SI8660AB-B-IS1 [SILICON]

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16;
SI8660AB-B-IS1
型号: SI8660AB-B-IS1
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16

光电二极管
文件: 总47页 (文件大小:757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si86xx Data Sheet  
1 Mbps, 2.5 kV  
Digital Isolators  
RMS  
KEY FEATURES  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-  
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-  
tages over legacy isolation technologies. The operating parameters of these products  
remain stable across wide temperature ranges and throughout device service life for  
ease of design and highly uniform performance. All device versions have Schmitt trigger  
inputs for high noise immunity and only require VDD bypass capacitors.  
• High-speed operation  
• DC to 1 Mbps  
• No start-up initialization required  
• Wide Operating Supply Voltage  
• 2.5 to 5.5 V  
• Up to 2500 V  
isolation  
RMS  
All products support Data rates up to 1 Mbps and Enable inputs which provide a single  
point control for enabling and disabling output drive. All products are safety certified by  
• 60-year life at rated working voltage  
• High electromagnetic immunity  
UL, CSA, VDE, and CQC and support withstand ratings up to 2.5 kVRMS  
.
• Ultra low power (typical)  
• 5 V Operation: 1.6 mA per channel at 1  
Mbps  
Automotive Grade is available for certain part numbers. These products are built using  
automotive-specific flows at all steps in the manufacturing process to ensure the robust-  
ness and low defectivity required for automotive applications.  
• 2.5 V Operation: 1.5 mA per channel at  
1 Mbps  
Automotive Applications  
Industrial Applications  
• Tri-state outputs with ENABLE  
• Schmitt trigger inputs  
• On-board chargers  
• Industrial automation systems  
• Battery management systems  
• Medical electronics  
• Transient Immunity 50 kV/µs  
• AEC-Q100 qualification  
• Charging stations  
• Isolated switch mode supplies  
• Traction inverters  
• Isolated ADC, DAC  
• Wide temperature range  
• –40 to 125 °C  
• Hybrid Electric Vehicles  
• Motor control  
• Battery Electric Vehicles  
• Power inverters  
• RoHS-compliant packages  
• SOIC-16 wide body  
• Communication systems  
• SOIC-16 narrow body  
• SOIC-8 narrow body  
Safety Regulatory Approvals  
• UL 1577 recognized  
• Automotive-grade OPNs available  
• AIAG compliant PPAP documentation  
support  
• Up to 5000 VRMS for 1 minute  
• CSA component notice 5A approval  
• IEC 60950-1, 61010-1  
• IMDS and CAMDS listing support  
• VDE certification conformity  
• IEC 60747-5-2 (VDE0884 Part 2)  
• CQC certification approval  
• GB4943.1  
silabs.com | Building a more connected world.  
Rev. 1.01  
Si86xx Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Ordering Guide for Valid OPNs1,2  
Ordering Part  
Number (OPN)  
Number of  
Inputs  
Number of  
Inputs  
Max Data  
Rate (Mbps)  
Default Out-  
put State  
Isolation  
Rating (kV)  
Temp (°C)  
Package  
VDD1 Side  
VDD2 Side  
Si8610AB-B-IS  
Si8620AB-B-IS  
Si8621AB-B-IS  
Si8630AB-B-IS  
Si8630AB-B-IS1  
Si8631AB-B-IS  
Si8631AB-B-IS1  
Si8640AB-B-IS1  
Si8640AB-B-IS  
Si8641AB-B-IS1  
Si8641AB-B-IS  
Si8642AB-B-IS1  
Si8642AB-B-IS  
Si8650AB-B-IS1  
Si8651AB-B-IS1  
Si8652AB-B-IS1  
Si8660AB-B-IS1  
Si8661AB-B-IS1  
Si8662AB-B-IS1  
Si8663AB-B-IS1  
Notes:  
1
2
1
3
3
2
2
4
4
3
3
2
2
5
4
3
6
5
4
3
0
0
1
0
0
1
1
0
0
1
1
2
2
0
1
2
0
1
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
SOIC-8  
SOIC-8  
SOIC-8  
WB SOIC-16  
NB SOIC-16  
WB SOIC-16  
NB SOIC-16  
NB SOIC-16  
WB SOIC-16  
NB SOIC-16  
WB SOIC-16  
NB SOIC-16  
WB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 2  
 
 
Si86xx Data Sheet  
Ordering Guide  
Automotive Grade OPNs  
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and  
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-  
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-  
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-  
duction steps.  
Table 1.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5  
Ordering Part Number  
(OPN)  
Number of Number of  
Inputs Inputs  
VDD1 Side VDD2 Side  
Max Data  
Rate  
(Mbps)  
Default  
Output  
State  
Isolation  
Rating (kV)  
Temp (°C)  
Package  
Si8621AB-AS  
Si8663AB-AS1  
1
3
1
3
1
1
Low  
Low  
2.5  
2.5  
–40 to 125 °C  
–40 to 125 °C  
SOIC-8  
SOIC-16  
Note:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions.  
2. “Si” and “SI” are used interchangeably.  
3. An "R" at the end of the part number denotes tape and reel packaging option.  
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters  
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive  
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is  
included on shipping labels.  
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-  
tative for further information.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 3  
 
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 Layout Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3.1 Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3.2 Output Pin Termination. . . . . . . . . . . . . . . . . . . . . . . . . 8  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8) . . . . . . . . . . . . . . . . .30  
5.2 Pin Descriptions (Si863x) . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.3 Pin Descriptions (Si864x) . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.4 Pin Descriptions (Si8650/51/52) . . . . . . . . . . . . . . . . . . . . . . . .33  
5.5 Pin Descriptions (Si866x) . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.1 Package Outline (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . .35  
6.2 Package Outline (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . .37  
6.3 Package Outline (8-Pin Narrow Body SOIC). . . . . . . . . . . . . . . . . . . .39  
7. Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.1 Land Pattern (16-Pin Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . .40  
7.2 Land Pattern (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . .41  
7.3 Land Pattern (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . .42  
8. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8.1 Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . .43  
8.2 Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . .44  
8.3 Top Marking (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . .45  
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
silabs.com | Building a more connected world.  
Rev. 1.01 | 4  
Si86xx Data Sheet  
Functional Description  
2. Functional Description  
2.1 Theory of Operation  
The operation of an Si86xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This  
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified  
block diagram for a single Si86xx channel is shown in the figure below.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 2.1. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the  
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that  
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying  
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to  
magnetic fields. See the figure below for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 2.2. Modulation Scheme  
silabs.com | Building a more connected world.  
Rev. 1.01 | 5  
 
 
 
Si86xx Data Sheet  
Device Operation  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on  
page 8, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to  
determine outputs when power supply (VDD) is not present. Additionally, refer to Table 3.2 Enable Input Truth1 on page 7 for logic  
conditions when enable pins are used.  
Table 3.1. Si86xx Logic Operation  
VO Output1,2  
VI  
Input1,2  
EN  
Input1,2,3,4  
VDDI  
State1,5,6  
VDDO  
State1,5,6  
Comments  
H
L
H or NC  
H or NC  
L
P
P
P
P
P
P
H
L
Enabled, normal operation.  
X7  
X7  
Hi-Z8  
L
Disabled.  
H or NC  
UP  
P
Upon transition of VDDI from unpowered to powered, VO re-  
turns to the same state as VI in less than 1 µs.  
X7  
X7  
Hi-Z8  
L
UP  
P
P
Disabled.  
X7  
UP  
Undetermined Upon transition of VDDO from unpowered to powered, VO re-  
turns to the same state as VI within 1 µs, if EN is in either the  
H or NC state. Upon transition of VDDO from unpowered to  
powered, VO returns to Hi-Z within 1 µs if EN is L.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the  
enable control input located on the same output side.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy  
environments.  
4. No Connect (NC) replaces EN1 on some devices. No Connects are not internally connected and can be left floating, tied to VDD,  
or tied to GND.  
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.  
6. “Unpowered” state (UP) is defined as VDD = 0 V.  
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled  
(EN = 0).  
silabs.com | Building a more connected world.  
Rev. 1.01 | 6  
 
 
 
 
 
 
Si86xx Data Sheet  
Device Operation  
Table 3.2. Enable Input Truth1  
EN11,2 EN21,2  
P/N  
Operation  
Si861x/2x  
Si8630  
H
L
Outputs are enabled and follow input state.  
Outputs B1, B2, B3 are enabled and follow input state.  
Outputs B1, B2, B3 are disabled and in high impedance state.3  
Output A3 enabled and follows input state.  
Si8631  
H
L
X
X
Output A3 disabled and in high impedance state.3  
Outputs B1, B2 are enabled and follow input state.  
X
X
H
L
Outputs B1, B2 are disabled and in high impedance state.3  
Outputs B1, B2, B3, B4 are enabled and follow the input state.  
Si8640  
Si8641  
H
L
Outputs B1, B2, B3, B4 are disabled and in high impedance state.3  
Output A4 enabled and follows the input state.  
H
L
X
X
Output A4 disabled and in high impedance state.3  
X
X
H
L
Outputs B1, B2, B3 are enabled and follow the input state.  
Outputs B1, B2, B3 are disabled and in high impedance state.3  
Outputs A3 and A4 are enabled and follow the input state.  
Si8642  
H
L
X
X
Outputs A3 and A4 are disabled and in high impedance state.3  
Outputs B1 and B2 are enabled and follow the input state.  
X
X
H
L
Outputs B1 and B2 are disabled and in high impedance state.3  
Outputs B1, B2, B3, B4, B5 are enabled and follow input state.  
Si8650  
Si8651  
H
L
Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance state.3  
Output A5 enabled and follow input state.  
H
L
X
X
Output A5 disabled and in high impedance state.3  
X
X
H
L
Outputs B1, B2, B3, B4 are enabled and follow input state.  
Outputs B1, B2, B3, B4 are disabled and in high impedance state.3  
Outputs A4 and A5 are enabled and follow input state.  
Si8652  
Si866x  
H
L
X
X
Outputs A4 and A5 are disabled and in high impedance state.3  
Outputs B1, B2, B3 are enabled and follow input state.  
X
X
H
L
Outputs B1, B2, B3 are disabled and in high impedance state.3  
Outputs are enabled and follow input state.  
Notes:  
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally  
pulled-up to local VDD by a 2 µA current source allowing them to be connected to an external logic level (high or low) or left  
floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused,  
it is recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment.  
2. X = not applicable; H = Logic High; L = Logic Low.  
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled  
(EN = 0).  
silabs.com | Building a more connected world.  
Rev. 1.01 | 7  
 
 
 
 
Si86xx Data Sheet  
Device Operation  
3.1 Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow  
the states of inputs.  
3.2 Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its  
specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or  
exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when  
VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 3.1. Device Behavior during Normal Operation  
3.3 Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the  
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a  
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large  
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.5 Regulatory Information1 on  
page 25 and Table 4.6 Insulation and Safety-Related Specifications on page 25 detail the working voltage and creepage/clearance  
capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted  
by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1,  
60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.  
3.3.1 Supply Bypass  
The Si86xx family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed  
as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series  
with the inputs and outputs if the system is excessively noisy.  
3.3.2 Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-  
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will  
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 8  
 
 
 
 
 
 
Si86xx Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
Table 4.1. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Ambient Operating Temperature1  
Supply Voltage  
TA  
–40  
25  
125  
ºC  
VDD1  
VDD2  
2.5  
2.5  
5.5  
5.5  
V
V
Note:  
1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply  
voltage.  
Table 4.2. Electrical Characteristics  
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDUV–  
VDDHYS  
Test Condition  
VDD1, VDD2 rising  
VDD1, VDD2 falling  
Min  
1.95  
1.88  
50  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
V
VDD Undervoltage  
Hysteresis  
mV  
Positive-Going Input Threshold  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.4  
1.0  
1.67  
1.23  
1.9  
1.4  
V
V
Negative-Going  
Input Threshold  
Input Hysteresis  
VHYS  
VIH  
0.38  
2.0  
0.44  
0.50  
V
V
V
V
High Level Input Voltage  
Low Level input voltage  
High Level Output Voltage  
VIL  
0.8  
VOH  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD2  
0.4  
4.8  
Low Level Output Voltage  
Input Leakage Current  
VOL  
IL  
0.2  
0.4  
±10  
V
µA  
Ω
Output Impedance1  
ZO  
50  
Εναβλε Ινπυτ Ηιγη Χυρρεντ  
Enable Input Low Current  
ΙENH  
IENL  
ςENx = VIH  
VENx = VIL  
2.0  
2.0  
µA  
µA  
DC Supply Current (All inputs 0 V or at Supply)  
Si8610Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.6  
0.8  
1.8  
0.8  
1.2  
1.5  
2.9  
1.5  
mA  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 9  
 
 
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
0.8  
1.4  
3.3  
1.4  
Max  
1.4  
2.2  
5.3  
2.2  
Unit  
Si8620Ax  
VDD1  
VI = 0(Ax)  
mA  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
VDD2  
VDD1  
VDD2  
Si8621Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.2  
1.2  
2.4  
2.4  
1.9  
1.9  
3.8  
3.8  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8630Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
VDD2  
VDD1  
VDD2  
Si8631Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
VDD2  
VDD1  
VDD2  
Si8640Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.0  
2.4  
6.1  
2.5  
1.6  
3.8  
9.2  
4.0  
VDD2  
VDD1  
VDD2  
Si8641Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.4  
2.3  
5.2  
3.6  
2.2  
3.7  
7.8  
5.4  
VDD2  
VDD1  
VDD2  
Si8642Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.8  
1.8  
4.4  
4.4  
2.9  
2.9  
6.6  
6.6  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 10  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
1.1  
3.1  
7.0  
3.3  
Max  
1.8  
4.7  
9.8  
5.0  
Unit  
Si8650Ax  
VDD1  
VI = 0(Ax)  
mA  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
VDD2  
VDD1  
VDD2  
Si8651Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.5  
2.7  
6.6  
4.0  
2.4  
4.1  
9.2  
6.0  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8652Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.0  
2.4  
5.6  
5.0  
3.0  
3.6  
7.8  
7.5  
VDD2  
VDD1  
VDD2  
Si8660Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.2  
3.5  
8.8  
3.7  
1.9  
5.3  
12.3  
5.6  
VDD2  
VDD1  
VDD2  
Si8661Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.7  
3.4  
7.9  
4.8  
2.7  
5.1  
11.1  
7.2  
VDD2  
VDD1  
VDD2  
Si8662Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.2  
3.0  
7.5  
5.6  
3.3  
4.5  
10.5  
8.4  
VDD2  
VDD1  
VDD2  
Si8663Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.6  
2.6  
6.5  
6.5  
3.9  
3.9  
9.1  
9.1  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 11  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all Outputs)  
Si8610Ax  
VDD1  
1.2  
0.9  
2.0  
1.5  
mA  
VDD2  
Si8620Ax  
VDD1  
2.1  
1.6  
3.1  
2.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8621Ax  
VDD1  
1.9  
1.9  
2.9  
2.9  
VDD2  
Si8630Ax  
VDD1  
2.8  
2.2  
3.9  
3.1  
VDD2  
Si8631Ax  
VDD1  
2.7  
2.6  
3.8  
3.6  
VDD2  
Si8640Ax  
VDD1  
3.6  
2.9  
5.0  
4.0  
VDD2  
Si8641Ax  
VDD1  
3.4  
3.3  
4.8  
4.6  
VDD2  
Si8642Ax  
VDD1  
3.3  
3.3  
4.6  
4.6  
VDD2  
Si8650Ax  
VDD1  
4.1  
3.7  
5.7  
5.2  
VDD2  
Si8651Ax  
VDD1  
4.2  
3.8  
5.8  
5.3  
VDD2  
Si8652Ax  
VDD1  
4.0  
4.0  
5.6  
5.6  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 12  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
5.0  
4.2  
Max  
7.0  
Unit  
Si8660Ax  
VDD1  
mA  
5.9  
VDD2  
Si8661Ax  
VDD1  
4.9  
4.6  
6.9  
6.4  
mA  
mA  
mA  
VDD2  
Si8662Ax  
VDD1  
5.1  
4.7  
7.1  
6.6  
VDD2  
Si8663Ax  
VDD1  
4.9  
4.9  
6.8  
6.8  
VDD2  
Timing Characteristics  
All Models  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1
Mbps  
ns  
250  
35  
tPHL, tPLH  
See Figure 4.2 Propagation  
Delay Timing on page 14  
ns  
Pulse Width Distortion  
PWD  
See Figure 4.2 Propagation  
Delay Timing on page 14  
25  
ns  
|tPLH – tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
Output Rise Time  
tPSK(P-P)  
tPSK  
tr  
40  
35  
ns  
ns  
ns  
CL = 15 pF  
2.5  
4.0  
See Figure 4.2 Propagation  
Delay Timing on page 14  
Output Fall Time  
tf  
CL = 15 pF  
2.5  
4.0  
ns  
See Figure 4.2 Propagation  
Delay Timing on page 14  
Peak eye diagram jitter  
tJIT(PK)  
CMTI  
See Figure 2.2 Modulation  
Scheme on page 5  
350  
50  
ps  
Common Mode  
VI = VDD or 0 V  
35  
kV/µs  
Transient Immunity  
VCM = 1500 V (See Figure  
4.3 Common-Mode Transient  
Immunity Test Circuit on page  
15)  
Enable to Data Valid  
ten1  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
6.0  
8.0  
11  
12  
ns  
ns  
Enable to Data Tri-State  
ten2  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
silabs.com | Building a more connected world.  
Rev. 1.01 | 13  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Start-up Time3  
Notes:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
tSU  
15  
40  
µs  
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
ENABLE  
OUTPUTS  
ten1  
ten2  
Figure 4.1. ENABLE Timing Diagram  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 4.2. Propagation Delay Timing  
silabs.com | Building a more connected world.  
Rev. 1.01 | 14  
 
 
 
 
 
Si86xx Data Sheet  
Electrical Specifications  
3 to 5 V  
Supply  
Si86xx  
VDD1  
VDD2  
Input  
Signal  
Switch  
INPUT  
OUTPUT  
3 to 5 V  
Isolated  
Supply  
Oscilloscope  
GND1  
GND2  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 4.3. Common-Mode Transient Immunity Test Circuit  
Table 4.3. Electrical Characteristics  
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDUV–  
VDDHYS  
Test Condition  
VDD1, VDD2 rising  
VDD1, VDD2 falling  
Min  
1.95  
1.88  
50  
Typ  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
2.24  
2.16  
70  
V
VDD Undervoltage  
Hysteresis  
mV  
Positive-Going Input  
Threshold  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.4  
1.0  
1.67  
1.23  
1.9  
1.4  
V
V
Negative-Going Input  
Threshold  
Input Hysteresis  
VHYS  
VIH  
0.38  
0.44  
0.50  
V
V
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
2.0  
VIL  
VDD1, VDD2 – 0.4  
0.8  
VOH  
VOL  
loh = –4 mA  
lol = 4 mA  
3.1  
0.2  
0.4  
silabs.com | Building a more connected world.  
Rev. 1.01 | 15  
 
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
±10  
Unit  
µA  
Ω
Input Leakage Current  
IL  
Output Impedance1  
ZO  
50  
Enable Input High Current  
Enable Input Low Current  
IENH  
IENL  
VENx = VIH  
VENx = VIL  
2.0  
2.0  
µA  
µA  
DC Supply Current (All inputs 0 V or at supply)  
Si8610Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.6  
0.8  
1.8  
0.8  
1.2  
1.5  
2.9  
1.5  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8620Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.8  
1.4  
3.3  
1.4  
1.4  
2.2  
5.3  
2.2  
VDD2  
VDD1  
VDD2  
Si8621Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.2  
1.2  
2.4  
2.4  
1.9  
1.9  
3.8  
3.8  
VDD2  
VDD1  
VDD2  
Si8630Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
VDD2  
VDD1  
VDD2  
Si8631Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
VDD2  
VDD1  
VDD2  
Si8640Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.0  
2.4  
6.1  
2.5  
1.6  
3.8  
9.2  
4.0  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 16  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
1.4  
2.3  
5.2  
3.6  
Max  
2.2  
3.7  
7.8  
5.4  
Unit  
Si8641Ax  
VDD1  
VI = 0(Ax)  
mA  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
VDD2  
VDD1  
VDD2  
Si8642Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.8  
1.8  
4.4  
4.4  
2.9  
2.9  
6.6  
6.6  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8650Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.1  
3.1  
7.0  
3.3  
1.8  
4.7  
9.8  
5.0  
VDD2  
VDD1  
VDD2  
Si8651Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.5  
2.7  
6.6  
4.0  
2.4  
4.1  
9.2  
6.0  
VDD2  
VDD1  
VDD2  
Si8652Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.0  
2.4  
5.6  
5.0  
3.0  
3.6  
7.8  
7.5  
VDD2  
VDD1  
VDD2  
Si8660Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.2  
3.5  
8.8  
3.7  
1.9  
5.3  
12.3  
5.6  
VDD2  
VDD1  
VDD2  
Si8661Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.7  
3.4  
7.9  
4.8  
2.7  
5.1  
11.1  
7.2  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 17  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
2.2  
3.0  
7.5  
5.6  
Max  
3.3  
Unit  
Si8662Ax  
VDD1  
VI = 0(Ax)  
mA  
4.5  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
10.5  
8.4  
VDD2  
VDD1  
VDD2  
Si8663Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.6  
2.6  
6.5  
6.5  
3.9  
3.9  
9.1  
9.1  
mA  
VDD2  
VDD1  
VDD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8610Ax  
VDD1  
1.2  
0.9  
2.0  
1.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8620Ax  
VDD1  
2.1  
1.6  
3.1  
2.4  
VDD2  
Si8621Ax  
VDD1  
1.9  
1.9  
2.9  
2.9  
VDD2  
Si8630Ax  
VDD1  
2.8  
2.2  
3.9  
3.1  
VDD2  
Si8631Ax  
VDD1  
2.7  
2.6  
3.8  
3.6  
VDD2  
Si8640Ax  
VDD1  
3.6  
2.9  
5.0  
4.0  
VDD2  
Si8641Ax  
VDD1  
3.4  
3.3  
4.8  
4.6  
VDD2  
Si8642Ax  
VDD1  
3.3  
3.3  
4.6  
4.6  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 18  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
4.1  
3.7  
Max  
5.7  
Unit  
Si8650Ax  
VDD1  
mA  
5.2  
VDD2  
Si8651Ax  
VDD1  
4.2  
3.8  
5.8  
5.3  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8652Ax  
VDD1  
4.0  
4.0  
5.6  
5.6  
VDD2  
Si8660Ax  
VDD1  
5.0  
4.2  
7.0  
5.9  
VDD2  
Si8661Ax  
VDD1  
4.9  
4.6  
6.9  
6.4  
VDD2  
Si8662Ax  
VDD1  
5.1  
4.7  
7.1  
6.6  
VDD2  
Si8663Ax  
VDD1  
4.9  
4.9  
6.8  
6.8  
VDD2  
Timing Characteristics  
All Models  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1
Mbps  
ns  
250  
35  
tPHL, tPLH  
See Figure 4.2 Propaga-  
tion Delay Timing on page  
14  
ns  
Pulse Width Distortion  
PWD  
See Figure 4.2 Propaga-  
tion Delay Timing on page  
14  
25  
ns  
|tPLH – tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
Output Rise Time  
tPSK(P-P)  
tPSK  
tr  
40  
35  
ns  
ns  
ns  
CL = 15 pF  
2.5  
4.0  
See Figure 4.2 Propaga-  
tion Delay Timing on page  
14  
silabs.com | Building a more connected world.  
Rev. 1.01 | 19  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Output Fall Time  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
tf  
CL = 15 pF  
2.5  
4.0  
ns  
See Figure 4.2 Propaga-  
tion Delay Timing on page  
14  
Peak eye diagram jitter  
tJIT(PK)  
CMTI  
See Figure 2.2 Modula-  
tion Scheme on page 5  
350  
50  
ps  
Common Mode  
VI = VDD or 0 V  
35  
kV/µs  
Transient Immunity  
VCM = 1500 V (see Figure  
4.3 Common-Mode Tran-  
sient Immunity Test Cir-  
cuit on page 15)  
Enable to Data Valid  
ten1  
ten2  
tSU  
See Figure 4.1 ENABLE  
Timing Diagram on page  
14  
6.0  
8.0  
15  
11  
12  
40  
ns  
ns  
µs  
Enable to Data Tri-State  
See Figure 4.1 ENABLE  
Timing Diagram on page  
14  
Start-Up Time3  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Table 4.4. Electrical Characteristics  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDUV–  
VDDHYS  
VT+  
Test Condition  
VDD1, VDD2 rising  
VDD1, VDD2 falling  
Min  
1.95  
1.88  
50  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
VDD Undervoltage Hysteresis  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
V
mV  
V
All inputs rising  
All inputs falling  
1.4  
1.67  
1.23  
0.44  
1.9  
VT–  
1.0  
1.4  
V
VHYS  
0.38  
2.0  
0.50  
V
High Level Input Voltage  
Low Level Input Voltage  
VIH  
V
VIL  
0.8  
V
High Level Output Voltage  
VOH  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD  
2 – 0.4  
2.3  
V
Low Level Output Voltage  
Input Leakage Current  
VOL  
IL  
0.2  
0.4  
±10  
V
µA  
Ω
Output Impedance1  
ZO  
50  
silabs.com | Building a more connected world.  
Rev. 1.01 | 20  
 
 
 
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Enable Input High Current  
Enable Input Low Current  
Symbol  
IENH  
Test Condition  
VENx = VIH  
Min  
Typ  
2.0  
2.0  
Max  
Unit  
µA  
IENL  
VENx = VIL  
µA  
DC Supply Current (All inputs 0 V or at supply)  
Si8610Ax  
VDD1  
VI = 0(Ax))  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.6  
0.8  
1.8  
0.8  
1.2  
1.5  
2.9  
1.5  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8620Ax  
VDD1  
VI = 0(Ax))  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.8  
1.4  
3.3  
1.4  
1.4  
2.2  
5.3  
2.2  
VDD2  
VDD1  
VDD2  
Si8621Ax  
VDD1  
VI = 0(Ax))  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.2  
1.2  
2.4  
2.4  
1.9  
1.9  
3.8  
3.8  
VDD2  
VDD1  
VDD2  
Si8630Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
VDD2  
VDD1  
VDD2  
Si8631Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
VDD2  
VDD1  
VDD2  
Si8640Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.0  
2.4  
6.1  
2.5  
1.6  
3.8  
9.2  
4.0  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 21  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
1.4  
2.3  
5.2  
3.6  
Max  
2.2  
3.7  
7.8  
5.4  
Unit  
Si8641Ax  
VDD1  
VI = 0(Ax)  
mA  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
VDD2  
VDD1  
VDD2  
Si8642Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.8  
1.8  
4.4  
4.4  
2.9  
2.9  
6.6  
6.6  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8650Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.1  
3.1  
7.0  
3.3  
1.8  
4.7  
9.8  
5.0  
VDD2  
VDD1  
VDD2  
Si8651Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.5  
2.7  
6.6  
4.0  
2.4  
4.1  
9.2  
6.0  
VDD2  
VDD1  
VDD2  
Si8652Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.0  
2.4  
5.6  
5.0  
3.0  
3.6  
7.8  
7.5  
VDD2  
VDD1  
VDD2  
Si8660Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.2  
3.5  
8.8  
3.7  
1.9  
5.3  
12.3  
5.6  
VDD2  
VDD1  
VDD2  
Si8661Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
1.7  
3.4  
7.9  
4.8  
2.7  
5.1  
11.1  
7.2  
VDD2  
VDD1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 22  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
2.2  
3.0  
7.5  
5.6  
Max  
3.3  
Unit  
Si8662Ax  
VDD1  
VI = 0(Ax)  
mA  
4.5  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
10.5  
8.4  
VDD2  
VDD1  
VDD2  
Si8663Ax  
VDD1  
VI = 0(Ax)  
VI = 0(Ax)  
VI = 1(Ax)  
VI = 1(Ax)  
2.6  
2.6  
6.5  
6.5  
3.9  
3.9  
9.1  
9.1  
mA  
VDD2  
VDD1  
VDD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8610Ax  
VDD1  
1.2  
0.9  
2.0  
1.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8620Ax  
VDD1  
2.1  
1.6  
3.1  
2.4  
VDD2  
Si8621Ax  
VDD1  
1.9  
1.9  
2.9  
2.9  
VDD2  
Si8630Ax  
VDD1  
2.8  
2.2  
3.9  
3.1  
VDD2  
Si8631Ax  
VDD1  
2.7  
2.6  
3.8  
3.6  
VDD2  
Si8640Ax  
VDD1  
3.6  
2.9  
5.0  
4.0  
VDD2  
Si8641Ax  
VDD1  
3.4  
3.3  
4.8  
4.6  
VDD2  
Si8642Ax  
VDD1  
3.3  
3.3  
4.6  
4.6  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 23  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
4.1  
3.7  
Max  
5.7  
Unit  
Si8650Ax  
VDD1  
mA  
5.2  
VDD2  
Si8651Ax  
VDD1  
4.2  
3.8  
5.8  
5.3  
mA  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8652Ax  
VDD1  
4.0  
4.0  
5.6  
5.6  
VDD2  
Si8660Ax  
VDD1  
5.0  
4.2  
7.0  
5.9  
VDD2  
Si8661Ax  
VDD1  
4.9  
4.6  
6.9  
6.4  
VDD2  
Si8662Ax  
VDD1  
5.1  
4.7  
7.1  
6.6  
VDD2  
Si8663Ax  
VDD1  
4.9  
4.9  
6.8  
6.8  
VDD2  
Timing Characteristics  
All Models  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1
Mbps  
ns  
250  
35  
tPHL, tPLH  
See Figure 4.2 Propagation Delay  
Timing on page 14  
ns  
Pulse Width Distortion  
PWD  
See Figure 4.2 Propagation Delay  
Timing on page 14  
25  
ns  
|tPLH - tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
Output Rise Time  
tPSK(P-P)  
tPSK  
tr  
40  
35  
ns  
ns  
ns  
CL = 15 pF  
2.5  
4.0  
See Figure 4.2 Propagation Delay  
Timing on page 14  
Output Fall Time  
tf  
CL = 15 pF  
2.5  
4.0  
ns  
See Figure 4.2 Propagation Delay  
Timing on page 14  
silabs.com | Building a more connected world.  
Rev. 1.01 | 24  
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 2.2 Modulation Scheme  
on page 5  
350  
ps  
Common Mode  
CMTI  
VI = VDD or 0 V  
35  
50  
kV/µs  
Transient Immunity  
VCM = 1500 V (see Figure  
4.3 Common-Mode Transient Im-  
munity Test Circuit on page 15)  
Enable to Data Valid  
ten1  
ten2  
tSU  
See Figure 4.1 ENABLE Timing Di-  
agram on page 14  
6.0  
8.0  
15  
11  
12  
40  
ns  
ns  
µs  
Enable to Data Tri-State  
See Figure 4.1 ENABLE Timing Di-  
agram on page 14  
Startup Time3  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Table 4.5. Regulatory Information1  
CSA  
The Si86xx is certified under CSA Component Acceptance Notice 5A, IEC61010-1 and IEC60950-1. For more details, see File  
232873.  
VDE  
The Si86xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
UL  
The Si86xx is certified under UL1577 component recognition program. For more details, see File E257455.  
CQC  
The Si86xx is certified under GB4943.1-2011. For more details, see certificates CQC13001096110 and CQC13001096239.  
Note:  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
For more information, see 5.5 Pin Descriptions (Si866x).  
Table 4.6. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WB SO-  
IC-16  
NB SO-  
IC-16  
NB SOIC-8  
Nominal Air Gap (Clearance)1  
L(IO1)  
L(IO2)  
8.0  
8.0  
4.9  
4.9  
mm  
mm  
Nominal External Tracking  
(Creepage)1  
4.01  
4.01  
Minimum Internal Gap  
(Internal Clearance)  
0.014  
0.014  
0.014  
mm  
silabs.com | Building a more connected world.  
Rev. 1.01 | 25  
 
 
 
 
 
 
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WB SO-  
IC-16  
NB SO-  
IC-16  
NB SOIC-8  
Tracking Resistance  
PTI  
600  
600  
600  
VRMS  
IEC60112  
(Proof Tracking Index)  
Erosion Depth  
ED  
0.019  
0.019  
0.040  
mm  
Ω
Resistance (Input-Output)2  
Capacitance (Input-Output)2  
1012  
2.0  
1012  
2.0  
1012  
2.0  
RIO  
ΧIO  
CI  
f = 1 ΜΗz  
pF  
pF  
Input Capacitance3  
4.0  
4.0  
4.0  
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage  
limits as 4.7 mm minimum for the NB SOIC-16 and SOIC-8 packages and 8.5 mm minimum for the WB SOIC-16 package. UL  
does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance and cree-  
page limits as 3.9 mm minimum for the NB SOIC-16 and SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 (Pins 1-4 for the NB SOIC-8)  
are shorted together to form the first terminal and pins 9–16 (Pins 5-8 for the NB SOIC-8) are shorted together to form the second  
terminal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 4.7. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Test Conditions  
Specification  
NB SOIC-16  
WB SOIC-16  
NB SOIC-8  
Basic Isolation Group  
Material Group  
I
I
Installation Classification  
Rated Mains Voltages < 150 VRMS  
Rated Mains Voltages < 300 VRMS  
Rated Mains Voltages < 400 VRMS  
Rated Mains Voltages < 600 VRMS  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-IV  
I-III  
I-III  
Table 4.8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*  
Parameter  
Symbol  
Test Condition  
Characteristic  
WB NB  
Unit  
SOIC-16  
SOIC-16  
SOIC-8  
630  
Maximum Working Insulation Volt-  
age  
VIORM  
1200  
2250  
Vpeak  
Input to Output Test Voltage  
VPR  
Method b1  
1182  
(VIORM x 1.875 = VPR, 100%  
Production Test, tm = 1 sec,  
Partial Discharge < 5 pC)  
Transient Overvoltage  
VIOTM  
t = 60 sec  
6000  
2
6000  
2
Vpeak  
Pollution Degree  
(DIN VDE 0110, Table 1)  
silabs.com | Building a more connected world.  
Rev. 1.01 | 26  
 
 
 
Si86xx Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
WB  
NB  
SOIC-16  
SOIC-16  
SOIC-8  
>109  
>109  
Insulation Resistance at TS, VIO  
500 V  
=
RS  
Ω
Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21.  
Table 4.9. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condition  
Max  
Unit  
WB  
NB  
NB  
SOIC-16  
SOIC-16  
SOIC-8  
Case Temperature  
TS  
ΙS  
150  
220  
150  
215  
150  
160  
°Χ  
Σαϕετψ Ινπυτ, Ουτπυτ, ορ  
Συππλψ Χυρρεντ  
θJA = 100 °C/W (WB SOIC-16), 105  
°C/W (NB SOIC-16),  
mA  
140 °C/W (NB SOIC-8),  
VI = 5.5 V, TJ = 150 °C, TA = 25 °C  
Device Power  
Dissipation2  
PD  
415  
415  
150  
mW  
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 4.4 Figure 5.4 on page 28,  
Figure 4.5 Figure 5.5 on page 28 and Figure 4.6 Figure 5.6 on page 29.  
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.  
Table 4.10. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-16  
NB SOIC-8  
Unit  
IC Junction-to-Air Thermal  
Resistance  
θJA  
100  
105  
140  
ºC/W  
silabs.com | Building a more connected world.  
Rev. 1.01 | 27  
 
 
Si86xx Data Sheet  
Electrical Specifications  
500  
450  
370  
VDD1, VDD2 = 2.70 V  
VDD1, VDD2 = 3.6 V  
400  
300  
200  
100  
0
220  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
500  
430  
VDD1, VDD2 = 2.70 V  
400  
360  
VDD1, VDD2 = 3.6 V  
300  
215  
200  
VDD1, VDD2 = 5.5 V  
100  
0
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 4.5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
silabs.com | Building a more connected world.  
Rev. 1.01 | 28  
 
 
Si86xx Data Sheet  
Electrical Specifications  
400  
300  
200  
100  
0
320  
270  
VDD1, VDD2 = 2.5 V  
VDD1, VDD2 = 3.3 V  
VDD1, VDD2 = 5.5 V  
160  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 4.6. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Table 4.11. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
Max  
Unit  
Storage Temperature2  
Ambient Temperature Under Bias  
Junction Temperature  
Supply Voltage  
TSTG  
–65  
150  
ºC  
TA  
–40  
125  
150  
ºC  
°C  
V
TJ  
VDD1, VDD2  
–0.5  
–0.5  
–0.5  
7.0  
Input Voltage  
VI  
VO  
IO  
VDD + 0.5  
VDD + 0.5  
10  
V
Output Voltage  
V
Output Current Drive Channel  
mA  
(All devices unless otherwise stated)  
Output Current Drive Channel  
(All Si86xxxA-x-xx devices)  
IO  
22  
mA  
Latchup Immunity3  
100  
V/ns  
Lead Solder Temperature (10 s)  
260  
ºC  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-16, SOIC-8  
4500  
VRMS  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
VRMS  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
3. Latchup immunity specification is for slew rate applied across GND1 and GND2.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 29  
 
 
 
 
Si86xx Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8)  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD2  
B1  
I
s
o
l
a
t
I
s
o
l
a
t
I
s
o
l
a
t
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
GND2/NC  
B1  
A1  
A2  
A1  
A2  
A1  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
VDD1/NC  
B2  
B1  
B2  
i
i
i
o
n
o
n
o
n
GND2 GND1  
GND2 GND1  
GND2  
GND1  
Si8621 NB SOIC-8  
Si8610 NB SOIC-8  
Si8620 NB SOIC-8  
Figure 5.1. Si861x/2x Narrow Body SOIC-8 Pin Descriptions  
Table 5.1. Si861x/2x Narrow Body SOIC-8 Pin Descriptions  
Name  
SOIC-8 Pin#  
SOIC-8 Pin#  
Type  
Description  
Si861x  
1,3  
4
Si862x  
VDD1/NC*  
GND1  
A1  
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
2
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
A2  
NA  
6
B1  
B2  
NA  
8
VDD2  
GND2/NC*  
5, 7  
Ground  
Side 2 ground.  
Note: No connect. These pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 30  
 
 
Si86xx Data Sheet  
Pin Descriptions  
5.2 Pin Descriptions (Si863x)  
VDD1  
VDD1  
VDD2  
GND2  
B1  
VDD2  
GND2  
B1  
GND1  
GND1  
I
s
o
l
I
s
o
l
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B2  
B2  
a
t
i
o
n
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
A3  
NC  
B3  
A3  
NC  
B3  
NC  
NC  
EN2  
GND2  
EN2  
GND2  
NC  
EN1  
GND1  
GND1  
Si8630  
Si8631  
Figure 5.2. Si863x Pin Descriptions  
Table 5.2. Si863x Pin Descriptions  
Name  
VDD1  
GND1  
A1  
SOIC-16 Pin#  
Type  
Description  
1
21  
3
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
Digital Input  
Digital Input  
Digital I/O  
NA  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input or output.  
No Connect.  
A2  
4
A3  
5
NC  
6
EN1/NC2  
GND1  
GND2  
EN2  
7
Digital Input  
Ground  
Side 1 active high enable. NC on Si8630  
Side 1 ground.  
81  
91  
10  
11  
12  
13  
14  
151  
16  
Ground  
Side 2 ground.  
Digital Input  
NA  
Side 2 active high enable.  
No Connect.  
NC  
B3  
Digital I/O  
Digital Output  
Digital Output  
Ground  
Side 2 digital input or output.  
Side 2 digital output.  
Side 2 digital output.  
Side 2 ground.  
B2  
B1  
GND2  
VDD2  
Notes:  
Supply  
Side 2 power supply.  
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be  
connected to external ground.  
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 31  
 
 
 
Si86xx Data Sheet  
Pin Descriptions  
5.3 Pin Descriptions (Si864x)  
VDD1  
VDD1  
VDD1  
VDD2  
GND2  
B1  
VDD2  
GND2  
B1  
VDD2  
GND2  
GND1  
GND1  
GND1  
I
I
s
o
l
I
s
o
l
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
s
o
l
B1  
A1  
A2  
A1  
A2  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B2  
B2  
B2  
a
t
i
o
n
a
t
i
o
n
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
A3  
A4  
B3  
A3  
A4  
B3  
A3  
A4  
B3  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
B4  
B4  
B4  
EN2  
GND2  
EN2  
GND2  
EN2  
GND2  
NC  
EN1  
EN1  
GND1  
GND1  
GND1  
Si8640  
Si8641  
Si8642  
Figure 5.3. Si864x Pin Descriptions  
Table 5.3. Si864x Pin Descriptions  
Name  
VDD1  
GND1  
A1  
SOIC-16 Pin#  
Type  
Description  
1
21  
3
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital Input  
Ground  
Side 1 digital input.  
Side 1 digital input.  
A2  
4
A3  
5
Side 1 digital input or output.  
Side 1 digital input or output.  
A4  
6
EN1/NC2  
GND1  
GND2  
EN2  
B4  
7
Side 1 active high enable. NC on Si8640.  
Side 1 ground.  
81  
91  
10  
11  
12  
13  
14  
151  
16  
Ground  
Side 2 ground.  
Digital Input  
Digital I/O  
Digital I/O  
Digital Output  
Digital Output  
Ground  
Side 2 active high enable.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 digital output.  
B3  
B2  
B1  
Side 2 digital output.  
GND2  
VDD2  
Side 2 ground.  
Supply  
Side 2 power supply.  
Notes:  
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be  
connected to external ground.  
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 32  
 
 
 
Si86xx Data Sheet  
Pin Descriptions  
5.4 Pin Descriptions (Si8650/51/52)  
VDD1  
VDD1  
A1  
VDD1  
VDD2  
B1  
VDD2  
B1  
VDD2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B1  
A1  
A2  
A1  
A2  
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B2  
A2  
B2  
B2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B3  
A3  
B3  
A3  
A4  
A5  
B3  
A3  
A4  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
A4  
B4  
B4  
B4  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
A5  
B5  
A5  
B5  
B5  
EN2  
GND2  
EN2  
GND2  
EN2  
GND2  
NC  
EN1  
GND1  
EN1  
GND1  
GND1  
Si8650  
Si8651  
Si8652  
Figure 5.4. Si865x Pin Descriptions  
Table 5.4. Si865x Pin Descriptions  
Name  
SOIC-16 Pin#  
Type  
Description  
VDD1  
A1  
1
2
Supply  
Digital Input  
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital Input  
Ground  
Side 1 power supply.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
A2  
3
A3  
4
A4  
5
Side 1 digital input or output.  
Side 1 digital input or output.  
A5  
6
EN1/NC*  
GND1  
GND2  
EN2  
B5  
7
Side 1 active high enable. NC on Si8650.  
Side 1 ground.  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
Digital I/O  
Digital I/O  
Digital Output  
Digital Output  
Digital Output  
Supply  
Side 2 active high enable.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 digital output.  
B4  
B3  
B2  
Side 2 digital output.  
B1  
Side 2 digital output.  
VDD2  
Side 2 power supply.  
Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 33  
 
Si86xx Data Sheet  
Pin Descriptions  
5.5 Pin Descriptions (Si866x)  
VDD1  
VDD1  
A1  
A2  
A3  
A4  
A5  
A6  
VDD1  
VDD1  
VDD2  
B1  
B2  
B3  
B4  
B5  
B6  
VDD2  
B1  
B2  
B3  
B4  
B5  
B6  
VDD2  
B1  
VDD2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
B1  
A1  
A2  
A1  
A2  
A1  
A2  
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
I
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B2  
s
o
l
a
t
i
o
n
B2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A3  
A4  
A5  
A6  
B3  
A3  
A4  
A5  
A6  
B3  
A3  
A4  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
B4  
B4  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
A5  
B5  
B5  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RF  
RCVR  
RF  
A6  
B6  
B6  
XMITR  
XMITR  
GND1  
GND2 GND1  
GND2 GND1  
GND2 GND1  
GND2  
Si8660  
Si8661  
Si8662  
Si8663  
Figure 5.5. Si866x Pin Descriptions  
Table 5.5. Si866x Pin Descriptions  
Name  
VDD1  
A1  
SOIC-16 Pin#  
Type  
Description  
1
2
Supply  
Digital Input  
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital I/O  
Ground  
Side 1 power supply.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
A2  
3
A3  
4
A4  
5
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 ground.  
A5  
6
A6  
7
GND1  
GND2  
B6  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital I/O  
Digital I/O  
Digital I/O  
Digital Output  
Digital Output  
Digital Output  
Supply  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 digital output.  
B5  
B4  
B3  
B2  
Side 2 digital output.  
B1  
Side 2 digital output.  
VDD2  
Side 2 power supply.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 34  
 
Si86xx Data Sheet  
Package Outlines  
6. Package Outlines  
6.1 Package Outline (16-Pin Wide Body SOIC)  
The figure below illustrates the package details for the Si86xx Digital Isolator. The table below lists the values for the dimensions shown  
in the illustration.  
Figure 6.1. 16-Pin Wide Body SOIC  
silabs.com | Building a more connected world.  
Rev. 1.01 | 35  
 
 
Si86xx Data Sheet  
Package Outlines  
Table 6.1. Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
E
10.30 BSC  
7.50 BSC  
1.27 BSC  
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 36  
Si86xx Data Sheet  
Package Outlines  
6.2 Package Outline (16-Pin Narrow Body SOIC)  
The figure below illustrates the package details for the Si86xx in a 16-pin narrow-body SOIC (SO-16). The table below lists the values  
for the dimensions shown in the illustration.  
Figure 6.2. 16-pin Small Outline Integrated Circuit (SOIC) Package  
silabs.com | Building a more connected world.  
Rev. 1.01 | 37  
 
Si86xx Data Sheet  
Package Outlines  
Table 6.2. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
E
6.00 BSC  
3.90 BSC  
1.27 BSC  
E1  
e
L
0.40  
1.27  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 38  
Si86xx Data Sheet  
Package Outlines  
6.3 Package Outline (8-Pin Narrow Body SOIC)  
The figure below illustrates the package details for the Si86xx. The table below lists the values for the dimensions shown in the illustra-  
tion.  
Figure 6.3. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 6.3. Package Diagram Dimensions  
Symbol  
Millimeters  
Min  
1.35  
Max  
1.75  
A
A1  
A2  
B
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
silabs.com | Building a more connected world.  
Rev. 1.01 | 39  
 
Si86xx Data Sheet  
Land Patterns  
7. Land Patterns  
7.1 Land Pattern (16-Pin Wide-Body SOIC)  
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin wide-body SOIC. The table below lists the  
values for the dimensions shown in the illustration.  
Figure 7.1. 16-Pin SOIC Land Pattern  
Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-  
sion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 40  
 
 
Si86xx Data Sheet  
Land Patterns  
7.2 Land Pattern (16-Pin Narrow Body SOIC)  
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin narrow-body SOIC. The table below lists  
the values for the dimensions shown in the illustration.  
Figure 7.2. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 7.2. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 41  
 
Si86xx Data Sheet  
Land Patterns  
7.3 Land Pattern (8-Pin Narrow Body SOIC)  
The figure below illustrates the recommended land pattern details for the Si86xx in an 8-pin narrow-body SOIC. The table below lists  
the values for the dimensions shown in the illustration.  
Figure 7.3. PCB Land Pattern: 8-Pin Narrow Body SOIC  
Table 7.3. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 42  
 
Si86xx Data Sheet  
Top Markings  
8. Top Markings  
8.1 Top Marking (16-Pin Wide Body SOIC)  
Si86XYSV  
YYWWRTTTTT  
e4  
CC  
Figure 8.1. 16-Pin Wide Body SOIC  
Table 8.1. Top Marking Explanation (16-Pin Wide Body SOIC)  
Line 1 Marking: Base Part Number  
Si86 = Isolator product series  
XY = Channel Configuration  
Ordering Options  
X = # of data channels (5, 4, 3, 2, 1)  
Y = # of reverse channels (2, 1, 0)  
(See 1. Ordering Guide for more information).  
S = Speed Grade (max data rate) and operating mode:  
A = 1 Mbps (default output = low)  
B = 150 Mbps (default output = low)  
D = 1 Mbps (default output = high)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
Line 2 Marking: YY = Year  
Assigned by assembly subcontractor. Corresponds to the year  
and work week of the mold date.  
WW = Workweek  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Line 3 Marking: Circle = 1.7 mm Diameter  
“e4” Pb-free symbol  
(Center-Justified)  
Country of Origin ISO Code Abbreviation  
CC = Country of Origin ISO Code Abbreviation  
• TW = Taiwan  
• TH = Thailand  
silabs.com | Building a more connected world.  
Rev. 1.01 | 43  
 
 
Si86xx Data Sheet  
Top Markings  
8.2 Top Marking (16-Pin Narrow Body SOIC)  
Si86XYSV  
YYWWRTTTTT  
e3  
Figure 8.2. 16-Pin Narrow Body SOIC  
Table 8.2. Top Marking Explanation (16-Pin Narrow Body SOIC)  
Line 1 Marking: Base Part Number  
Si86 = Isolator product series  
XY = Channel Configuration  
Ordering Options  
X = # of data channels (5, 4, 3, 2, 1)  
Y = # of reverse channels (2, 1, 0)  
(See 1. Ordering Guide for more information.)  
S = Speed Grade (max data rate) and operating mode:  
A = 1 Mbps (default output = low)  
B = 150 Mbps (default output = low)  
D = 1 Mbps (default output = high)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV  
“e3” Pb-Free Symbol  
Line 2 Marking: Circle = 1.2 mm Diameter  
YY = Year  
Assigned by the assembly subcontractor. Corresponds to the  
year and work week of the mold date.  
WW = Work Week  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
silabs.com | Building a more connected world.  
Rev. 1.01 | 44  
 
Si86xx Data Sheet  
Top Markings  
8.3 Top Marking (8-Pin Narrow Body SOIC)  
Si86XYSV  
YYWWRT  
e3  
TTTT  
Figure 8.3. 8-Pin Narrow Body SOIC  
Table 8.3. Top Marking Explanation (8-Pin Narrow Body SOIC)  
Line 1 Marking: Base Part Number  
Si86 = Isolator Product Series  
XY = Channel Configuration  
S = Speed Grade (max data rate)  
V = Insulation rating  
Ordering Options  
(See 1. Ordering Guide for more information).  
Line 2 Marking: YY = Year  
Assigned by assembly subcontractor. Corresponds to the year  
and workweek of the mold date.  
WW = Workweek  
R = Product Revision  
T = First character of the manufacturing code  
Line 3 Marking: Circle = 1.1 mm Diameter  
“e3” Pb-Free Symbol.  
TTTT = Last four characters of the manufactur- Last four characters of the manufacturing code.  
ing code  
silabs.com | Building a more connected world.  
Rev. 1.01 | 45  
 
Si86xx Data Sheet  
Revision History  
9. Revision History  
January 2018  
• Updated data sheet format.  
• Added new table to Ordering Guide for Automotive-Grade OPN options  
Updated Table 4.5 Regulatory Information1 on page 25.  
• Added CQC certificate numbers.  
• Updated 1. Ordering Guide.  
• Removed references to moisture sensitivity levels.  
• Removed note 2.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 46  
 
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI8660BA-A-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
SILICON

Si8660BA-B-IS1

LOW POWER SIX-CHANNEL DIGITAL ISOLATOR
SILICON

Si8660BB-B-IS1

LOW POWER SIX-CHANNEL DIGITAL ISOLATOR
SILICON

SI8660BB-B-IS1R

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660BB-B-IU

Analog Circuit, 1 Func, CMOS, PDSO16, QSOP-16
SILICON

SI8660BD-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660EB-B-IU

Analog Circuit, 1 Func, CMOS, PDSO16, QSOP-16
SILICON

SI8660EC-A-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
SILICON

SI8660EC-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660EC-B-IS1R

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660ED-A-IS

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8660ED-B-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON