SI8631BD-B-ISR [SILICON]

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16;
SI8631BD-B-ISR
型号: SI8631BD-B-ISR
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16

光电二极管
文件: 总38页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8630/31/35  
LOW-POWER TRIPLE-CHANNEL DIGITAL ISOLATOR  
Features  
High-speed operation  
DC to 150 Mbps  
No start-up initialization required  
Selectable fail-safe mode  
Default high or low output  
(ordering option)  
Precise timing (typical)  
Wide Operating Supply Voltage  
2.5–5.5 V  
Up to 5000 VRMS isolation  
10 ns propagation delay  
1.5 ns pulse width distortion  
0.5 ns channel-channel skew  
2 ns propagation delay skew  
5 ns minimum pulse width  
Transient Immunity 50 kV/µs  
AEC-Q100 qualification  
Wide temperature range  
–40 to 125 °C  
60-year life at rated working voltage  
High electromagnetic immunity  
Ultra low power (typical)  
5 V Operation  
1.6 mA per channel at 1 Mbps  
5.5 mA per channel at 100 Mbps  
2.5 V Operation  
1.5 mA per channel at 1 Mbps  
3.5 mA per channel at 100 Mbps  
Tri-state outputs with ENABLE  
Schmitt trigger inputs  
RoHS-compliant packages  
SOIC-16 wide body  
SOIC-16 narrow body  
Ordering Information:  
Applications  
See page 27.  
Industrial automation systems  
Medical electronics  
Hybrid electric vehicles  
Isolated ADC, DAC  
Motor control  
Power inverters  
Isolated switch mode supplies  
Communications systems  
Safety Regulatory Approvals  
UL 1577 recognized  
Up to 5000 VRMS for 1 minute  
VDE certification conformity  
IEC 60747-5-2  
(VDE0884 Part 2)  
EN60950-1  
CSA component notice 5A approval  
IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
(reinforced insulation)  
CQC certification approval  
GB4943.1  
Description  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices  
offering substantial data rate, propagation delay, power, size, reliability, and  
external BOM advantages over legacy isolation technologies. The operating  
parameters of these products remain stable across wide temperature ranges  
and throughout device service life for ease of design and highly uniform  
performance. All device versions have Schmitt trigger inputs for high noise  
immunity and only require VDD bypass capacitors.  
Data rates up to 150 Mbps are supported, and all devices achieve propagation  
delays of less than 10 ns. Enable inputs provide a single point control for  
enabling and disabling output drive. Ordering options include a choice of  
isolation ratings (2.5, 3.75 and 5 kV) and a selectable fail-safe operating mode  
to control the default output state during power loss. All products >1 kVRMS are  
safety certified by UL, CSA, VDE, and CQC, and products in wide-body  
packages support reinforced insulation withstanding up to 5 kVRMS  
.
Rev. 1.4 9/13  
Copyright © 2013 by Silicon Laboratories  
Si8630/31/35  
Si8630/31/35  
2
Rev. 1.4  
Si8630/31/35  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
7. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
9. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
10. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
10.1. Si863x Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
10.2. Top Marking Explanation (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .34  
10.3. Si863x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . .35  
10.4. Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . .35  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Rev. 1.4  
3
Si8630/31/35  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter  
Ambient Operating Temperature*  
T
–40  
2.5  
2.5  
25  
125*  
5.5  
°C  
V
A
V
DD1  
DD2  
Supply Voltage  
V
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 2. Electrical Characteristics  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage  
Threshold  
VDDUV+  
V
, V  
rising  
1.95  
2.24  
2.375  
V
DD1  
DD2  
VDD Undervoltage  
Threshold  
VDDUV–  
V
, V  
falling  
1.88  
50  
2.16  
70  
2.325  
95  
V
mV  
V
DD1  
DD2  
VDD Undervoltage  
Hysteresis  
VDD  
HYS  
Positive-Going Input Thresh-  
old  
VT+  
VT–  
All inputs rising  
1.4  
1.0  
1.67  
1.23  
1.9  
Negative-Going Input  
Threshold  
All inputs falling  
1.4  
V
Input Hysteresis  
V
0.38  
2.0  
0.44  
0.50  
V
V
V
HYS  
V
High Level Input Voltage  
Low Level Input Voltage  
IH  
V
0.8  
IL  
V
,V  
4.8  
DD1  
D
V
loh = –4 mA  
lol = 4 mA  
V
High Level Output Voltage  
OH  
– 0.4  
D2  
V
0.2  
0.4  
±10  
V
Low Level Output Voltage  
Input Leakage Current  
OL  
I
µA  
L
1
Z
50  
Output Impedance  
O
I
V
= V  
IH  
2.0  
2.0  
µA  
µA  
Enable Input High Current  
ENH  
ENx  
I
V
= V  
IL  
Enable Input Low Current  
ENL  
ENx  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
4
Rev. 1.4  
 
 
 
 
 
Si8630/31/35  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Supply Current (All inputs 0 V or at Supply)  
Si8630Bx, Ex, Si8635Bx  
V = 0(Bx), 1(Ex)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
V
I
DD1  
V = 0(Bx), 1(Ex)  
mA  
V
I
DD2  
V = 1(Bx), 0(Ex)  
V
I
DD1  
V = 1(Bx), 0(Ex)  
V
I
DD2  
Si8631Bx, Ex  
V = 0(Bx), 1(Ex)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
V
I
DD1  
V = 0(Bx), 1(Ex)  
mA  
V
I
DD2  
V = 1(Bx), 0(Ex)  
V
I
DD1  
V = 1(Bx), 0(Ex)  
V
I
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex, Si8635Bx  
2.8  
2.2  
3.9  
3.1  
V
V
DD1  
DD2  
mA  
mA  
Si8631Bx, Ex  
2.7  
2.6  
3.8  
3.6  
V
V
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex, Si8635Bx  
2.8  
3.1  
3.9  
4.3  
V
V
DD1  
DD2  
mA  
mA  
Si8631Bx, Ex  
3.0  
3.1  
4.2  
4.4  
V
V
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex, Si8635Bx  
2.8  
13.2  
3.9  
17.8  
V
V
DD1  
DD2  
mA  
mA  
Si8631Bx, Ex  
6.6  
9.9  
8.8  
13.4  
V
V
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.4  
5
Si8630/31/35  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si863xBx, Ex  
0
150  
5.0  
13  
Mbps  
ns  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
5.0  
t
, t  
See Figure 2  
See Figure 2  
8.0  
0.2  
ns  
PHL PLH  
Pulse Width Distortion  
4.5  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
t
2.0  
0.4  
4.5  
2.5  
ns  
ns  
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
PSK(P-P)  
t
PSK  
C = 15 pF  
See Figure 2  
L
t
2.5  
4.0  
ns  
Output Rise Time  
r
C = 15 pF  
L
t
35  
2.5  
350  
50  
4.0  
ns  
ps  
Output Fall Time  
f
See Figure 2  
See Figure 8  
V = V or 0 V  
Peak Eye Diagram Jitter  
t
JIT(PK)  
Common Mode  
Transient Immunity  
I
DD  
CMTI  
kV/µs  
V
= 1500 V (see Figure 3)  
CM  
t
See Figure 1  
6.0  
8.0  
15  
11  
12  
40  
ns  
ns  
µs  
Enable to Data Valid  
en1  
t
See Figure 1  
Enable to Data Tri-State  
en2  
3
t
Start-up Time  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
6
Rev. 1.4  
Si8630/31/35  
ENABLE  
OUTPUTS  
ten1  
ten2  
Figure 1. ENABLE Timing Diagram  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 2. Propagation Delay Timing  
Rev. 1.4  
7
 
 
Si8630/31/35  
3 to 5 V  
Supply  
Si86xx  
VDD1  
VDD2  
Input  
INPUT  
Signal  
OUTPUT  
Switch  
3 to 5 V  
Isolated  
Supply  
Oscilloscope  
GND1  
GND2  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 3. Common-Mode Transient Immunity Test Circuit  
8
Rev. 1.4  
 
Si8630/31/35  
Table 3. Electrical Characteristics  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage  
Threshold  
VDDUV+  
V
, V  
rising  
1.95  
2.24  
2.375  
V
DD1  
DD2  
VDD Undervoltage  
Threshold  
VDDUV–  
V
, V  
falling  
1.88  
50  
2.16  
70  
2.325  
95  
V
mV  
V
DD1  
DD2  
VDD Undervoltage  
Hysteresis  
VDD  
HYS  
Positive-Going Input  
Threshold  
VT+  
VT–  
All inputs rising  
1.4  
1.0  
1.67  
1.23  
1.9  
Negative-Going Input  
Threshold  
All inputs falling  
1.4  
V
Input Hysteresis  
V
0.38  
2.0  
0.44  
0.50  
V
V
V
HYS  
V
High Level Input Voltage  
Low Level Input Voltage  
IH  
V
0.8  
IL  
High Level Output Volt-  
age  
V
,V  
– 0.4  
3.1  
DD1 DD2  
V
loh = –4 mA  
lol = 4 mA  
V
V
OH  
Low Level Output Volt-  
age  
0.2  
0.4  
V
OL  
I
±10  
µA  
Input Leakage Current  
L
1
Z
50  
Output Impedance  
O
Enable Input High Cur-  
rent  
I
V
= V  
IH  
2.0  
2.0  
µA  
µA  
ENH  
ENx  
Enable Input Low Cur-  
rent  
I
V
= V  
ENx IL  
ENL  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.4  
9
 
 
 
 
Si8630/31/35  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
mA  
DC Supply Current (All inputs 0 V or at supply)  
Si8630Bx, Ex,  
Si8635Bx  
V = 0(Bx), 1(Ex)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
I
V
V
V
V
DD1  
DD2  
DD1  
DD2  
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8631Bx, Ex  
V = 0(Bx), 1(Ex)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
V
I
DD1  
V = 0(Bx), 1(Ex)  
V
I
DD2  
mA  
V = 1(Bx), 0(Ex)  
V
I
DD1  
V = 1(Bx), 0(Ex)  
V
I
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex,  
Si8635Bx  
2.8  
2.2  
3.9  
3.1  
mA  
mA  
V
V
DD1  
DD2  
Si8631Bx, Ex  
2.7  
2.6  
3.8  
3.6  
V
V
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex,  
Si8635Bx  
2.8  
2.6  
3.9  
3.6  
mA  
mA  
V
V
DD1  
DD2  
Si8631Bx, Ex  
2.8  
2.8  
4.0  
3.9  
V
V
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex,  
Si8635Bx  
2.8  
9.3  
3.9  
12.5  
mA  
mA  
V
V
DD1  
DD2  
Si8631Bx, Ex  
5.2  
7.3  
7.0  
9.8  
V
V
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 1.4  
Si8630/31/35  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si863xBx, Ex  
0
150  
5.0  
13  
Mbps  
ns  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
5.0  
t
, t  
See Figure 2  
See Figure 2  
8.0  
0.2  
ns  
PHL PLH  
Pulse Width Distortion  
4.5  
PWD  
ns  
|t  
- t  
|
PLH PHL  
Propagation Delay  
Skew  
2.0  
0.4  
4.5  
2.5  
t
ns  
ns  
2
PSK(P-P)  
t
Channel-Channel Skew  
PSK  
All Models  
C = 15 pF  
See Figure 2  
L
t
2.5  
4.0  
ns  
Output Rise Time  
r
C = 15 pF  
See Figure 2  
L
t
2.5  
4.0  
ns  
ps  
Output Fall Time  
f
Peak Eye Diagram Jitter  
t
See Figure 8  
350  
JIT(PK)  
V = V or 0 V  
I
DD  
Common Mode  
Transient Immunity  
CMTI  
35  
50  
kV/µs  
V
= 1500 V (see  
CM  
Figure 3)  
t
See Figure 1  
See Figure 1  
6.0  
8.0  
15  
11  
12  
40  
ns  
ns  
µs  
Enable to Data Valid  
en1  
t
Enable to Data Tri-State  
en2  
3
t
Startup Time  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.4  
11  
Si8630/31/35  
Table 4. Electrical Characteristics  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage Thresh- VDDUV+  
old  
V
, V  
rising  
1.95  
2.24  
2.375  
V
DD1  
DD2  
VDD Undervoltage Thresh- VDDUV–  
old  
V
, V  
falling  
1.88  
50  
2.16  
70  
2.325  
95  
V
mV  
V
DD1  
DD2  
VDD Undervoltage  
Hysteresis  
VDD  
HYS  
Positive-Going Input  
Threshold  
VT+  
VT–  
All inputs rising  
1.4  
1.0  
1.67  
1.23  
1.9  
Negative-Going Input  
Threshold  
All inputs falling  
1.4  
V
Input Hysteresis  
V
0.38  
2.0  
0.44  
0.50  
V
V
V
HYS  
V
High Level Input Voltage  
Low Level Input Voltage  
IH  
V
0.8  
IL  
V
,V  
2.3  
DD1  
D
V
loh = –4 mA  
lol = 4 mA  
V
High Level Output Voltage  
OH  
– 0.4  
D2  
V
0.2  
0.4  
±10  
V
Low Level Output Voltage  
Input Leakage Current  
OL  
I
µA  
L
1
Z
50  
Output Impedance  
O
I
V
= V  
IH  
2.0  
2.0  
µA  
µA  
Enable Input High Current  
Enable Input Low Current  
ENH  
ENx  
I
V
= V  
IL  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8630Bx, Ex, Si8635Bx  
V = 0(Bx), 1(Ex)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
V
I
DD1  
V = 0(Bx), 1(Ex)  
V
I
DD2  
mA  
mA  
V = 1(Bx), 0(Ex)  
V
I
DD1  
V = 1(Bx), 0(Ex)  
V
I
DD2  
Si8631Bx, Ex  
V = 0(Bx), 1(Ex)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
V
I
DD1  
V = 0(Bx), 1(Ex)  
V
I
DD2  
V = 1(Bx), 0(Ex)  
V
I
DD1  
V = 1(Bx), 0(Ex)  
V
I
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
12  
Rev. 1.4  
 
 
 
 
Si8630/31/35  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex, Si8635Bx  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2.8  
2.2  
3.9  
3.1  
V
V
DD1  
DD2  
mA  
mA  
Si8631Bx, Ex  
V
V
2.7  
2.6  
3.8  
3.6  
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex, Si8635Bx  
2.8  
2.4  
3.9  
3.3  
V
V
DD1  
DD2  
mA  
mA  
Si8631Bx, Ex  
2.8  
2.7  
3.9  
3.7  
V
V
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8630Bx, Ex, Si8635Bx  
2.8  
7.5  
3.9  
10.1  
V
V
DD1  
DD2  
mA  
mA  
Si8631Bx, Ex  
4.5  
6.1  
6.1  
8.2  
V
V
DD1  
DD2  
Timing Characteristics  
Si863xBx, Ex  
0
150  
5.0  
14  
Mbps  
ns  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
5.0  
t
, t  
See Figure 2  
See Figure 2  
8.0  
0.2  
ns  
PHL PLH  
Pulse Width Distortion  
5.0  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
t
2.0  
0.4  
5.0  
2.5  
ns  
ns  
Propagation Delay Skew  
PSK(P-P)  
t
Channel-Channel Skew  
PSK  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.4  
13  
Si8630/31/35  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
All Models  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
C = 15 pF  
See Figure 2  
L
t
2.5  
4.0  
ns  
Output Rise Time  
r
C = 15 pF  
L
t
35  
2.5  
350  
50  
4.0  
ns  
ps  
Output Fall Time  
f
See Figure 2  
See Figure 8  
V = V or 0 V  
Peak Eye Diagram Jitter  
t
JIT(PK)  
Common Mode  
Transient Immunity  
I
DD  
CMTI  
kV/µs  
V
= 1500 V (see Figure 3)  
CM  
t
See Figure 1  
6.0  
8.0  
15  
11  
12  
40  
ns  
ns  
µs  
Enable to Data Valid  
en1  
t
See Figure 1  
Enable to Data Tri-State  
en2  
3
t
Startup Time  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Table 5. Regulatory Information*  
CSA  
The Si863x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
RMS  
RMS  
RMS  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
60601-1: Up to 125 V  
reinforced insulation working voltage; up to 380 V  
basic insulation working voltage.  
RMS  
RMS  
VDE  
The Si863x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 1200 V for basic insulation working voltage.  
peak  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
RMS  
UL  
The Si863x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V  
isolation voltage for basic protection.  
RMS  
CQC  
The Si863x is certified under GB4943.1-2011. For more details, see File V2012CQC001041.  
Rated up to 600 V reinforced insulation working voltage; up to 1000 V basic insulation working voltage.  
RMS  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec.  
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see "5. Ordering Guide" on page 27.  
14  
Rev. 1.4  
 
Si8630/31/35  
Table 6. Insulation and Safety-Related Specifications  
Value  
Test  
Condition  
Parameter  
Symbol  
Unit  
NB  
WB  
SOIC-16  
SOIC-16  
1
Nominal Air Gap (Clearance)  
L(IO1)  
L(IO2)  
8.0  
8.0  
4.9  
mm  
mm  
Nominal External Tracking  
4.01  
1
(Creepage)  
Minimum Internal Gap  
(Internal Clearance)  
mm  
0.014  
0.014  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
600  
V
RMS  
0.019  
0.019  
mm  
Erosion Depth  
2
12  
12  
Resistance (Input-Output)  
R
10  
10  
IO  
2
Capacitance (Input-Output)  
C
2.0  
4.0  
2.0  
4.0  
pF  
pF  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and  
creepage limits as 4.7 mm minimum for the NB SOIC-16 package and 8.5 mm minimum for the WB SOIC-16 package.  
UL does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance  
and creepage limits as 3.9 mm minimum for the NB SOIC-16 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 are shorted  
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 7. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Specification  
Parameter  
Test Conditions  
NB SOIC-16  
WB SOIC-16  
Basic Isolation Group  
Material Group  
I
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-IV  
I-III  
I-III  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Rev. 1.4  
15  
 
 
 
 
Si8630/31/35  
Table 8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*  
Characteristic  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
SOIC-16  
NB SOIC-16  
Maximum Working Insulation  
Voltage  
V
V
1200  
630  
Vpeak  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
V
2250  
1182  
Input to Output Test Voltage  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
t = 60 sec  
6000  
2
6000  
2
Vpeak  
Transient Overvoltage  
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
Insulation Resistance at T ,  
9
9
S
R
>10  
>10  
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of  
40/125/21.  
Table 9. IEC Safety Limiting Values1  
Max  
WB SOIC-16 NB SOIC-16  
Parameter  
Symbol  
Test Condition  
Unit  
T
150  
150  
°C  
Case Temperature  
S
= 100 °C/W (WB SOIC-16),  
105 °C/W (NB SOIC-16),  
JA  
Safety Input, Output, or  
Supply Current  
I
220  
210  
mA  
S
V = 5.5 V, T = 150 °C, T = 25 °C  
I
J
A
Device Power  
Dissipation  
P
275  
275  
mW  
2
D
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 4 and 5.  
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
16  
Rev. 1.4  
 
 
 
Si8630/31/35  
Table 10. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-16  
Unit  
IC Junction-to-Air Thermal Resistance  
100  
105  
°C/W  
JA  
500  
450  
VDD1, VDD2 = 2.70 V  
400  
370  
VDD1, VDD2 = 3.6 V  
300  
220  
200  
VDD1, VDD2 = 5.5 V  
100  
0
0
50  
100  
Temperature (ºC)  
150  
200  
Figure 4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
500  
430  
V
DD1, VDD2 = 2.70 V  
400  
300  
200  
100  
0
360  
VDD1, VDD2 = 3.6 V  
210  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. 1.4  
17  
Si8630/31/35  
Table 11. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
Typ  
Max  
Unit  
°C  
2
Storage Temperature  
T
150  
125  
150  
7.0  
STG  
Operating Temperature  
T
°C  
A
Junction Temperature  
Supply Voltage  
T
°C  
V
J
V
, V  
–0.5  
DD1  
DD2  
Input Voltage  
V
–0.5  
–0.5  
V
V
+ 0.5  
V
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
I
10  
mA  
°C  
O
260  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-16  
4500  
V
RMS  
RMS  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
V
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
18  
Rev. 1.4  
 
 
 
Si8630/31/35  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si863x channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si863x channel is shown in  
Figure 6.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 6. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 7 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 7. Modulation Scheme  
Rev. 1.4  
19  
 
 
Si8630/31/35  
2.2. Eye Diagram  
Figure 8 illustrates an eye-diagram taken on an Si8630. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8630 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.  
Figure 8. Eye Diagram  
20  
Rev. 1.4  
 
Si8630/31/35  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 9, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when  
power supply (VDD) is not present. Additionally, refer to Table 13 for logic conditions when enable pins are used.  
Table 12. Si86xx Logic Operation  
V
EN  
VDDI  
VDDO  
I
1,2  
Comments  
V Output  
O
1,2,3,4  
1,5,6  
1,5,6  
1,2  
Input  
State  
State  
Input  
H
L
H or NC  
H or NC  
L
P
P
P
P
P
P
H
L
Enabled, normal operation.  
7
8
X
Hi-Z  
Disabled.  
Upon transition of VDDI from unpowered to pow-  
ered, V returns to the same state as V in less  
than 1 µs.  
9
L
7
X
H or NC  
L
UP  
UP  
P
P
9
O
I
H
7
8
X
Hi-Z  
Disabled.  
Upon transition of VDDO from unpowered to  
powered, V returns to the same state as V  
Undetermined within 1 µs, if EN is in either the H or NC state.  
Upon transition of VDDO from unpowered to  
O
I
7
7
X
X
P
UP  
powered, V returns to Hi-Z with 1 µs if EN is L.  
O
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
EN is the enable control input located on the same output side.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is  
operating in noisy environments.  
4. No Connect (NC) replaces EN1 on Si8630/35. No Connect replaces EN2 on the Si8635.  
No Connects are not internally connected and can be left floating, tied to VDD, or tied to GND.  
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.  
6. “Unpowered” state (UP) is defined as VDD = 0 V.  
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is  
disabled (EN = 0).  
9. See "5. Ordering Guide" on page 27 for details. This is the selectable fail-safe operating mode (ordering option). Some  
devices have default output state = H, and some have default output state = L, depending on the ordering part number  
(OPN). For default high devices, the data channels have pull-ups on inputs/outputs. For default low devices, the data  
channels have pull-downs on inputs/outputs.  
Rev. 1.4  
21  
 
 
 
 
 
 
 
Si8630/31/35  
Table 13. Enable Input Truth1  
1,2  
1,2  
P/N  
Operation  
EN1  
H
EN2  
H
Si8630  
Outputs B1, B2, B3 are enabled and follow input state.  
Outputs B1, B2, B3 are disabled and in high impedance state.  
Output A3 enabled and follows input state.  
3
L
Si8631  
X
3
L
X
Output A3 disabled and in high impedance state.  
X
H
Outputs B1, B2 are enabled and follow input state.  
3
X
L
Outputs B1, B2 are disabled and in high impedance state.  
Si8635  
Outputs B1, B2, B3 are enabled and follow input state.  
Notes:  
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are  
internally pulled-up to local VDD by a 2 µA current source allowing them to be connected to an external logic level (high  
or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If  
EN1, EN2 are unused, it is recommended they be connected to an external logic level, especially if the Si86xx is  
operating in a noisy environment.  
2. X = not applicable; H = Logic High; L = Logic Low.  
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is  
disabled (EN = 0).  
22  
Rev. 1.4  
 
 
 
Si8630/31/35  
3.1. Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following  
this, the outputs follow the states of inputs.  
3.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own  
undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A  
unconditionally enters UVLO when V  
falls below V  
and exits UVLO when V rises above  
DD1  
DD1(UVLO–)  
DD1  
V
. Side B operates the same as Side A with respect to its V  
supply.  
DD2  
DD1(UVLO+)  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 9. Device Behavior during Normal Operation  
Rev. 1.4  
23  
Si8630/31/35  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 5 on page 14 and Table 6 on page 15 detail the  
working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component  
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for  
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)  
requirements before starting any design that uses a digital isolator.  
3.3.1. Supply Bypass  
The Si863x family requires a 0.1 µF bypass capacitor between V  
and GND1 and V  
and GND2. The  
DD2  
DD1  
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user  
may also include resistors (50–300 ) in series with the inputs and outputs if the system is excessively noisy.  
3.3.2. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3.4. Fail-Safe Operating Mode  
Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input  
supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 12 on  
page 21 and "5. Ordering Guide" on page 27 for more information.  
24  
Rev. 1.4  
 
Si8630/31/35  
3.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 2, 3, and 4 for actual specification limits.  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5V  
5V  
3.3V  
2.5V  
3.3V  
2.5V  
0.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 13. Si8630/35 Typical VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.5 V  
Operation (15 pF Load)  
Figure 10. Si8630/35 Typical VDD1 Supply  
Current vs. Data Rate 5, 3.3, and 2.5 V  
Operation  
30.0  
25.0  
20.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
15.0  
10.0  
5.0  
5V  
5V  
3.3V  
2.5V  
3.3V  
2.5V  
0.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 11. Si8631 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
Figure 14. Si8631 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100110120  
Temperature (Degrees C)  
Figure 12. Propagation Delay vs. Temperature  
Rev. 1.4  
25  
 
Si8630/31/35  
4. Pin Descriptions  
VDD1  
VDD2  
GND2  
B1  
VDD1  
VDD2  
GND2  
B1  
GND1  
GND1  
I
s
o
l
I
s
o
l
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B2  
B2  
a
t
i
o
n
a
t
i
o
n
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
A3  
NC  
B3  
A3  
NC  
B3  
NC  
EN2  
NC  
EN1  
EN2/NC  
NC  
GND1  
GND2  
GND1  
GND2  
Si8631  
Si8630/35  
Name  
SOIC-16 Pin#  
Type  
Description  
V
1
Supply  
Side 1 power supply.  
Side 1 ground.  
DD1  
1
GND1  
A1  
2
Ground  
Digital Input  
Digital Input  
Digital I/O  
NA  
3
4
5
6
7
Side 1 digital input.  
Side 1 digital input.  
A2  
A3  
Side 1 digital input or output.  
No Connect.  
NC  
2
2
EN1/NC  
GND1  
GND2  
EN2/NC  
NC  
Digital Input  
Ground  
Side 1 active high enable. NC on Si8630/35  
Side 1 ground.  
1
8
9
1
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
Digital Input  
NA  
Side 2 active high enable. NC on Si8635.  
No Connect.  
B3  
Digital I/O  
Side 2 digital input or output.  
B2  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B1  
1
GND2  
15  
16  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
Notes:  
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15  
must also be connected to external ground.  
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
26  
Rev. 1.4  
 
 
 
Si8630/31/35  
5. Ordering Guide  
Table 14. Ordering Guide for Valid OPNs1,2,3  
Ordering Part Number of Number of Max Data Default  
Isol  
Temp Range (°C)  
Package  
Number (OPN)  
Inputs  
VDD1 Side VDD2 Side  
Inputs  
Rate  
(Mbps)  
Output  
State  
Rating  
(kVrms)  
Si8630BB-B-IS  
Si8630BB-B-IS1  
Si8630BC-B-IS1  
Si8630EC-B-IS1  
Si8630BD-B-IS  
Si8630ED-B-IS  
Si8631BB-B-IS  
Si8631BB-B-IS1  
Si8631BC-B-IS1  
Si8631EC-B-IS1  
Si8631BD-B-IS  
Si8631ED-B-IS  
Si8635BB-B-IS  
Si8635BC-B-IS1  
Si8635BD-B-IS  
Notes:  
3
3
3
3
3
3
2
2
2
2
2
2
3
3
3
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
2.5  
2.5  
3.75  
3.75  
5
–40 to +125 °C WB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C WB SOIC-16  
5
2.5  
2.5  
3.75  
3.75  
5
5
2.5  
3.75  
5
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
Moisture sensitivity level is MSL3 for wide-body SOIC-16 packages.  
Moisture sensitivity level is MSL2A narrow-body SOIC-16 packages.  
2. All devices >1 kVRMS are AEC-Q100 qualified.  
3. “Si” and “SI” are used interchangeably.  
Rev. 1.4  
27  
 
 
Si8630/31/35  
6. Package Outline: 16-Pin Wide Body SOIC  
Figure 15 illustrates the package details for the Triple-Channel Digital Isolator. Table 15 lists the values for the  
dimensions shown in the illustration.  
Figure 15. 16-Pin Wide Body SOIC  
28  
Rev. 1.4  
 
Si8630/31/35  
Table 15. Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for  
small body, lead-free components.  
Rev. 1.4  
29  
Si8630/31/35  
7. Land Pattern: 16-Pin Wide-Body SOIC  
Figure 16 illustrates the recommended land pattern details for the Si863x in a 16-pin wide-body SOIC. Table 16  
lists the values for the dimensions shown in the illustration.  
Figure 16. 16-Pin SOIC Land Pattern  
Table 16. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
30  
Rev. 1.4  
 
 
 
Si8630/31/35  
8. Package Outline: 16-Pin Narrow Body SOIC  
Figure 17 illustrates the package details for the Si863x in a 16-pin narrow-body SOIC (SO-16). Table 17 lists the  
values for the dimensions shown in the illustration.  
Figure 17. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Rev. 1.4  
31  
 
Si8630/31/35  
Table 17. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
32  
Rev. 1.4  
Si8630/31/35  
9. Land Pattern: 16-Pin Narrow Body SOIC  
Figure 18 illustrates the recommended land pattern details for the Si863x in a 16-pin narrow-body SOIC. Table 18  
lists the values for the dimensions shown in the illustration.  
Figure 18. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 18. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.4  
33  
 
 
Si8630/31/35  
10. Top Markings  
10.1. Si863x Top Marking (16-Pin Wide Body SOIC)  
Si86XYSV  
YYWWRTTTTT  
e4  
TW  
10.2. Top Marking Explanation (16-Pin Wide Body SOIC)  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (3, 2, 1)  
Y = # of reverse channels (1, 0)*  
S = Speed Grade (max data rate) and operating mode:  
A = 1 Mbps (default output = low)  
Base Part Number  
Ordering Options  
Line 1 Marking:  
(See Ordering Guide for more  
information).  
B = 150 Mbps (default output = low)  
D = 1 Mbps (default output = high)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
Line 2 Marking:  
Line 3 Marking:  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Circle = 1.7 mm Diameter  
(Center-Justified)  
“e4” Pb-Free Symbol  
TW = Taiwan  
Country of Origin ISO Code  
Abbreviation  
*Note: Si8635 has 0 reverse channels.  
34  
Rev. 1.4  
 
Si8630/31/35  
10.3. Si863x Top Marking (16-Pin Narrow Body SOIC)  
Si86XYSV  
YYWWRTTTTT  
e3  
10.4. Top Marking Explanation (16-Pin Narrow Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (3, 2, 1)  
(See Ordering Guide for more  
information).  
Y = # of reverse channels (1, 0)*  
S = Speed Grade (max data rate) and operating mode:  
A = 1 Mbps (default output = low)  
B = 150 Mbps (default output = low)  
D = 1 Mbps (default output = high)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV  
Line 2 Marking:  
Circle = 1.2 mm Diameter  
“e3” Pb-Free Symbol  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the  
year and work week of the mold date.  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Circle = 1.2 mm diameter  
“e3” Pb-Free Symbol.  
*Note: Si8635 has 0 reverse channels.  
Rev. 1.4  
35  
Si8630/31/35  
Revision 1.3 to Revision 1.4  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Added Figure 3, “Common-Mode Transient  
Immunity Test Circuit,” on page 8.  
Added chip graphics on page 1.  
Moved Tables 1 and 11 to page 18.  
Added references to CQC throughout.  
Added references to 2.5 kV  
devices throughout.  
RMS  
Updated Table 6, “Insulation and Safety-Related  
Updated "5. Ordering Guide" on page 27.  
Specifications,” on page 15.  
Updated "10.1. Si863x Top Marking (16-Pin Wide  
Updated Table 8, “IEC 60747-5-2 Insulation  
Body SOIC)" on page 34.  
Characteristics for Si86xxxx*,” on page 16.  
Moved Table 12 to page 21.  
Moved Table 13 to page 22.  
Moved “Typical Performance Characteristics” to  
page 25.  
Updated "4. Pin Descriptions" on page 26.  
Updated "5. Ordering Guide" on page 27.  
Removed references to QSOP-16 package.  
Revision 0.2 to Revision 1.0  
Reordered spec tables to conform to new  
convention.  
Removed “pending” throughout document.  
Revision 1.0 to Revision 1.1  
Updated High Level Output Voltage VOH to 3.1 V in  
Table 3, “Electrical Characteristics,” on page 9.  
Updated High Level Output Voltage VOH to 2.3 V in  
Table 4, “Electrical Characteristics,” on page 12.  
Revision 1.1 to Revision 1.2  
Updated "5. Ordering Guide" on page 27 to include  
MSL2A.  
Revision 1.2 to Revision 1.3  
Updated Table 11 on page 18.  
Added junction temperature spec.  
Updated "3.3.1. Supply Bypass" on page 24.  
Removed “3.3.2. Pin Connections” on page 23.  
Updated "4. Pin Descriptions" on page 26.  
Updated table notes.  
Updated "5. Ordering Guide" on page 27.  
Removed Rev A devices.  
Updated "7. Land Pattern: 16-Pin Wide-Body SOIC"  
on page 30.  
Updated Top Marks.  
Added revision description.  
36  
Rev. 1.4  
Si8630/31/35  
NOTES:  
Rev. 1.4  
37  
Si8630/31/35  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
38  
Rev. 1.4  

相关型号:

SI8631BT-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8631EC-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8631EC-B-IS1R

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8631ED-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8631ED-B-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8631ET-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8631ET-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

Si8635

Industrial automation systems
SILICON

SI8635BB-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8635BB-B-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8635BC-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8635BC-B-IS1R

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON