SL28610BLI [SILICON]

Processor Specific Clock Generator, 100MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, QFN-48;
SL28610BLI
型号: SL28610BLI
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 100MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, QFN-48

时钟 外围集成电路 晶体
文件: 总23页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28610  
Low Power Clock Generator for Intel® Ultra Mobile Platform  
Features  
• Supports intel's Moorestown and Menlow clocking  
requirements  
• Compliant to Intel® CK610  
• Buffered Reference Clock 14.318MHz  
• 14.318 MHz Crystal Input or Clock Input  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• Low power push-pull type differential output buffers  
• Integrated voltage regulator  
• Triangular Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Integrated resistors on differential clocks  
• Differential CPU clocks with selectable frequency  
• 100MHz Differential PCIe clocks  
• Industrial Temperature -40°C to 85°C  
• 48-pin QFN package  
• 100MHz LCD Video Clock  
• 96MHz Differential DOT clock  
CPU  
x3  
PCIe DOT96 LCD  
x3 x 1 x1  
REF  
x 1  
Block Diagram  
Pin Configuration  
* 100K-ohm Internal pull down  
** 10K-ohm Internal pull-up  
........................ DOC #: SP-AP-0078 (Rev. 1.0) Page 1 of 23  
400 West Cesar Chavez, Austin, TX 78701  
1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
SL28610  
Pin Definitions  
Pin No.  
Name  
CPU_STP#  
Type  
Description  
1
2
3
4
5
6
I, SE 3.3V input for CPU_STP# (active low) functionality  
I, SE 3.3V LVTTL input (active low)  
CKPWRGD#/PD  
XOUT  
O, SE 3.3V, 14.31818MHz crystal output (When used a clock input, float XOUT)  
I, SE 3.3V, 14.31818MHz crystal input, 3.3V Clock Input.  
XIN/CLKIN  
VDD3.3V  
PWR 3.3V power supply for single-ended clock  
REF / PCIe_SEL  
IO, PD, 3.3V, 14.31818MHz output / 1.5V input active high signal latched on CKPWRGD#  
SE  
signal to select PCIe from PLL3 (share with LCD PLL; 100K-ohm internal pull-down)  
7
VSS  
GND Ground  
8
VDD1.5_CORE  
FSC  
PWR 1.5V power supply for core  
I, SE 1.05V Frequency Select C  
9
10  
TEST_MODE  
I, SE 3.3V-tolerant input to selects Ref/N or Tri-state when in test mode.  
0 = Tri-state, 1 = Ref/N  
11  
TEST_SEL  
I, SE 3.3V-tolerant input to selects TEST_SEL  
0 = Normal, 1 = Test Entry  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
I, SE 3.3V SMBus Clock Line  
SDATA  
I/O, SE 3.3V SMBus Data Line  
VDD1.5_CORE  
VDD1.5_IO  
DOT96#  
DOT96  
PWR 1.5V power supply for core  
PWR 1.5V power supply for differential outputs  
O, DIFF Fixed complimentary 96MHz clock output  
O, DIFF Fixed true 96MHz clock output  
GND Ground  
VSS  
VSS  
GND Ground  
LCD_SSC#  
LCD_SSC  
VDD1.5_IO  
VDD1.5_CORE  
OE_0#  
O, DIF Complementary 100MHz Differential clock  
O, DIF True 100MHz Differential clock  
PWR 1.5V power supply for differential outputs  
PWR 1.5V power supply for core  
I, SE Output enable for PCIe0, (10K-ohm internal pull-up)  
0 =enable, 1=disable  
25  
26  
27  
28  
VSS  
GND Ground  
PCIe0#  
PCIe0  
OE_1#  
O, DIF Complementary 100MHz Differential clock  
O, DIF True 100MHz Differential clock  
I, SE Output enable for PCIe1, (10K-ohm internal pull-up)  
0 =enable, 1=disable  
29  
30  
31  
32  
33  
34  
35  
36  
VDD1.5_CORE  
VDD1.5_IO  
PCIe1#  
PWR 1.5V Power Supply for core  
PWR 1.5V Power Supply for differential output  
O, DIF Complementary 100MHz Differential clock  
O, DIF True 100MHz Differential clock  
GND Ground  
PCIe1  
VSS  
PCIe2#  
O, DIF Complementary 100MHz Differential clock  
O, DIF True 100MHz Differential clock  
PCIe2  
OE_2#  
I, SE Output enable for PCIe2, (10K-ohm internal pull-up)  
0 =enable, 1=disable  
37  
38  
39  
FSB  
I, SE 1.05V Frequency Select B  
CPU0#  
CPU0  
O, DIF Complementary Host Differential clock  
O, DIF True Host Differential clock  
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 2 of 23  
SL28610  
Pin Definitions (continued)  
Pin No.  
40  
Name  
Type  
Description  
VSS  
GND Ground  
41  
VDD1.5_IO  
VDD1.5_CORE  
CPU1#  
PWR 1.5V Power Supply for differential output  
PWR 1.5V Power Supply for core  
42  
43  
O, DIF Complementary Host Differential clock  
O, DIF True Host Differential clock  
44  
CPU1  
45  
VSS_CPU  
VDD1.5_IO  
CPU2#  
GND Ground  
46  
PWR 1.5V Power Supply for differential output  
O, DIF Complementary Host Differential clock  
O, DIF True Host Differential clock  
47  
48  
CPU2  
Table 1. Frequency Select Pin (FSB and FSC)  
FSC  
FSB  
CPU  
PCIe  
LCD  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
REF  
1
0
0
1
0
0
1
1
100 MHz  
133 MHz  
166 MHz  
200 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
Frequency Select Pin (FSB and FSC)  
optional. Clock device register changes are normally made at  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
Apply the appropriate logic levels to FSB and FSC inputs  
before CKPWRGD assertion to achieve host clock frequency  
selection. When the clock chip sampled LOW on CKPWRGD  
and indicates that VTT voltage is stable then FSB and FSC  
input values are sampled. This process employs a one-shot  
functionality and once the CKPWRGD sampled a valid LOW,  
all other FSB, FSC, and CKPWRGD transitions are ignored  
except in test mode.  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 2.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h).  
their default setting at power-up. The use of this interface is  
.
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
18:11  
19  
18:11  
19  
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 3 of 23  
 
 
SL28610  
Table 3. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
Description  
Bit  
27:20  
Byte Count–8 bits  
20  
Repeat start  
(Skip this step if I2C_EN bit set)  
Acknowledge from slave  
Data byte 1–8 bits  
28  
36:29  
37  
27:21  
28  
Slave address–7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 4 of 23  
SL28610  
Control Registers  
Byte 0: Control Register 0  
Bit  
@Pup  
Name  
Description  
7
1
PLL1_EN  
PLL1 Enable  
0 = Disabled, 1 = Enabled  
6
5
1
1
PLL2_EN  
PLL3_EN  
PLL2 Enable  
0 = Disabled, 1 = Enabled  
PLL3 Enable  
0 = Disabled, 1 = Enabled  
4
3
0
1
RESERVED  
CPU_DIV  
RESERVED  
CPU Output Divider Enable  
0 = Disabled, 1 = Enabled  
2
1
0
1
1
1
PCIe_DIV  
LCD_DIV  
PCIe Output Divider Enable  
0 = Disabled, 1 = Enabled  
LCD Output Divider Enable  
0 = Disabled, 1 = Enabled  
DOT96_DIV  
DOT96 Output Divider Enable  
0 = Disabled, 1 = Enabled  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
PLL1_Spread _EN  
PLL1 Spread Enable  
0 = Disabled, 1 = Enabled  
6
1
PLL3_Spread _EN  
PLL3 Spread Enable  
0 = Disabled, 1 = Enabled  
5
4
3
0
0
0
PLL3_CFB2  
PLL3_CFB1  
PLL3_CFB0  
PLL3 Spread Spectrum Select  
PLL3_CFB[2:0]  
000 = -%0.5 (Down Spread) - Default  
001 = -%1.0, DS  
010 = -%1.5, DS  
011 = -% 2.0, DS  
100 = %+0.30 (Center Spread)  
101 = %+0.50, CS  
110 = %+1.00, CS  
111 = %+1.25, CS  
2
1
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
CPU0_OE  
Output enable for CPU0  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
1
1
1
1
CPU1_OE  
CPU2_OE  
PCIe0_OE  
PCIe1_OE  
Output enable for CPU1  
0 = Output Disabled, 1 = Output Enabled  
Output enable for CPU2  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCIe0  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCIe1  
0 = Output Disabled, 1 = Output Enabled  
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 5 of 23  
SL28610  
Byte 2: Control Register 2 (continued)  
Bit  
@Pup  
Name  
Description  
2
1
PCIe2_OE  
Output enable for SCR2  
0 = Output Disabled, 1 = Output Enabled  
1
0
1
1
DOT96_OE  
LCD_OE  
Output enable for DOT96  
0 = Output Disabled, 1 = Output Enabled  
Output enable for LCD  
0 = Output Disabled, 1 = Output Enabled  
Byte 3: Control Register 3  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
1
1
1
RESERVED  
RESERVED  
REF_OE  
6
RESERVED  
5
Output enable for REF  
0 = Output Disabled, 1 = Output Enabled  
4
1
REF_Bit1  
REF Slew Rate Control Bit2(see Byte 16 Bit [7:6] for Slew Rate REF_Bit0 & REF_Bit2)  
0 = 1 load, 1 = 2 loads  
3
2
0
0
RESERVED  
CPU0_STP#  
RESERVED  
CPU0 CPU_STP# Control  
0 = Free Running, 1 = Stopped with CPU_STP#  
1
0
0
0
CPU1_STP#  
CPU2_STP#  
CPU1 CPU_STP# Control  
0 = Free Running, 1 = Stopped with CPU_STP#  
CPU2 CPU_STP# Control  
0 = Free Running, 1 = Stopped with CPU_STP#  
Byte 4: Control Register 4  
Bit  
7
@Pup  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
Name  
Description  
PLL1 M DIV 7  
PLL1 M DIV 6  
PLL1 M DIV 5  
PLL1 M DIV 4  
PLL1 M DIV 3  
PLL1 M DIV 2  
PLL1 M DIV 1  
PLL1 M DIV 0  
This is a read only register of the multiplier used for PLL1 M Divider  
HW= Read Only  
6
5
4
3
2
1
0
Byte 5: Control Register 5  
Bit  
7
@Pup  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
Name  
Description  
PLL1 N DIV 7  
PLL1 N DIV 6  
PLL1 N DIV 5  
PLL1 N DIV 4  
PLL1 N DIV 3  
PLL1 N DIV 2  
PLL1 N DIV 1  
PLL1 N DIV 0  
This is a read only register of the multiplier used for PLL1 N Divider  
HW= Read Only  
6
5
4
3
2
1
0
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 6 of 23  
SL28610  
Byte 6: Control Register 6  
Bit  
7
@Pup  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
Name  
Description  
PLL2 N DIV 8  
PLL2 N DIV 9  
PLL2 M DIV 5  
PLL2 M DIV 4  
PLL2 M DIV 3  
PLL2 M DIV 2  
PLL2 M DIV 1  
PLL2 M DIV 0  
This is a read only register of the multiplier used for PLL2 M and N Dividers  
HW= Read Only  
6
5
4
3
2
1
0
Byte 7: Control Register 7  
Bit  
7
@Pup  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
Name  
Description  
PLL2 N DIV 7  
PLL2 N DIV 6  
PLL2 N DIV 5  
PLL2 N DIV 4  
PLL2 N DIV 3  
PLL2 N DIV 2  
PLL2 N DIV 1  
PLL2 N DIV 0  
This is a read only register of the multiplier used for PLL2 N Divider  
HW= Read Only  
6
5
4
3
2
1
0
Byte 8: Control Register 8  
Bit  
7
@Pup  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
Name  
Description  
PLL3 M DIV 7  
PLL3 M DIV 6  
PLL3 M DIV 5  
PLL3 M DIV 4  
PLL3 M DIV 3  
PLL3 M DIV 2  
PLL3 M DIV 1  
PLL3 M DIV 0  
This is a read only register of the multiplier used for PLL3 M Divider  
HW= Read Only  
6
5
4
3
2
1
0
Byte 9: Control Register 9  
Bit  
7
@Pup  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
HW  
Name  
Description  
PLL3 N DIV 7  
PLL3 N DIV 6  
PLL3 N DIV 5  
PLL3 N DIV 4  
PLL3 N DIV 3  
PLL3 N DIV 2  
PLL3 N DIV 1  
PLL3 N DIV 0  
This is a read only register of the multiplier used for PLL3 N Divider  
HW= Read Only  
6
5
4
3
2
1
0
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 7 of 23  
SL28610  
Byte 10: Control Register 10  
Bit  
7
@Pup  
HW  
Name  
FSB  
Description  
FSB status bit, CPU Frequency Select Bit, read only  
FSC status bit, CPU Frequency Select Bit, read only  
6
HW  
FSC  
5
HW  
OE#_0  
OE#_0 status bit, PCIe0 enable status, read only  
0 = PCIe0 disabled, 1 = PCIe0 enabled  
4
3
HW  
HW  
OE#_1  
OE#_2  
OE#_0 status bit, PCIe1 enable status, read only  
0 = PCIe1 disabled, 1 = PCIe1 enabled  
OE#_0 status bit, PCIe2 enable status, read only  
0 = PCIe2 disabled, 1 = PCIe2 enabled  
2
1
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
Description  
Vendor ID Bit 3  
1
0
0
0
0
0
0
1
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
6
Vendor ID Bit 2  
5
Vendor ID Bit 1  
4
Vendor ID Bit 0  
3
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
2
1
0
Byte 12: Byte Count 12  
Bit  
7
@Pup  
Name  
Description  
1
0
1
0
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
0000 = Reserved  
0001 = Reserved  
0010 = Reserved  
0011 = Reserved  
0100 = Reserved  
0101 = Reserved  
6
5
4
0110 = Reserved  
0111 = Reserved  
1000 = Reserved  
1001 = Reserved  
1010 = CK610 Yellow Cover Device, 48-pin QFN  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
7
2
1
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 8 of 23  
SL28610  
Byte 13: Control Register 13  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
Byte 14: Control Register 14  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
7
2
1
0
Byte 15: Control Register 15  
Bit  
7
@Pup  
Name  
BC7  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
Description  
0
0
0
1
0
1
1
0
Byte count 7  
Byte count 6  
Byte count 5  
Byte count 4  
Byte count 3  
Byte count 2  
Byte count 1  
Byte count 0  
6
5
4
3
2
1
0
Byte 16: Control Register 16  
Bit  
7
@Pup  
Name  
Description  
0
1
REF_Bit2  
REF_Bit0  
REF Slew Rate Control Bit2 & Bit0 (see Byte 3 Bit 4 for Slew Rate REF_Bit1)  
6
5:0  
0
RESERVED  
RESERVED  
........................DOC #: SP-AP-0078 (Rev. 1.0) Page 9 of 23  
SL28610  
Byte 17: Control Register 17  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
PLL1_DAF_N7  
PLL1_DAF_N6  
PLL1_DAF_N5  
PLL1_DAF_N4  
PLL1_DAF_N3  
PLL1_DAF_N2  
PLL1_DAF_N1  
PLL1_DAF_N0  
If Prog_PLL1_EN is set, the values programmed in PLL1_DAF_N[7:0] and  
PLL1_DAF_M[7:0] are used to determine the PLL1 output frequency.  
6
5
4
7
2
1
0
Byte 18: Control Register 18  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
PLL1_DAF_M7  
PLL1_DAF_M6  
PLL1_DAF_M5  
PLL1_DAF_M4  
PLL1_DAF_M3  
PLL1_DAF_M2  
PLL1_DAF_M1  
PLL1_DAF_M0  
If Prog_PLL1_EN is set, the values programmed in PLL1_DAF_N[7:0] and  
PLL1_DAF_M[7:0] are used to determine the PLL1 output frequency.  
6
5
4
7
2
1
0
Byte 19: Control Register 19  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
RESERVED  
0
0
0
RESERVED  
RESERVED  
Prog_PLL1_EN  
6
5
Programmable PLL1 frequency enable  
0 = Disabled, 1= Enabled  
4
3
0
0
Prog_PLL3_EN  
Programmable PLL3 frequency enable  
0 = Disabled, 1= Enabled  
CPU_OEB_DRIVE _Mode Controls CPU Output Drive States  
1 = OUT=LOW and OUT#=LOW  
0= OUT=HIGH and OUT#=LOW  
2
1
0
0
0
0
PCIe_OEB_DRIVE _Mode Controls PCIe Output Drive States  
1 = OUT=LOW and OUT#=LOW  
0= OUT=HIGH and OUT#=LOW  
LVDS_OEB_DRIVE _Mode Controls LVDS Output Drive States  
1 = OUT=LOW and OUT#=LOW  
0= OUT=HIGH and OUT#=LOW  
DOT_OEB_DRIVE _Mode Controls DOT Output Drive States  
1 = OUT=LOW and OUT#=LOW  
0= OUT=HIGH and OUT#=LOW  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 10 of 23  
SL28610  
Byte 20: Control Register 20  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
PLL3_DAF_N7  
PLL3_DAF_N6  
PLL3_DAF_N5  
PLL3_DAF_N4  
PLL3_DAF_N3  
PLL3_DAF_N2  
PLL3_DAF_N1  
PLL3_DAF_N0  
If Prog_PLL3_EN is set, the values programmed in PLL3_DAF_N[7:0] and  
PLL3_DAF_M[7:0] are used to determine the PLL3 output frequency.  
6
5
4
7
2
1
0
Byte 21: Control Register 21  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
PLL3_DAF_M7  
PLL3_DAF_M6  
PLL3_DAF_M5  
PLL3_DAF_M4  
PLL3_DAF_M3  
PLL3_DAF_M2  
PLL3_DAF_M1  
PLL3_DAF_M0  
If Prog_PLL3_EN is set, the values programmed in PLL3_DAF_N[7:0] and  
PLL3_DAF_M[7:0] are used to determine the PLL3 output frequency.  
6
5
4
7
2
1
0
next HIGH-to-LOW transition and differential clocks must held  
CKPWRGD#/PD (Power down) Clarification  
HIGH. When PD mode is desired as the initial power on state,  
PD must be asserted HIGH in less than 10 s after asserting  
CKPWRGD.  
The CKPWRGD#/PD pin is a dual-function pin. During initial  
power up, the pin functions as CKPWRGD#. Once  
CKPWRGD# has been sampled HIGH by the clock chip, the  
pin assumes PD functionality. The PD pin is an asynchronous  
active HIGH input used to shut off all clocks cleanly before  
shutting off power to the device. This signal is synchronized  
internally to the device before powering down the clock  
synthesizer. PD is also an asynchronous input for powering up  
the system. When PD is asserted HIGH, clocks are driven to  
a LOW value and held before turning off the VCOs and the  
crystal oscillator.  
CKPWRGD#/PD (Power Down) Deassertion  
The power up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are generated from the  
clock chip. All differential outputs stopped in a three-state  
condition, resulting from power down are driven high in less  
than 300 s of PD deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
each clock. Figure 2 is an example showing the relationship of  
clocks coming up.  
CKPWRGD#/PD (Power down) Assertion  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held HIGH on their  
...................... DOC #: SP-AP-0078 (Rev. 1.0) Page 11 of 23  
SL28610  
Figure 1. Power down Assertion Timing Waveform  
Figure 2. Power down Deassertion Timing Waveform  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 12 of 23  
SL28610  
Figure 3. CKPWRGD# Timing Diagram  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 13 of 23  
SL28610  
CPU_STP# Assertion  
CPU_STP# Deassertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable are stopped  
within two to six CPU clock periods after sampled by two rising  
edges of the internal CPUC clock. The final states of the  
stopped CPU signals are CPUT = HIGH and CPUC = LOW.  
The deassertion of the CPU_STP# signal causes all stopped  
CPU outputs to resume normal operation in a synchronous  
manner. No short or stretched clock pulses are produced when  
the clock resumes. The maximum latency from the  
deassertion to active outputs is no more than two CPU clock  
cycles.  
CPU_STP#  
CPUT  
CPUC  
Figure 4. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 5. CPU_STP# Deassertion Waveform  
.
.
Table 1. Output Driver Status during PCI_STPPCI_STP# and CPU_STP#  
CPU_STP# Asserted SMBus Disabled OE# Pins Disabled  
Running  
Single-ended Clocks Stoppable  
Non stoppable  
Stoppable  
Driven low  
Driven low  
Running  
Differential Clocks  
Clock driven high  
Clock# driven low  
Running  
Clock driven high*  
Clock# driven low*  
Driven Low  
Non stoppable  
Note: *Differential clocks output state can be configured through Byte 19 bits 3:.0  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 14 of 23  
SL28610  
Absolute Maximum Conditions  
Parameter  
3.3V_VDD  
1.5V_VDD_CORE 1.5V Supply Voltage  
Description  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
2.1  
2.1  
4.6  
150  
85  
Unit  
V
3.3V Supply Voltage  
Functional  
Functional  
V
1.5V_VDD_IO  
DIFF I/O Supply Voltage  
Input Voltage  
Functional  
V
VIN  
TS  
TA  
Relative to VSS  
Non-functional  
Functional  
VDC  
°C  
°C  
Temperature, Storage  
Commercial Temperature,  
Operating Ambient  
Industrial Temperature, Operating  
Ambient  
-40  
+85  
°C  
TJ  
Temperature, Junction  
Functional  
150  
20  
60  
°C  
°C/W  
°C/W  
V
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
JEDEC (JESD 51)  
ØJA  
JEDEC (JESD 51)  
ESDHBM  
ESD Protection (Human Body  
Model)  
JEDEC (JESD 22-A114)  
2000  
UL-94  
Flammability Rating  
UL (CLASS)  
V–0  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
1.425  
1.425  
Max.  
1.575  
1.575  
Unit  
V
1.5V_VDD_CORE 1.5V Operating Voltage  
1.5V ± 5%  
1.5V ± 5%  
1.5V_VDD_IO  
1.5V Differential I/O Supply  
Voltage  
V
3.3V_VDD  
3.3V_VIH  
3.3V_VIL  
VIHI2C  
VILI2C  
VIH_FS  
VIL_FS  
VIH  
3.3V Operating Voltage  
3.3V Input High Voltage (SE)  
3.3V Input Low Voltage (SE)  
Input High Voltage  
3.3 ± 5%  
3.135  
3.465  
V
V
3.3V_VDD  
2
VSS – 0.3  
2.2  
3.3V_CORE+ 0.3  
0.8  
V
SDATA, SCLK  
SDATA, SCLK  
1.05V_CORE  
V
Input Low Voltage  
1.0  
V
FS_[C,B] Input High Voltage  
FS_[C,B] Input Low Voltage  
OE# Input High Voltage  
OE# Input Low Voltage  
0.9  
1.5V_CORE + 0.3  
V
GND-0.3  
1.2  
0.25  
V
1.5V_CORE  
1.5V_CORE + 0.3  
V
VIL  
GND-0.3  
2.0  
0.3  
VDD+0.3  
0.8  
V
VIH  
PCIe_SEL Input High Voltage 3.3V_CORE  
PCIe_SEL Input Low Voltage  
V
VIL  
GND-0.3  
V
IIH  
Input High Leakage Current  
Except internal pull-down resistors,  
0 < VIN < VDD  
5
A  
IIL  
Input Low Leakage Current  
Except internal pull-up resistors, 0  
< VIN < VDD  
–5  
A  
VOH  
VOL  
3.3V Output High Voltage (SE) IOH = –1 mA  
3.3V Output Low Voltage (SE) IOL = 1 mA  
Low Voltage IO Supply Voltage  
2.4  
V
V
0.4  
0.88  
10  
VDD IO  
IOZ  
0.72  
–10  
High-impedance Output  
Current  
A  
CIN  
Input Pin Capacitance  
1.5  
5
pF  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 15 of 23  
SL28610  
DC Electrical Specifications (continued)  
Parameter  
COUT  
Description  
Output Pin Capacitance  
Pin Inductance  
Condition  
Min.  
Max.  
Unit  
pF  
6
LIN  
7
nH  
V
VXIH  
VXIL  
Power  
Xin High Voltage  
0.7VDD  
VDD  
Xin Low Voltage  
0
0.3VDD  
100  
V
Power Consumption  
mW  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
XIN Period  
The device operates reliably with input  
dutycyclesupto30/70buttheREFclock  
duty cycle will not be within specification  
47.5  
52.5  
71.0  
%
TPERIOD  
When XIN is driven from an external  
clock source  
69.841  
ns  
TR/TF  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
As an average over 1-s duration  
Measured at VDD/2 differential  
10.0  
500  
250  
ns  
ps  
TCCJ  
LACC  
ppm  
Clock Input  
TDC  
CLKIN Duty Cycle  
Measured at VDD/2  
47  
0.5  
53  
4.0  
%
V/ns  
ps  
TR/TF  
CLKIN Rise and Fall Times  
CLKIN Cycle to Cycle Jitter  
CLKIN Long Term Jitter  
Input Low Voltage  
Measured between 0.2VDD and 0.8VDD  
Measured at VDD/2  
TCCJ  
250  
TLTJ  
Measured at VDD/2  
350  
ps  
VIL  
XIN / CLKIN pin  
0.8  
V
VIH  
Input High Voltage  
XIN / CLKIN pin  
2
VDD+0.3  
20  
V
IIL  
Input LowCurrent  
XIN / CLKIN pin, 0 < VIN <0.8  
XIN / CLKIN pin, VIN = VDD  
uA  
uA  
IIH  
Input HighCurrent  
35  
CPU at 0.7V  
TDC  
CPU Clock Duty Cycle  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential at1 clock  
Measured at 0V differential at 1 clock  
45  
55  
%
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
100 MHz CPU Clock Period  
9.997001 10.00300 ns  
7.497751 7.587251 ns  
5.998201 6.001801 ns  
133 MHz CPU Clock Period  
166 MHz CPU Clock Period  
200 MHz CPU Clock Period  
4.99950  
5.00050  
ns  
100 MHz CPU Clock Period, SSC  
133 MHz CPU Clock Period, SSC  
166 MHz CPU Clock Period, SSC  
200 MHz CPU Clock Period, SSC  
100 MHz CPU Clock Absolute period  
133 MHz CPU Clock Absolute period  
166 MHz CPU Clock Absolute period  
200 MHz CPU Clock Absolute period  
9.997001 10.05327 ns  
7.412751 7.624950 ns  
5.998201 6.031960 ns  
5.01203  
5.01303  
ns  
9.912001 10.08800 ns  
7.412751 7.587251 ns  
5.913201 6.086801 ns  
4.91450  
5.08550  
ns  
TPERIODSSAbs 100 MHz CPU Clock Absolute period, Measured at 0V differential at1 clock  
SSC  
9.912001 10.13827 ns  
TPERIODSSAbs 133 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
7.412751 7.624950 ns  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 16 of 23  
SL28610  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
TPERIODSSAbs 166 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
5.913201 6.116960 ns  
200 MHz CPU Clock Absolute period,  
SSC  
Measured at 0V differential at 1 clock  
4.91453  
5.11060  
ns  
TPERIODSSAbs  
TCCJ  
CPUT/C Cycle to Cycle Jitter  
Measured at 0V differential  
85  
300  
2800  
100  
4
ps  
ppm  
ppm  
ps  
LACC_non-SSC Long-term Accuracy  
Measured at 0V differential  
LACC_SSC  
TSKEW  
TR / TF  
TRFM  
Long-term Accuracy  
Measured at 0V differential  
Pin-to-pin Skew  
Measured at 0V differential  
CPU Clock Rise and Fall Time  
Rise/Fall Matching  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
Measured single-endedly  
0.6  
V/ns  
%
20  
Vabs  
Absolute Min and Max VSWING  
–0.3  
300  
1.15V  
550  
140  
V
VOX  
Crossing Point Voltage at 0.7V Swing Measured single-endedly  
mV  
mV  
V
Vox_variation Crossing Point Variation  
Measured single-endedly  
Measured single-endedly  
VOVS  
Maximum Voltage (Overshoot)  
VHIGH+  
0.3V  
VUDS  
Maximum Voltage (Undershoot)  
Ring back voltage  
Measured single-endedly  
Measured single-endedly  
Measured single-endedly  
0.3  
-100  
500  
V
VRB  
100  
mV  
ps  
TSTABLE  
PCIe at 0.7V  
TDC  
Time before VRB  
PCIe Clock Duty Cycle  
Measured at 0V differential  
45  
55  
%
TPERIOD  
TPERIODSS  
TPERIODAbs  
100 MHz PCIe Clock Period  
100 MHz PCIe Clock Period, SSC  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
9.997001 10.0030  
ns  
9.997001 10.05327 ns  
9.912001 10.08800 ns  
9.912001 10.13827 ns  
100 MHz PCIe Clock Absolute Period Measured at 0V differential at 1 clock  
TPERIODSSAbs 100 MHz PCIePCIe Clock Absolute  
Period, SSC  
Measured at 0V differential at 1 clock  
TCCJ  
PCIe Clock Cycle to Cycle Jitter  
Measured at 0V differential  
125  
300  
2800  
100  
4
ps  
ppm  
ppm  
ps  
LACC_non-SSC Long-term Accuracy  
Measured at 0V differential  
LACC_SSC  
TSKEW  
TR / TF  
TRFM  
Long-term Accuracy  
Measured at 0V differential  
Pin-to-pin Skew  
Measured at 0V differential  
PCIe Clock Rise and Fall Time  
Rise/Fall Matching  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
Measured single-endedly  
0.6  
V/ns  
%
20  
Vabs  
Absolute Min and Max VSWING  
–0.3  
300  
1.15V  
550  
140  
V
VOX  
Crossing Point Voltage at 0.7V Swing Measured single-endedly  
mV  
mV  
V
Vox_variation Crossing Point Variation  
Measured single-endedly  
Measured single-endedly  
VOVS  
Maximum Voltage (Overshoot)  
VHIGH+  
0.3V  
VUDS  
Maximum Voltage (Undershoot)  
Ring back voltage  
Measured single-endedly  
Measured single-endedly  
Measured single-endedly  
0.3  
-100  
500  
V
VRB  
100  
55  
mV  
ps  
TSTABLE  
DOT96 at 0.7V  
TDC  
Time before VRB  
DOT96 Clock Duty Cycle  
Measured at 0V differential  
45  
%
TPERIOD  
TPERIODAbs  
TCCJ  
DOT96 Clock Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
10.41354 10.41979 ns  
10.16354 10.66979 ns  
DOT96 Clock Absolute Period  
DOT96 Clock Cycle to Cycle Jitter  
DOT96 Clock Long Term Accuracy  
250  
300  
ps  
LACC  
ppm  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 17 of 23  
SL28610  
AC Electrical Specifications (continued)  
Parameter  
TSKEW  
Description  
Pin-to-pin Skew  
Condition  
Min.  
Max.  
100  
4
Unit  
ps  
Measured at 0V differential  
TR / TF  
TRFM  
Vabs  
DOT96 Clock Rise and Fall Time  
Rise/Fall Matching  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
Measured single-endedly  
0.6  
V/ns  
%
20  
Absolute Min and Max VSWING  
–0.3  
300  
1.15V  
550  
140  
V
VOX  
Crossing Point Voltage at 0.7V Swing Measured single-endedly  
mV  
mV  
V
Vox_variation Crossing Point Variation  
Measured single-endedly  
Measured single-endedly  
VOVS  
Maximum Voltage (Overshoot)  
VHIGH+  
0.3V  
VUDS  
Maximum Voltage (Undershoot)  
Ring back voltage  
Measured single-endedly  
Measured single-endedly  
Measured single-endedly  
0.3  
-100  
500  
V
VRB  
100  
mV  
ps  
TSTABLE  
Time before VRB  
LCD_100_SSC at 0.7V  
TDC  
SSC Clock Duty Cycle  
Measured at 0V differential  
45  
55  
%
TPERIOD  
TPERIODSS  
TPERIODAbs  
100 MHz SSC Clock Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
9.997001 10.0030  
ns  
100 MHz SSC Clock Period, SSC  
100 MHz SSC Clock Absolute Period  
9.997001 10.05327 ns  
9.912001 10.08800 ns  
9.912001 10.13827 ns  
TPERIODSSAbs 100 MHz SSC Clock Absolute Period, Measured at 0V differential at 1 clock  
SSC  
TCCJ  
LACC  
TSKEW  
TR / TF  
TRFM  
Vabs  
SSC Clock Cycle to Cycle Jitter  
SSC Clock Long Term Accuracy  
Pin-to-pin Skew  
Measured at 0V differential  
250  
300  
100  
4
ps  
ppm  
ps  
Measured at 0V differential  
Measured at 0V differential  
SSC Clock Rise and Fall Time  
Rise/Fall Matching  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
Measured single-endedly  
0.6  
V/ns  
%
20  
Absolute Min and Max VSWING  
–0.3  
300  
1.15V  
550  
140  
V
VOX  
Crossing Point Voltage at 0.7V Swing Measured single-endedly  
mV  
mV  
V
Vox_variation Crossing Point Variation  
Measured single-endedly  
Measured single-endedly  
VOVS  
Maximum Voltage (Overshoot)  
VHIGH+  
0.3V  
VUDS  
Maximum Voltage (Undershoot)  
Ring back voltage  
Measured single-endedly  
Measured single-endedly  
Measured single-endedly  
0.3  
-100  
500  
V
VRB  
100  
55  
mV  
ps  
TSTABLE  
REF  
Time before VRB  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measured single-endedly  
Measurement at 1.5V  
45  
%
TPERIOD  
TPERIODAbs  
TR / TF  
TSKEW  
TCCJ  
REF Period  
69.82033 69.86224 ns  
68.82033 70.86224 ns  
REF Absolute Period  
REF Rising and Falling Edge Rate  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Clock High /Low Time  
Long Term Accuracy  
1.0  
4.0  
500  
1000  
39  
V/ns  
ps  
ps  
THIGH/LOSW  
LACC  
32  
95  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
1
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 18 of 23  
SL28610  
Test and Measurement Set-up  
For Single-ended Reference Clock  
The following diagram shows the load configurations for the single-ended REF output signals.  
Figure 6. Single-ended REF Load Configuration  
Figure 7. Single-ended Output Signals (for AC Parameters Measurement)  
For CPU, PCIe, and DOT96 Signals and Reference  
This diagram shows the test load configuration for the differential CPU and PCIe outputs  
Figure 8. 0.7V Differential Load Configuration  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 19 of 23  
SL28610  
Clock Period (Differential)  
Positive Duty Cycle (Differential)  
Negative Duty Cycle (Differential)  
0.0V  
0.0V  
Clock-Clock#  
Rise  
Edge  
Rate  
Fall  
Edge  
Rate  
VIH = +150mV  
0.0V  
VIH = +150mV  
0.0V  
VIL = -150mV  
VIL = -150mV  
Clock-Clock#  
Figure 9. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
VMAX = 1.15V  
VMAX = 1.15V  
CLK#  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
CLK  
VMIN = 0.30V  
VMIN = 0.30V  
CLK#  
Vcross delta = 140mV  
Vcross delta = 140mV  
CLK  
CLK#  
CLK#  
Vcross median +75mV  
Vcross median  
Vcross median  
Vcross median -75mV  
CLK  
CLK  
Figure 10. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 20 of 23  
SL28610  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
SL28610BLC  
SL28610BLI  
48-pin QFN  
48-pin QFN  
Commerial, 0to 85C  
Industrial, -40to 85C  
This device is Pb free and RoHS compliant.  
SL 28 610 B L C -T  
Packaging Designator for Tape and Reel  
Temperature Designator  
Package Designator  
L : QFN  
Revision Number  
A = 1st Silicon  
Generic Part Number  
Designated Family Number  
Company Initials  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 21 of 23  
SL28610  
Package Diagrams  
48-Lead QFN 6 x 6mm LF48A  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 22 of 23  
SL28610  
Document History Page  
Document Title: SL28610 PC Low Power Clock Generator for Intel® Ultra Mobile Platform  
DOC #: SP-AP-0078 (Rev. 1.0)  
Orig. of  
REV.  
1.0  
ECR#  
Issue Date Change  
Description of Change  
09/15/08  
10/12/09  
JMA  
JMA  
New Datasheet  
1.1  
1. Renamed PWRGD# to CKPWRGD#  
2. Updated block diagram to show differential outputs  
3. Updated miscellaneous text contents  
AA  
AA  
AA  
1633  
1801  
1801  
05/27/10  
09/23/10  
10/1/10  
JMA  
TRP  
TRP  
1. Updated to be ISO compliant  
2. Added Clock input feature  
3. Updated MIL-STD to JEDEC  
1. Updates VIL_FS  
2. Updated miscellaneous text and format contents  
3. Removed crystal recommendations  
1. Added clock feature  
2. Updated block diagram  
3. Updated SRC clock as PCIe  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
......................DOC #: SP-AP-0078 (Rev. 1.0) Page 23 of 23  

相关型号:

SL28610BLIT

Processor Specific Clock Generator, 200MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, QFN-48
SILICON

SL28640BLC

Clock Generator, CMOS, 10 X 10 MM, LEAD FREE, QFP-72
SILICON

SL28640BLCT

Clock Generator, CMOS, 10 X 10 MM, LEAD FREE, QFP-72
SILICON

SL28647CLC

Processor Specific Clock Generator, 400MHz, CMOS, 10 X 10 MM, ROHS COMPLIANT, QFN-72
SILICON

SL28647CLCT

Processor Specific Clock Generator, 400MHz, CMOS, 10 X 10 MM, ROHS COMPLIANT, QFN-72
SILICON

SL28748ELC

Processor Specific Clock Generator, 100MHz, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
SILICON

SL28748ELCT

暂无描述
SILICON

SL28748ELI

Processor Specific Clock Generator, 100MHz, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
SILICON

SL28748ELIT

Processor Specific Clock Generator, 100MHz, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
SILICON

SL28770

EProClock® Generator for Intel Calpella Chipset
SILICON

SL28770ELC

EProClock® Generator for Intel Calpella Chipset
SILICON

SL28770ELCT

EProClock® Generator for Intel Calpella Chipset
SILICON