SI88342EC-IS [SILICON]

Analog Circuit,;
SI88342EC-IS
型号: SI88342EC-IS
厂家: SILICON    SILICON
描述:

Analog Circuit,

文件: 总52页 (文件大小:1117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si88x4x Data Sheet  
Quad Digital Isolators with DC-DC Converter  
KEY FEATURES  
The Si88xx integrates Silicon Labs’ proven digital isolator technology with an on-chip  
isolated dc-dc converter that provides regulated output voltages of 3.3 or 5.0 V (or >5 V  
with external components) at peak output power levels of up to 5 W. These devices pro-  
vide up to four digital channels. The dc-dc converter has user-adjustable frequency for  
minimizing emissions, a soft-start function for safety, a shut-down option and loop com-  
pensation. The device requires only minimal passive components and a miniature trans-  
former.  
• High-speed isolators with integrated dc-dc  
converter  
• Fully-integrated secondary sensing  
feedback-controlled converter with  
dithering for low EMI  
• dc-dc converter peak efficiency of 83%  
with external power switch  
The ultra-low-power digital isolation channels offer substantial data rate, propagation de-  
lay, size and reliability advantages over legacy isolation technologies. Data rates up to  
100 Mbps max are supported, and all devices achieve propagation delays of only 23 ns  
max. Ordering options include a choice of dc-dc converter features, isolation channel  
configurations and a failsafe mode. All products are certified by UL, CSA, VDE, and  
CQC.  
• Up to 5 W isolated power with external  
power switch  
• Options include dc-dc shutdown, frequency  
control, and soft start  
• Standard Voltage Conversion  
• 3/5 V to isolated 3/5 V  
• 24 V to isolated 3/5 V supported  
Automotive Grade is available for certain part numbers. These products are built using  
automotive-specific flows at all steps in the manufacturing process to ensure the robust-  
ness and low defectivity required for automotive applications.  
• Precise timing on digital isolators  
• 0–100 Mbps  
• 18 ns typical prop delay  
Industrial Applications  
• Industrial automation systems  
• Medical electronics  
• Isolated switch mode supplies  
• Inverters  
Automotive Applications  
• Highly-reliable: 100 year lifetime  
• Hybrid electric and electric vehicles  
• Traction inverters  
• High electromagnetic immunity and ultra-  
low emissions  
• RoHS compliant packages  
• SOIC-20 wide body  
• Battery management systems  
• Vehicle communication busses  
• SOIC-24 wide body  
• Data Acquisition  
• Isolation of up to 5000 V  
RMS  
• Motor control  
• High transient immunity of 100 kV/µs  
(typical)  
• PLCs, distributed control systems  
• AEC-Q100 qualified  
• Wide temp range: -40 to +125°C  
Safety Regulatory Approvals  
• UL 1577 recognized  
• Automotive-grade OPNs available  
• AIAG compliant PPAP documentation  
support  
• VDE certification conformity  
• VDE0884-10  
• Up to 5000 VRMS for 1 minute  
• CSA component notice 5A approval  
• IEC 60950  
• IMDS and CAMDS listing support  
• CQC certification approval  
• GB4943.1  
silabs.com | Building a more connected world.  
Rev. 1.01  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2 Digital Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 DC-DC Converter Application Information . . . . . . . . . . . . . . . . . . . . 9  
3.3.1 Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.2 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.3 Programmable Frequency. . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.4 External Transformer Driver . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.5 VREGA, VREGB . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.6 Output Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.7 Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.8 Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.9 Cycle Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.10 Low-Voltage Configuration . . . . . . . . . . . . . . . . . . . . . . .11  
3.3.11 Low-Voltage to High-Voltage Configuration . . . . . . . . . . . . . . . . .12  
3.3.12 High-Voltage to Low-Voltage Configuration . . . . . . . . . . . . . . . . .13  
3.3.13 High-Voltage Configuration . . . . . . . . . . . . . . . . . . . . . . .14  
3.4 Transformer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. Digital Isolator Device Operation . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.3 Layout Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.3.1 Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.3.2 Output Pin Termination. . . . . . . . . . . . . . . . . . . . . . . . .18  
4.4 Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . .19  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1 Calculating Total Current Consumption . . . . . . . . . . . . . . . . . . . . .37  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7. Package Outline: 20-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . 43  
8. Land Pattern: 20-Pin SOIC  
. . . . . . . . . . . . . . . . . . . . . . . . . 45  
9. Package Outline: 24-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . 46  
10. Land Pattern: 24-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
11.1 Si88x4x Top Marking (20-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . .49  
silabs.com | Building a more connected world.  
Rev. 1.01 | 2  
11.2 Top Marking Explanation (20-Pin Wide Body SOIC). . . . . . . . . . . . . . . . .49  
11.3 Si88x4x Top Marking (24-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . .50  
11.4 Top Marking Explanation (24-Pin Wide Body SOIC). . . . . . . . . . . . . . . . .50  
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
silabs.com | Building a more connected world.  
Rev. 1.01 | 3  
Si88x4x Data Sheet  
Feature List  
1. Feature List  
• High-speed isolators with integrated dc-dc converter  
• Fully-integrated secondary sensing feedback-controlled converter with dithering for low EMI  
• dc-dc converter peak efficiency of 83% with external power switch  
• Up to 5 W isolated power with external power switch  
• Options include dc-dc shutdown, frequency control, and soft start  
• Standard Voltage Conversion  
• 3/5 V to isolated 3/5 V  
• 24 V to isolated 3/5 V supported  
• Precise timing on digital isolators  
• 0–100 Mbps  
• 18 ns typical prop delay  
• Highly-reliable: 100 year lifetime  
• High electromagnetic immunity and ultra-low emissions  
• RoHS compliant packages  
• SOIC-20 wide body  
• SOIC-24 wide body  
• Isolation of up to 5000 VRMS  
• High transient immunity of 100 kV/µs (typical)  
• AEC-Q100 qualified  
• Wide temp range: -40 to +125°C  
silabs.com | Building a more connected world.  
Rev. 1.01 | 4  
 
Si88x4x Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Si88x4x Ordering Guide1,2,3,4  
Ordering  
Part Number  
DC-DC  
Shutdown  
Soft  
Start  
Frequency  
Control  
External  
Switch  
Forward  
Digital  
Reverse  
Digital  
Insulation  
Rating  
Package  
Control  
Channels  
Channels  
Available Now  
Si88240BC-IS  
Si88240EC-IS  
Si88241BC-IS  
Si88241EC-IS  
Si88242BC-IS  
Si88242EC-IS  
Si88243BC-IS  
Si88243EC-IS  
Si88244BC-IS  
Si88244EC-IS  
Si88340EC-IS  
Si88341EC-IS  
Si88342EC-IS  
Si88343EC-IS  
Si88344EC-IS  
Si88440EC-IS  
Si88441EC-IS  
Si88442EC-IS  
Si88443EC-IS  
Si88444EC-IS  
Si88640EC-IS  
Si88641EC-IS  
Si88642EC-IS  
Si88643EC-IS  
Si88644EC-IS  
Sample Now  
Si88240BD-IS  
Si88240ED-IS  
Si88241BD-IS  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
4
4
3
3
2
2
1
1
0
0
4
3
2
1
0
4
3
2
1
0
4
3
2
1
0
0
0
1
1
2
2
3
3
4
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
3.75 kVRMS  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
Y
Y
Y
N
N
N
N
N
N
N
N
N
4
4
3
0
0
1
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
silabs.com | Building a more connected world.  
Rev. 1.01 | 5  
 
 
Si88x4x Data Sheet  
Ordering Guide  
Ordering  
Part Number  
DC-DC  
Shutdown  
Soft  
Start  
Frequency  
Control  
External  
Switch  
Forward  
Digital  
Reverse  
Digital  
Insulation  
Rating  
Package  
Control  
Channels  
Channels  
Si88241ED-IS  
Si88242BD-IS  
Si88242ED-IS  
Si88243BD-IS  
Si88243ED-IS  
Si88244BD-IS  
Si88244ED-IS  
Si88340ED-IS  
Si88341ED-IS  
Si88342ED-IS  
Si88343ED-IS  
Si88344ED-IS  
Si88440ED-IS  
Si88441ED-IS  
Si88442ED-IS  
Si88443ED-IS  
Si88444ED-IS  
Si88640ED-IS  
Si88642ED-IS  
Si88643ED-IS  
Si88644ED-IS  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
3
2
2
1
1
0
0
4
3
2
1
0
4
3
2
1
0
4
2
1
0
1
2
2
3
3
4
4
0
1
2
3
4
0
1
2
3
4
0
2
3
4
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
5.0 kVRMS  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
Note:  
1. All packages are RoHS-compliant with peak solder reflow temperatures of 260°C according to the JEDEC industry standard clas-  
sifications.  
2. “Si” and “SI” are used interchangeably.  
3. AEC-Q100 qualified.  
4. All Si88xxxEx product options are default output high on input power loss. All Si88xxxBx product options are default low. See  
Chapter 4. Digital Isolator Device Operation for more details about default output behavior.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 6  
 
Si88x4x Data Sheet  
Ordering Guide  
Automotive Grade OPNs  
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and  
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-  
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-  
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-  
duction steps.  
Table 2.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5  
Ordering  
Part Number  
DC-DC  
Shutdown  
Soft  
Start  
Frequency  
Control  
External  
Switch  
Forward  
Digital  
Reverse  
Digital  
Insulation  
Rating  
Package  
Control  
Channels  
Channels  
Available Now  
Si88241EC-AS  
Sample Now  
Si88241ED-AS  
Note:  
Y
Y
N
N
N
N
N
N
3
3
1
1
3.75 kVRMS  
5.0 kVRMS  
WB SOIC-20  
WB SOIC-20  
1. All packages are RoHS-compliant.  
2. “Si” and “SI” are used interchangeably.  
3. An "R" at the end of the part number denotes tape and reel packaging option.  
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters  
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive  
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is  
included on shipping labels.  
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-  
tative for further information.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 7  
 
Si88x4x Data Sheet  
Functional Description  
3. Functional Description  
3.1 Theory of Operation  
The Si88xx family of products is capable of transmitting and receiving digital data signals from an isolated power domain to a local  
system power domain with up to 5 kV of isolation. Each part has four unidirectional digital isolation channels. In addition, Si88xx prod-  
ucts include an integrated controller and switches for a dc-dc converter which regulates output voltage by sensing it on the isolated  
side.  
3.2 Digital Isolation  
The operation of an Si88xx digital channel is analogous to that of a digital buffer, except an RF carrier transmits data across the isola-  
tion barrier. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-  
up. A simplified block diagram for a single Si88xx channel is shown in the following figure.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor -  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 3.1. Simplified Si88xx Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a silicon dioxide capacitive isolation barrier. In the transmitter,  
input A modulates the carrier provided by an RF oscillator using on/off keying. The receiver contains a demodulator that decodes the  
input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is  
superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic  
fields. See Figure 3.2 Modulation Scheme on page 8 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 3.2. Modulation Scheme  
silabs.com | Building a more connected world.  
Rev. 1.01 | 8  
 
 
 
 
Si88x4x Data Sheet  
Functional Description  
3.3 DC-DC Converter Application Information  
The Si88xx isolated dc-dc converter is based on a modified fly-back topology and uses an external transformer and Schottky rectifying  
diode for low cost and high operating efficiency. The PWM controller operates in closed-loop, peak current mode control and generates  
isolated output voltages with 2 W average output power at 5.0 V. Options are available for 24 Vdc input or output operation and exter-  
nally configured switching frequency.  
The dc-dc controller modulates a pair of internal primary-side power switches (see Figure 3.3 Si883xx Block Diagram: 3 V–5 V Input to  
3 V–5 V Output on page 11) to generate an isolated voltage at external diode D1 cathode. Closed-loop feedback is provided by a  
compensated error amplifier, which compares the voltage at the VSNS pin to an internal voltage reference. The resulting error voltage  
is fed back through the isolation barrier via an internal feedback path to the controller, thus completing the control loop.  
For higher input supply voltages than 5 V, an external FET Q2 is modulated by a driver pin ESW as shown in (see Figure 3.6 Si886xx  
Block Diagram: 24 V Input to 5 V Output on page 14). A shunt resistor based voltage sense pin RSN provides current sensing capa-  
bility to the controller.  
Additional features include an externally-triggered shutdown of the converter functionality using the SH pin and a programmable soft  
start configured by a capacitor connected to the SS pin. The Si88xx can be used in low- or high-voltage configurations. These features  
and configurations are explained in more detail below.  
3.3.1 Shutdown  
This feature allows the operation of the dc-dc converter to be shut down when asserted high. This function is provided by pin 6 (labeled  
“SH” on the Si882xx) and pin 7 (labeled “SH_FC” on the Si883xx and Si886xx). This feature is not available on the Si884xx. Pin 6 or pin  
7 provide the exact same functionality and shut down the dc-dc converter when asserted high. For normal operation, pins 6 and 7  
should be connected to ground.  
3.3.2 Soft-Start  
The dc-dc controller has an internal timer that controls the power conversion start-up to limit inrush current. There is also the Soft Start  
option where users can program the soft start up by an external capacitor connected to the SS pin. This feature is available on the  
Si883xx and the Si886xx.  
3.3.3 Programmable Frequency  
The frequency of the PWM modulator is set to a default of 250 kHz for Si882xx/4xx. Users can program their desired frequency within a  
given band of 200 kHz to 800 kHz by controlling the time constant of an external RC connected to the SH_FC and SS pins for Si883xx/  
6xx.  
3.3.4 External Transformer Driver  
The dc-dc controller has internal switches (VSW) for driving the transformer with up-to a 5.5 V voltage supply. For higher voltages on  
the primary side, a driver output (ESW) is provided that can drive an external NMOS power transistor for driving the transformer. When  
this configuration is used, a shunt resistor based voltage sense pin (RSN) provides current sensing to the controller.  
3.3.5 VREGA, VREGB  
For supporting voltages greater than 5.5 V, an internal voltage regulator (VREGA, VREGB) needs to be used in conjunction with an  
external NPN transistor, a resistor and a capacitor to provide regulated voltage to the IC.  
3.3.6 Output Voltage Control  
The isolated output voltage (VOUT) is sensed by a resistor divider that provides feedback to the controller through the VSNS pin. The  
voltage error is encoded and transmitted back to the primary side controller across the isolation barrier, which in turn changes the duty  
cycle of the transformer driver. The equation for VOUT is as follows:  
R1  
R2  
VOUT = VSNS × 1 +  
+ R1 × I  
OFFSET  
(
)
silabs.com | Building a more connected world.  
Rev. 1.01 | 9  
 
 
 
 
 
 
 
Si88x4x Data Sheet  
Functional Description  
3.3.7 Compensation  
The dc-dc converter uses peak current mode control. The loop is compensated by connecting an external resistor in series with a ca-  
pacitor from the COMP pin to GNDB. The compensation resistance, RCOMP is fixed at 49.9 kΩ for Si882xx/3xx and 100 kΩ for  
Si884xx/6xx to match internal resistance. Capacitance value is given by the following equation, where fC is crossover frequency:  
6
CCOMP =  
2 × π × f × RCOMP  
C
For more details on the calculations involved, please see AN892: Design Guide for Isolated DC/DC Using the Si882xx/883xx.  
3.3.8 Thermal Protection  
A thermal shutdown circuit is included to protect the system from over-temperature events. The thermal shutdown is activated at a junc-  
tion temperature that prevents permanent damage from occurring.  
3.3.9 Cycle Skipping  
Cycle skipping is included to reduce switching power losses at light loads. This feature is transparent to the user and is activated auto-  
matically at light loads. The product options with integrated power switches (Si882xx/3xx) may never experience cycle skipping during  
operation even at light loads while the external power switch options (Si884xx/6xx) are likely to have cycle skipping start at light loads.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 10  
 
 
 
Si88x4x Data Sheet  
Functional Description  
3.3.10 Low-Voltage Configuration  
The low-voltage configuration is used for converting 3.0 V to 5.5 V. All product options of the Si882xx and Si883xx are intended for this  
configuration.  
An advantage of Si88xx devices over other converters that use this same topology is that the output voltage is sensed on the secon-  
dary side without requiring additional optocouplers and support circuitry to bias those optocouplers. This allows the dc-dc to operate  
with superior line and load regulation while reducing external components and increasing lifetime reliability.  
In a typical digital signal isolation application, the dc-dc powers the Si882xx and Si883xx VDDB as shown in the figure below. In addi-  
tion to powering the isolated side of the dc-dc can deliver up to 2 W of power to other loads. The dc-dc requires an input capacitor, C2,  
blocking capacitor, C1, transformer, T1, rectifying diode, D1, and an output capacitor, C3. Resistors R1 and R2 divide the output volt-  
age to match the internal reference of the error amplifier. Type 1 loop compensation made by RCOMP and CCOMP are required at the  
COMP pin. Though it is not necessary for normal operation, we recommend that a snubber be used to minimize radiated emissions.  
More details can be found in “AN892: Design Guide for Isolated DC-DC Using the Si882xx/883xx”.  
Vin  
Vout  
C1  
T1  
D1  
C3  
C2  
R1  
Si8834x  
R2  
VDDB  
VDDA  
UVLO  
UVLO  
Power  
FET  
Used in applications  
where converter  
output is > 5.5 V  
VREG  
VSNS  
VSW  
HVREG  
Reference  
DC-DC  
Controller  
Power  
FET  
RFSW  
CSS  
SH_FC  
SS  
Error Amp  
and  
Compensation  
Freq. Control  
and Shutdown  
CCOMP  
COMP  
Soft Start  
Encoder  
RCOMP  
HF RX  
HF TX  
HF RX  
HF RX  
A1  
A2  
A3  
A4  
HF TX  
HF TX  
B1  
B2  
HF TX  
HF RX  
HF RX  
HF TX  
B3  
B4  
Figure 3.3. Si883xx Block Diagram: 3 V–5 V Input to 3 V–5 V Output  
silabs.com | Building a more connected world.  
Rev. 1.01 | 11  
 
 
Si88x4x Data Sheet  
Functional Description  
3.3.11 Low-Voltage to High-Voltage Configuration  
The low-voltage to high-voltage configuration is used for converting 3.0 V – 5.5 V up to 24 V.  
In a typical digital signal isolation application, the dc-dc powers the Si882xx and Si883xx VOUT as shown in the figure below. In addi-  
tion to powering the isolated side of the dc-dc, it can deliver up to 2 W of power to other loads. The dc-dc requires an input capacitor,  
C2, blocking capacitor, C1, transformer, T1, rectifying diode, D1, and an output capacitor, C3. Resistors R1 and R2 divide the output  
voltage to match the internal reference of the error amplifier. To supply VDDB that requires voltage lower than 5.5 V, Q3 transistor is  
biased and filtered by R5 and C4. Type 1 loop compensation made by RCOMP and CCOMP are required at the COMP pin. Though it is  
not necessary for normal operation, we recommend that a snubber be used to minimize radiated emissions. More details can be found  
in AN892: Design Guide for Isolated DC-DC Using the Si882xx/883xx.  
Vout  
Vin  
C1  
T1  
D1  
C3  
C2  
Si8834x  
R5  
VDDA  
VREGB  
VREG  
Reference  
UVLO  
Q3  
VDDB  
Power  
FET  
UVLO  
VSW  
DC-DC  
Controller  
C4  
R
1
Power  
FET  
VSNS  
RFSW  
CSS  
SH_FC  
Error Amp  
and  
Compensation  
Freq. Control  
and Shutdown  
R2  
CCOMP  
SS  
COMP  
Soft Start  
Encoder  
RCOMP  
HF RX  
HF TX  
HF RX  
HF RX  
A1  
A2  
A3  
A4  
HF TX  
HF TX  
B1  
B2  
HF TX  
HF RX  
HF RX  
HF TX  
B3  
B4  
Figure 3.4. Si883xx Block Diagram: 3 V – 5 V Input to up to 24 V Output  
silabs.com | Building a more connected world.  
Rev. 1.01 | 12  
 
Si88x4x Data Sheet  
Functional Description  
3.3.12 High-Voltage to Low-Voltage Configuration  
The high-voltage configuration is used for converting up to 24 V to 3.3 V or 5.0 V. All product options of the Si884xx and Si886xx are  
intended for this configuration.  
Si884xx and Si886xx can be used for dc-dc applications that have primary side voltage greater than 5.5 V. The dc-dc converter uses  
the isolated flyback topology. With this topology, the switch and sense resistor are external, allowing higher switching voltages. Digital  
isolator supply VDDA of the Si884xx and Si886xx require a supply less than or equal to 5.5 V. If a suitable supply is not available on the  
primary side, the VREGA voltage reference with external NPN transistor can supply VDDA. This eliminates the need to design an addi-  
tional linear regulator circuit. Like the Si882xx and Si883xx, the output voltage is sensed on the secondary side without requiring addi-  
tional optocouplers and support circuitry to bias those optocouplers. This allows the dc-dc to operate with superior line and load regula-  
tion.  
The figure below shows the block diagram of an Si886xx with external components. Si886xx is different from the Si882xx/883xx as it  
has externally-controlled switching frequency and soft start. The dc-dc requires input capacitor C2, transformer T1, switch Q1, sense  
resistor R4, rectifying diode D1 and an output capacitor C3. To supply VDDA, Q2 transistor is biased and filtered by R3 and C1. Exter-  
nal frequency and soft start behavior is set by CSS and RFSW. Resistors R1 and R2 divide the output voltage to match the internal  
reference of the error amplifier. Type 1 loop compensation made by RCOMP and CCOMP are required at the COMP pin. Though it is  
not necessary for normal operation, we recommend to use a snubber, to minimize high-frequency emissions. For further details, see  
AN901: Design Guide for Isolated DC-DC Using the Si884xx/886xx.  
VOUT  
Vin  
T1  
D1  
C3  
C2  
Si8864x  
R3  
Used in applications  
where converter  
output is > 5.5 V  
VREGA  
VDDA  
VREGB  
VDDB  
VREG  
Reference  
VREG  
Reference  
Q2  
UVLO  
UVLO  
C1  
ESW  
RSN  
Q1  
FET  
Driver  
DC-DC Controller  
Current  
Sensing  
R
4
GNDP  
R
R
1
2
VSNS  
COMP  
RFSW  
CSS  
FC_SH  
Error Amp  
and  
Compensation  
Freq. Control  
and Shutdown  
SS  
CCOMP  
RCOMP  
Soft Start  
Encoder  
HF RX  
HF TX  
A1  
A2  
A3  
A4  
HF TX  
HF TX  
HF RX  
HF RX  
B1  
B2  
HF TX  
HF RX  
HF RX  
HF TX  
B3  
B4  
Figure 3.5. Si886xx Block Diagram: 24 V Input to 5 V Output  
silabs.com | Building a more connected world.  
Rev. 1.01 | 13  
 
Si88x4x Data Sheet  
Functional Description  
3.3.13 High-Voltage Configuration  
The high-voltage configuration is used for converting input voltage up to 24 V to output voltage as high as 24 V. All product options of  
the Si884xx and Si886xx are intended for this configuration.  
Si884xx and Si886xx can be used for dc-dc applications that have primary side voltage greater than 5.5 V. The dc-dc converter uses  
the isolated flyback topology. With this topology, the switch and sense resistor are external, allowing higher switching voltages. Digital  
isolator supply VDDA of the Si884xx and Si886xx require a supply less than or equal to 5.5 V. If a suitable supply is not available on the  
primary side, the VREGA voltage reference with external NPN transistor Q2 can supply VDDA. This eliminates the need to design an  
additional linear regulator circuit. Like the Si882xx and Si883xx, the output voltage is sensed on the secondary side without requiring  
additional optocouplers and support circuitry to bias those optocouplers. This allows the dc-dc to operate with superior line and load  
regulation.  
Figure 3.6 Si886xx Block Diagram: 24 V Input to 5 V Output on page 14 shows the block diagram of an Si886xx with external compo-  
nents. Si886xx is different from the Si882xx/883xx as it has externally-controlled switching frequency and soft start. The dc-dc requires  
input capacitor C2, transformer T1, switch Q1, sense resistor R4, rectifying diode D1 and an output capacitor C3. To supply VDDB, Q3  
transistor is biased and filtered by R5 and C4. External frequency and soft start behavior is set by CSS and RFSW. Resistors R1 and  
R2 divide the output voltage to match the internal reference of the error amplifier. Type 1 loop compensation made by RCOMP and  
CCOMP are required at the COMP pin. Though it is not necessary for normal operation, we recommend to use a snubber, to minimize  
high-frequency emissions. For further details, see “AN901: Design Guide for Isolated DC-DC Using the Si884xx/886xx”.  
VOUT  
Vin  
T1  
D1  
C3  
C2  
Si8864x  
R5  
R3  
VREGA  
VDDA  
VREGB  
VDDB  
VREG  
Reference  
VREG  
Reference  
Q2  
Q3  
UVLO  
UVLO  
C4  
C1  
ESW  
RSN  
Q1  
FET  
Driver  
DC-DC Controller  
Current  
Sensing  
R
4
GNDP  
R
1
2
VSNS  
COMP  
R
RFSW  
CSS  
FC_SH  
Error Amp  
and  
Compensation  
Freq. Control  
and Shutdown  
SS  
CCOMP  
Soft Start  
Encoder  
RCOMP  
HF RX  
HF TX  
A1  
A2  
A3  
A4  
HF TX  
HF TX  
HF RX  
HF RX  
B1  
B2  
HF TX  
HF RX  
HF RX  
HF TX  
B3  
B4  
Figure 3.6. Si886xx Block Diagram: 24 V Input to 5 V Output  
silabs.com | Building a more connected world.  
Rev. 1.01 | 14  
 
 
Si88x4x Data Sheet  
Functional Description  
3.4 Transformer Design  
The following table provides a list of transformers and their parametric characteristics that have been validated to work with Si882xx/3xx  
products (input voltage 3 to 5 V) and Si884xx/Si886xx products (input voltage of 24 V). It is recommended that users order the trans-  
formers from the vendors per the part numbers given below. Refer to AN892 and AN901 for voltage translation applications not listed  
below.  
To manufacture transformers from your preferred suppliers that may not be listed below, please specify to supplier the parametric char-  
acteristics as specified in the table below for a given input voltage and isolation rating.  
Table 3.1. Transformer Specifications  
Transformer Ordering Part #  
Supplier  
Input  
Voltage  
Output  
Voltage  
Turns  
Ratio P:S  
Leakage  
Inductance  
Primary  
Inductance  
Primary  
Resistance  
Isolation  
Rating  
UMEC (http://  
www.umec-  
usa.com)  
UTB02185s  
UTB02205s  
UTB02240s  
UTB02250s  
TA7608-AL  
4.5 – 5.5 V 3.0 – 5.5V  
1.0:4.0  
3.0:1.0  
1.0:4.0  
3.0:1.0  
1.0:4.0  
100 nH max  
800 nH max  
100 nH max  
600 nH max  
60 nH max  
2 µH ± 5%  
25 µH ± 5%  
2 µH ±5%  
0.05 Ω max  
2.5 kVRMS  
UMEC (http://  
www.umec-  
usa.com)  
12V, 24V 3.3 – 5.0V,  
15V  
0.135 Ω max 2.5 kVRMS  
UMEC (http://  
www.umec-  
usa.com)  
4.5 – 5.5V 3.0 – 5.5V  
0.05 Ω max  
5 kVRMS  
UMEC (http://  
www.umec-  
usa.com)  
7 – 24 V  
3.3 – 5.5V  
25 µH ± 5%  
2 µH ± 5%  
0.135 Ω max  
5 kVRMS  
Coilcraft1  
(http://  
www.coil-  
craft.com)  
4.5 – 5.5 V 3.0 – 5.5V  
4.5 – 5.5V 3.0 – 5.5V  
0.033 Ω max 2.5 kVRMS  
Coilcraft1  
(http://  
www.coil-  
craft.com)  
TA7618-AL  
TA7788-AL  
UA7902  
1.0:4.0  
64 nH max  
554 nH max  
971 nH max  
2.0 µH ±5%  
25 µH ±5%  
25 µH ±5%  
0.031 Ω max  
0.49 Ω max  
0.075 Ω max  
5 kVRMS  
5 kVRMS  
5 kVRMS  
Coilcraft1  
(http://  
www.coil-  
craft.com)  
12V  
12V  
5V, 15V  
5V, 15V  
1.00 :  
1.25 : 0.75  
Coilcraft1  
(http://  
3.0:1.0  
www.coil-  
craft.com)  
TDK (http://  
www.tdk.com)  
P100940_A1  
4.5 – 5.5V 3.0 – 5.5V  
1.0:4.0  
1.0:1.0  
40 nH max  
2.0 µH ±10%  
25 µH ±10%  
0.1 Ω max  
0.4 Ω max  
2.4 kVRMS  
2.5 kVRMS  
Mentech  
TTER09-0457S1  
8 - 24 V  
15V, 24V  
550 nH max  
(http://  
men-  
tech.en.made-  
in-china.com/)  
Mentech  
TTER09-0458S1  
8 - 24 V  
8 - 24 V  
1.0:1.0  
550 nH max  
25 µH ±10%  
0.4 Ω max  
5 kVRMS  
(http://  
men-  
tech.en.made-  
in-china.com/)  
silabs.com | Building a more connected world.  
Rev. 1.01 | 15  
 
Si88x4x Data Sheet  
Functional Description  
Transformer Ordering Part #  
Supplier  
Input  
Voltage  
Output  
Voltage  
Turns  
Ratio P:S  
Leakage  
Inductance  
Primary  
Inductance  
Primary  
Resistance  
Isolation  
Rating  
Pulse (http://  
www.pulsee-  
lectron-  
PA4896NL  
8 – 24 V  
7 – 24 V  
1.0:1.0  
650 nH max  
25 µH ±10%  
0.25 Ω max  
2.5 kVRMS  
ics.com/)  
Pulse (http://  
www.pulsee-  
lectron-  
PA4897NL  
8 – 24 V  
7 – 24 V  
1.0:1.0  
650 nH max  
25 µH ±10%  
0.25 Ω max  
5 kVRMS  
ics.com/)  
Notes:  
1. AEC-Q200 qualified.  
2. For reference design details, see AN892: Design Guide for Isolated DC/DC using the Si882xx/883xx or AN901: Design Guide for  
Isolated DC/DC using the Si884xx/886xx.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 16  
 
Si88x4x Data Sheet  
Digital Isolator Device Operation  
4. Digital Isolator Device Operation  
Table 4.1. Si88xx Logic Operation  
VDDI11 , 2, 3, 4  
VDDO11 , 2, 3, 4  
VI Input  
VO Output  
Comments  
H
L
P
P
P
P
P
H
L
Normal operation.  
L4  
H4  
X
UP  
Upon transition of VDDI from un-  
powered to powered, VO returns to  
the same state as VI.  
X
P
UP  
Undetermined  
Upon transition of VDDO from un-  
powered to powered, VO returns to  
the same state as VI.  
Note:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. P = powered; UP = unpowered.  
3. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current. This situation  
should be avoided. We recommend that I/O's not be driven high when primary side supply is turned off or when in dc-dc shut-  
down mode.  
4. See Chapter 2. Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). When VDDB is pow-  
ered via the primary side and the integrated dc-dc, the default outputs are undetermined as secondary side power is not available  
when primary side power shuts off.  
4.1 Device Startup  
Outputs are held low during power up until VDDx is above the UVLO threshold for time period tSU. Following this, the outputs follow the  
states of inputs.  
4.2 Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDDx is below  
its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter  
or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDDA falls below VDDUV– and exits UVLO when  
VDDA rises above VDDUV+. Side B operates the same as Side A with respect to its VDD supply.  
4.3 Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the  
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a  
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large  
high-voltage breakdown protection rating (commonly referred to as working voltage protection). and detail the working voltage and cree-  
page/clearance capabilities of the Si88xx. These tables also detail the component standards (UL1577, VDE0884-10, CSA 5A), which  
are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system speci-  
fication (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.  
4.3.1 Supply Bypass  
The Si88xx family requires a 0.1 µF bypass capacitor between all VDDx and their associated GNDx. The capacitor should be placed as  
close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series with  
the inputs and outputs if the system is excessively noisy.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 17  
 
 
 
 
 
 
 
 
 
Si88x4x Data Sheet  
Digital Isolator Device Operation  
4.3.2 Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-  
chip series termination resistor and channel resistance of the output driver FET. When driving high-impedance terminated PCB traces,  
output pins should be source-terminated to minimize reflections.  
4.4 Fail-Safe Operating Mode  
Si88xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered)  
can either be a logic high or logic low when the output supply is powered. See Table 4.1 Si88xx Logic Operation on page 17 and Table  
2.1 Si88x4x Ordering Guide1,2,3,4 on page 5 for more information.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 18  
 
 
Si88x4x Data Sheet  
Digital Isolator Device Operation  
4.5 Typical Performance Characteristics  
The typical performance characteristics are for information only. Refer to Table 5.2 Electrical Characteristics1 on page 24 for specifi-  
cation limits. The data below is for all channels switching.  
Figure 4.1. Si88240 Typical VDDA Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.2. Si88240 Typical VDDB Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.4. Si88241 Typical VDDB Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.3. Si88241 Typical VDDA Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.5. Si88242 Typical VDDA Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.6. Si88242 Typical VDDB Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
silabs.com | Building a more connected world.  
Rev. 1.01 | 19  
 
Si88x4x Data Sheet  
Digital Isolator Device Operation  
Figure 4.8. Si88243 Typical VDDB Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.7. Si88243 Typical VDDA Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.9. Si88244 Typical VDDA Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.10. Si88244 Typical VDDB Supply Current vs. Data  
Rate (5 and 3.3 V Operation)  
Figure 4.11. Propagation Delay vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.01 | 20  
Si88x4x Data Sheet  
Digital Isolator Device Operation  
Figure 4.12. Efficiency vs. Load Current over Temperature  
(3.3 to 3.3 V)  
Figure 4.13. Efficiency vs. Load Current over Temperature  
(3.3 to 5.0 V)  
Figure 4.14. Efficiency vs. Load Current over Temperature  
(5.0 to 3.3 V)  
Figure 4.15. Efficiency vs. Load Current over Temperature  
(5.0 to 5.0 V)  
Figure 4.16. Efficiency vs. Load Current over Temperature  
(24 V to 5 V)  
Figure 4.17. Efficiency vs. Load Current over Temperature  
(24 V to 3.3 V)  
silabs.com | Building a more connected world.  
Rev. 1.01 | 21  
 
Si88x4x Data Sheet  
Digital Isolator Device Operation  
Figure 4.18. Efficiency vs. Load Current over Temperature  
(12 V to 5 V)  
Figure 4.19. Efficiency vs. Load Current over Temperature (7  
V to 24 V)  
Figure 4.20. 24 V–5 V VOUT Startup vs.Time,  
No Load Current  
Figure 4.21. 24 V–5 V VOUT Startup vs.Time,  
50 mA Load Current  
Figure 4.22. 24 V–5 V VOUT Startup vs.Time,  
400 mA Load Current  
Figure 4.23. 5 V–5 V VOUT Startup vs.Time (No Load)  
silabs.com | Building a more connected world.  
Rev. 1.01 | 22  
 
Si88x4x Data Sheet  
Digital Isolator Device Operation  
Figure 4.24. 5 V–5 V VOUT Startup vs.Time (50 mA Load Cur- Figure 4.25. 5 V–5 V VOUT Startup vs.Time (400 mA Load  
rent)  
Current)  
Figure 4.26. 24 V–5 V VOUT Load Transient Response (10% Figure 4.27. 5 V–5 V VOUT Load Transient Response (10% to  
to 90% Load)  
90% Load)  
Figure 4.28. Typical I-V Curve for VREGA/B  
silabs.com | Building a more connected world.  
Rev. 1.01 | 23  
 
Si88x4x Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Ambient Operating Tempera-  
ture1  
TA  
–40  
25  
125  
°C  
Power Input Voltage  
Supply Voltage  
VDDP  
VDDA  
VDDB  
3.0  
3.0  
3.0  
5.5  
5.5  
5.5  
V
V
V
Note:  
1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply  
voltage.  
Table 5.2. Electrical Characteristics1  
VIN = 24 V; VDDA = 4.3 V (see Figure 5.3 Measurement Circuit for Converter Efficiency and Regulation for Si884xx, Si886xx on page  
32) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 5.2 Measurement Circuit for Converter Efficiency and Regulation for  
Si882xx, Si883xx on page 32) for all Si8824x/34x; TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC/DC Converter  
Switching Frequency  
Si8824x,  
FSW  
225  
250  
275  
kHz  
Si8844x  
RFSW = 23.3 kΩ  
FSW = 1025.5/(RFSW x CSS)  
CSS = 220 nF (see Figure  
3.6 Si886xx Block Diagram: 24 V  
Input to 5 V Output on page 14)  
180  
200  
220  
kHz  
(1% tolerance on BOM)  
RFSW = 9.3 kΩ  
FSW = 1025.5/(RFSW x CSS)  
Switching Frequency  
Si8834x,  
FSW  
CSS = 220 nF (see Figure  
3.6 Si886xx Block Diagram: 24 V  
Input to 5 V Output on page 14)  
450  
810  
500  
900  
550  
990  
kHz  
kHz  
Si8864x  
(1% tolerance on BOM)  
RFSW = 5.18 kΩ,  
CSS = 220 nF (see Figure  
3.6 Si886xx Block Diagram: 24 V  
Input to 5 V Output on page 14)  
VSNS voltage  
VSNS  
Ioffset  
ILOAD = 0 A  
1.002  
–500  
1.05  
1.097  
500  
V
VSNS current offset  
nA  
silabs.com | Building a more connected world.  
Rev. 1.01 | 24  
 
 
 
 
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
Output Voltage  
Accuracy2  
–5  
+5  
%
ILOAD = 0 mA  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
ΔVOUT(line)/  
ΔVDDP  
Line Regulation  
Load Regulation  
1
mV/V  
ILOAD = 50 mA  
VDDP varies from 4.5 to 5.5 V  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
ΔVOUT(load)/  
VOUT  
0.1  
%
ILOAD = 50 to 400 mA  
ILOAD = 100 mA  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
Output Voltage Rip-  
ple  
100  
mV p-p  
Si8824x, Si8834x  
Si8844x, Si8864x  
See Figure 5.3 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si884xx,  
Si886xx on page 32  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
Turn-on overshoot  
ΔVOUT(start)  
2
%
CIN = COUT = 0.1 μF in  
parallel with 10 μF, ILOAD = 0 A  
Continuous Output  
Current  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
Si8824x, Si8834x  
5.0 V to 5.0 V  
3.3 V to 3.3 V  
3.3 V to 5.0 V  
5.0 V to 3.3 V  
Si8844x, Si8864x  
24.0 to 5.0 V  
400  
400  
250  
550  
See Figure 5.3 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si884xx,  
Si886xx on page 32  
ILOAD(max)  
mA  
1000  
1500  
24.0 to 3.0 V  
Cycle-by-cycle aver-  
age current limit  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
ILIM  
3
A
Si8824x, Si8834x  
Output short circuited  
silabs.com | Building a more connected world.  
Rev. 1.01 | 25  
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
No Load Supply Cur-  
rent IDDP  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
IDDPQ_DCD  
C3  
30  
mA  
Si8824x, Si8834x  
VDDP = VDDA = 5 V  
No Load Supply Cur-  
rent IDDA  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32  
ID-  
5.7  
0.8  
5.8  
mA  
mA  
mA  
Si8824x, Si8834x  
DAQ_DCDC4  
VDDP = VDDA = 5 V  
No Load Supply Cur-  
rent IDDP  
See Figure 5.3 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si884xx,  
Si886xx on page 32  
IDDPQ_DCD  
C3  
Si8844x, Si8864x  
VIN = 24 V  
No Load Supply Cur-  
rent IDDA  
See Figure 5.3 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si884xx,  
Si886xx on page 32  
ID-  
DAQ_DCDC4  
Si8844x, Si8864x  
VIN=24V  
See Figure 5.2 Measurement  
Circuit for Converter Efficiency  
and Regulation for Si882xx,  
Si883xx on page 32, Figure  
5.3 Measurement Circuit for  
Converter Efficiency and Regula-  
tion for Si884xx, Si886xx on  
page 32  
Peak Efficiency  
η
%
Si8824x, Si8834x  
Si8844x, Si8864x  
78  
83  
Voltage Regulator  
Reference Voltage  
IREG = 600 µA  
See Figure 4.15 Efficiency vs.  
Load Current over Temperature  
(5.0 to 5.0 V) on page 21 for typi-  
cal I–V curve  
VREGA,  
VREGB  
4.8  
V
Si8844x, Si8864x  
VREG tempco  
KTVREG  
IREG  
–0.4  
mV/°C  
µA  
VREG input current  
350  
950  
See Figures Figure 4.20 24 V–5  
V VOUT Startup vs.Time,  
No Load Current on page 22  
through Figure 4.25 5 V–5 V  
VOUT Startup vs.Time (400 mA  
Load Current) on page 23 for  
typical soft start times over load  
conditions.  
Soft Start Time, Full  
Load  
tSST  
ms  
Si8824x, Si8844x  
Si8834x, Si8864x  
25  
50  
Restart Delay from  
fault event  
tOTP  
21  
s
Digital Isolator  
VDD Undervoltage  
Threshold  
VDDUV+  
VDDUV–  
VDDA, VDDB rising  
VDDA, VDDB falling  
2.7  
2.6  
V
V
VDD Undervoltage  
Threshold  
silabs.com | Building a more connected world.  
Rev. 1.01 | 26  
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage  
Hysteresis  
VDDHYS  
100  
mV  
Positive-Going Input  
Threshold  
VT+  
All inputs rising  
All inputs falling  
1.7  
V
Negative-Going Input  
Threshold  
VT–  
VHYS  
VIH  
1.2  
0.4  
V
V
V
Input Hysteresis  
High Level Input Volt-  
age  
2.0  
Low Level Input Volt-  
age  
VIL  
VOH  
VOL  
0.8  
V
V
V
High Level Output  
Voltage  
VDDA,  
DDB – 0.4  
loh = –4 mA  
lol = 4 mA  
V
Low Level Output  
Voltage  
0.4  
Input Leakage Cur-  
rent  
IL  
-10  
+10  
µA  
Ω
Output Impedance  
ZO  
50  
Supply Current, CLOAD = 15 pF  
DC, VDDx = 3.3 V ± 10%  
Si88x40ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
7.5  
3.5  
1.5  
2.5  
10.5  
5.5  
4.5  
4.5  
13.5  
7.5  
7.8  
6.5  
VDDB  
mA  
mA  
mA  
VDDA  
VDDB  
Si88x41ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
6.7  
5.0  
1.5  
2.5  
9.7  
7.0  
4.5  
4.5  
12.7  
9.0  
7.8  
6.5  
VDDB  
VDDA  
VDDB  
Si88x42ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
5.2  
6.1  
1.5  
2.5  
8.2  
8.1  
4.5  
4.5  
11.2  
10.1  
7.8  
VDDB  
VDDA  
6.5  
VDDB  
Si88x43ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
3.7  
7.5  
1.5  
2.5  
6.7  
9.5  
4.5  
4.5  
9.7  
11.5  
7.8  
VDDB  
mA  
VDDA  
6.5  
VDDB  
silabs.com | Building a more connected world.  
Rev. 1.01 | 27  
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Si88x44ED  
VDDA  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
1.9  
9.0  
1.5  
2.5  
4.9  
11.0  
4.5  
7.9  
13.0  
7.8  
VDDB  
mA  
VDDA  
4.5  
6.5  
VDDB  
Si88x40BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
1.5  
2.5  
7.5  
3.5  
4.5  
4.5  
7.8  
6.5  
VDDB  
mA  
mA  
mA  
mA  
mA  
10.5  
5.5  
13.5  
7.5  
VDDA  
VDDB  
Si88x41BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
1.5  
2.5  
6.7  
5.0  
4.5  
4.5  
9.7  
7.0  
7.8  
6.5  
VDDB  
12.7  
9.0  
VDDA  
VDDB  
Si88x42BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
1.5  
2.5  
5.2  
6.1  
4.5  
4.5  
8.2  
8.1  
7.8  
6.5  
VDDB  
11.2  
10.1  
VDDA  
VDDB  
Si88x43BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
1.5  
2.5  
3.7  
7.5  
4.5  
4.5  
6.7  
9.5  
7.8  
6.5  
VDDB  
9.7  
VDDA  
11.5  
VDDB  
Si88x44BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
1.5  
2.5  
1.9  
9.0  
4.5  
4.5  
7.8  
6.5  
VDDB  
4.9  
7.9  
VDDA  
11.0  
13.0  
VDDB  
silabs.com | Building a more connected world.  
Rev. 1.01 | 28  
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Supply Current, CLOAD = 15 pF  
DC, VDDx = 5 V ± 10%  
Si88x40ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
10.3  
3.8  
4.0  
2.8  
13.3  
5.8  
7.0  
4.8  
16.3  
7.8  
VDDB  
10.0  
6.8  
VDDA  
VDDB  
Si88x41ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
9.0  
5.0  
4.0  
2.8  
12.0  
7.0  
7.0  
4.8  
15.0  
9.0  
VDDB  
10.0  
6.8  
VDDA  
VDDB  
Si88x42ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
7.8  
6.3  
4.0  
2.8  
10.8  
8.3  
7.0  
4.8  
12.8  
10.3  
10.0  
6.8  
VDDB  
VDDA  
VDDB  
Si88x43ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
6.5  
7.5  
4.0  
2.8  
9.5  
9.5  
7.0  
4.8  
12.5  
11.5  
10.0  
6.8  
VDDB  
VDDA  
VDDB  
Si88x44ED  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
4.3  
9.0  
4.0  
2.8  
7.3  
11.0  
7.0  
10.3  
13.0  
10.0  
6.8  
VDDB  
VDDA  
4.8  
VDDB  
Si88x40BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
4.0  
2.8  
7.0  
4.8  
10.0  
6.8  
VDDB  
10.3  
3.8  
13.3  
5.8  
16.3  
7.8  
VDDA  
VDDB  
silabs.com | Building a more connected world.  
Rev. 1.01 | 29  
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Si88x41BD  
VDDA  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
4.0  
2.8  
9.0  
5.0  
7.0  
4.8  
10.0  
6.8  
VDDB  
mA  
12.0  
7.0  
15.0  
9.0  
VDDA  
VDDB  
Si88x42BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
4.0  
2.8  
7.8  
6.3  
7.0  
4.8  
10.0  
6.8  
VDDB  
mA  
mA  
mA  
10.8  
8.3  
12.8  
10.3  
VDDA  
VDDB  
Si88x43BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
4.0  
2.8  
6.5  
7.5  
7.0  
4.8  
9.5  
9.5  
10.0  
6.8  
VDDB  
12.5  
11.5  
VDDA  
VDDB  
Si88x44BD  
VDDA  
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
4.0  
2.8  
4.3  
9.0  
7.0  
4.8  
10.0  
6.8  
VDDB  
7.3  
10.3  
13.0  
VDDA  
11.0  
VDDB  
Timing Characteristics  
Data Rate  
0
100  
Mbps  
ns  
Minimum Pulse  
Width  
10  
Propagation Delay  
Propagation Delay  
Propagation Delay  
Propagation Delay  
tPHL  
tPLH  
tPHL  
tPLH  
See Figure 5.1 Propagation De-  
lay Timing for Digital Channels  
on page 31  
12.0  
11.0  
13.0  
10.0  
17.0  
15.0  
18.0  
13.0  
22.0  
20.0  
23.0  
18.0  
ns  
ns  
ns  
ns  
VDDx = 3.3 V  
See Figure 5.1 Propagation De-  
lay Timing for Digital Channels  
on page 31  
VDDx = 3.3 V  
See Figure 5.1 Propagation De-  
lay Timing for Digital Channels  
on page 31  
VDDx = 5.0 V  
See Figure 5.1 Propagation De-  
lay Timing for Digital Channels  
on page 31  
VDDx = 5.0 V  
silabs.com | Building a more connected world.  
Rev. 1.01 | 30  
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Pulse Width Distor-  
tion  
PWD  
See Figure 5.1 Propagation De-  
lay Timing for Digital Channels  
on page 31  
2.5  
5.0  
ns  
|tPLH – tPHL  
|
VDDx = 3.3 V  
Pulse Width Distor-  
tion  
PWD  
See Figure 5.1 Propagation De-  
lay Timing for Digital Channels  
on page 31  
4.5  
7.0  
ns  
|tPLH – tPHL  
|
VDDx = 5.0 V  
Propagation Delay  
Skew6  
tPSK(P-P)  
3.0  
2.0  
10.0  
4.0  
ns  
ns  
Channel-Channel  
Skew  
tPSK  
Output Rise Time  
Output Fall Time  
tr  
tf  
CLOAD = 15 pF  
CLOAD = 15 pF  
VI = VDDx or 0 V  
VCM = 1500 V  
40  
2.5  
2.5  
100  
ns  
ns  
Common Mode  
Transient Immunity  
CMTI  
kV/µs  
See Figure 5.4 Common-Mode  
Transient Immunity Test Circuit  
on page 33  
Startup Time7  
tSU  
55  
µs  
Note:  
1. Over recommended operating conditions as noted in Table 5.1 Recommended Operating Conditions on page 24.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 5.1. Propagation Delay Timing for Digital Channels  
silabs.com | Building a more connected world.  
Rev. 1.01 | 31  
 
 
 
 
 
 
 
Si88x4x Data Sheet  
Electrical Specifications  
IIN  
C1  
D1  
T1  
DB2440100L  
10 µF  
R4  
100  
+
+
VOUT  
_
C3  
C2  
VIN  
10 µF  
10 µF  
C5  
_
100 pF  
UTB02185S  
U1  
VSW  
IDDB  
IDDP  
VDDB  
VDDP  
VDDA  
R1  
49.9 k  
IDDA  
VSNS  
COMP  
R3  
49.9 k  
R2  
13.3 k  
SH  
C4  
GNDA  
GNDP  
1.5 nF  
GNDB  
Figure 5.2. Measurement Circuit for Converter Efficiency and Regulation for Si882xx, Si883xx  
ILOAD  
IIN  
IDDP  
IDDA  
D1  
T1  
SBRT5A50SA  
R8  
27.4  
R9  
82  
+
+
C3  
C2  
VIN  
VOUT  
22 µF  
10 µF  
C7  
C6  
_
_
100 pF  
68 pF  
UTB02205S  
U2  
IDDB  
Q1  
FDT3612  
ESW  
VDDB  
RSNS  
R1  
49.9 k  
R5  
0.1  
R7  
19.6 k  
VSNS  
GNDP  
VREG  
COMP  
Q2  
R3  
100 k  
R2  
13.3 k  
MMBT2222LT1  
C5  
0.1 µF  
C4  
VDDA  
1.5 nF  
C8  
GNDB  
10 µF  
SS  
SH_FC  
C1  
R6  
18 k  
0.22 µF  
GNDA  
Figure 5.3. Measurement Circuit for Converter Efficiency and Regulation for Si884xx, Si886xx  
silabs.com | Building a more connected world.  
Rev. 1.01 | 32  
 
 
Si88x4x Data Sheet  
Electrical Specifications  
DC-DC Output  
Powers B-side  
Referenced to  
Earth Ground  
Si8824x  
VSW  
VDDB  
VDDP/VDDA  
Oscilloscope  
Forward  
Channel  
Input  
Forward  
Channel  
Ouput  
Reverse  
Channel  
Measured by  
Forward  
Channel in  
Loopback  
Isolated  
Supply  
+
_
Reverse  
Channel  
Output  
Reverse  
Channel  
Input  
GNDB  
GNDA  
High Voltage  
Differential  
Probe  
High Voltage Transient Generator  
Figure 5.4. Common-Mode Transient Immunity Test Circuit  
Table 5.3. Regulatory Information1, 2  
CSA  
The Si88xx is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number  
232873.  
60950-1: Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
VDE  
The Si88xx is certified according to VDE 0884-10. For more details, see certificate 40018443.  
VDE 0884-10: Up to 891 Vpeak for basic insulation working voltage.  
UL  
The Si88xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
CQC  
The Si88xx is certified under GB4943.1-2011.  
Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
Note:  
1. Regulatory Certifications apply to 3.75 and 5.0 kVRMS rated devices, which are production tested to 4.5 and 6.0 kVRMS  
for 1 sec, respectively.  
2. All certifications are pending.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 33  
 
 
 
Si88x4x Data Sheet  
Electrical Specifications  
Table 5.4. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WB SOIC-20  
WB SOIC-24  
8.01  
Nominal External Air Gap (Clear-  
ance)  
CLR  
CPG  
DTI  
mm  
mm  
mm  
8.01  
Nominal External Tracking (Cree-  
page)  
Minimum Internal Gap  
(Internal Clearance)  
Tracking Resistance  
Erosion Depth  
0.014  
PTI or CTI  
ED  
IEC60112  
f = 1 MHz  
600  
V
mm  
Ω
0.019  
Resistance (Input-Output)2  
Capacitance (Input-Output)2  
1012  
1.4  
RIO  
CIO  
CI  
pF  
pF  
Input Capacitance3  
4.0  
Note:  
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage  
limits as 8.5 mm minimum for the WB SOIC-20 and WB SOIC-24 packages. UL does not impose a clearance and creepage mini-  
mum for component-level certifications. CSA certifies the clearance and creepage limits as 7.6 mm minimum for the WB SOIC-20  
and WB SOIC-24 packages.  
2. To determine resistance and capacitance, the Si88xx is converted into a 2-terminal device.  
3. Measured from input to ground.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 34  
 
 
 
Si88x4x Data Sheet  
Electrical Specifications  
Table 5.5. IEC 60664-1 Ratings  
Test Condition  
Parameter  
Specification  
WB SOIC-20  
WB SOIC-24  
Basic Isolation Group  
Material Group  
I
Installation Classification  
Rate Mains Voltages <150 VRMS  
Rate Mains Voltages <300 VRMS  
Rate Mains Voltages <400 VRMS  
Rate Mains Voltages <600 VRMS  
I–IV  
I–IV  
I–III  
I–III  
Table 5.6. VDE 0884-10 Insulation Characteristics1  
Parameter  
Symbol  
Test Condition  
Characteristic  
WB SOIC-20  
WB SOIC-24  
Unit  
Maximum Working  
Insulation Voltage  
VIORM  
891  
V peak  
V peak  
Input to Output Test Volt-  
age  
VPR  
Method b1  
(VIORM x 1.875 = VPR  
100%  
1671  
,
Production Test,  
tm = 1 sec,  
Partial Discharge < 5 pC)  
Transient Overvoltage  
Surge Voltage  
VIOTM  
t = 60 sec  
6000  
V peak  
Tested per IEC 60065  
with surge voltage of 1.2  
µs/50 µs  
VIOSM  
Tested with 4000 V  
3077  
2
V peak  
Pollution Degree  
(DIN VDE 0110, Table 1)  
>109  
Insulation Resistance at  
TS, VIO = 500 V  
RS  
Ω
Note:  
1. Maintenance of the safety data is ensured by protective circuits. The Si88xx provides a climate classification of 40/125/21.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 35  
 
Si88x4x Data Sheet  
Electrical Specifications  
Table 5.7. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condition  
WB SOIC-20, WB SO-  
Unit  
IC-24  
Safety Temperature  
Safety Input Current  
Device Power Dissipation  
TS  
IS  
150  
°C  
mA  
W
θJA = 55 °C/W  
(WB SOIC-20),  
413  
PD  
2.27  
VDDA = 5.5 V,  
TJ = 150 °C, TA = 25 °C  
Note:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 5.5 WB SOIC-20/24 Thermal De-  
rating Curve (Dependence of Safety Limiting Values per VDE) on page 36.  
Table 5.8. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-20, WB SOIC-24  
Unit  
IC Junction-to-Air Thermal Re-  
sistance  
θJA  
55  
°C/W  
Figure 5.5. WB SOIC-20/24 Thermal Derating Curve (Dependence of Safety Limiting Values per VDE)  
Table 5.9. Absolute Maximum Ratings1  
Parameter  
Symbol  
TSTG  
Min  
–65  
Max  
+150  
+150  
6.0  
Unit  
°C  
°C  
V
Storage Temperature  
Junction Temperature  
Input-side Supply Voltage  
TJ  
VDDA  
VDDP  
–0.6  
silabs.com | Building a more connected world.  
Rev. 1.01 | 36  
 
 
Si88x4x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
VDDB  
VIN  
Min  
–0.6  
–0.5  
Max  
6.0  
Unit  
V
Output supply  
Voltage on any Pin with respect to  
Ground  
VDD + 0.5  
V
Output Drive Current per Channel  
Input Current for VREGA, VREGB  
Lead Solder Temperature (10 s)  
ESD per AEC-Q100  
IO  
10  
1
mA  
mA  
°C  
IREG  
260  
4
HBM  
CDM  
kV  
2
kV  
Maximum Isolation (Input to Out-  
put) (1 sec)  
6500  
VRMS  
WB SOIC-20, WB SOIC-24  
Note:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
5.1 Calculating Total Current Consumption  
For calculating dynamic supply current, use the following guidelines:  
The dynamic current is calculated as follows:  
D
2
IDD ac = C  
× V ×  
× 1E 3  
(
)
(
)
( )  
(
)
L
Where  
IDD(ac) is the dynamic component of current, per output channel, in mA  
D is the data-rate of that channel, in Mbps  
CL is the load capacitance connected to the output, in pF  
V is the VDD on the output side, in Volts  
For example, for the Si88x42ED-IS, the total current can be calculated as follows:  
The average DC IDDA/B is the average of the DC current values at input 0 and input 1, for VDDA and VDDB respectively (max values  
used), as stated in the table above for Si88x42ED.  
CL, pF VDD, V Data-rate,  
MBps  
IDD(ac), per  
output channel,  
mA  
Total IDDA(ac),  
mA  
Total  
Average  
Average Total IDDA, mA  
Total  
IDDB, mA  
IDDB(ac), DC IDDA, DC IDDB,  
mA  
mA  
mA  
20  
3.3  
10  
0.33  
0.66  
0.66  
9.35  
8.3  
10.01  
8.96  
silabs.com | Building a more connected world.  
Rev. 1.01 | 37  
 
 
Si88x4x Data Sheet  
Pin Descriptions  
6. Pin Descriptions  
20  
19  
18  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
1
2
3
4
5
6
GNDB  
20  
19  
18  
1
2
3
4
5
6
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
VDDB  
VDDB  
DNC/VREGB  
DNC/VREGB  
17 NC  
17 NC  
VSNS  
16  
VSNS  
16  
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
B1  
14  
7
8
A1  
B1  
14  
7
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A2  
13 B2  
A2  
13 B2  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A3  
B3  
B4  
12  
11  
9
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
HF  
XMTR  
HF  
RCVR  
A4  
10  
A4  
10  
Si88241  
Si88240  
20  
1
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
20  
1
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
19  
18  
2
3
4
5
6
VDDB  
19  
18  
2
3
4
5
6
VDDB  
DNC/VREGB  
DNC/VREGB  
17 NC  
17 NC  
VSNS  
16  
VSNS  
16  
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
B1  
14  
7
8
A1  
B1  
14  
7
8
HF  
RCVR  
HF  
XMTR  
HF  
XMTR  
HF  
RCVR  
A2  
13 B2  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A4  
10  
A4  
10  
Si88243  
Si88242  
20  
19  
18  
1
2
3
4
5
6
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
VDDB  
DNC/VREGB  
17 NC  
VSNS  
16  
15 COMP  
HF  
RCVR  
HF  
XMTR  
A1  
B1  
14  
7
8
HF  
RCVR  
HF  
XMTR  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
A4  
10  
Si88244  
Figure 6.1. Si8824x Pin Configurations  
silabs.com | Building a more connected world.  
Rev. 1.01 | 38  
 
Si88x4x Data Sheet  
Pin Descriptions  
24  
23  
22  
24  
23  
22  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
VDDB  
VDDB  
DNC/VREGB  
DNC/VREGB  
21 NC  
21 NC  
VSNS  
VSNS  
20  
20  
19 COMP  
19 COMP  
SH_FC  
SS  
SH_FC  
SS  
18  
17  
18  
17  
NC  
NC  
B1  
NC  
NC  
B1  
8
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A4  
16  
A1  
A2  
A3  
A4  
9
16  
9
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
15 B2  
10  
15 B2  
10  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
B3  
B4  
14  
13  
B3  
B4  
11  
12  
14  
13  
11  
12  
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
Si88340  
Si88341  
24  
23  
22  
24  
23  
22  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
VDDB  
VDDB  
DNC/VREGB  
DNC/VREGB  
21 NC  
21 NC  
VSNS  
VSNS  
20  
20  
19 COMP  
19 COMP  
SH_FC  
SS  
SH_FC  
SS  
18  
17  
18  
17  
NC  
NC  
B1  
NC  
NC  
B1  
8
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
16  
9
16  
9
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
15 B2  
10  
15 B2  
10  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
B3  
B4  
14  
13  
B3  
B4  
14  
13  
11  
12  
11  
12  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
Si88342  
Si88343  
24  
23  
22  
1
2
3
4
5
6
7
GNDP  
GNDB  
VDDB  
DNC/VREGB  
VSW  
VDDP  
VDDA  
GNDA  
NC  
21 NC  
VSNS  
20  
19 COMP  
SH_FC  
SS  
18  
17  
NC  
NC  
B1  
8
HF  
RCVR  
HF  
XMTR  
A1  
A2  
A3  
A4  
16  
9
HF  
RCVR  
HF  
XMTR  
15 B2  
10  
HF  
RCVR  
HF  
XMTR  
B3  
B4  
14  
13  
11  
12  
HF  
RCVR  
HF  
XMTR  
Si88344  
Figure 6.2. Si8834x Pinout Diagrams  
silabs.com | Building a more connected world.  
Rev. 1.01 | 39  
Si88x4x Data Sheet  
Pin Descriptions  
20  
19  
18  
20  
19  
18  
1
2
3
4
5
6
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
GNDP  
RSN  
GNDB  
VDDB  
VDDB  
ESW  
VDDA  
GNDA  
VREGA  
A1  
DNC/VREGB  
ESW  
VDDA  
GNDA  
VREGA  
A1  
DNC/VREGB  
17 NC  
17 NC  
VSNS  
VSNS  
16  
16  
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
B1  
B1  
14  
14  
7
8
7
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A2  
13 B2  
A2  
13 B2  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A3  
A3  
B3  
B4  
B3  
B4  
12  
11  
12  
11  
9
9
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
A4  
A4  
10  
10  
Si88440  
Si88441  
20  
19  
18  
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
20  
19  
18  
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
VDDB  
VDDB  
ESW  
VDDA  
GNDA  
VREGA  
A1  
DNC/VREGB  
ESW  
VDDA  
GNDA  
VREGA  
A1  
DNC/VREGB  
17 NC  
17 NC  
VSNS  
16  
VSNS  
16  
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
B1  
14  
7
8
B1  
14  
7
8
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
A2  
13 B2  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
10  
A4  
A4  
10  
Si88442  
Si88443  
20  
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
VDDB  
19  
18  
ESW  
VDDA  
GNDA  
VREGA  
A1  
DNC/VREGB  
17 NC  
VSNS  
16  
15 COMP  
HF  
RCVR  
HF  
XMTR  
B1  
14  
7
8
HF  
RCVR  
HF  
XMTR  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
A4  
10  
Si88444  
Figure 6.3. Si8844x Pinout Diagrams  
silabs.com | Building a more connected world.  
Rev. 1.01 | 40  
Si88x4x Data Sheet  
Pin Descriptions  
24  
23  
22  
24  
23  
22  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
GNDP  
RSN  
GNDB  
GNDP  
RSN  
GNDB  
VDDB  
VDDB  
ESW  
DNC/VREGB  
ESW  
DNC/VREGB  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VSNS  
VSNS  
20  
20  
19 COMP  
19 COMP  
18  
17  
18  
17  
NC  
NC  
B1  
NC  
NC  
B1  
8
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A4  
16  
A1  
A2  
A3  
A4  
9
16  
9
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
15 B2  
10  
15 B2  
10  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
B3  
B4  
14  
13  
B3  
B4  
11  
12  
14  
13  
11  
12  
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
Si88640  
Si88641  
24  
23  
22  
24  
23  
22  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
GNDP  
RSN  
GNDB  
GNDP  
RSN  
GNDB  
VDDB  
VDDB  
ESW  
DNC/VREGB  
ESW  
DNC/VREGB  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VSNS  
VSNS  
20  
20  
19 COMP  
19 COMP  
18  
17  
18  
17  
NC  
NC  
B1  
NC  
NC  
B1  
8
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
16  
9
16  
9
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
15 B2  
10  
15 B2  
10  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
B3  
B4  
14  
13  
B3  
B4  
14  
13  
11  
12  
11  
12  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
Si88642  
Si88643  
24  
23  
22  
1
2
3
4
5
6
7
GNDP  
GNDB  
VDDB  
DNC/VREGB  
RSN  
ESW  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VSNS  
20  
19 COMP  
18  
17  
NC  
NC  
B1  
8
HF  
RCVR  
HF  
XMTR  
A1  
A2  
A3  
A4  
16  
9
HF  
RCVR  
HF  
XMTR  
15 B2  
10  
HF  
RCVR  
HF  
XMTR  
B3  
B4  
14  
13  
11  
12  
HF  
RCVR  
HF  
XMTR  
Si88644  
Figure 6.4. Si8864x Pinout Diagrams  
silabs.com | Building a more connected world.  
Rev. 1.01 | 41  
Si88x4x Data Sheet  
Pin Descriptions  
Table 6.1. Si88x4x Pin Descriptions  
Description  
Pin Name  
DC-DC Input Side  
VDDP  
Power stage primary power supply.  
Voltage reference output for external voltage regulator pin.  
Power stage ground.  
VREGA  
GNDP  
ESW  
Power stage external switch driver output.  
Power stage internal switch output.  
Soft startup control.  
VSW  
SS  
SH, SH_FC  
RSN  
Shutdown and Switch frequency control.  
Power stage current sense input.  
DC-DC Output Side  
VSNS  
Power stage feedback input.  
Power stage compensation.  
COMP  
DNC/VREGB  
Voltage reference output for external voltage regulator pin. This pin has a  
Zener connected internally. Use this pin as reference only when output  
voltage from dc-dc is > 5.5 V. If output voltage is ≤ 5.5V, this pin should be  
read as DNC or Do Not Connect, and should be no connect.  
NC  
No connect; this pin is not connected to the silicon.  
Digital Isolator VDDA Side  
VDDA  
Primary side signal power supply.  
I/O signal channel 1–4.  
A1–A4  
GNDA  
Primary side signal ground.  
Digital Isolator VDDB Side  
VDDB  
B1–B4  
GNDB  
Secondary side signal power supply.  
I/O signal channel 1–4.  
Secondary side signal ground.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 42  
Si88x4x Data Sheet  
Package Outline: 20-Pin Wide Body SOIC  
7. Package Outline: 20-Pin Wide Body SOIC  
Figure 7.1 20-Pin Wide Body SOIC on page 43 illustrates the package details for the 20-pin wide-body SOIC package. Table 7.1 20-  
Pin Wide Body SOIC Package Diagram Dimensions on page 43 lists the values for the dimensions shown in the illustration.  
Figure 7.1. 20-Pin Wide Body SOIC  
Table 7.1. 20-Pin Wide Body SOIC Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
12.80 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
0.10  
silabs.com | Building a more connected world.  
Rev. 1.01 | 43  
 
 
 
Si88x4x Data Sheet  
Package Outline: 20-Pin Wide Body SOIC  
Dimension  
Min  
Max  
0.33  
0.10  
0.25  
0.10  
0.20  
bbb  
ccc  
ddd  
eee  
fff  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AC.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 44  
Si88x4x Data Sheet  
Land Pattern: 20-Pin SOIC  
8. Land Pattern: 20-Pin SOIC  
Figure 8.1 20-Pin SOIC PCB Land Pattern on page 45 illustrates the PCB land pattern details for the 20-pin SOIC package. Table  
8.1 24-Pin SOIC PCB Land Pattern Dimensions on page 45 lists the values for the dimensions shown in the illustration.  
Figure 8.1. 20-Pin SOIC PCB Land Pattern  
Table 8.1. 24-Pin SOIC PCB Land Pattern Dimensions  
Dimension  
mm  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Note:  
1. This Land Pattern Design is based on IPC-7351 design guidelines for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC), and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 45  
 
 
 
Si88x4x Data Sheet  
Package Outline: 24-Pin Wide Body SOIC  
9. Package Outline: 24-Pin Wide Body SOIC  
Figure 9.1 24-Pin Wide Body SOIC on page 46 illustrates the package details for the 24-pin wide-body SOIC package. Table 9.1 24-  
Pin Wide Body SOIC Package Diagram Dimensions on page 46 lists the values for the dimensions shown in the illustration.  
Figure 9.1. 24-Pin Wide Body SOIC  
Table 9.1. 24-Pin Wide Body SOIC Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
15.40 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
0.10  
0.33  
silabs.com | Building a more connected world.  
Rev. 1.01 | 46  
 
 
 
Si88x4x Data Sheet  
Package Outline: 24-Pin Wide Body SOIC  
Dimension  
Min  
Max  
0.10  
0.25  
0.10  
0.20  
ccc  
ddd  
eee  
fff  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AD.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 47  
Si88x4x Data Sheet  
Land Pattern: 24-Pin SOIC  
10. Land Pattern: 24-Pin SOIC  
Figure 10.1 24-Pin SOIC PCB Land Pattern on page 48 illustrates the PCB land pattern details for the 24-pin SOIC package. Table  
10.1 24-Pin SOIC PCB Land Pattern Dimensions on page 48 lists the values for the dimensions shown in the illustration.  
Figure 10.1. 24-Pin SOIC PCB Land Pattern  
Table 10.1. 24-Pin SOIC PCB Land Pattern Dimensions  
Dimension  
mm  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Note:  
1. This Land Pattern Design is based on IPC-7351 design guidelines for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC), and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.01 | 48  
 
 
 
Si88x4x Data Sheet  
Top Markings  
11. Top Markings  
11.1 Si88x4x Top Marking (20-Pin Wide Body SOIC)  
11.2 Top Marking Explanation (20-Pin Wide Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si88x4 = 5 kV rated 4 channel digital isolator with dc-dc  
converter  
X = 2, 4  
See Ordering Guide for more infor-  
mation.  
• 2 = dc-dc shutdown  
• 4 = External FET  
Y = Number of reverse channels  
Z = E, B  
• E = default high  
• B = default low  
R = C, D  
• C = 3.75 kVRMS  
• D = 5 kVRMS isolation rating  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
Assigned by the Assembly House. Corresponds to the  
year and workweek of the mold date.  
WW = Workweek  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order  
form.  
Circle = 1.5 mm Diameter  
(Center Justified)  
“e4” Pb-Free Symbol  
Country of Origin  
TW = Taiwan  
ISO Code Abbreviation  
silabs.com | Building a more connected world.  
Rev. 1.01 | 49  
 
 
 
Si88x4x Data Sheet  
Top Markings  
11.3 Si88x4x Top Marking (24-Pin Wide Body SOIC)  
11.4 Top Marking Explanation (24-Pin Wide Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si88x4 = 5kV rated 4 channel digital isolator with dc-dc convert-  
er  
X = 3, 6  
See Ordering Guide for more in-  
formation.  
• 3 = Full-featured dc-dc with internal FET  
• 6 = Full-featured dc-dc with external FET  
Y = Number of reverse channels  
Z = E, B  
• E = default high  
• B = default low  
R = C, D  
• C = 3.75 kVRMS  
• D = 5 kVRMS isolation rating  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
Assigned by the Assembly House. Corresponds to the year and  
workweek of the mold date.  
WW = Workweek  
TTTTTT = Mfg Code  
Circle = 1.5 mm Diameter  
(Center Justified)  
Country of Origin  
ISO Code Abbreviation  
Manufacturing Code from Assembly Purchase Order form.  
“e4” Pb-Free Symbol  
TW = Taiwan  
silabs.com | Building a more connected world.  
Rev. 1.01 | 50  
 
 
Si88x4x Data Sheet  
Revision History  
12. Revision History  
Rev. 1.01  
March 2018  
• Added Automotive Grade Ordering Guide  
• Updated Ordering Guide Table 2.1  
• Updated Transformer Table 3.1  
• Updated Spec Table 4.2  
• Added section 5.1 (Calculating total current)  
Rev. 0.6  
August 2015  
• Reformatted figures  
• Corrected typos  
• Added text for clarity  
silabs.com | Building a more connected world.  
Rev. 1.01 | 51  
 
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI88342ED-IS

QUAD DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88343ED-IS

QUAD DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88344ED-IS

QUAD DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88420BD-IS

DUAL DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88420ED-IS

DUAL DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88421BD-IS

DUAL DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88421ED-IS

DUAL DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88422BD-IS

DUAL DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88422ED-IS

DUAL DIGITAL ISOLATORS WITH DC-DC CONVERTER
SILICON

SI88440EC-IS

Analog Circuit,
SILICON

SI88440EC-ISR

Analog Circuit,
SILICON

SI88440ED-IS

Analog Circuit,
SILICON