µF bypass capacitors and include 100 resistors in series with the inputs  
and outputs if the system is excessively noisy.  
3.3.2. Pin Connections  
For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin  
15 must also be connected to external ground. No connect pins are not internally connected. They can be left  
floating, tied to VDD, or tied to GND.  
3.3.3. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3.4. Fail-Safe Operating Mode  
Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input  
supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 12 on  
page 20 and "6. Ordering Guide" on page 27 for more information.  
22  
Rev. 1.1  
Si8610/20/21/22  
3.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 2, 3, and 4 for actual specification limits.  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5V  
5V  
3.3V  
2.5V  
3.3V  
2.5V  
0.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 11. Si8610 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 8. Si8610 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
30.0  
25.0  
20.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5V  
15.0  
10.0  
5.0  
5V  
3.3V  
3.3V  
2.5V  
2.2.50V  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 9. Si8620 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
Figure 12. Si8620 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
30.0  
25.0  
20.0  
30.0  
25.0  
20.0  
5V 1.2  
15.0  
3.3V  
1.2  
2.5V  
15.0  
10.0  
5.0  
5V  
10.0  
3.3V  
2.5V  
1.2  
5.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0.0  
Data Rate (Mbps)  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Figure 10. Si8621 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation (15 pF Load)  
Figure 13. Si8622 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation (15 pF Load)  
Rev. 1.1  
23  
Si8610/20/21/22  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100110120  
Temperature (Degrees C)  
Figure 14. Propagation Delay  
vs. Temperature  
24  
Rev. 1.1  
Si8610/20/21/22  
4. Pin Descriptions (Wide-Body SOIC)  
GND2  
NC  
GND2  
NC  
GND1  
NC  
GND1  
NC  
GND2  
NC  
GND1  
NC  
GND2  
NC  
GND1  
NC  
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
VDD1  
A1  
VDD1  
A1  
VDD2  
B1  
VDD2  
B1  
VDD1  
A1  
VDD1  
A1  
VDD2  
B1  
VDD2  
B1  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
A2  
NC  
B2  
A2  
NC  
B2  
A2  
NC  
B2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND1  
NC  
NC  
GND1  
NC  
GND1  
NC  
NC  
GND1  
NC  
NC  
GND2  
GND2  
GND2  
GND2  
Si8622 WB SOIC-16  
Si8621 WB SOIC-16  
Si8620 WB SOIC-16  
Si8610 WB SOIC-16  
Name  
SOIC-16 Pin# SOIC-16 Pin#  
Type  
Description  
Si8610  
Si862x  
GND1  
NC*  
1
1
Ground  
Side 1 ground.  
NC  
2, 5, 6, 8,10,  
11, 12, 15  
2, 6, 8,10,  
11, 15  
No Connect  
V
3
4
3
4
Supply  
Digital I/O  
Digital I/O  
Ground  
Side 1 power supply.  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 ground.  
DD1  
A1  
A2  
NC  
7
5
GND1  
GND2  
B2  
7
9
9
Ground  
Side 2 ground.  
NC  
13  
14  
16  
12  
13  
14  
16  
Digital I/O  
Digital I/O  
Supply  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
Side 2 ground.  
B1  
V
DD2  
GND2  
Ground  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
Rev. 1.1  
25  
Si8610/20/21/22  
5. Pin Descriptions (Narrow-Body SOIC)  
VDD1  
VDD2  
VDD1  
VDD1  
VDD2  
VDD2  
B1  
VDD1  
VDD2  
B1  
I
s
o
l
a
t
I
s
o
l
a
t
I
s
o
l
a
t
I
s
o
l
a
t
RF  
XMITR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
GND2/NC  
B1  
A1  
B1  
A1  
A2  
A1  
A2  
A1  
A2  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
VDD1/NC  
B2  
B2  
B2  
i
i
i
i
o
n
o
n
o
n
o
n
GND1  
GND2  
GND1  
GND2  
GND1  
GND2  
GND1  
GND2  
Si8610 NB SOIC-8  
Si8620 NB SOIC-8  
Si8622 NB SOIC-8  
Si8621 NB SOIC-8  
Name  
SOIC-8 Pin#  
Si861x  
SOIC-8 Pin#  
Si862x  
Type  
Description  
V
/NC*  
1,3  
4
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
DD1  
GND1  
Side 1 ground.  
A1  
A2  
B1  
B2  
2
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
NA  
6
NA  
8
V
DD2  
GND2/NC*  
5.7  
Ground  
Side 2 ground.  
*Note: No connect. These pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
26  
Rev. 1.1  
Si8610/20/21/22  
6. Ordering Guide  
Revision B devices are recommended for all new designs.  
Table 13. Ordering Guide for Valid OPNs1  
Ordering Part Number of Number of Max Data Default Isolation  
Temp (C)  
Package  
Number (OPN)  
Inputs  
VDD1 Side VDD2 Side  
Inputs  
Rate  
(Mbps)  
Output  
State  
rating  
(kV)  
2,3  
Revision B Devices  
Si8610BC-B-IS  
Si8610EC-B-IS  
Si8610BD-B-IS  
Si8610ED-B-IS  
Si8620BC-B-IS  
Si8620EC-B-IS  
Si8620BD-B-IS  
Si8620ED-B-IS  
Si8621BC-B-IS  
Si8621EC-B-IS  
Si8621BD-B-IS  
Si8621ED-B-IS  
Si8622BC-B-IS  
Si8622EC-B-IS  
Si8622BD-B-IS  
Si8622ED-B-IS  
Notes:  
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
3.75  
3.75  
5.0  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
SOIC-8  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
SOIC-8  
5.0  
3.75  
3.75  
5.0  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
SOIC-8  
5.0  
3.75  
3.75  
5.0  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
SOIC-8  
5.0  
3.75  
3.75  
5.0  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
5.0  
1. All packages are RoHS-compliant.  
Moisture sensitivity level is MSL3 for wide-body SOIC-16 and narrow-body SOIC-8 packages with peak reflow  
temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.  
2. Revision A devices are supported for existing designs, but Revision B is recommended for all new designs.  
3. All devices >1 kVRMS are AEC-Q100 qualified.  
Rev. 1.1  
27  
Si8610/20/21/22  
Table 13. Ordering Guide for Valid OPNs1 (Continued)  
Ordering Part Number of Number of Max Data Default Isolation  
Temp (C)  
Package  
Number (OPN)  
Inputs  
VDD1 Side VDD2 Side  
Inputs  
Rate  
(Mbps)  
Output  
State  
rating  
(kV)  
2,3  
Revision A Devices  
Si8610BC-A-IS  
Si8610EC-A-IS  
Si8610BD-A-IS  
Si8610ED-A-IS  
Si8620BC-A-IS  
Si8620EC-A-IS  
Si8620BD-A-IS  
Si8620ED-A-IS  
Si8621BC-A-IS  
Si8621EC-A-IS  
Si8621BD-A-IS  
Si8621ED-A-IS  
Si8622BC-A-IS  
Si8622EC-A-IS  
Si8622BD-A-IS  
Si8622ED-A-IS  
Notes:  
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
150 Mbps  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
3.75  
3.75  
5.0  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
SOIC-8  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
SOIC-8  
5.0  
3.75  
3.75  
5.0  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
SOIC-8  
5.0  
3.75  
3.75  
5.0  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
SOIC-8  
5.0  
3.75  
3.75  
5.0  
SOIC-8  
WB SOIC-16  
WB SOIC-16  
5.0  
1. All packages are RoHS-compliant.  
Moisture sensitivity level is MSL3 for wide-body SOIC-16 and narrow-body SOIC-8 packages with peak reflow  
temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.  
2. Revision A devices are supported for existing designs, but Revision B is recommended for all new designs.  
3. All devices >1 kVRMS are AEC-Q100 qualified.  
28  
Rev. 1.1  
Si8610/20/21/22  
7. Package Outline: 16-Pin Wide Body SOIC  
Figure 15 illustrates the package details for the Triple-Channel Digital Isolator. Table 14 lists the values for the  
dimensions shown in the illustration.  
Figure 15. 16-Pin Wide Body SOIC  
Table 14. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
2.65  
0.3  
A
A1  
D
E
E1  
b
0.1  
10.3 BSC  
10.3 BSC  
7.5 BSC  
0.31  
0.20  
0.51  
0.33  
c
e
1.27 BSC  
h
0.25  
0.4  
0°  
0.75  
1.27  
7°  
L
Rev. 1.1  
29  
Si8610/20/21/22  
8. Land Pattern: 16-Pin Wide-Body SOIC  
Figure 16 illustrates the recommended land pattern details for the Si861x/2x in a 16-pin wide-body SOIC. Table 15  
lists the values for the dimensions shown in the illustration.  
Figure 16. 16-Pin SOIC Land Pattern  
Table 15. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
30  
Rev. 1.1  
Si8610/20/21/22  
9. Package Outline: 8-Pin Narrow Body SOIC  
Figure 17 illustrates the package details for the Si86xx. Table 16 lists the values for the dimensions shown in the  
illustration.  
Figure 17. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 16. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.35  
1.75  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0  
6.20  
0.50  
1.27  
8  
L
Rev. 1.1  
31  
Si8610/20/21/22  
10. Land Pattern: 8-Pin Narrow Body SOIC  
Figure 18 illustrates the recommended land pattern details for the Si86xx in an 8-pin narrow-body SOIC. Table 17  
lists the values for the dimensions shown in the illustration.  
Figure 18. PCB Land Pattern: 8-Pin Narrow Body SOIC  
Table 17. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
32  
Rev. 1.1  
Si8610/20/21/22  
11. Top Marking: 16-Pin Wide Body SOIC  
11.1. 16-Pin Wide Body SOIC Top Marking  
Si86XYSV  
YYWWTTTTTT  
e3  
TW  
11.2. Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (2, 1)  
(See Ordering Guide for more  
information).  
Y = # of reverse channels (1, 0)  
S = Speed Grade (max data rate) and operating mode:  
A = 1 Mbps (default output = low)  
B = 150 Mbps (default output = low)  
D = 1 Mbps (default output = high)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
TTTTTT = Mfg Code  
Manufacturing code from assembly house  
“e3” Pb-Free Symbol  
Circle = 1.5 mm Diameter  
(Center-Justified)  
Country of Origin ISO Code  
Abbreviation  
TW = Taiwan  
Rev. 1.1  
33  
Si8610/20/21/22  
12. Top Marking: 8-Pin Narrow Body SOIC  
12.1. 8-Pin Narrow Body SOIC Top Marking  
Si86XYSV  
YYWWRF  
e3  
AIXX  
12.2. Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (2, 1)  
(See Ordering Guide for more  
information).  
Y = # of reverse channels (1, 0)  
S = Speed Grade (max data rate) and operating mode:  
A = 1 Mbps (default output = low)  
B = 150 Mbps (default output = low)  
D = 1 Mbps (default output = high)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to  
the year and workweek of the mold date.  
R = Product (OPN) Revision  
F = Wafer Fab  
Circle = 1.1 mm Diameter  
Left-Justified  
“e3” Pb-Free Symbol.  
First two characters of the manufacturing code.  
A = Assembly Site  
I = Internal Code  
Last four characters of the manufacturing code.  
XX = Serial Lot Number  
34  
Rev. 1.1  
Si8610/20/21/22  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Added chip graphics on page 1.  
Moved Tables 1 and 11 to page 17.  
Updated Table 6, “Insulation and Safety-Related  
Specifications,” on page 14.  
Updated Table 8, “IEC 60747-5-2 Insulation  
Characteristics for Si86xxxx*,” on page 15.  
Moved Table 12 to page 20.  
Moved “Typical Performance Characteristics” to  
page 23.  
Updated "4. Pin Descriptions (Wide-Body SOIC)" on  
page 25.  
Updated "5. Pin Descriptions (Narrow-Body SOIC)"  
on page 26.  
Updated "6. Ordering Guide" on page 27.  
Revision 0.2 to Revision 0.3  
Added chip graphics on page 1.  
Moved Tables 1 and 2 to page 17.  
Updated Table 6, “Insulation and Safety-Related  
Specifications,” on page 14.  
Updated Table 8, “IEC 60747-5-2 Insulation  
Characteristics for Si86xxxx*,” on page 15.  
Moved Table 12 to page 20.  
Moved Table 13 to page 27.  
Moved “Typical Performance Characteristics” to  
page 23.  
Updated "4. Pin Descriptions (Wide-Body SOIC)" on  
page 25.  
Updated "5. Pin Descriptions (Narrow-Body SOIC)"  
on page 26.  
Updated "6. Ordering Guide" on page 27.  
Revision 0.3 to Revision 1.0  
Updated “Table 3. Electrical Characteristics”.  
Reordered spec tables to conform to new  
convention.  
Removed “pending” throughout document.  
Revision 1.0 to Revision 1.1  
Updated High Level Output Voltage VOH to 3.1 V in  
Table 3, “Electrical Characteristics,” on page 8.  
Updated High Level Output Voltage VOH to 2.3 V in  
Table 4, “Electrical Characteristics,” on page 11.  
Rev. 1.1  
35  
Si8610/20/21/22  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
36  
Rev. 1.1  

相关型号:

SI8622EC-B-IS

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8622EC-B-ISR

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8622ED-A-ISR

Analog Circuit, CMOS, PDSO16
SILICON

SI8622ED-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8622ED-B-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8622ET-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8622ET-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8630

Low-Power Triple-Channel Digital Isolators
SILICON

SI8630AB-AS1

Analog Circuit,
SILICON

SI8630AB-AS1R

Analog Circuit,
SILICON

SI8630AB-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8630AB-B-IS1R

Analog Circuit, CMOS, PDSO16
SILICON