SST89V54RC-25-C-PIE [SILICON]

Microcontroller;
SST89V54RC-25-C-PIE
型号: SST89V54RC-25-C-PIE
厂家: SILICON    SILICON
描述:

Microcontroller

微控制器
文件: 总58页 (文件大小:681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
SST89E/VE5xRC FlashFlex51 MCU  
Preliminary Specifications  
FEATURES:  
8-bit 8051-Compatible Microcontroller (MCU)  
with Embedded SuperFlash Memory  
Full-Duplex, Enhanced UART  
– Framing error detection  
– Fully Software Compatible  
– Development Toolset Compatible  
– Pin-for-Pin Package Compatible  
SST89E5xRC Operation  
– 0 to 33MHz at 5V  
SST89V5xRC Operation  
– 0 to 25MHz at 3V  
– Automatic address recognition  
Eight Interrupt Sources at 4 Priority Levels  
Programmable Watchdog Timer (WDT)  
Four 8-bit I/O Ports (32 I/O Pins)  
Second DPTR register  
Low EMI Mode (Inhibit ALE)  
Standard 12 Clocks per cycle, the device has an  
option to double the speed to 6 clocks per cycle.  
TTL- and CMOS-Compatible Logic Levels  
Low Power Modes  
– Power-down Mode with External Interrupt Wake-up  
– Idle Mode  
Selectable Operation Clock  
– Divide down to 1/4, 1/16, 1/256, or 1/1024th  
Temperature Ranges:  
Total 512 Byte Internal RAM  
(256 Byte by default +  
256 Byte enabled by software)  
Single Block SuperFlash EEPROM  
– SST89E/V54RC: 16 KByte primary partition +  
1 KByte secondary partition  
– SST89E/V52RC: 8 KByte primary partition +  
1 KByte secondary partition  
– Primary Partition is divided into Four Pages  
– Secondary Partition has One Page  
– Individual Page Security Lock  
– In-System Programming (ISP)  
– In-Application Programming (IAP)  
– Small-Sector Architecture: 128-Byte Sector Size  
– Commercial (0°C to +70°C)  
– Industrial (-40°C to +85°C)  
Packages Available  
– 40-pin PDIP  
– 44-lead PLCC  
– 44-lead TQFP  
Support External Address Range up to 64  
KByte of Program and Data Memory  
Three High-Current Port 1 pins (16 mA each)  
Three 16-bit Timers/Counters  
All non-Pb (lead-free) devices are RoHS compliant  
PRODUCT DESCRIPTION  
The SST89E/V54RC and SST89E/V52RC are members  
of the FlashFlex51 family of 8-bit microcontroller products  
designed and manufactured with SST’s patented and pro-  
prietary SuperFlash CMOS semiconductor process tech-  
nology. The split-gate cell design and thick-oxide tunneling  
injector offer significant cost and reliability benefits for our  
customers.The devices use the 8051 instruction set and  
are pin-for-pin compatible with standard 8051 microcontrol-  
ler devices.  
external host for an in-system programming (ISP) opera-  
tion. The devices are designed to be programmed in-sys-  
tem on the printed circuit board for maximum flexibility. The  
device is pre-programmed with an example of the bootstrap  
loader (BSL) in memory, demonstrating initial user program  
code loading or subsequent user code updating via an ISP  
operation. The sample BSL is for the user’s reference only;  
SST does not guarantee its functionality. Chip-Erase opera-  
tions will erase the pre-programmed sample code.  
The device comes with 17/9 KByte of on-chip flash  
EEPROM program memory which is divided into 2 inde-  
pendent program memory partitions. The primary partition  
occupies 16/8 KByte of internal program memory space  
and the secondary partition occupies 1 KByte of internal  
program memory space.  
In addition to 17/9 KByte of SuperFlash EEPROM program  
memory on-chip, the device can address up to 64 KByte of  
external program memory. In addition to 512 x8 bits of on-  
chip RAM, up to 64 KByte of external RAM can be  
addressed.  
SST’s highly reliable, patented SuperFlash technology and  
memory cell architecture have a number of important advan-  
tages for designing and manufacturing flash EEPROMs.  
These advantages translate into significant cost and reliability  
benefits for our customers.  
The flash memory can be programmed via a standard  
87C5x OTP EPROM programmer fitted with a special  
adapter and firmware for SST’s devices. During power-on  
reset, the devices can be configured as either a slave to an  
external host for source code storage or a master to an  
©2006 Silicon Storage Technology, Inc.  
The SST logo, SuperFlash, and FlashFlex are registered trademarks of Silicon Storage Technology, Inc.  
These specifications are subject to change without notice.  
S71259-01-000  
1
2/06  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE OF CONTENTS  
PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.0 FUNCTIONAL BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.0 PIN ASSIGNMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.0 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Program Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Data RAM Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3 Expanded Data RAM Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4 Dual Data Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.5 Special Function Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.0 FLASH MEMORY PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1 Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.2 In-Application Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.3 In-System Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.0 TIMERS/COUNTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.2 Timer Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.3 Programmable Clock-Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.0 SERIAL I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.1 Full-Duplex, Enhanced UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.0 WATCHDOG TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1 Watchdog Timer Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.2 Pure Timer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.3 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.4 Feed Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.5 Power Saving Considerations for Using the Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.0 SECURITY LOCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.1 Chip-Level Security Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.2 Page-Level Security Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.3 Read Operation Under Lock Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.0 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.1 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.2 Boot Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.3 Interrupt Priority and Polling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.0 POWER-SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.1 Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.2 Power-down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
2
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
11.0 SYSTEM CLOCK AND CLOCK OPTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
11.1 Clock Input Options and Recommended Capacitor Values for Oscillator . . . . . . . . . . . . . . . . . . . . . . 44  
11.2 Clock Doubling Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
11.3 Clock Divider Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
12.0 ELECTRICAL SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
12.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12.2 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13.0 PRODUCT ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
13.1 Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
14.0 PACKAGING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
LIST OF FIGURES  
FIGURE 2-1: Pin Assignments for 40-pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
FIGURE 2-2: Pin Assignments for 44-lead TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
FIGURE 2-3: Pin Assignments for 44-lead PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
FIGURE 3-1: Internal and External Data Memory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
FIGURE 3-2: Program Memory Organization and Code Security Protection. . . . . . . . . . . . . . . . . . . . . . . . 11  
FIGURE 3-3: Dual Data Pointer Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
FIGURE 6-1: Framing Error Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FIGURE 6-2: UART Timings in Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FIGURE 6-3: UART Timings in Modes 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FIGURE 7-1: Block Diagram of Programmable Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
FIGURE 9-1: Power-on Reset Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FIGURE 9-2: Boot Sequence Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FIGURE 9-3: Hardware Pin Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FIGURE 9-4: Interrupt Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
FIGURE 11-1: Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
FIGURE 12-1: External Program Memory Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
FIGURE 12-2: External Data Memory Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
FIGURE 12-3: External Data Memory Write Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
FIGURE 12-4: External Clock Drive Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
FIGURE 12-5: Shift Register Mode Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
FIGURE 12-6: AC Testing Input/Output Test Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
FIGURE 12-7: Float Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
FIGURE 12-8: A Test Load Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
FIGURE 12-9: IDD Test Condition, Active Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
FIGURE 12-10: IDD Test Condition, Idle Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
FIGURE 12-11: IDD Test Condition, Power-down Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
FIGURE 14-1: 40-pin Plastic Dual In-line Pins (PDIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
FIGURE 14-2: 44-lead Plastic Lead Chip Carrier (PLCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
FIGURE 14-3: 44-lead Thin Quad Flat Pack (TQFP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
3
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
LIST OF TABLES  
TABLE 2-1: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TABLE 3-1: External Data Memory RD#, WR# with EXTRAM bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TABLE 3-2: FlashFlex51 SFR Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
TABLE 3-3: CPU related SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TABLE 3-4: Flash Memory Programming SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TABLE 3-5: Watchdog Timer SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TABLE 3-6: Feed Sequence SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TABLE 3-7: Timer/Counters SFRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TABLE 3-8: Interface SFRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TABLE 3-9: Clock Option SFR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TABLE 4-1: Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
TABLE 4-2: Default Boot Vector Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
TABLE 4-3: IAP COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
TABLE 5-1: Timer/Counter 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
TABLE 5-2: Timer/Counter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
TABLE 5-3: Timer/Counter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
TABLE 9-1: Boot Vector Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
TABLE 9-2: Interrupt Polling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
TABLE 10-1: Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
TABLE 11-1: Recommended Values for C1 and C2 by Crystal Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
TABLE 11-2: Clock Doubling Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
TABLE 12-1: Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
TABLE 12-2: Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
TABLE 12-3: AC Conditions of Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
TABLE 12-4: Recommended System Power-up Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
TABLE 12-5: Pin Impedance (VDD=3.3V, TA=25 °C, f=1 Mhz, other pins open) . . . . . . . . . . . . . . . . . . . 46  
TABLE 12-6: DC Characteristics for SST89E5xRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
TABLE 12-7: DC Characteristics for SST89V5xRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
TABLE 12-8: AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
TABLE 12-9: External Clock Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
TABLE 12-10: Serial Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
TABLE 12-11: Flash Memory Programming/Verification Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
TABLE 14-1: Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
4
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
1.0 FUNCTIONAL BLOCKS  
FUNCTIONAL BLOCK DIAGRAM  
8051  
CPU Core  
ALU,  
ACC,  
B-Register,  
Instruction Register,  
Program Counter,  
Timing and Control  
Interrupt  
Control  
Oscillator  
8 Interrupts  
Flash Control Unit  
Watchdog Timer  
SuperFlash  
EEPROM  
Primary Partition  
RAM  
512 x8  
16K x8 for SST89x54RC  
8K x8 for SST89x52RC  
8
8
8
I/O  
I/O  
I/O  
I/O  
I/O Port 0  
Security  
Lock  
Secondary  
Partition  
1K x8  
I/O Port 1  
I/O Port 2  
I/O Port 3  
8
Timer 0 (16-bit)  
Timer 1 (16-bit)  
Timer 2 (16-bit)  
8-bit  
Enhanced  
UART  
1259 B1.3  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
5
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
2.0 PIN ASSIGNMENTS  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
DD  
(T2) P1.0  
(T2 EX) P1.1  
P1.2  
1
P0.0 (AD0)  
P0.1 (AD1)  
P0.2 (AD2)  
P0.3 (AD3)  
P0.4 (AD4)  
P0.5 (AD5)  
P0.6 (AD6)  
P0.7 (AD7)  
EA#  
2
3
P1.3  
4
P1.4  
5
P1.5  
6
44 43 42 41 40 39 38 37 36 35 34  
P1.5  
P1.6  
P1.6  
7
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
P0.4 (AD4)  
P0.5 (AD5)  
P0.6 (AD6)  
P0.7 (AD7)  
EA#  
40-pin PDIP  
Top View  
2
P1.7  
8
P1.7  
3
RST  
9
RST  
4
(RXD) P3.0  
(TXD) P3.1  
(INT0#) P3.2  
(INT1#) P3.3  
(T0) P3.4  
(T1) P3.5  
(WR#) P3.6  
(RD#) P3.7  
XTAL2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
(RXD) P3.0  
NC  
5
ALE/PROG#  
PSEN#  
44-lead TQFP  
Top View  
NC  
6
(TXD) P3.1  
(INT0#) P3.2  
(INT1#) P3.3  
(T0) P3.4  
(T1) P3.5  
ALE/PROG#  
PSEN#  
7
P2.7 (A15)  
P2.6 (A14)  
P2.5 (A13)  
P2.4 (A12)  
P2.3 (A11)  
P2.2 (A10)  
P2.1 (A9)  
P2.0 (A8)  
8
P2.7 (A15)  
P2.6 (A14)  
P2.5 (A13)  
9
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
XTAL1  
V
SS  
1259 44-tqfp TQJ P2.1  
1259 40-pdip PI P1.1  
FIGURE  
2-2: Pin Assignments for 44-lead TQFP  
FIGURE  
2-1: Pin Assignments for 40-pin PDIP  
6
5
4
3
2
1
44 43 42 41 40  
39  
7
P1.5  
P1.6  
P0.4 (AD4)  
P0.5 (AD5)  
P0.6 (AD6)  
P0.7 (AD7)  
EA#  
8
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
9
P1.7  
10  
11  
12  
13  
14  
15  
16  
17  
RST  
(RXD) P3.0  
NC  
44-lead PLCC  
Top View  
NC  
(TXD) P3.1  
(INT0#) P3.2  
(INT1#) P3.3  
(T0) P3.4  
(T1) P3.5  
ALE/PROG#  
PSEN#  
P2.7 (A15)  
P2.6 (A14)  
P2.5 (A13)  
18 19 20 21 22 23 24 25 26 27 28  
1259 44-plcc NJ P3.1  
FIGURE  
2-3: Pin Assignments for 44-lead PLCC  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
6
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
2.1 Pin Descriptions  
TABLE  
Symbol  
2-1: Pin Descriptions (1 of 2)  
Type1  
Name and Functions  
P0[7:0]  
I/O  
Port 0: Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each pin can  
sink several LS TTL inputs. Port 0 pins that have ‘1’s written to them float, and in this state  
can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and  
data bus during accesses to external code and data memory. In this application, it uses  
strong internal pull-ups when transitioning to ‘1’s. Port 0 also receives the code bytes during  
the external host mode programming, and outputs the code bytes during the external host  
mode verification. External pull-ups are required during program verification or as a general  
purpose I/O port.  
P1[7:0]  
I/O with internal Port 1: Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers  
pull-up  
can drive LS TTL inputs. Port 1 pins are pulled high by the internal pull-ups when ‘1’s are writ-  
ten to them and can be used as inputs in this state. As inputs, Port 1 pins that are externally  
pulled low will source current (IIL, see Tables 12-6 and 12-7) because of the internal pull-ups.  
P1[5, 6, 7] have high current drive of 16 mA. Port 1 also receives the low-order address byte  
during the external host mode programming and verification.  
P1[0]  
P1[1]  
P1[2]  
P1[3]  
P1[4]  
P1[5]  
P1[6]  
P1[7]  
P2[7:0]  
I/O  
I
T2: External count input to Timer/Counter 2 or Clock-out from Timer/Counter 2  
T2EX: Timer/Counter 2 capture/reload trigger and direction control  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins are pulled  
high by the internal pull-ups when ‘1’s are written to them and can be used as inputs in this  
state. As inputs, Port 2 pins that are externally pulled low will source current (IIL, see Tables  
12-6 and 12-7) because of the internal pull-ups. Port 2 sends the high-order address byte  
during fetches from external program memory and during accesses to external Data Memory  
that use 16-bit address (MOVX@DPTR). In this application, it uses strong internal pull-ups  
when transitioning to ‘1’s. Port 2 also receives the high-order address byte during the external  
host mode programming and verification.  
with internal  
pull-up  
P3[7:0]  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers  
can drive LS TTL inputs. Port 3 pins are pulled high by the internal pull-ups when ‘1’s are writ-  
ten to them and can be used as inputs in this state. As inputs, Port 3 pins that are externally  
pulled low will source current (IIL, see Tables 12-6 and 12-7) because of the internal pull-ups.  
Port 3 also receives the high-order address byte during the external host mode programming  
and verification.  
with internal  
pull-up  
P3[0]  
P3[1]  
P3[2]  
P3[3]  
P3[4]  
P3[5]  
P3[6]  
P3[7]  
I
O
I
RXD: Universal Asynchronous Receiver/Transmitter (UART) - Receive input  
TXD: UART - Transmit output  
INT0#: External Interrupt 0 Input  
I
INT1#: External Interrupt 1 Input  
I
T0: External count input to Timer/Counter 0  
T1: External count input to Timer/Counter 1  
WR#: External Data Memory Write strobe  
RD#: External Data Memory Read strobe  
I
O
O
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
7
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE 2-1: Pin Descriptions (Continued) (2 of 2)  
Symbol  
Type1  
Name and Functions  
PSEN#  
I/O  
Program Store Enable: PSEN# is the Read strobe to external program. When the device is  
executing from internal program memory, PSEN# is inactive (High). When the device is exe-  
cuting code from external program memory, PSEN# is activated twice each machine cycle,  
except that two PSEN# activations are skipped during each access to external data memory.  
A forced high-to-low input transition on the PSEN# pin while the RST input is continually held  
high for more than 10 machine cycles will cause the device to enter external host mode pro-  
gramming.  
RST  
EA#  
I
I
Reset: While the oscillator is running, a “high” logic state on this pin for two machine cycles  
will reset the device. If the PSEN# pin is driven by a high-to-low input transition while the RST  
input pin is held “high,the device will enter the external host mode, otherwise the device will  
enter the normal operation mode.  
External Access Enable: EA# must be connected to VSS in order to enable the device to  
fetch code from the external program memory. EA# must be strapped to VDD for internal pro-  
gram execution. However, Disable-Extern-Boot (See Section 8.0, “Security Lock”) will disable  
EA#, and program execution is only possible from internal program memory. The EA# pin can  
tolerate a high voltage2 of 12V. (See Section 12.0, “Electrical Specification”)  
ALE/PROG#  
I/O  
Address Latch Enable: ALE is the output signal for latching the low byte of the address dur-  
ing an access to external memory. This pin is also the programming pulse input (PROG#) for  
flash programming. Normally the ALE3 is emitted at a constant rate of 1/6 the crystal fre-  
quency4 and can be used for external timing and clocking. One ALE pulse is skipped during  
each access to external data memory. However, if AO is set to 1, ALE is disabled.  
(See “Auxiliary Register (AUXR)” in Section 3.5, “Special Function Registers”)  
NC  
I/O  
I
No Connect  
XTAL1  
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator  
circuits.  
XTAL2  
VDD  
O
I
Crystal 2: Output from the inverting oscillator amplifier.  
Power Supply  
VSS  
I
Ground  
T2-1.0 1259  
1. I = Input; O = Output  
2. It is not necessary to receive a 12V programming supply voltage during flash programming.  
3.ALE loading issue: When ALE pin experiences higher loading (>30pf) during the reset, the MCU may accidentally enter into modes  
other than normal working mode. The solution is to add a pull-up resistor of 3-50 KΩ to VDD, e.g. for ALE pin.  
4. For 6 clock mode, ALE is emitted at 1/3 of crystal frequency.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
8
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
3.0 MEMORY ORGANIZATION  
The device has separate address spaces for program and  
data memory.  
When instructions access addresses in the upper 128  
bytes (above 7FH), the MCU determines whether to  
access the SFRs or RAM by the type of instruction given. If  
it is indirect, then RAM is accessed. If it is direct, then an  
SFR is accessed. See the examples below.  
3.1 Program Flash Memory  
There are two internal flash memory partitions in the  
device. The primary flash memory partition (Partition 0) has  
16/8 KByte. The secondary flash memory partition (Parti-  
tion 1) has 1 KByte. The total flash memory space of both  
partitions can be used as a contiguous code storage.  
Indirect Access:  
MOV  
@R0, #data  
; R0 contains 90H  
Register R0 points to 90H which is located in the upper  
address range. Data in “#data” is written to RAM location  
90H rather than port 1.  
The 16K/8K x8 primary flash partition is organized as 128/  
64 sectors, each sector consists of 128 Bytes. The primary  
partition is divided into four logical pages as shown in Fig-  
ure 3-2  
Direct Access:  
MOV  
90H, #data  
; write data to P1  
The 1K x8 secondary flash partition is organized as 8 sec-  
tors, each sector consists also of 128 Bytes.  
Data in “#data” is written to port 1. Instructions that write  
directly to the address write to the SFRs.  
For both partitions, the 7 least significant program address  
bits select the byte within the sector. The remainder of the  
program address bits select the sector within the partition.  
To access the expanded RAM, the EXTRAM bit must be  
cleared and MOVX instructions must be used. The extra  
256 Bytes of memory is physically located on the chip and  
logically occupies the first 256 bytes of external memory  
(addresses 000H to FFH).  
3.2 Data RAM Memory  
The data RAM has 512 Bytes of internal memory. The first  
256 Bytes are available by default. The second 256 Bytes  
are enabled by clearing the EXTRAM bit in the AUXR reg-  
ister. The RAM can be addressed up to 64 KByte for exter-  
nal data memory.  
When EXTRAM = 0, the expanded RAM is indirectly  
addressed using the MOVX instruction in combination  
with any of the registers R0, R1 of the selected bank or  
DPTR. Accessing the expanded RAM does not affect  
ports P0, P3.6 (WR#), P3.7 (RD#), or P2. With  
EXTRAM = 0, the expanded RAM can be accessed as  
in the following example.  
3.3 Expanded Data RAM Addressing  
The SST89E/V5xRC have the capability of 512 Bytes of  
RAM. See Figure 3-1.  
Expanded RAM Access (Indirect Addressing only):  
MOVX  
@DPTR, A  
; DPTR contains 0A0H  
The device has four sections of internal data memory:  
DPTR points to 0A0H and data in “A” is written to address  
0A0H of the expanded RAM rather than external memory.  
Access to external memory higher than FFH using the  
MOVX instruction will access external memory (0100H to  
FFFFH) and will perform in the same way as the standard  
8051, with P0 and P2 as data/address bus, and P3.6 and  
P3.7 as write and read timing signals.  
1. The lower 128 Bytes of RAM (00H to 7FH) are  
directly and indirectly addressable.  
2. The higher 128 Bytes of RAM (80H to FFH) are  
indirectly addressable.  
3. The special function registers (80H to FFH) are  
directly addressable only.  
When EXTRAM = 1, MOVX @Ri and MOVX @DPTR will  
be similar to the standard 8051. Using MOVX @Ri pro-  
vides an 8-bit address with multiplexed data on Port 0.  
Other output port pins can be used to output higher order  
address bits. This provides external paging capabilities.  
Using MOVX @DPTR generates a 16-bit address. This  
allows external addressing up the 64K. Port 2 provides the  
high-order eight address bits (DPH), and Port 0 multiplexes  
the low order eight address bits (DPL) with data. Both  
MOVX @Ri and MOVX @DPTR generates the necessary  
4. The expanded RAM of 256 Bytes (00H to FFH) is  
indirectly addressable by the move external  
instruction (MOVX) and clearing the EXTRAM bit.  
(See “Auxiliary Register (AUXR)” in Section 3.5,  
“Special Function Registers”)  
Since the upper 128 bytes occupy the same addresses as  
the SFRs, the RAM must be accessed indirectly. The RAM  
and SFRs space are physically separate even though they  
have the same addresses.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
9
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
read and write signals (P3.6 - WR# and P3.7 - RD#) for  
external memory use. Table 3-1 shows external data mem-  
ory RD#, WR# operation with EXTRAM bit.  
The stack pointer (SP) can be located anywhere within the  
256 bytes of internal RAM (lower 128 bytes and upper 128  
bytes). The stack pointer may not be located in any part of  
the expanded RAM.  
TABLE  
3-1: External Data Memory RD#, WR# with EXTRAM bit  
MOVX @DPTR, A or MOVX A, @DPTR  
MOVX @Ri, A or MOVX A, @Ri  
ADDR = Any  
AUXR  
ADDR < 0100H  
RD# / WR# not asserted  
RD# / WR# asserted  
ADDR >= 0100H  
EXTRAM = 0  
EXTRAM = 1  
RD# / WR# asserted  
RD# / WR# asserted  
RD# / WR# not asserted1  
RD# / WR# asserted  
T3-1.0 1259  
1. Access limited to ERAM address within 0 to 0FFH.  
FFH  
FFH  
80H  
FFH  
(Indirect Addressing)  
(Direct Addressing)  
Special  
Function  
Registers  
(SFRs)  
Expanded  
RAM  
256 Bytes  
Upper 128 Bytes  
Internal RAM  
80H  
7FH  
Lower 128 Bytes  
Internal RAM  
(Indirect & Direct  
Addressing)  
(Indirect Addressing)  
00H  
000H  
FFFFH  
FFFFH  
(Indirect Addressing)  
(Indirect Addressing)  
External  
Data  
Memory  
External  
Data  
Memory  
0100H  
FFH  
Expanded RAM  
000H  
0000H  
EXTRAM = 0  
EXTRAM = 1  
FIGURE  
3-1: Internal and External Data Memory Structure  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
10  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
EA# = 0  
FFFFH  
EA# = 1  
Secondary  
Partition  
1KByte Page  
2FFFH  
4KByte Page  
4KByte Page  
4KByte Page  
External  
64 KByte  
EA# = 1  
Secondary  
Partition  
1KByte Page  
1FFFH  
2KByte Page  
2KByte Page  
2KByte Page  
2KByte Page  
4KByte Page  
0000H  
0000H  
0000H  
SST89E/V54RC  
SST89E/V52RC  
1259 F02.3  
FIGURE  
3-2: Program Memory Organization and Code Security Protection  
3.4 Dual Data Pointers  
3.5 Special Function Registers  
The device has two 16-bit data pointers. The DPTR Select  
(DPS) bit in AUXR1 determines which of the two data  
pointers is accessed. When DPS=0, DPTR0 is selected;  
when DPS=1, DPTR1 is selected. Quickly switching  
between the two data pointers can be accomplished by a  
single INC instruction on AUXR1. (See Figure 3-3)  
Most of the unique features of the FlashFlex51 microcon-  
troller family are controlled by bits in special function regis-  
ters (SFRs) located in the SFR memory map shown in  
Table 3-2. Individual descriptions of each SFR are provided  
and reset values indicated in Tables 3-3 to 3-8.  
AUXR1 / bit0  
DPS  
DPTR1  
DPTR0  
DPS = 0 DPTR0  
DPS = 1 DPTR1  
DPL  
82H  
DPH  
83H  
External Data Memory  
FIGURE  
3-3: Dual Data Pointer Organization  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
11  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE  
3-2: FlashFlex51 SFR Memory Map  
8 BYTES  
F8H  
F0H  
E8H  
E0H  
D8H  
D0H  
C8H  
C0H  
B8H  
B0H  
A8H  
A0H  
98H  
90H  
88H  
80H  
IPA1  
B1  
IEA1  
ACC1  
FFH  
IPAH  
F7H  
EFH  
E7H  
DFH  
D7H  
CFH  
C7H  
BFH  
B7H  
AFH  
A7H  
9FH  
97H  
8FH  
PSW1  
T2CON1  
WDTC1  
IP1  
P31  
IE1  
P21  
SCON1  
P11  
TCON1  
P01  
SPCR  
TH2  
T2MOD  
RCAP2L  
RCAP2H  
SFAL  
TL2  
SFIS1  
SADEN  
SFCF  
COSR  
IPH  
SFCM  
SFAH  
SFDT  
SFST  
AUXR  
SADDR  
PMC  
AUXR1  
SBUF  
SFIS0  
PCON  
TMOD  
SP  
TL0  
TL1  
TH0  
TH1  
DPL  
DPH  
WDTD  
87H  
T3-2.1 1259  
1. Bit addressable SFRs  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
12  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE  
3-3: CPU related SFRs  
Direct  
Bit Address, Symbol, or Alternative Port Function  
Reset  
Value  
Symbol Description  
Address  
MSB  
LSB  
ACC1  
B1  
PSW1  
Accumulator  
B Register  
E0H  
ACC[7:0]  
B[7:0]  
00H  
00H  
00H  
F0H  
Program Status  
Word  
D0H  
CY  
AC  
F0  
RS1 RS0  
OV  
F1  
P
SP  
Stack Pointer  
81H  
82H  
SP[7:0]  
07H  
00H  
DPL  
Data Pointer  
Low  
DPL[7:0]  
DPH  
Data Pointer  
High  
83H  
DPH[7:0]  
00H  
IE1  
IEA1  
Interrupt Enable  
A8H  
E8H  
EA  
-
EC  
ET2  
-
ES  
-
ET1  
-
EX1  
-
ET0  
-
EX0  
-
00H  
Interrupt  
Enable A  
EWD  
x0xxxxxxb  
IP1  
Interrupt Priority  
Reg  
B8H  
B7H  
F8H  
F7H  
-
-
-
-
-
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
x0000000b  
IPH  
IPA1  
IPAH  
Interrupt Priority  
Reg High  
PPCH PT2H PSH PT1H PX1H  
PT0H  
PX0H x0000000b  
Interrupt Priority  
Reg A  
PWD  
-
-
-
-
-
-
-
-
-
-
-
-
x0xxxxxxb  
x0xxxxxxb  
Interrupt Priority  
Reg A High  
PWDH  
PCON  
AUXR  
Power Control  
Auxiliary Reg  
87H  
8EH  
A2H  
A1H  
SMOD1 SMOD0  
-
-
-
POF GF1  
GF0  
PD  
EXTRAM  
-
IDL  
AO  
00x10000b  
xxxxxxx00b  
xxxx00x0b  
xx000000b  
-
-
-
-
-
-
-
-
-
-
AUXR1 Auxiliary Reg 1  
GF2  
0
DPS  
UART  
PMC  
Power  
Management  
Control Register  
WDU TCT  
TCT2 PB2  
PB1  
T3-3.1 1259  
1. Bit Addressable SFRs  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
13  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE 3-4: Flash Memory Programming SFRs  
Bit Address, Symbol, or Alternative Port Function  
Direct  
Symbol Description Address  
Reset  
Value  
MSB  
LSB  
SFCF  
SFCM  
SFAL  
SuperFlash  
Configuration  
B1H  
B2H  
B3H  
CMD_Status IAPEN  
-
HWIAP  
-
SFST_SEL  
01x0x000b  
SuperFlash  
Command  
-
FCM[6:0]  
00H  
SuperFlash  
Address Low  
SuperFlash  
00H  
Low Order Byte Address Register  
A7 to A0 (SFAL)  
SFAH  
SFDT  
SuperFlash  
Address High  
B4H  
B5H  
SuperFlash  
High Order Byte Address Register  
00H  
A
15 to A8 (SFAH)  
SuperFlash  
Data  
SuperFlash  
Data Register  
00H  
BFH  
B6H  
SFST_SEL=  
0H  
Manufacturer’s ID  
SFST_SEL=  
1H  
Device ID0  
(F7H indicates Device ID1 is real ID)  
SFST_SEL=  
2H  
Device ID1  
SuperFlash  
Status  
SFST  
SFST_SEL=  
3H  
Boot Vector  
SFST_SEL=  
4H  
-
-
-
PAGE4 PAGE3  
PAGE2  
PAGE1  
PAGE0 xxx11111b  
SFST_SEL=  
5H  
X
Boot  
From  
Zero  
Boot- Enable Disable- Disable- Disable- Disable- x1111111b  
From- Clock-  
User- Double  
Vector  
Extern-  
Host-  
Cmd  
Extern-  
MOVC  
Extern-  
Boot  
Extern-  
IAP  
T3-4.0 1259  
TABLE  
3-5: Watchdog Timer SFRs  
Direct  
Bit Address, Symbol, or Alternative Port Function  
Reset  
Value  
Symbol Description  
Address MSB  
LSB  
WDTC1 Watchdog Timer  
C0H  
85H  
-
WDTON WDFE  
-
WDRE WDTS WDT SWDT x0000000b  
Control  
WDTD Watchdog Timer  
Data/Reload  
Watchdog Timer Data/Reload  
00H  
T3-5.0 1259  
1. Bit Addressable SFRs  
TABLE  
3-6: Feed Sequence SFRs  
Direct  
Bit Address, Symbol, or Alternative Port Function  
Reset  
Value  
Symbol Description  
Address MSB  
LSB  
SFIS0 Sequence Reg 0  
SFIS1 Sequence Reg 1  
97H  
C4H  
(Write only)  
(Write only)  
00H  
00H  
T3-6.0 1259  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
14  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE  
3-7: Timer/Counters SFRs  
Direct  
Bit Address, Symbol, or Alternative Port Function  
Reset  
Value  
Symbol Description  
Address MSB  
LSB  
TMOD  
Timer/Counter  
Mode Control  
89H  
Timer 1  
Timer 0  
00H  
GATE C/T#  
M1  
M0  
GATE  
IE1  
C/T#  
IT1  
M1  
IE0  
M0  
IT0  
TCON1  
Timer/Counter  
Control  
88H  
TF1  
TR1  
TF0  
TR0  
00H  
TH0  
TL0  
TH1  
TL1  
Timer 0 MSB  
Timer 0 LSB  
Timer 1 MSB  
Timer 1 LSB  
8CH  
8AH  
8DH  
8BH  
C8H  
TH0[7:0]  
TL0[7:0]  
TH1[7:0]  
TL1[7:0]  
00H  
00H  
00H  
00H  
00H  
T2CON1 Timer / Counter 2  
Control  
TF2  
-
EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#  
T2MOD# Timer2  
Mode Control  
C9H  
-
-
-
-
-
T2OE  
DCEN  
xxxxxx00b  
TH2  
TL2  
Timer 2 MSB  
Timer 2 LSB  
CDH  
CCH  
CBH  
TH2[7:0]  
TL2[7:0]  
00H  
00H  
00H  
RCAP2H Timer 2  
Capture MSB  
RCAP2L Timer 2  
Capture LSB  
RCAP2H[7:0]  
CAH  
RCAP2L[7:0]  
00H  
T3-7.0 1259  
1. Bit Addressable SFRs  
TABLE  
3-8: Interface SFRs  
Bit Address, Symbol, or Alternative Port Function  
Direct  
Address  
RESET  
Value  
Symbol Description  
MSB  
LSB  
SBUF  
Serial Data Buffer  
99H  
98H  
A9H  
B9H  
SBUF[7:0]  
Indeterminate  
00H  
SCON1 Serial Port Control  
SM0/FE SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
SADDR Slave Address  
SADDR[7:0]  
SADEN[7:0]  
00H  
SADEN Slave Address  
Mask  
00H  
P01  
P11  
P21  
P31  
Port 0  
Port 1  
Port 2  
Port 3  
80H  
90H  
A0H  
B0H  
P0[7:0]  
FFH  
FFH  
FFH  
-
-
-
-
-
-
T2EX  
T2  
P2[7:0]  
RD#  
WR#  
T1  
T0  
INT1# INT0# TXD  
RXD  
FFH  
T3-8.1 1259  
1. Bit Addressable SFRs  
TABLE  
3-9: Clock Option SFR  
Bit Address, Symbol, or Alternative Port Function  
MSB LSB  
CO_IN  
Direct  
Address  
Reset  
Value  
Symbol Description  
COSR Clock Option Register  
BFH  
-
-
-
-
COEN  
CO_REL  
0x00000b  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
15  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
SuperFlash Configuration Register (SFCF)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B1H  
CMD_  
Status  
IAPEN  
-
HWIAP  
-
SFST_SEL  
01x0x000b  
Symbol  
Function  
CMD_Status IAP Command Completion Status  
0: IAP command is ignored  
1: IAP command is completed fully  
IAPEN  
HWIAP  
IAP Enable Bit  
0: Disable all IAP commands (Commands will be ignored)  
1: Enable all IAP commands  
Boot Status Flag  
0: System boots up without special pin configuration setup  
1:System boots up with both P1[0] and P1[1] pins in logic low state curing reset.  
(See Figure 9-3.)  
SFST_SEL  
Provide index to read back information when read to SFST register is executed.  
(See , “SuperFlash Status Register (SFST) (Read Only Register)” on page 18 for  
detailed settings.)  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
16  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
SuperFlash Command Register (SFCM)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B2H  
-
FCM6  
FCM5  
FCM4  
FCM3  
FCM2  
FCM1  
FCM0  
00H  
Symbol  
-
Function  
Reserved  
FCM[6:0]  
Flash operation command  
000_0001b Chip-Erase  
000_1011b Sector-Erase  
000_1101b Partition0-Erase  
000_1100b Byte-Verify1  
000_1110b Byte-Program  
000_0011b Secure-Page  
Page-Level Security Commands  
SFAH=90H; Secure-Page0  
SFAH=91H; Secure-Page1  
SFAH=92H; Secure-Page2  
SFAH=93H; Secure-Page3  
SFAH=94H; Secure-Page4  
000-0101b Secure-Chip  
Chip-Level Security Commands  
SFAH=B0H; Disable-Extern-IAP  
SFAH=B1H; Disable-Extern-Boot  
SFAH=B2H; Disable-Extern-MOVC  
SFAH=B3H; Disable-Extern-Host-Cmd  
000-1000b Boot Options  
Boot Option Setting Commands  
SFAH=E0H; Enable-Clock-Double  
SFAH=E1H; Boot-From-User-Vector  
SFAH=E2H; Boot-From-Zero  
000-1001b Set-User-Boot-Vector  
All other combinations are not implemented, and reserved for future use.  
1. Byte-Verify has a single machine cycle latency and will not generate any INT1# interrupt regardless of FIE.  
SuperFlash Address Registers (SFAL)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B3H  
SuperFlash Low Order Byte Address Register  
00H  
Symbol  
Function  
Mailbox register for interfacing with flash memory block. (Low order address register).  
SFAL  
SuperFlash Address Registers (SFAH)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B4H  
SuperFlash High Order Byte Address Register  
00H  
Symbol  
Function  
Mailbox register for interfacing with flash memory block. (High order address register).  
SFAH  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
17  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
SuperFlash Data Register (SFDT)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B5H  
SuperFlash Data Register  
00H  
Symbol  
Function  
SFDT  
Mailbox register for interfacing with flash memory block. (Data register).  
SuperFlash Status Register (SFST) (Read Only Register)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B6H  
SuperFlash Status Register  
xxxxx0xxb  
Symbol  
Function  
SFST  
This is a read-only register. The read-back value is indexed by SFST_SEL in the  
SuperFlash Configuration Register (SFCF).  
SFST_SEL=0H: Manufacturer’s ID  
1H: Device ID0 = F7H  
2H: Device ID1 = Device ID (Refer to Table 4-1 on page 27)  
3H: Boot Vector  
4H: Page-Security bit setting  
5H: Chip-Level Security bit setting and Boot Options  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
18  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Interrupt Enable (IE)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
A8H  
EA  
-
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
00H  
Symbol  
Function  
EA  
Global Interrupt Enable.  
0 = Disable  
1 = Enable  
ET2  
ES  
Timer 2 Interrupt Enable.  
Serial Interrupt Enable.  
ET1  
EX1  
ET0  
EX0  
Timer 1 Interrupt Enable.  
External 1 Interrupt Enable.  
Timer 0 Interrupt Enable.  
External 0 Interrupt Enable.  
Interrupt Enable A (IEA)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
E8H  
-
EWD  
-
-
-
-
-
-
x0xxxxxxb  
Symbol  
Function  
EWD  
Watchdog Interrupt Enable.  
1 = Enable the interrupt  
0 = Disable the interrupt  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
19  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Interrupt Priority (IP)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B8H  
-
-
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
x0000000b  
Symbol  
PT2  
Function  
Timer 2 interrupt priority bit.  
Serial Port interrupt priority bit.  
Timer 1 interrupt priority bit.  
External interrupt 1 priority bit.  
Timer 0 interrupt priority bit.  
External interrupt 0 priority bit.  
PS  
PT1  
PX1  
PT0  
PX0  
Interrupt Priority High (IPH)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
B7H  
-
-
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
x0000000b  
Symbol  
PT2H  
PSH  
Function  
Timer 2 interrupt priority bit high.  
Serial Port interrupt priority bit high.  
Timer 1 interrupt priority bit high.  
External interrupt 1 priority bit high.  
Timer 0 interrupt priority bit high.  
External interrupt 0 priority bit high.  
PT1H  
PX1H  
PT0H  
PX0H  
Interrupt Priority A (IPA)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
F8H  
-
PWD  
-
-
-
-
-
-
x0xxxxxxb  
Symbol  
Function  
Watchdog interrupt priority bit.  
PWD  
Interrupt Priority A High (IPAH)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
F7H  
-
PWDH  
-
-
-
-
-
-
x0xxxxxxb  
Symbol  
Function  
Watchdog interrupt priority bit high.  
PWDH  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
20  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Auxiliary Register (AUXR)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
8EH  
-
-
-
-
-
-
EXTRAM  
AO  
xxxxxx10b  
Symbol  
Function  
EXTRAM  
Internal/External RAM access  
0: Internal Expanded RAM access within range of 00H to FFH using MOVX @Ri /  
@DPTR. Beyond 100H, the MCU always accesses external data memory.  
For details, refer to Section 3.3, “Expanded Data RAM Addressing” .  
1: External data memory access.  
AO  
Disable/Enable ALE  
0: ALE is emitted at a constant rate of 1/3 the oscillator frequency in 6 clock mode, 1/6 fOSC in  
12 clock mode.  
1: ALE is active only during a MOVX or MOVC instruction.  
Auxiliary Register 1 (AUXR1)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
A2H  
-
-
-
-
GF2  
0
-
DPS  
xxxx00x0b  
Symbol  
GF2  
Function  
General purpose user-defined flag  
DPS  
DPTR registers select bit  
0: DPTR0 is selected.  
1: DPTR1 is selected.  
Sequence Register 0 (SFIS0)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
97H  
(Write only)  
N/A  
Symbol  
Function  
SFIS0  
Register used with SFIS1 to provide a feed sequence to validate writing  
to WDTC and SFCM. Without a proper feed sequence, writing to SFCM will be ignored  
and writing to WDTC in Watchdog mode will cause an immediate Watchdog reset.  
Sequence Register 1 (SFIS1)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
C4H  
(Write only)  
N/A  
Symbol  
Function  
SFIS1  
Register used with SFIS0 to provide a feed sequence to validate writing  
to WDTC and SFCM.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
21  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Watchdog Timer Control Register (WDTC)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
C0H  
-
WDTON  
WDFE  
-
WDRE  
WDTS  
WDT  
SWDT  
x0000000b  
Symbol  
Function  
Watchdog timer start control bit (Used in Watchdog mode)  
WDTON  
0: Watchdog timer can be started or stopped freely during Watchdog mode.  
1: Start Watchdog timer; bit cannot be cleared by software.  
WDFE  
Watchdog feed sequence error flag  
0: Watchdog feed sequence error has not occurred.  
1: Due to an incorrect feed sequence before writing to WDTC in Watchdog mode, the  
hardware entered Watchdog reset and set this flag to “1.This is for software to detect  
whether the Watchdog reset was caused by timer expiration or an incorrect feed  
sequence.  
WDRE  
WDTS  
Watchdog timer reset enable.  
0: Disable Watchdog timer reset.  
1: Enable Watchdog timer reset.  
Watchdog timer reset flag.  
0: External hardware reset or power-on reset clears the flag.  
Flag can also be cleared by writing a 1.  
Flag survives if chip reset happened because of Watchdog timer overflow.  
1: Hardware sets the flag on watchdog overflow.  
WDT  
Watchdog timer refresh.  
0: Hardware resets the bit when refresh is done.  
1: Software sets the bit to force a Watchdog timer refresh.  
SWDT  
Start Watchdog timer.  
0: Stop WDT.  
1: Start WDT.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
22  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Clock Option Register (COSR)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
BFH  
-
-
-
-
00H  
COEN  
CO_SEL  
CO_IN  
Symbol  
Function  
COEN  
Clock Divider Enable  
0: Disable Clock Divider  
1: Enable Clock Divider  
CO_SEL  
CO_IN  
Clock Divider Selection  
00b: 1/4 clock source  
01b: 1/16 clock source  
10b: 1/256 clock source  
11b: 1/1024 clock source  
Clock Source Selection  
0b: Select clock from 1x clock  
1b: Select clock from 2x clock  
The default value of this bit is set during Power-on reset by copying from  
Enable_Clock_Double_i non-volatile bit setting. CO_IN can be changed during normal  
operation to select the double clock option.  
If the clock source is a 1x clock, the clock divider exports 1/4, 1/16, 1/256, or 1/1024 of  
the input clock.  
If the clock source is a 2x clock, the clock divider exports 1/2, 1/8, 1/128, or 1/512 of the  
input clock.  
Power Management Control Register (PMC)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
A1H  
-
-
WDU  
TCT  
xx000000b  
TCT2  
PB2  
PB1  
UART  
Symbol  
Function  
WDU  
Watchdog Timer Clock Control  
0:The clock for the Watchdog timer is running  
1:The clock for the Watchdog timer is stopped  
TCT  
TCT2  
PB2  
PB1  
Timer 0/1 Clock Control  
0:The Timer 0/1 logic is running  
1:The Timer 0/1 logic is stopped  
Timer 2 Clock Control  
0:The Timer 2 logic is running  
1:The Timer 2 logic is stopped  
Further Power Control 2  
0:The PB2 logic is running  
1:The PB2 logic is stopped  
Further Power Control 1  
0:The PB1 logic is running  
1:The PB1 logic is stopped  
Power consumption can be decreased by setting both PB2 and PB1 to 1.  
UART  
UART Clock Control  
0:The UART logic is running  
1:The UART logic is stopped  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
23  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Watchdog Timer Data/Reload Register (WDTD)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
85H  
Watchdog Timer Data/Reload  
00H  
Power Control Register (PCON)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
87H  
SMOD1  
SMOD0  
-
POF  
GF1  
GF0  
PD  
IDL  
00x10000b  
Symbol  
Function  
SMOD1  
Double Baud rate bit. If SMOD1 = 1, Timer 1 is used to generate the baud rate, and the  
serial port is used in modes 1, 2, and 3.  
SMOD0  
POF  
FE/SM0 Selection bit.  
0: SCON[7] = SM0  
1: SCON[7] = FE,  
Power-on reset status bit, this bit will not be affected by any other reset. POF should be  
cleared by software.  
0: No Power-on reset.  
1: Power-on reset occurred  
GF1  
GF0  
PD  
General-purpose flag bit.  
General-purpose flag bit.  
Power-down bit, this bit is cleared by hardware after exiting from power-down mode.  
0: Power-down mode is not activated.  
1: Activates Power-down mode.  
IDL  
Idle mode bit, this bit is cleared by hardware after exiting from idle mode.  
0: Idle mode is not activated.  
1: Activates idle mode.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
24  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Serial Port Control Register (SCON)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
98H  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
00000000b  
Symbol  
Function  
FE  
Set SMOD0 = 1 to access FE bit.  
0: No framing error  
1: Framing Error. Set by receiver when an invalid stop bit is detected. This bit needs to  
be cleared by software.  
SM0  
SM1  
SMOD0 = 0 to access SM0 bit.  
Serial Port Mode Bit 0  
Serial Port Mode Bit 1  
SM0  
SM1  
Mode  
Description  
Baud Rate1  
0
0
0
Shift Register fOSC/6 (6 clock mode) or  
fOSC/12 (12 clock mode)  
0
1
1
0
1
2
8-bit UART  
9-bit UART  
Variable  
fOSC/32 or fOSC/16 (6 clock mode)  
or  
fOSC/64 or fOSC/32 (12 clock mode)  
1
1
3
9-bit UART  
Variable  
1. fOSC = oscillator frequency  
SM2  
REN  
Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then RI  
will not be set unless the received 9th data bit (RB8) is 1, indicating an address, and  
the received byte is a given or broadcast address. In Mode 1, if SM2 = 1 then RI will not  
be activated unless a valid stop bit was received. In Mode 0, SM2 should be 0.  
Enables serial reception.  
0: to disable reception.  
1: to enable reception.  
TB8  
RB8  
TI  
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as  
desired.  
In Modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the  
stop bit that was received. In Mode 0, RB8 is not used.  
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at  
the beginning of the stop bit in the other modes, in any serial transmission, Must be  
cleared by software.  
RI  
Receive interrupt flag. Set by hardware at the end of the8th bit time in Mode 0, or  
halfway through the stop bit time in the other modes, in any serial reception (except see  
SM2). Must be cleared by software.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
25  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Timer/Counter 2 Control Register (T2CON)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
C8H  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2#  
CP/RL2#  
00H  
Symbol  
Function  
TF2  
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2  
will not be set when either RCLK or TCLK = 1.  
EXF2  
Timer 2 external flag set when either a capture or reload is caused by a negative  
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will  
cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by  
software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).  
RCLK  
TCLK  
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for  
its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for  
the receive clock.  
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for  
its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflow to be used for  
the transmit clock.  
EXEN2  
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result  
of a negative transition on T2EX if Timer 2 is not being used to clock the serial port.  
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.  
TR2  
Start/stop control for Timer 2. A logic 1 starts the timer.  
C/T2#  
Timer or counter select (Timer 2)  
0: Internal timer (OSC/6 in 6 clock mode, OSC/12 in 12 clock mode)  
1: External event counter (falling edge triggered)  
CP/RL2#  
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if  
EXEN2 = 1. When cleared, auto-reloads will occur either with Timer 2 overflows or  
negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1,  
this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.  
Timer/Counter 2 Mode Control (T2MOD)  
Location  
7
6
5
4
3
2
1
0
Reset Value  
C9H  
-
-
-
-
-
-
T2OE  
DCEN  
xxxxxx00b  
Symbol  
Function  
-
Not implemented, reserved for future use.  
Note: User should not write ‘1’s to reserved bits. The value read from a reserved bit is indeterminate.  
T2OE  
DCEN  
Timer 2 Output Enable bit.  
Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down  
counter.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
26  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
4.0 FLASH MEMORY PROGRAMMING  
The device internal flash memory can be programmed or  
erased using In-Application Programming (IAP).  
4.2.2 IAP Enable Bit  
The IAP enable bit, SFCF[6], enables In-Application pro-  
gramming mode. Until this bit is set, all flash programming  
IAP commands will be ignored.  
4.1 Product Identification  
The Read-ID command accesses the Signature Bytes that  
identify the device and the manufacturer as SST. External  
programmers primarily use these Signature Bytes in the  
selection of programming algorithms.  
4.2.3 IAP Mode Commands  
In order to protect the flash memory against inadvertent  
writes during unstable power conditions, all IAP commands  
need the following feed sequence to validate the execution  
of commands.  
TABLE  
4-1: Product Identification  
Address  
30H  
Data  
BFH  
F7H  
Feed Sequence  
Manufacturer’s ID  
Device ID  
1. Write A2H to SFIS0 (097H)  
31H  
2. Write DFH to SFIS1 (0C4H)  
Device ID (extended)  
SST89E54RC  
SST89V54RC  
SST89E52RC  
SST89V52RC  
32H  
32H  
32H  
32H  
43H  
4BH  
42H  
3. Then write IAP command to SFCM (0B2H)  
Note: Above commands should be executed in  
sequence without interference from other  
instructions.  
4AH  
T4-1.1 1259  
All of the following commands can only be initiated in the  
IAP mode. In all situations, writing the control byte to the  
SFCM register will initiate all of the operations. A feed  
sequence is required prior to issuing commands through  
SFCM. Without the feed sequence all IAP commands are  
ignored. Sector-Erase, Byte-Program, and Byte-Verify  
commands will not be carried out on a specific memory  
page if the security locks are enabled on the memory page.  
4.2 In-Application Programming  
The device offers 17/9/5 KByte of in-application program-  
mable flash memory. During In-Application Programming  
(IAP), the CPU of the microcontroller enters STOP mode.  
Upon completion of IAP, the CPU will be released to  
resume program execution. The mailbox registers (SFST,  
SFCM, SFAL, SFAH, SFDT and SFCF) located in the spe-  
cial function register (SFR), control and monitor the  
device’s Erase and Program processes.  
The Byte-Program command is to update a byte of flash  
memory. If the original flash byte is not FFH, it should first  
be erased with an appropriate Erase command. Warning:  
Do not attempt to write (Program or Erase) to a sector  
that the code is currently fetching from. This will cause  
unpredictable program behavior and may corrupt pro-  
gram data.  
Table 4-3 outlines the commands and their associated  
mailbox register settings.  
4.2.1 IAP Mode Clock Source  
During IAP mode, both the CPU core and the flash control-  
ler unit are driven off the external clock. However, an inter-  
nal oscillator will provide timing references for Program and  
Erase operations. The internal oscillator is only turned on  
when required, and is turned off as soon as the flash oper-  
ation is completed.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
27  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
4.2.3.1 Chip-Erase  
4.2.3.2 Partition0-Erase  
The Chip-Erase command erases all bytes in both memory  
partitions. This command is only allowed when EA#=0  
(external memory execution).  
The Partition0-Erase command erases all bytes in memory  
partition 0. All security bits associated with Page0-3 are  
also reset.  
Chip-Erase ignores the Security setting status and will  
erase all settings on all pages and the different chip-level  
security restrictions, returning the device to its Unlocked  
state. The Chip-Erase command will also erase the boot  
vector setting. Upon completion of Chip-Erase command,  
the chip will boot from the default setting. See Table 4-2 for  
the default boot vector setting.  
IAP Enable  
ORL SFCF, #40H  
Set-Up  
MOV SFDT, #55H  
TABLE  
Device  
4-2: Default Boot Vector Settings  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
Address  
4000H  
4000H  
2000H  
2000H  
SST89E54RC  
SST89V54RC  
SST89E52RC  
SST89V52RC  
Command Execution  
MOV SFCM, #0DH  
T4-2.1 1259  
SFCF[7] indicates  
operation completion  
1259 F06.0  
IAP Enable  
ORL SFCF, #40H  
4.2.3.3 Sector-Erase  
The Sector-Erase command erases all of the bytes in a  
sector. The sector size for the flash memory blocks is 128  
Bytes. The selection of the sector to be erased is deter-  
mined by the contents of SFAH and SFAL.  
Set-Up  
MOV SFDT, #55H  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
IAP Enable  
ORL SFCF, #40H  
Command Execution  
MOV SFCM, #01H  
Program sector address  
MOV SFAH, #sector_addressH  
MOV SFAL, #sector_addressL  
SFCF[7] indicates  
operation completion  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
1259 F05.0  
Command Execution  
MOV SFCM, #0BH  
SFCF[7] indicates  
operation completion  
1259 F07.0  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
28  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
4.2.3.4 Byte-Program  
4.2.3.6 Secure-Page0, Secure-Page1, Secure-  
Page2, Secure-Page3, and Secure-Page4  
Secure-Page0, Secure-Page1, Secure-Page2, Secure-  
Page3, and Secure-Page4 commands are used to pro-  
gram the page security bits. Upon completion of any of  
these commands, the page security options will be  
updated immediately.  
The Byte-Program command programs data into a single  
byte. The address is determined by the contents of SFAH  
and SFAL. The data byte is in SFDT.  
IAP Enable  
ORL SFCF, #40H  
Page security bits previously in un-programmed state can  
be programmed by these commands. The factory setting  
for these bits is all “1”s which indicates the pages are not  
security locked.  
Program byte address  
MOV SFAH, #byte_addressH  
MOV SFAL, #byte_addressL  
Move data to SFDT  
MOV SFDT, #data  
IAP Enable  
ORL SFCF, #40H  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
Select Page  
Secure_Page0: MOV SFAH, #90H  
Secure_Page1: MOV SFAH, #91H  
Secure_Page2: MOV SFAH, #92H  
Secure_Page3: MOV SFAH, #93H  
Secure_Page4: MOV SFAH, #94H  
Command Execution  
MOV SFCM, #0EH  
SFCF[7] indicates  
operation completion  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
1259 F08.0  
4.2.3.5 Byte-Verify  
Command Execution  
MOV SFCM, #03H  
The Byte-Verify command allows the user to verify that the  
device has correctly performed an Erase or Program com-  
mand. Byte-Verify command returns the data byte in SFDT  
if the command is successful. The previous flash operation  
has to be fully completed before a Byte-Verify command  
can be issued.  
SFCF[7] indicates  
operation complete  
1259 F10.0  
IAP Enable  
ORL SFCF, #40H  
Program byte address  
MOV SFAH, #byte_addressH  
MOV SFAL, #byte_addressL  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
MOV SFCM, #0CH  
SFDT register  
contains data  
1259 F09.0  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
29  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
4.2.3.7 Enable-Clock-Double  
Enable-Clock-Double command is used to make the MCU  
run at 6 clocks per machine cycle. The standard (default) is  
12 clocks per machine cycle (i.e. clock double command  
disabled).  
IAP Enable  
ORL SFCF, #40H  
Set-up Enable-Clock-Double  
MOV SFAH, #E0H  
Feed Sequence  
MOV SFIS0, #A2H  
MOV SFIS1, #DFH  
Program Enable-Clock-Double  
Command Execution  
MOV SFCM, #08H  
SFCF[7] indicates  
operation complete  
1259 F11.0  
TABLE  
4-3: IAP COMMANDS  
Operation  
SFCM [6:0]  
01H  
SFDT [7:0]  
SFAH [7:0]  
X
SFAL [7:0]  
Chip-Erase  
55H  
55H  
X
X
X
Partition0-Erase  
Sector-Erase  
0DH  
0BH  
0EH  
0CH  
03H  
X
AH  
AL  
AL  
AL  
X
Byte-Program  
DI  
DO  
X
AH  
Byte-Verify (Read)  
Secure-Page0  
AH  
90H  
91H  
92H  
93H  
94H  
B0H  
B1H  
B2H  
B3H  
E0H  
E1H  
E2H  
F0H  
Secure-Page1  
03H  
X
X
Secure-Page2  
03H  
X
X
Secure-Page3  
03H  
X
X
Secure-Page4  
03H  
X
X
Disable-Extern-IAP  
Disable-Extern-Boot  
Disable-Extern-MOVC  
Disable-Extern-Host-Cmd  
Enable-Clock-Double  
Boot-From-User-Vector  
Boot-From-Zero  
05H  
X
X
05H  
X
X
05H  
X
X
05H  
X
X
08H  
X
X
08H  
X
X
08H  
X
X
Set-User-Boot-Vector  
09H  
DI  
X
T4-3.0 1259  
Note: VIL = Input Low Voltage; VIH = Input High Voltage; VIH1 = Input High Voltage (XTAL, RST); X = Don’t care;  
AL = Address low order byte; AH = Address high order byte; DI = Data Input; DO = Data Output.  
4.3 In-System Programming  
SST provides an example In-System Programming (ISP)  
solution for this device series. The example bootstrap  
loader is to be pre-programmed into Partition1, demon-  
strating the initial user program code loading or subsequent  
user code updating via the IAP operation.  
Users can either use the SST ISP solution or develop a  
customized ISP solution. Customized ISP firmware can be  
pre-programmed into a user-defined boot vector. See Sec-  
tion “Boot Sequence” on page 40 for details.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
30  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
5.0 TIMERS/COUNTERS  
5.1 Timers  
TABLE  
5-2: Timer/Counter 1  
TMOD  
The device has three 16-bit registers that can be used as  
either timers or event counters. The three timers/counters  
are denoted Timer 0 (T0), Timer 1 (T1), and Timer 2 (T2).  
Each is designated a pair of 8-bit registers in the SFRs.  
The pair consists of a most significant (high) byte and least  
significant (low) byte. The respective registers are TL0,  
TH0, TL1, TH1, TL2, and TH2.  
Internal External  
Control1 Control2  
Mode  
Function  
13-bit Timer  
0
1
2
3
0
1
2
3
00H  
10H  
20H  
30H  
40H  
50H  
60H  
-
80H  
90H  
A0H  
B0H  
C0H  
D0H  
E0H  
16-bit Timer  
Used as  
Timer  
8-bit Auto-Reload  
Does not run  
13-bit Timer  
5.2 Timer Set-up  
16-bit Timer  
Used as  
Counter  
Refer to Table 3-7 for TMOD, TCON, and T2CON registers  
regarding timers T0, T1, and T2. The following tables pro-  
vide TMOD values to be used to set up Timers T0, T1, and  
T2.  
8-bit Auto-Reload  
Not available  
-
T5-2.0 1259  
1. The Timer is turned ON/OFF by setting/clearing bit  
TR1 in the software.  
2. The Timer is turned ON/OFF by the 1 to 0 transition  
on INT1# (P3.3) when TR1 = 1 (hardware control).  
Except for the baud rate generator mode, the values given  
for T2CON do not include the setting of the TR2 bit. There-  
fore, bit TR2 must be set separately to turn the timer on.  
TABLE  
5-3: Timer/Counter 2  
TABLE  
5-1: Timer/Counter 0  
T2CON  
TMOD  
Internal  
External  
Internal External  
Control1 Control2  
Mode  
Control1  
00H  
Control2  
08H  
Mode  
Function  
13-bit Timer  
16-bit Auto-Reload  
16-bit Capture  
0
1
2
3
0
1
2
3
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
01H  
09H  
16-bit Timer  
Used as  
Timer  
Used as  
Timer  
Baud rate generator  
receive and transmit  
same baud rate  
34H  
36H  
8-bit Auto-Reload  
Two 8-bit Timers  
13-bit Timer  
Receive only  
Transmit only  
24H  
14H  
02H  
03H  
26H  
16H  
0AH  
16-bit Timer  
Used as  
Counter  
8-bit Auto-Reload  
Two 8-bit Timers  
16-bit Auto-Reload  
16-bit Capture  
Used as  
Counter  
0FH  
0BH  
T5-3.0 1259  
T5-1.0 1259  
1. The Timer is turned ON/OFF by setting/clearing  
bit TR0 in the software.  
2. The Timer is turned ON/OFF by the 1 to 0 transition  
on INT0# (P3.2) when TR0 = 1 (hardware control).  
1. Capture/Reload occurs only on timer/counter overflow.  
2. Capture/Reload occurs on timer/counter overflow and a 1  
to 0 transition on T2EX (P1.1) pin except when Timer 2 is  
used in the baud rate generating mode.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
31  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
5.3 Programmable Clock-Out  
6.0 SERIAL I/O  
A 50% duty cycle clock can be programmed to come out  
on P1.0. This pin, besides being a regular I/O pin, has two  
alternate functions. It can be programmed:  
6.1 Full-Duplex, Enhanced UART  
The device serial I/O port is a full-duplex port that allows  
data to be transmitted and received simultaneously in  
hardware by the transmit and receive registers, respec-  
tively, while the software is performing other tasks. The  
transmit and receive registers are both located in the  
Serial Data Buffer (SBUF) special function register. Writ-  
ing to the SBUF register loads the transmit register, and  
reading from the SBUF register obtains the contents of  
the receive register.  
1. to input the external clock for Timer/Counter 2, or  
2. to output a 50% duty cycle clock ranging from 122  
Hz to 8 MHz at a 16 MHz operating frequency (61  
Hz to 4 MHz in 12 clock mode).  
To configure Timer/Counter 2 as a clock generator, bit  
C/#T2 (in T2CON) must be cleared and bit T20E in  
T2MOD must be set. Bit TR2 (T2CON.2) also must be set  
to start the timer.  
The UART has four modes of operation which are selected  
by the Serial Port Mode Specifier (SM0 and SM1) bits of  
the Serial Port Control (SCON) special function register. In  
all four modes, transmission is initiated by any instruction  
that uses the SBUF register as a destination register.  
Reception is initiated in mode 0 when the Receive Interrupt  
(RI) flag bit of the Serial Port Control (SCON) SFR is  
cleared and the Reception Enable/ Disable (REN) bit of the  
SCON register is set. Reception is initiated in the other  
modes by the incoming start bit if the REN bit of the SCON  
register is set.  
The Clock-Out frequency depends on the oscillator fre-  
quency and the reload value of Timer 2 capture registers  
(RCAP2H, RCAP2L) as shown in this equation:  
Oscillator Frequency  
n x (65536 - RCAP2H, RCAP2L)  
n = 2 (in 6 clock mode)  
4 (in 12 clock mode)  
Where (RCAP2H, RCAP2L) = the contents of RCAP2H  
and RCAP2L taken as a 16-bit unsigned integer.  
6.1.1 Framing Error Detection  
In the Clock-Out mode, Timer 2 roll-overs will not generate  
an interrupt. This is similar to when it is used as a baud-rate  
generator. It is possible to use Timer 2 as a baud-rate gen-  
erator and a clock generator simultaneously. Note, how-  
ever, that the baud-rate and the Clock-Out frequency will  
not be the same.  
Framing Error Detection is a feature, which allows the  
receiving controller to check for valid stop bits in modes 1,  
2, or 3. Missing stops bits can be caused by noise in serial  
lines or from simultaneous transmission by two CPUs.  
Framing Error Detection is selected by going to the PCON  
register and changing SMOD0 = 1 (see Figure 6-1). If a  
stop bit is missing, the Framing Error bit (FE) will be set.  
Software may examine the FE bit after each reception to  
check for data errors. After the FE bit has been set, it can  
only be cleared by software. Valid stop bits do not clear FE.  
When FE is enabled, RI rises on the stop bit, instead of the  
last data bit (see Figure 6-2 and Figure 6-3).  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
32  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
SCON  
SM2  
SM0/FE SM1  
REN  
TB8  
RB8  
TI  
RI  
(98H)  
Set FE bit if stop bit is 0 (framing error) (SMOD0 = 1)  
SM0 to UART mode control (SMOD0 = 0)  
PCON  
SMOD1 SMOD0 BOF  
POF  
GF1  
GF0  
PD  
IDL  
(87H)  
To UART framing error control  
1259 F12.0  
FIGURE  
6-1: Framing Error Block Diagram  
RXD  
RI  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Start  
bit  
Data byte  
Stop  
bit  
SMOD0=X  
FE  
SMOD0=1  
1259 F13.0  
FIGURE  
6-2: UART Timings in Mode 1  
RXD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Start  
bit  
Data byte  
Ninth  
bit  
Stop  
bit  
RI  
SMOD0=0  
RI  
SMOD0=1  
FE  
SMOD0=1  
1259 F14.0  
FIGURE  
6-3: UART Timings in Modes 2 and 3  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
33  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
6.1.2 Automatic Address Recognition  
Slave 2  
Automatic Address Recognition helps to reduce the MCU  
time and power required to talk to multiple serial devices.  
Each device is hooked together sharing the same serial  
link with its own address. In this configuration, a device is  
only interrupted when it receives its own address, thus  
eliminating the software overhead to compare addresses.  
SADDR  
SADEN  
GIVEN  
=
=
=
1111 0011  
1111 1001  
1111 0XX1  
6.1.2.1 Using the Given Address to Select Slaves  
Any bits masked off by a 0 from SADEN become a “don’t  
care” bit for the given address. Any bit masked off by a 1,  
becomes ANDED with SADDR. The “don’t cares” provide  
flexibility in the user-defined addresses to address more  
slaves when using the given address.  
This same feature helps to save power because it can be  
used in conjunction with idle mode to reduce the system’s  
overall power consumption. Since there may be multiple  
slaves hooked up serial to one master, only one slave  
would have to be interrupted from idle mode to respond to  
the master’s transmission. Automatic Address Recognition  
(AAR) allows the other slaves to remain in idle mode while  
only one is interrupted. By limiting the number of interrup-  
tions, the total current draw on the system is reduced.  
Shown in the example above, Slave 1 has been given an  
address of 1111 0001 (SADDR). The SADEN byte has  
been used to mask off bits to a given address to allow more  
combinations of selecting Slave 1 and Slave 2. In this case  
for the given addresses, the last bit (LSB) of Slave 1 is a  
“don’t care” and the last bit of Slave 2 is a 1. To communi-  
cate with Slave 1 and Slave 2, the master would need to  
send an address with the last bit equal to 1 (e.g. 1111  
0001) since Slave 1’s last bit is a don’t care and Slave 2’s  
last bit has to be a 1. To communicate with Slave 1 alone,  
the master would send an address with the last bit equal to  
0 (e.g. 1111 0000), since Slave 2’s last bit is a 1. See the  
table below for other possible combinations.  
There are two ways to communicate with slaves: a group of  
them at once, or all of them at once. To communicate with a  
group of slaves, the master sends out an address called  
the given address. To communicate with all the slaves, the  
master sends out an address called the “broadcast”  
address.  
AAR can be configured as mode 2 or 3 (9-bit modes) and  
setting the SM2 bit in SCON. Each slave has its own SM2  
bit set waiting for an address byte (9th bit = 1). The Receive  
Interrupt (RI) flag will only be set when the received byte  
matches either the given address or the broadcast  
address. Next, the slave then clears its SM2 bit to enable  
reception of the data bytes (9th bit = 0) from the master.  
When the 9th bit = 1, the master is sending an address.  
When the 9th bit = 0, the master is sending actual data.  
Select Slave 1 Only  
Slave 1  
Slave 2  
Given Address  
Possible Addresses  
1111 0X0X  
1111 0000  
1111 0100  
If mode 1 is used, the stop bit takes the place of the 9th bit.  
Bit RI is set only when the received command frame  
address matches the device’s address and is terminated  
by a valid stop bit. Note that mode 0 cannot be used. Set-  
ting SM2 bit in the SCON register in mode 0 will have no  
effect.  
Select Slave 2 Only  
Given Address  
Possible Addresses  
1111 0XX1  
1111 0111  
1111 0011  
Select Slaves 1 and 2  
Each slave’s individual address is specified by SFR  
SADDR. SFR SADEN is a mask byte that defines “don’t  
care” bits to form the given address when combined with  
SADDR. See the example below:  
Slaves 1 and 2  
Possible Addresses  
1111 0001  
1111 0101  
If the user added a third slave such as the example below:  
Slave 1  
SADDR  
SADEN  
GIVEN  
=
=
=
1111 0001  
1111 1010  
1111 0X0X  
Slave 3  
SADDR = 1111 1001  
SADEN = 1111 0101  
GIVEN  
= 1111 X0X1  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
34  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
6.1.2.2 Using the Broadcast Address to Select Slaves  
Using the broadcast address, the master can communicate  
with all the slaves at once. It is formed by performing a logi-  
cal OR of SADDR and SADEN with 0s in the result treated  
as “don’t cares”.  
Select Slave 3 Only  
Slave 2  
Given Address  
Possible Addresses  
1111 X0X1  
1111 1011  
1111 1001  
The user could use the possible addresses above to select  
slave 3 only. Another combination could be to select slave 2  
and 3 only as shown below.  
Slave 1  
1111 0001 = SADDR  
+1111 1010 = SADEN  
1111 1X11 = Broadcast  
Select Slaves 2 and 3 Only  
Slaves 2 and 3  
Possible Addresses  
“Don’t cares” allow for a wider range in defining the broad-  
cast address, but in most cases, the broadcast address will  
be FFH.  
1111 0011  
More than one slave may have the same SADDR address  
as well, and a given address could be used to modify the  
address so that it is unique.  
On reset, SADDR and SADEN are “0”. This produces an  
given address of all “don’t cares” as well as a broadcast  
address of all “don’t cares.This effectively disables Auto-  
matic Addressing mode and allows the microcontroller to  
function as a standard 8051, which does not make use of  
this feature.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
35  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
7.0 WATCHDOG TIMER  
The programmable Watchdog Timer (WDT) is for fail safe  
protection against software deadlock and for automatic  
recovery.  
7.3 Clock Source  
The WDT in the device uses the system clock (XTAL1) as  
its time base. So strictly speaking, it is a watchdog counter  
rather than a Watchdog timer. The WDT register will incre-  
ment every 344,064 crystal clocks. The upper 8-bits of the  
time base register (WDTD) are used as the reload register  
of the WDT.  
The Watchdog timer can be utilized as a watchdog or a  
timer. To use the Watchdog timer as a watchdog, WDRE  
(WDTC[3]) should be set to “1.” To use the Watchdog timer  
as a timer only, WDRE should be set to “0” so that an inter-  
rupt will be generated upon timer overflow, and the EWD  
(IEA[6]) should be set to “1” in order to enable the interrupt.  
Figure 7-1 provides a block diagram of the WDT. Two SFRs  
(WDTC and WDTD) control Watchdog timer operation.  
The time-out period of the WDT is calculated as follows:  
Period = (255 - WDTD) * 344064 * 1/fCLK (XTAL1)  
7.1 Watchdog Timer Mode  
To protect the system against software deadlock, WDT  
(WDTC[1]) should be refreshed within a user-defined time  
period. Without a periodic refresh, an internal hardware  
reset will be initiated when WDRE (WDTC[3]) = 1). The  
WDRE bit can only be cleared by a power-on reset.  
where WDTD is the value loaded into the WDTD register  
and fOSC is the oscillator frequency.  
7.4 Feed Sequence  
In Watchdog mode (WDRE=1), a feed sequence is needed  
to write into the WDTC register.  
Any Write to WDTC must be preceded by a correct feed  
sequence. If WDTON (WDTC[6])=0, SWDT (WDTC[0])  
controls the start or stop of the watchdog. If WDTON = 1,  
the watchdog starts regardless of SWDT and cannot be  
stopped.  
The correct feed sequence is:  
1. write FDH to SFIS1,  
The upper 8 bits of the time base register (WDTD) is used  
as the reload register of the counter. When WDT  
(WDTC[1]) is set to “1,the content of WDTD is loaded into  
the watchdog counter and the prescaler is also cleared.  
2. write 2AH to SFIS0, then  
3. write to the WDTC register  
An incorrect feed sequence will cause an immediate reset  
in Watchdog mode.  
If a watchdog reset occurs, the internal reset is active for at  
least one watchdog clock cycle. The code execution will  
begin immediately after the reset cycle.  
In Timer mode, the WDTC and WDTD can be written at  
any time. A feed sequence is not required.  
The WDTS flag bit is set by Watchdog timer overflow and  
can only be cleared by power-on reset. Users can also  
clear the WDTS bit by writing “1” to it following a correct  
feed sequence.  
7.5 Power Saving Considerations for  
Using the Watchdog Timer  
During Idle mode, the Watchdog timer will remain active.  
The device should be awakened and the Watchdog timer  
refreshed periodically before expiration. During Power-  
down mode, the Watchdog timer is stopped. When the  
Watchdog timer is used as a pure timer, users can turn off  
the clock to save power. See “Power Management Control  
Register (PMC)” on page 23.  
7.2 Pure Timer Mode  
In Timer mode, the WDTC and WDTD can be written at  
any time without a feed sequence. Setting or clearing the  
SWDT bit will start or stop the counter. A timer overflow will  
set the WDTS bit. Writing “1” to this bit clears the bit. When  
an overflow occurs, the content of WDTD is reloaded into  
the counter and the Watchdog timer immediately begins to  
count again. If the interrupt is enabled, an interrupt will  
occur when the timer overflows. The vector address is  
053H and it has a second level priority by default. A feed  
sequence is not required in this mode.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
36  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
344064  
clks  
WDT Reset  
CLK (XTAL1)  
Counter  
Internal Reset  
WDT Upper Byte  
Ext. RST  
WDTC  
WDTD  
1259 F18.0  
FIGURE  
7-1: Block Diagram of Programmable Watchdog Timer  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
37  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
8.0 SECURITY LOCK  
The security lock protects against software piracy and pre-  
vents the contents of the flash from being read by unautho-  
rized parties. It also protects against code corruption  
resulting from accidental erasing and programming to the  
internal flash memory. There are two different types of  
security locks in the device security lock system: Chip-  
Level Security Lock and Page-Level Security Lock.  
8.1.3 Disable Boot From External Memory  
When Disable-Extern-Boot command is executed either by  
External Host Mode Command or IAP Mode Command,  
the EA pin value will be ignored during chip Reset and  
always boot from the internal memory.  
8.1.4 Disable External IAP Commands  
When Disable-Extern-IAP command is executed either by  
External Host Mode Command or IAP Mode Command, all  
IAP commands executed from external memory are dis-  
abled except Chip-Erase command. All IAP commands  
executed from internal memory are allowed if the Page  
Lock is not set.  
8.1 Chip-Level Security Lock  
There are four types of chip-level security locks.  
1. Disable External MOVC instruction  
2. Disable External Host Mode (Except Read Chip  
ID and Chip-Erase commands)  
8.2 Page-Level Security Lock  
3. Disable Boot from External Memory  
When any of Secure-Page0, Secure-Page1, Secure-  
Page2, Secure-Page3, or Secure-Page4 command is exe-  
cuted, the individual page (Page0, Page1, Page2, Page3,  
or Page4) will enter secured mode. No part of the page can  
be verified by either External Host mode commands or IAP  
commands. MOVC instructions are also unable to read any  
data from the page.  
4. Disable External IAP commands (Except Chip-  
Erase commands)  
Users can turn on these security locks in any combination  
to achieve the security protection scheme. To unlock secu-  
rity locks, the Chip-Erase command must be used.  
8.1.1 Disable External MOVC instruction  
To unlock the security locks on Page0-3 of the primary par-  
tition (Partition0), the Partition0-Erase command must be  
used. To unlock the security lock on Page4, the Chip-Erase  
command must be used.  
When Disable-Extern-MOVC command is executed either  
by External Host Mode command or IAP Mode Command,  
MOVC instructions executed from external program mem-  
ory are disabled from fetching code bytes from internal  
memory.  
8.3 Read Operation Under Lock Condition  
8.1.2 Disable External Host Mode  
The following three cases can be used to indicate the Read  
operation is targeting a locked, secured memory area:  
When Disable-Extern-Host-Cmd command is executed  
either by External Host Mode Command or IAP Mode  
Command, all external host mode commands are disabled  
except Chip-Erase command and Read-ID command.  
1. External host mode: Read-back = 00H (locked)  
2. IAP command: Read-back = previous SFDT data  
3. MOVC: Read-back = FFH (blank)  
Upon activation of this option, the device can not be  
accessed through external host mode. User can not verify  
and copy the contents of the internal flash  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
38  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
9.0 RESET  
A system reset initializes the MCU and begins program  
execution at program memory location 0000H or the boot  
vector address. The reset input for the device is the RST  
pin. In order to reset the device, a logic level high must be  
applied to the RST pin for at least two machine cycles (24  
clocks), after the oscillator becomes stable. ALE and  
PSEN# are weakly pulled high during reset. During reset,  
ALE and PSEN# output a high level in order to perform a  
proper reset. This level must not be affected by external  
element. A system reset will not affect the 512 Bytes of on-  
chip RAM while the device is running, however, the con-  
tents of the on-chip RAM during power up are indetermi-  
nate. Following reset, all Special Function Registers (SFR)  
return to their reset values outlined in Tables 3-3 to 3-8.  
For a low frequency oscillator with slow start-up time the  
reset signal must be extended in order to account for the  
slow start-up time. This method maintains the necessary  
relationship between VDD and RST to avoid programming  
at an indeterminate location. The POF flag in the PCON  
register is set to indicate an initial power up condition. The  
POF flag will remain active until cleared by software.  
Please refer to Section 3.5, PCON register definition, for  
detailed information.  
For more information on system level design techniques,  
please review the Design Considerations for the SST  
FlashFlex51 Family Microcontroller application note.  
V
DD  
9.1 Power-on Reset  
At initial power up, the port pins will be in a random state  
until the oscillator has started and the internal reset algo-  
rithm has weakly pulled all pins high.  
+
-
10µF  
8.2K  
V
DD  
RST  
SST89E/V54RC  
SST89E/V52RC  
When power is applied to the device, the RST pin must be  
held high long enough for the oscillator to start up (usually  
several milliseconds for a low frequency crystal), in addition  
to two machine cycles for a valid power-on reset. An exam-  
ple of a method to extend the RST signal is to implement a  
RC circuit by connecting the RST pin to VDD through a 10  
µF capacitor and to VSS through an 8.2KΩ resistor as  
shown in Figure 9-1. Note that if an RC circuit is being  
used, provisions should be made to ensure the VDD rise  
time does not exceed 1 millisecond and the oscillator start-  
up time does not exceed 10 milliseconds.  
C
2
XTAL2  
XTAL1  
C
1
1259 F25.2  
FIGURE  
9-1: Power-on Reset Circuit  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
39  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
9.2 Boot Sequence  
After Power On Reset, the device can boot from one of  
three locations: zero, default boot vector (see Table 4-2), or  
a user-defined boot vector. The checking sequence follows  
the flowchart in Figure 9-2. If the device uses external code  
memory (EA#=0), the boot-start address is always zero.  
The next sequence is to detect any external hardware pin  
setup.  
cates whether or not the system booted with P1[0] and  
P1[1] set to low during reset. (See Section 3.5, “Special  
Function Registers” on page 11 for details.)  
Programming the control bits (Boot_From_User_Vector_i  
and Boot_From_Zero_i) can be done through IAP mode  
commands or External Host Mode commands. The factory  
default setting for these two bits is “1” and will lead the sys-  
tem to boot from the default boot vector per Table 4-2.  
The device should check P1[0] and P1[1] at the falling edge  
of reset. (See Figure 9-3 for the timing diagram.) If both  
pins are low, the device is forced to boot from either the  
default boot vector or the user-defined boot vector depend-  
ing on the setting of Boot_From_User_Vector_i. The  
Boot_Status_Flag bit (HWIAP) in the SFCF register indi-  
When the device is configured to boot from a user-defined  
vector, users should use the Set_User_Boot_Vector com-  
mand to program the Boot Vector[7:0]. The final boot vector  
address is calculated in Table 9-1.  
TABLE  
9-1: Boot Vector Address  
Bit Number  
Device  
15  
0
14  
0
13  
12  
11  
10  
Boot Vector[7:0]  
Boot Vector[7:0]  
9
8
7
6
5
4
0
0
3
0
0
2
0
0
1
0
0
0
SST89E/V54RC  
SST89E/V52RC  
0
0
0
0
0
0
T9-1.1 1259  
Power on  
Reset  
EA#  
P1.0  
P1.1  
Boot from External  
Yes  
300 Clk  
300 Clk  
No  
Both  
P1.0 and P1.1  
are low?  
Yes  
1259 F26.0  
FIGURE  
9-3: Hardware Pin Setup  
No  
9.3 Interrupt Priority and Polling  
Sequence  
Boot_From_Zero_i  
bit cleared?  
(=0)  
Yes  
The device supports seven interrupt sources under a four  
level priority scheme. Table 9-2 and Figure 9-4 summarize  
the polling sequence of the supported interrupts.  
No  
Boot_From_User_Vector_i  
Yes  
bit cleared?  
(=0)  
No  
Address 0  
Default  
Boot Vector  
1259 FC_Boot_Seq.0  
FIGURE  
9-2: Boot Sequence Flowchart  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
40  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
Highest  
Priority  
Interrupt  
IP/IPH/IPA/IPAH  
Registers  
IE & IEA  
Registers  
0
INT0#  
Watchdog Timer  
TF0  
IT0  
IE0  
1
Interrupt  
Polling  
Sequence  
0
1
INT1#  
TF1  
IT1  
IE1  
RI  
TI  
TF2  
EXF2  
Global  
Disable  
Individual  
Enables  
Lowest  
Priority  
1259 F27.0  
Interrup  
1259 F27.0  
FIGURE  
9-4: Interrupt Sequence  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
41  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE  
9-2: Interrupt Polling Sequence  
Interrupt  
Flag  
Vector  
Address  
Interrupt  
Enable  
Interrupt  
Priority  
Service  
Priority  
Wake-Up  
Power-down  
Description  
Ext. Int0  
Watchdog  
T0  
IE0  
-
0003H  
0053H  
000BH  
0013H  
001BH  
0023H  
002BH  
EX0  
EWD  
ET0  
EX1  
ET1  
ES  
PX0/H  
PWD/H  
PT0/H  
PX1/H  
PT1/H  
PS/H  
1(highest)  
yes  
no  
2
3
4
5
6
7
TF0  
no  
Ext. Int1  
T1  
IE1  
yes  
no  
TF1  
UART  
TI/RI  
TF2, EXF2  
no  
T2  
ET2  
PT2/H  
no  
T9-2.0 1259  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
42  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
10.0 POWER-SAVING MODES  
The device provides two power saving modes of operation  
for applications where power consumption is critical. The  
two modes are idle and power-down, see Table 10-1.  
10.2 Power-down Mode  
The power-down mode is entered by setting the PD bit in  
the PCON register. In the power-down mode, the clock is  
stopped and external interrupts are active for level sensitive  
interrupts only. SRAM contents are retained during power-  
down, the minimum VDD level is 2.0V.  
In addition to these two power saving modes, users can  
choose to set the device to run at one of four slower clock  
rates to reduce power consumption. See Section 11.3,  
“Clock Divider Option”.  
The device exits power-down mode through either an  
enabled external level sensitive interrupt or a hardware  
reset. The start of the interrupt clears the PD bit and exits  
power-down. Holding the external interrupt pin low restarts  
the oscillator, the signal must hold low at least 1024 clock  
cycles before bringing back high to complete the exit. Upon  
interrupt signal restored to logic VIH, the interrupt service  
routine program execution resumes beginning at the  
instruction immediately following the instruction which  
invoked power-down mode. A hardware reset starts the  
device similar to power-on reset.  
Another option is to turn off the clocks by individual func-  
tional blocks, please refer to Section 3.5, the PMC register  
definition, for detailed information.  
10.1 Idle Mode  
Idle mode is entered setting the IDL bit in the PCON regis-  
ter. In idle mode, the program counter (PC) is stopped. The  
system clock continues to run and all interrupts and periph-  
erals remain active. The on-chip RAM and the special func-  
tion registers hold their data during this mode.  
To exit properly out of power-down, the reset or external  
interrupt should not be executed before the VDD line is  
restored to its normal operating voltage. Be sure to hold  
The device exits idle mode through either a system inter-  
rupt or a hardware reset. Exiting idle mode via system  
interrupt, the start of the interrupt clears the IDL bit and  
exits idle mode. After exit the Interrupt Service Routine, the  
interrupted program resumes execution beginning at the  
instruction immediately following the instruction which  
invoked the idle mode. A hardware reset starts the device  
similar to a power-on reset.  
VDD voltage long enough at its normal operating level for  
the oscillator to restart and stabilize (normally less than  
10 ms).  
TABLE 10-1: Power Saving Modes  
Mode  
Initiated by  
State of MCU  
CLK is running.  
Exited by  
Idle  
Software  
Enabled interrupt or hardware reset.  
(Set IDL bit in PCON) •  
Interrupts, serial port and  
Start of interrupt clears IDL bit and exits idle  
mode, after the ISR RETI instruction, program  
resumes execution beginning at the instruction  
following the one that invoked idle mode. A user  
could consider placing two or three NOP  
instructions after the instruction that invokes idle  
mode to eliminate any problems. A hardware  
reset restarts the device similar to a power-on  
reset.  
timers/counters are active.  
Program Counter is stopped.  
MOV PCON, #01H;  
ALE and PSEN# signals at a  
HIGH level during Idle.  
All registers remain unchanged.  
CLK is stopped.  
On-chip SRAM and SFR  
data is maintained.  
ALE and PSEN# signals at a  
LOW level during power -down.  
Power-down Software  
Enabled external level sensitive interrupt or  
hardware reset. Start of interrupt clears PD  
bit and exits power-down mode, after the  
ISR RETI instruction program resumes exe-  
cution beginning at the instruction following  
the one that invoked power-down mode. A  
user could consider placing two or three  
NOP instructions after the instruction that  
invokes power-down mode to eliminate any  
problems. A hardware reset restarts the  
device similar to a power-on reset.  
(Set PD bit in PCON) •  
MOV PCON, #02H;  
External Interrupts are only active for  
level sensitive interrupts, if enabled.  
T10-1.0 1259  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
43  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
11.0 SYSTEM CLOCK AND CLOCK OPTIONS  
More specific information about on-chip oscillator design  
can be found in the FlashFlex51 Oscillator Circuit Design  
Considerations application note.  
11.1 Clock Input Options and Recom-  
mended Capacitor Values for Oscillator  
Shown in Figure 11-1 are the input and output of an inter-  
nal inverting amplifier (XTAL1, XTAL2), which can be con-  
figured for use as an on-chip oscillator.  
11.2 Clock Doubling Option  
By default, the device runs at 12 clocks per machine cycle  
(x1 mode). The device has a clock doubling option to  
speed up to 6 clocks per machine cycle. Please refer to  
Table 11-2 for detail.  
When driving the device from an external clock source,  
XTAL2 should be left disconnected and XTAL1 should be  
driven.  
At start-up, the external oscillator may encounter a higher  
capacitive load at XTAL1 due to interaction between the  
amplifier and its feedback capacitance. However, the  
capacitance will not exceed 15 pF once the external signal  
meets the VIL and VIH specifications.  
Clock double mode can be enabled either via the external  
host mode or the IAP mode. Please refer to Table 4-3 for  
the IAP mode enabling command (When set, the Enable-  
Clock-Double_i bit in the SFST register will indicate 6-clock  
mode.).  
Crystal manufacturer, supply voltage, and other factors  
may cause circuit performance to differ from one applica-  
tion to another. C1 and C2 should be adjusted appropri-  
ately for each design. Table 11-1, shows the typical values  
for C1 and C2 vs. crystal type for various frequencies  
The clock double mode is only for doubling the inter-  
nal system clock and the internal flash memory, i.e.  
EA#=1. To access the external memory and the peripheral  
devices, careful consideration must be taken. Also note  
that the crystal output (XTAL2) will not be doubled.  
TABLE 11-1:Recommended Values for C1 and C2  
by Crystal Type  
11.3 Clock Divider Option  
The device has an option to run at scaled-down clock rates  
of 1/4, 1/16, 1/256, and 1/1024. The COEN bit in the  
COSR register must be set to enable this option. The  
CO_SEL bits are set to select the clock rate. See the  
COSR register for more information.  
Crystal  
Quartz  
C1 = C2  
20-30pF  
40-50pF  
Ceramic  
T11-1.1 1259  
XTAL2  
XTAL1  
C
NC  
XTAL2  
XTAL1  
2
External  
Oscillator  
Signal  
C
1
V
SS  
V
SS  
1259 F28.0  
External Clock Drive  
Using the On-Chip Oscillator  
FIGURE 11-1: Oscillator Characteristics  
TABLE 11-2: Clock Doubling Features  
Device  
Standard Mode (x1)  
Clock Double Mode (x2)  
Clocks per  
Machine Cycle  
Max. External Clock Frequency  
(MHz)  
Clocks per  
Machine Cycle  
Max. External Clock Frequency  
(MHz)  
SST89E5xRC  
SST89V5xRC  
12  
12  
33  
25  
6
6
16  
12  
T11-2.0 1259  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
44  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
12.0 ELECTRICAL SPECIFICATION  
Absolute Maximum Stress Ratings (Applied conditions greater than those listed under “Absolute Maximum  
Stress Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation  
of the device at these conditions or conditions greater than those defined in the operational sections of this data  
sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)  
Ambient Temperature Under Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
Voltage on EA# Pin to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +14.0V  
D.C. Voltage on Any Pin to Ground Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to VDD+0.5V  
Transient Voltage (<20ns) on Any Other Pin to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1.0V to VDD+1.0V  
Maximum IOL per I/O Pins P1.5, P1.6, P1.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20mA  
Maximum IOL per I/O for All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15mA  
Package Power Dissipation Capability (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5W  
Through Hole Lead Soldering Temperature (10 Seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Surface Mount Solder Reflow Temperature1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C for 10 seconds  
Output Short Circuit Current2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
1. Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions.  
Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.  
2. Outputs shorted for no more than one second. No more than one output shorted at a time.  
(Based on package heat transfer limitations, not device power consumption.  
Note: This specification contains preliminary information on new products in production.  
The specifications are subject to change without notice.  
TABLE 12-1: Operating Range  
Symbol  
Description  
Min.  
Max  
Unit  
TA  
Ambient Temperature Under Bias  
Standard  
0
+70  
+85  
°C  
°C  
Industrial  
-40  
VDD  
Supply Voltage  
SST89E5xRC  
4.5  
2.7  
5.5  
3.6  
V
V
SST89V5xRC  
fOSC  
Oscillator Frequency  
SST89E5xRC  
0
0
33  
25  
MHz  
MHz  
SST89V5xRC  
Oscillator Frequency for In-Application programming  
SST89E5xRC  
.25  
.25  
33  
25  
MHz  
MHz  
SST89V5xRC  
T12-1.1 1259  
TABLE 12-2: Reliability Characteristics  
Symbol  
Parameter  
Endurance  
Data Retention  
Latch Up  
Minimum Specification  
Units  
Test Method  
1
NEND  
10,000  
100  
Cycles JEDEC Standard A117  
1
TDR  
Years  
mA  
JEDEC Standard A103  
JEDEC Standard 78  
1
ILTH  
100 + IDD  
T12-2.0 1259  
1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
45  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE 12-3: AC Conditions of Test  
Input Rise/Fall Time . . . . . . . . . . . . . . . 10 ns  
Output Load . . . . . . . . . . . . . . . . . . . . . CL = 100 pF  
See Figures 12-6 and 12-8  
T12-3.0 1259  
TABLE 12-4: Recommended System Power-up Timings  
Symbol  
Parameter  
Minimum  
100  
Units  
µs  
1
TPU-READ  
Power-up to Read Operation  
Power-up to Write Operation  
1
TPU-WRITE  
100  
µs  
T12-4.2 1259  
1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter  
TABLE 12-5: Pin Impedance (VDD=3.3V, TA=25 °C, f=1 Mhz, other pins open)  
Parameter  
Description  
Test Condition  
VI/O = 0V  
Maximum  
1
CI/O  
I/O Pin Capacitance  
Input Capacitance  
Pin Inductance  
15 pF  
12 pF  
20 nH  
1
CIN  
VIN = 0V  
2
LPIN  
T12-5.4 1259  
1. This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.  
2. Refer to PCI spec.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
46  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
12.1 DC Electrical Characteristics  
TABLE 12-6: DC Characteristics for SST89E5xRC: TA = -40°C to +85°C; VDD = 4.5-5.5V; VSS = 0V  
Symbol Parameter  
Test Conditions  
4.5 < VDD < 5.5  
4.5 < VDD < 5.5  
4.5 < VDD < 5.5  
VDD = 4.5V  
Min  
-0.5  
Max  
Units  
VIL  
Input Low Voltage  
0.2VDD - 0.1  
VDD + 0.5  
VDD + 0.5  
V
V
V
VIH  
VIH1  
VOL  
Input High Voltage  
0.2VDD + 0.9  
0.7VDD  
Input High Voltage (XTAL1, RST)  
Output Low Voltage (Ports 1.5, 1.6, 1.7)  
I
OL = 16mA  
1.0  
V
VOL  
Output Low Voltage (Ports 1, 2, 3)1  
VDD = 4.5V  
OL = 100µA2  
OL = 1.6mA2  
OL = 3.5mA2  
VDD = 4.5V  
I
I
I
0.3  
0.45  
1.0  
V
V
V
VOL1  
Output Low Voltage (Port 0, ALE, PSEN#)1,3  
IOL = 200µA2  
0.3  
V
V
I
OL = 3.2mA2  
0.45  
VOH  
Output High Voltage (Ports 1, 2, 3, ALE, PSEN#)4  
VDD = 4.5V  
IOH = -10µA  
VDD - 0.3  
VDD - 0.7  
VDD - 1.5  
V
V
V
IOH = -30µA  
OH = -60µA  
I
VOH1  
Output High Voltage (Port 0 in External Bus Mode)4  
VDD = 4.5V  
I
OH = -200µA  
VDD - 0.3  
VDD - 0.7  
V
V
IOH = -3.2mA  
VIN = 0.4V  
IIL  
Logical 0 Input Current (Ports 1, 2, 3)  
Logical 1-to-0 Transition Current (Ports 1, 2, 3)5  
Input Leakage Current (Port 0)  
RST Pull-down Resistor  
-75  
-650  
10  
µA  
µA  
µA  
KΩ  
pF  
ITL  
VIN = 2V  
ILI  
0.45 < VIN < VDD-0.3  
RRST  
CIO  
IDD  
40  
225  
15  
Pin Capacitance6  
@ 1 MHz, 25°C  
Power Supply Current  
Active Mode @ 33 MHz  
32  
26  
50  
mA  
mA  
µA  
Idle Mode@ 33 MHz  
Power-down Mode (min VDD = 2V)  
TA = 0°C to 70°C  
TA = -40°C to +85°C  
T12-6.1 1259  
1. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin:  
Maximum IOL per 8-bit port:  
15mA  
26mA  
Maximum IOL total for all outputs:71mA  
If IOL exceeds the test condition, VOL may exceed the related specification.  
Pins are not guaranteed to sink current greater than the listed test conditions.  
2. Capacitive loading on Ports 0 and 2 may cause spurious noise to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise  
due to external bus capacitance discharging into the Port 0 and 2 pins when the pins make 1-to-0 transitions during bus operations.  
In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable  
to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.  
3. Load capacitance for Port 0, ALE and PSEN#= 100pF, load capacitance for all other outputs = 80 pF.  
4. Capacitive loading on Ports 0 and 2 may cause the VOH on ALE and PSEN# to momentarily fall below the VDD - 0.7 specification  
when the address bits are stabilizing.  
5. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches  
its maximum value when VIN is approximately 2V.  
6. Pin capacitance is characterized but not tested. EA# is 25pF (max).  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
47  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE 12-7: DC Characteristics for SST89V5xRC: TA = -40°C to +85°C; VDD = 2.7-3.6V; VSS = 0V  
Symbol Parameter  
Test Conditions  
2.7 < VDD < 3.6  
2.7 < VDD < 3.6  
2.7 < VDD < 3.6  
VDD = 2.7V  
Min  
Max  
Units  
VIL  
Input Low Voltage  
-0.5  
0.7  
V
V
V
VIH  
VIH1  
VOL  
Input High Voltage  
0.2VDD + 0.9 VDD + 0.5  
Input High Voltage (XTAL1, RST)  
Output Low Voltage (Ports 1.5, 1.6, 1.7)  
0.7VDD  
VDD + 0.5  
1.0  
I
OL = 16mA  
V
VOL  
Output Low Voltage (Ports 1, 2, 3)1  
VDD = 2.7V  
OL = 100µA2  
OL = 1.6mA2  
OL = 3.5mA2  
VDD = 2.7V  
OL = 200µA2  
OL = 3.2mA2  
VDD = 2.7V  
I
I
I
0.3  
0.45  
1.0  
V
V
V
VOL1  
Output Low Voltage (Port 0, ALE, PSEN#)1,3  
I
I
0.3  
V
V
0.45  
VOH  
Output High Voltage (Ports 1, 2, 3, ALE, PSEN#)4  
IOH = -10µA  
VDD - 0.3  
VDD - 0.7  
VDD - 1.5  
V
V
V
IOH = -30µA  
OH = -60µA  
I
VOH1  
Output High Voltage (Port 0 in External Bus Mode)4  
VDD = 2.7V  
I
OH = -200µA  
VDD - 0.3  
VDD - 0.7  
V
V
IOH = -3.2mA  
VIN = 0.4V  
IIL  
Logical 0 Input Current (Ports 1, 2, 3)  
Logical 1-to-0 Transition Current (Ports 1, 2, 3)5  
Input Leakage Current (Port 0)  
RST Pull-down Resistor  
-75  
-650  
10  
µA  
µA  
µA  
KΩ  
pF  
ITL  
VIN = 2V  
ILI  
0.45 < VIN < VDD-0.3  
RRST  
CIO  
IDD  
225  
15  
Pin Capacitance6  
@ 1 MHz, 25°C  
Power Supply Current  
Active Mode @ 25 MHz  
27  
21  
40  
mA  
mA  
µA  
Idle Mode @ 25 MHz  
Power-down Mode (min VDD = 2V)  
TA = 0°C to 70°C  
TA = -40°C to +85°C  
T12-7.7 1259  
1. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin:  
Maximum IOL per 8-bit port:  
15mA  
26mA  
Maximum IOL total for all outputs: 71mA  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the  
listed test conditions.  
2. Capacitive loading on Ports 0 and 2 may cause spurious noise to be superimposed on the VOLs of ALE and Ports 1 and 3. The noise  
due to external bus capacitance discharging into the Port 0 and 2 pins when the pins make 1-to-0 transitions during bus operations.  
In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable  
to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.  
3. Load capacitance for Port 0, ALE and PSEN#= 100pF, load capacitance for all other outputs = 80pF.  
4. Capacitive loading on Ports 0 and 2 may cause the VOH on ALE and PSEN# to momentarily fall below the VDD - 0.7 specification  
when the address bits are stabilizing.  
5. Pins of Ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches  
its maximum value when VIN is approximately 2V.  
6. Pin capacitance is characterized but not tested. EA# is 25pF (max).  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
48  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
12.2 AC Electrical Characteristics  
AC Characteristics: (Over Operating Conditions: Load Capacitance for Port 0, ALE#, and PSEN# = 100pF;  
Load Capacitance for All Other Outputs = 80pF)  
TABLE 12-8: AC Electrical Characteristics (1 of 2)  
TA = -40°C to +85°C, VDD = 2.7-3.6V@25MHz, 4.5-5.5V@33MHz, VSS = 0V  
Oscillator  
25 MHz (x1 Mode)  
33 MHz (x1 Mode)  
12 MHz (x2 Mode)1 16 MHz (x2 Mode)1  
Variable  
Symbol  
Parameter  
Min  
0
Max  
25  
Min  
0
Max  
33  
Min  
Max  
Units  
MHz  
MHz  
ns  
0
1/TCLCL  
x1 Mode Oscillator Frequency  
0
12  
0
16  
0
1/2TCLCL x2 Mode Oscillator Frequency  
65  
15  
46  
2TCLCL - 15  
TLHLL  
TAVLL  
ALE Pulse Width  
TCLCL - 25 (3V)  
TCLCL - 15 (5V)  
TCLCL - 25 (3V)  
TCLCL - 15 (5V)  
ns  
Address Valid to ALE Low  
15  
15  
ns  
15  
ns  
TLLAX  
TLLIV  
TLLPL  
Address Hold After ALE Low  
ALE Low to Valid Instr In  
ALE Low to PSEN# Low  
ns  
95  
4TCLCL - 65 (3V)  
4TCLCL - 45 (5V)  
ns  
66  
ns  
15  
95  
TCLCL - 25 (3V)  
TCLCL - 15 (5V)  
ns  
15  
76  
ns  
3TCLCL - 25 (3V)  
3TCLCL - 15 (5V)  
ns  
TPLPH  
TPLIV  
PSEN# Pulse Width  
65  
35  
3TCLCL - 55 (3V)  
3TCLCL - 50 (5V)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PSEN# Low to Valid Instr In  
41  
15  
0
TPXIX  
TPXIZ  
Input Instr Hold After PSEN#  
Input Instr Float After PSEN#  
TCLCL - 5 (3V)  
TCLCL - 15 (5V)  
32  
22  
TCLCL - 8  
TPXAV  
TAVIV  
PSEN# to Address valid  
Address to Valid Instr In  
120  
10  
5TCLCL - 80 (3V)  
5TCLCL - 60 (5V)  
10  
92  
10  
TPLAZ  
TRLRH  
PSEN# Low to Address Float  
RD# Pulse Width  
200  
200  
6TCLCL - 40 (3V)  
6TCLCL - 30 (5V)  
152  
152  
6TCLCL - 40 (3V)  
6TCLCL - 30 (5V)  
ns  
TWLWH  
TRLDV  
Write Pulse Width (WE#)  
RD# Low to Valid Data In  
110  
5TCLCL - 90 (3V)  
5TCLCL - 50 (5V)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
102  
0
0
0
TRHDX  
TRHDZ  
Data Hold After RD#  
Data Float After RD#  
65  
2TCLCL - 25 (3V)  
2TCLCL - 12 (5V)  
8TCLCL - 90 (3V)  
8TCLCL - 50 (5V)  
9TCLCL - 90 (3V)  
9TCLCL - 75 (5V)  
49  
230  
270  
145  
TLLDV  
TAVDV  
TLLWL  
TAVWL  
ALE Low to Valid Data In  
Address to Valid Data In  
192  
198  
106  
95  
85  
3TCLCL - 25 (3V) 3TCLCL + 25 (3V)  
3TCLCL - 15 (5V) 3TCLCL + 15 (5V)  
ALE Low to RD# or WR# Low  
Address to RD# or WR# Low  
76  
91  
4TCLCL - 75 (3V)  
4TCLCL - 30 (5V)  
ns  
ns  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
49  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE 12-8: AC Electrical Characteristics (Continued) (2 of 2)  
TA = -40°C to +85°C, VDD = 2.7-3.6V@25MHz, 4.5-5.5V@33MHz, VSS = 0V  
Oscillator  
25 MHz (x1 Mode)  
33 MHz (x1 Mode)  
12 MHz (x2 Mode)1 16 MHz (x2 Mode)1  
Variable  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
20  
10  
TCLCL - 20  
ns  
TQVWX  
Data Valid to WR# High to Low  
Transition  
13  
TCLCL - 27 (3V)  
TCLCL - 20 (5V)  
7TCLCL - 70 (3V)  
7TCLCL - 50 (5V)  
ns  
ns  
ns  
ns  
ns  
ns  
TWHQX  
TQVWH  
Data Hold After WR#  
10  
210  
Data Valid to WR# High  
162  
0
0
0
TRLAZ  
RD# Low to Address Float  
15  
65  
TCLCL - 25 (3V)  
TCLCL - 15 (5V)  
TCLCL + 25 (3V)  
TCLCL + 15 (5V)  
TWHLH  
RD# to WR# High to ALE High  
15  
45  
ns  
T12-8.0 1259  
1. Calculated values are for x1 Mode only  
Explanation of Symbols Each timing symbol has 5 characters. The first character is always a ‘T’ (stands for  
time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that  
signal. The following is a list of all the characters and what they stand for.  
A: Address  
Q: Output data  
C: Clock  
R: RD# signal  
D: Input data  
T: Time  
H: Logic level HIGH  
I: Instruction (program memory contents)  
L: Logic level LOW or ALE  
P: PSEN#  
V: Valid  
W: WR# signal  
X: No longer a valid logic level  
Z: High Impedance (Float)  
For example:  
AVLL = Time from Address Valid to ALE Low  
LLPL = Time from ALE Low to PSEN# Low  
T
T
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
50  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
T
LHLL  
ALE  
T
PLPH  
T
T
LLIV  
AVLL  
T
LLPL  
T
PLIV  
PSEN#  
T
PXAV  
T
PLAZ  
T
PXIZ  
PXIX  
INSTR IN  
T
LLAX  
T
A0 - A7  
PORT 0  
PORT 2  
A0 - A7  
T
AVIV  
A8 - A15  
A8 - A15  
1259 F31.0  
FIGURE 12-1: External Program Memory Read Cycle  
T
LHLL  
ALE  
T
WHLH  
PSEN#  
T
LLDV  
T
RLRH  
T
T
LLWL  
RD#  
T
LLAX  
T
RHDZ  
RLDV  
T
AVLL  
T
RLAZ  
T
RHDX  
A0-A7 FROM PCL  
A0-A7 FROM RI or DPL  
DATA IN  
INSTR IN  
PORT 0  
PORT 2  
T
AVWL  
T
AVDV  
P2[7:0] or A8-A15 FROM DPH  
A8-A15 FROM PCH  
1259 F32.0  
FIGURE 12-2: External Data Memory Read Cycle  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
51  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
T
LHLL  
ALE  
T
WHLH  
PSEN#  
T
T
WLWH  
LLWL  
WR#  
T
LLAX  
T
T
WHQX  
QVWX  
T
AVLL  
T
QVWH  
A0-A7 FROM RI or DPL  
PORT 0  
PORT 2  
DATA OUT  
A0-A7 FROM PCL  
INSTR IN  
T
AVWL  
P2[7:0] or A8-A15 FROM DPH  
A8-A15 FROM PCH  
1259 F33.0  
FIGURE 12-3: External Data Memory Write Cycle  
TABLE 12-9: External Clock Drive  
Oscillator  
12MHz  
33MHz  
Variable  
Symbol  
1/TCLCL  
TCLCL  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
MHz  
ns  
Oscillator Frequency  
0
40  
83  
30.3  
10.6  
10.6  
TCHCX  
TCLCX  
High Time  
Low Time  
Rise Time  
Fall Time  
0.35TCLCL  
0.35TCLCL  
0.65TCLCL  
0.65TCLCL  
ns  
ns  
TCLCH  
TCHCL  
20  
20  
10  
10  
ns  
ns  
T12-9.2 1259  
V
DD - 0.5  
0.7V  
DD  
T
CHCX  
0.2 V  
DD  
- 0.1  
0.45 V  
T
T
CLCX  
CLCH  
T
CLCL  
T
CHCL  
1259 F34.0  
FIGURE 12-4: External Clock Drive Waveform  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
52  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TABLE 12-10: Serial Port Timing  
Oscillator  
Min  
12MHz  
33MHz  
Variable  
Symbol Parameter  
Min Max Min Max  
Max  
Units  
µs  
TXLXL  
TQVXH  
TXHQX  
Serial Port Clock Cycle Time  
1.0  
700  
50  
0.364  
170  
12TCLCL  
Output Data Setup to Clock Rising Edge  
Output Data Hold After Clock Rising Edge  
10TCLCL - 133  
2TCLCL - 117  
2TCLCL - 50  
0
ns  
ns  
11  
0
ns  
TXHDX  
TXHDV  
Input Data Hold After Clock Rising Edge  
Clock Rising Edge to Input Data Valid  
0
ns  
700  
170  
10TCLCL - 133  
ns  
T12-10.2 1259  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
T
XLXL  
CLOCK  
T
XHQX  
T
QVXH  
0
1
2
3
4
5
6
7
OUTPUT DATA  
T
XHDX  
T
SET TI  
WRITE TO SBUF  
INPUT DATA  
XHDV  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET R I  
CLEAR RI  
1259 F35.0  
FIGURE 12-5: Shift Register Mode Timing Waveforms  
V
IHT  
V
V
+0.1V  
-0.1V  
HT  
LOAD  
V
V
-0.1V  
OH  
Timing Reference  
Points  
V
LOAD  
V
LT  
V
ILT  
+0.1V  
V
OL  
LOAD  
1259 F36.0  
1259 F37.0  
AC Inputs during testing are driven at V  
(V  
-0.5V) for Logic "1" and  
IHT DD  
For timing purposes, a port pin is no longer floating when a 100 mV  
change from load voltage occurs, and begins to float when a 100 mV  
V
(0.45V) for a Logic "0". Measurement reference points for inputs and  
ILT  
outputs are at V  
(0.2V  
+ 0.9) and V (0.2V - 0.1)  
HT  
DD  
LT DD  
change from the loaded V /V  
level occurs. I /I  
=
20mA.  
OH OL  
OL OH  
Note: V - V  
Test  
Test  
HT HIGH  
V
V
V
- V  
-V  
LT  
LOW  
HIGH Test  
LOW Test  
IHT INPUT  
ILT INPUT  
- V  
FIGURE 12-6: AC Testing Input/Output Test  
Waveform  
FIGURE 12-7: Float Waveform  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
53  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
TO TESTER  
TO DUT  
C
L
1259 F38.0  
FIGURE 12-8: A Test Load Example  
V
DD  
I
V
= 2V  
DD  
V
DD  
I
DD  
V
V
DD  
DD  
P0  
DD  
V
V
DD  
P0  
DD  
V
DD  
RST  
EA#  
RST  
EA#  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
V
SS  
V
SS  
1259 F41.0  
1259 F39.0  
All other pins disconnected  
All other pins disconnected  
FIGURE 12-9: IDD Test Condition,  
Active Mode  
FIGURE 12-11: IDD Test Condition,  
Power-down Mode  
TABLE 12-11: Flash Memory Programming/  
Verification Parameters1  
V
DD  
I
Parameter2  
Max  
350  
300  
30  
Units  
ms  
DD  
V
V
DD  
P0  
DD  
Chip-Erase Time  
Block-Erase Time  
ms  
Sector-Erase Time  
Byte-Program Time3  
Re-map or Security bit Program Time  
ms  
RST  
EA#  
100  
100  
µs  
µs  
T12-11.0 1259  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
1. For IAP operations, the program execution overhead  
must be added to the above timing parameters.  
2. Program and Erase times will scale inversely proportional  
to programming clock frequency.  
V
SS  
1259 F40.0  
3. Each byte must be erased before programming.  
All other pins disconnected  
FIGURE 12-10: IDD Test Condition,  
Idle Mode  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
54  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
13.0 PRODUCT ORDERING INFORMATION  
Device  
Speed  
Suffix1  
Suffix2  
SST89x5xRC  
-
XX  
-
X
-
XX XX  
Environmental Attribute  
E1 = non-Pb  
Package Modifier  
I = 40 pins  
J = 44 leads  
Package Type  
N = PLCC  
P= PDIP  
TQ = TQFP  
Operation Temperature  
C = Commercial = 0°C to +70°C  
I = Industrial = -40°C to +85°C  
Operating Frequency  
33 = 0-33MHz  
25 = 0-25MHz  
Feature Set  
RC = Single Block, Dual Partitions  
Flash Memory Size  
4 = C54 feature set + 16 KByte  
2 = C52 feature set + 8 KByte  
Voltage Range  
E = 4.5-5.5V  
V = 2.7-3.6V  
Product Series  
89 = C51 Core  
1. Environmental suffix “E” denotes non-Pb solder.  
SST non-Pb solder devices are “RoHS Compliant”.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
55  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
13.1 Valid Combinations  
Valid combinations for SST89E52RC  
SST89E52RC-33-C-NJE  
SST89E52RC-33-I-NJE  
SST89E52RC-33-C-TQJE  
SST89E52RC-33-I-TQJE  
SST89E52RC-33-C-PIE  
Valid combinations for SST89V52RC  
SST89V52RC-25-C-NJE  
SST89V52RC-25-I-NJE  
SST89V52RC-25-C-TQJE  
SST89V52RC-25-I-TQJE  
SST89V52RC-25-C-PIE  
SST89E54RC-33-C-PIE  
SST89V54RC-25-C-PIE  
Valid combinations for SST89E54RC  
SST89E54RC-33-C-NJE  
SST89E54RC-33-I-NJE  
SST89E54RC-33-C-TQJE  
SST89E54RC-33-I-TQJE  
Valid combinations for SST89V54RC  
SST89V54RC-25-C-NJE  
SST89V54RC-25-I-NJE  
SST89V54RC-25-C-TQJE  
SST89V54RC-25-I-TQJE  
Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales  
representative to confirm availability of valid combinations and to determine availability of new combinations.  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
56  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
14.0 PACKAGING DIAGRAMS  
40  
C
L
.600  
.625  
1
Pin #1 Identifier  
.530  
.557  
2.020  
2.070  
.065  
.075  
12˚  
4 places  
.220 Max.  
Base Plane  
Seating Plane  
.015 Min.  
0˚  
15˚  
.008  
.012  
.100 †  
.200  
.063  
.090  
.045  
.055  
.015  
.022  
.100 BSC  
.600 BSC  
Note:  
1. Complies with JEDEC publication 95 MS-011 AC dimensions (except as noted), although some dimensions may be more stringent.  
† = JEDEC min is .115; SST min is less stringent  
2. All linear dimensions are in inches (min/max).  
40-pdip-PI-7  
3. Dimensions do not include mold flash. Maximum allowable mold flash is .010 inches.  
FIGURE 14-1: 40-pin Plastic Dual In-line Pins (PDIP)  
SST Package Code: PI  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
.685  
.695  
.646  
.656  
Optional  
Pin #1 Identifier  
.147  
.158  
.020 R.  
MAX.  
.042  
.048  
.025  
.045  
.042  
.056  
R.  
x45˚  
1
44  
.042  
.048  
.013  
.021  
.685  
.695  
.646  
.656  
.500 .590  
REF. .630  
.026  
.032  
.050  
BSC.  
.020 Min.  
.100  
.112  
.050  
BSC.  
.026  
.032  
.165  
.180  
44-plcc-NJ-7  
Note:  
1. Complies with JEDEC publication 95 MS-018 AC dimensions (except as noted), although some dimensions may be more stringent.  
† = JEDEC min is .650; SST min is less stringent  
2. All linear dimensions are in inches (min/max).  
3. Dimensions do not include mold flash. Maximum allowable mold flash is .008 inches.  
4. Coplanarity: 4 mils.  
FIGURE 14-2: 44-lead Plastic Lead Chip Carrier (PLCC)  
SST Package Code: NJ  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
57  
FlashFlex51 MCU  
SST89E52RC / SST89E54RC  
SST89V52RC / SST89V54RC  
Preliminary Specifications  
44  
34  
Pin #1 Identifier  
1
33  
.30  
.45  
10.00 0.10  
.80 BSC  
12.00 0.25  
11  
23  
.09  
.20  
12  
22  
10.00 0.10  
12.00 0.25  
.95  
1.05  
1.2  
max.  
0˚- 7˚  
.45  
.75  
.05  
.15  
1.00 ref  
Note:  
1. Complies with JEDEC publication 95 MS-026 ACB dimensions, although some dimensions may be more stringent.  
2. All linear dimensions are in millimeters (min/max).  
44-tqfp-TQJ-7  
3. Coplanarity: 0.1 ( 0.05) mm.  
4. Package body dimensions do not include mold flash. Maximum allowable mold flash is .25mm.  
1mm  
FIGURE 14-3: 44-lead Thin Quad Flat Pack (TQFP)  
SST Package Code: TQJ  
TABLE 14-1: Revision History  
Number  
00  
Description  
Date  
Feb 2005  
Feb 2006  
Initial Release of Fact Sheet  
01  
Added 40-PDIP devices and associated MPNs  
Revised Function Block and Pin Assignment diagrams  
Revised Valid Combinations product numbers  
Removed 4KByte product from the fact sheet (SST89x51RC)  
Initial Release of Data Sheet  
Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036  
www.SuperFlash.com or www.sst.com  
©2006 Silicon Storage Technology, Inc.  
S71259-01-000  
2/06  
58  

相关型号:

SST89V54RC-33-C-NJE

8-BIT, FLASH, 33 MHz, MICROCONTROLLER, PQCC44, ROHS COMPLIANT, PLASTIC, MS-018AC, LCC-44
SILICON

SST89V54RC-33-I-NJE

8-BIT, FLASH, 33 MHz, MICROCONTROLLER, PQCC44, ROHS COMPLIANT, PLASTIC, MS-018AC, LCC-44
SILICON

SST89V54RD

FlashFlex MCU
SST

SST89V54RD-33-C-PI

FlashFlex51 MCU
SST

SST89V54RD-33-C-PIE

FlashFlex MCU
SST

SST89V54RD-33-C-QIF

FlashFlex MCU
SST

SST89V54RD-33-I-PI

FlashFlex51 MCU
SST

SST89V54RD-33-I-PIE

FlashFlex51 MCU
SST

SST89V54RD-33-I-QIF

FlashFlex MCU
SST

SST89V54RD2

FlashFlex51 MCU
SST

SST89V54RD2-33-C-NI

FlashFlex51 MCU
SST

SST89V54RD2-33-C-NIE1

FlashFlex51 MCU
SST