Si4705-D60-GU2 [SILICON]

BROADCAST FM RADIO RECEIVER WITH RDS/RBDS;
Si4705-D60-GU2
型号: Si4705-D60-GU2
厂家: SILICON    SILICON
描述:

BROADCAST FM RADIO RECEIVER WITH RDS/RBDS

文件: 总39页 (文件大小:1700K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4704/05-D60  
BROADCAST FM RADIO RECEIVER WITH RDS/RBDS  
Features  
Worldwide FM band support  
(64–108 MHz)  
Excellent real-world performance  
Integrated VCO  
Advanced FM seek tuning  
Automatic frequency control (AFC)  
Automatic gain control (AGC)  
Digital FM stereo decoder  
Programmable de-emphasis  
Advanced Audio Processing  
FM digital tuning  
EN55020 compliant  
No manual alignment necessary  
Programmable reference clock  
Adjustable soft mute control  
RDS/RBDS processor (Si4705-D60)  
Digital audio out  
2-wire and 3-wire control interface  
Integrated LDO regulator  
QFN and SSOP packages  
RoHS compliant  
Ordering Information:  
See page 29.  
Applications  
Pin Assignments  
Table and portable radios  
Mini/micro systems  
CD/DVD and Blu-ray players  
Stereo boom boxes  
Modules for consumer electronics  
Clock radios  
Mini HiFi and docking stations  
Entertainment systems  
Si4704/05-D60 (QFN)  
Description  
20 19 18 17  
NC  
FMI  
1
16  
2
15 DOUT  
14 LOUT/[DFS]  
13 ROUT/[DOUT]  
12 GND  
The Si4704/05-D60 digital CMOS FM radio receiver IC integrates the complete  
tuner function from antenna input to digital audio output, enabling a cost efficient  
digital audio platform for consumer electronic applications with high TDMA noise  
immunity, superior radio performance, and high fidelity audio power amplification.  
RFGND  
LPI  
3
4
5
GND  
PAD  
RST  
6
11 VA  
7
8
9
10  
Si4704/05-D60 (SSOP)  
Functional Block Diagram  
DOUT  
DFS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
LOUT/[DFS]  
FM Antenna  
Si4704/05-D60  
ROUT/[DOUT]  
GPO3/[DCLK]  
GPO2/[INT]  
GPO1  
NC  
3
DBYP  
VA  
DOUT  
RDS  
(Si4705)  
FMI  
DIGITAL  
AUDIO  
4
DFS  
LNA  
AGC  
RFGND  
5
VD  
GPO/DCLK  
LOW-IF  
DSP  
RCLK  
SDIO  
SCLK  
SEN  
RST  
GND  
GND  
6
NC  
7
0/90  
Mux  
ADC  
ADC  
DAC  
DAC  
ROUT  
LOUT  
FMI  
8
32.768 kHz  
RFGND  
NC  
9
Mux  
RCLK  
AFC  
LDO  
10  
11  
12  
2.7~5.5 V (QFN) / 2.0~5.5 V (SSOP)  
LPI  
VA  
CONTROL  
INTERFACE  
VD  
1.62 - 3.6 V  
NC  
+
GND  
This product, its features, and/or its  
architecture is covered by one or more of  
the following patents, as well as other  
patents, pending and issued, both  
foreign and domestic: 7,127,217;  
7,272,373;  
7,355,476;  
7,272,375;  
7,426,376;  
7,321,324;  
7,471,940;  
7,339,503; 7,339,504.  
Rev. 1.2 8/13  
Copyright © 2013 by Silicon Laboratories  
Si4704/05-D60  
Si4704/05-D60  
2
Rev. 1.2  
Si4704/05-D60  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.1. QFN Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.2. SSOP Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3. QFN/SSOP Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.4. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.5. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.6. Received Signal Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.7. Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.8. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.9. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.10. FM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.11. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.12. RDS/RBDS Processor (Si4705-D60 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.13. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.14. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.15. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.16. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.17. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.18. Firmware Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.19. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.20. 2 V Operation (SSOP Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.21. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.1. Si4704/05-D60-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.2. Si4704/05-D60-GU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
7.1. Si4704/05-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
7.2. Si4704/05-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8.1. Si4704/05-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8.2. Si4704/05-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
9. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
9.1. Si4704/05-D60 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
9.2. Top Marking Explanation (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
9.3. Si4704/05-D60 Top Marking (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.2  
3
Si4704/05-D60  
9.4. Top Marking Explanation (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
10. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Document Change List: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4
Rev. 1.2  
Si4704/05-D60  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Parameter  
Analog Supply Voltage  
Symbol Test Condition  
Min  
Typ  
Max  
5.5  
3.6  
Unit  
V
2
V
2.7  
A
Digital and I/O Supply Voltage  
V
1.62  
10  
V
D
Power Supply Powerup Rise Time  
Interface Power Supply Powerup Rise Time  
V
µs  
µs  
C  
DDRISE  
V
10  
IORISE  
Ambient Temperature  
T
–20  
25  
85  
A
Notes:  
1. All minimum and maximum specifications apply across the recommended operating conditions. Typical values apply at  
VA = 3.3 V and 25 C unless otherwise stated.  
2. SSOP devices operate down to 2 V at 25 °C. See Section “4.20. 2 V Operation (SSOP Only)” for details.  
Rev. 1.2  
5
Si4704/05-D60  
Table 2. DC Characteristics  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Mode  
V
Supply Current  
Supply Current  
I
8.2  
10.5  
18.5  
0.15  
9.1  
9.5  
13.5  
21.5  
0.6  
AQFN  
FMVA  
V
I
DQFN  
FMVD  
1
Digital Output Mode  
V
Supply Current  
Supply Current  
I
ASSOP  
FMVA  
V
I
DSSOP  
FMVD  
mA  
V
Supply Current  
Supply Current  
I
10.3  
12.8  
21.3  
0.6  
AQFN  
FMVA  
V
I
9.9  
DQFN  
FMVD  
2
Analog Output Mode  
V
Supply Current  
Supply Current  
I
19.1  
0.1  
ASSOP  
FMVA  
V
I
DSSOP  
FMVD  
Powerdown  
Powerdown Current  
V
4
9.5  
3
15  
15  
10  
10  
AQFN  
I
µA  
µA  
APD  
V
Powerdown Current  
Powerdown Current  
ASSOP  
V
V
SCLK, RCLK inactive  
SCLK, RCLK inactive  
DQFN  
I
DPD  
Powerdown Current  
3
DSSOP  
3
High Level Input Voltage  
V
0.7 x V  
–0.3  
–10  
–10  
V + 0.3  
V
V
IH  
D
D
D
3
Low Level Input Voltage  
V
0.3 x V  
10  
IL  
D
3
High Level Input Current  
I
V
= V = 3.6 V  
µA  
µA  
IH  
IN  
D
3
Low Level Input Current  
I
V
= 0 V,  
IN  
10  
IL  
V = 3.6 V  
D
4
High Level Output Voltage  
V
I
= 500 µA  
0.8 x V  
V
V
OH  
OUT  
OUT  
4
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x V  
OL  
D
Notes:  
1. Guaranteed by characterization.  
2. Backwards compatible mode to rev B and rev C. Additional features on this device may increase typical supply current.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.  
4. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.  
6
Rev. 1.2  
Si4704/05-D60  
Table 3. Reset Timing Characteristics1,2,3  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Min  
100  
30  
Typ  
Max  
Unit  
µs  
RST Pulse Width and GPO1, GPO2/INT Setup to RST  
GPO1, GPO2/INT Hold from RST  
t
SRST  
t
ns  
HRST  
RST Pulse Release Time Before VDD/VIO Turn Off  
t
30  
ns  
RRST  
Important Notes:  
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the first start condition.  
3. When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then  
minimum tSRST is 100 µs, to provide time for on-chip 1 Mdevices (active while RST is low) to pull GPO1 high and  
GPO2 low.  
5. RST must be held low for at least 100 µs after all voltage supplies have been ramped up.  
6. RST needs to be asserted (pulled low) prior to any supply voltage is ramped down.  
Figure 1. Reset Timing Parameters for Busmode Select  
Rev. 1.2  
7
Si4704/05-D60  
Table 4. 2-Wire Control Interface Characteristics1,2,3  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
SCLK Frequency  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
f
SCL  
SCLK Low Time  
SCLK High Time  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIO Setup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIO Hold  
0.6  
µs  
HD:STA  
(START)  
SDIO Input to SCLK Setup  
t
t
100  
0
900  
ns  
ns  
µs  
SU:DAT  
4,5  
SDIO Input to SCLK Hold  
HD:DAT  
SU:STO  
SCLK input to SDIO Setup  
t
0.6  
(STOP)  
STOP to START Time  
SDIO Output Fall Time  
t
1.3  
µs  
ns  
BUF  
t
250  
f:OUT  
Cb  
----------  
1pF  
20 + 0.1  
SDIO Input, SCLK Rise/Fall Time  
t
t
300  
ns  
f:IN  
r:IN  
Cb  
----------  
1pF  
20 + 0.1  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VD = 0 V, SCLK and SDIO are low impedance.  
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the first start condition.  
4. The Si4704/05-D60 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum  
tHD:DAT specification.  
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated as long as all other timing parameters are met.  
8
Rev. 1.2  
Si4704/05-D60  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
30%  
SCLK  
SDIO  
70%  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
A6-A0,  
R/W  
D7-D0  
D7-D0  
SDIO  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram  
Rev. 1.2  
9
Si4704/05-D60  
Table 5. 3-Wire Control Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
f
CLK  
SCLK High Time  
t
25  
25  
20  
10  
10  
2
HIGH  
SCLK Low Time  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall time  
t
ns  
S
t
ns  
HSDIO  
t
ns  
HSEN  
t
Read  
Read  
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t , t  
ns  
R
F
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHSDIO  
tHIGH  
tLOW  
tHSEN  
tS  
70%  
30%  
tS  
SEN  
A6-A5,  
R/W,  
A4-A1  
70%  
30%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
Address In  
Data In  
Figure 4. 3-Wire Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN  
tS  
tCDZ  
70%  
30%  
tS  
70%  
30%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 5. 3-Wire Control Interface Read Timing Parameters  
10  
Rev. 1.2  
Si4704/05-D60  
Table 6. Digital Audio Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol Test Condition  
Min  
26  
10  
10  
5
Typ  
Max  
1000  
Unit  
ns  
DCLK Cycle Time  
t
DCT  
DCH  
DCLK Pulse Width High  
t
ns  
DCLK Pulse Width Low  
t
ns  
DCL  
DFS Set-up Time to DCLK Rising Edge  
DFS Hold Time from DCLK Rising Edge  
t
ns  
SU:DFS  
HD:DFS  
t
5
ns  
DOUT Propagation Delay from DCLK Falling  
Edge  
t
0
50  
ns  
PD:DOUT  
tDCH  
tDCL  
DCLK  
tDCT  
DFS  
tHD:DFS  
tSU:DFS  
DOUT  
tPD:OUT  
Figure 6. Digital Audio Interface Timing Parameters, I2S Mode  
Rev. 1.2  
11  
Si4704/05-D60  
Table 7. FM Receiver Characteristics1,2  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
Input Frequency  
f
RF  
3,4,5,6  
Sensitivity  
(S+N)/N = 26 dB  
2.2  
10  
µV EMF  
µV EMF  
6,7  
RDS Sensitivity  
f = 2 kHz,  
RDS BLER < 5%  
7,8  
LNA Input Resistance  
3
4
4
5
5
6
k  
7,8  
LNA Input Capacitance  
pF  
7,9  
Input IP3  
100  
40  
35  
60  
35  
72  
15  
35  
55  
70  
45  
105  
50  
50  
70  
90  
1
dBµV EMF  
3,4,7,8  
m = 0.3  
±200 kHz  
±400 kHz  
In-band  
dB  
dB  
dB  
dB  
AM Suppression  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
Spurious Response Rejection  
7
3,4,8  
80  
mV  
Audio Output Voltage  
RMS  
3,8,10  
7
dB  
Hz  
Audio Output L/R Imbalance  
–3 dB  
–3 dB  
30  
0.5  
80  
54  
Audio Frequency Response Low  
Audio Frequency Response High  
7
kHz  
dB  
8,10  
42  
63  
58  
0.1  
75  
50  
34  
30  
Audio Stereo Separation  
3,4,5,8  
dB  
Audio Mono S/N  
4,5,7,8  
dB  
Audio Stereo S/N  
3,8,10  
%
Audio THD  
7
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
f = ±400 kHz  
µs  
µs  
3,4,5,6,7,11, 12  
Blocking Sensitivity  
dBµV  
dBµV  
f = ±4 MHz  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Analog audio output mode.  
7. Guaranteed by characterization.  
8. V  
= 1 mV.  
EMF  
9. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
10. f = 75 kHz.  
11. Sensitivity measured at (S+N)/N = 26 dB.  
12. Blocker Amplitude = 100 dBµV.  
13. At temperature (25 °C).  
14. At LOUT and ROUT pins.  
12  
Rev. 1.2  
Si4704/05-D60  
Table 7. FM Receiver Characteristics1,2 (Continued)  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
f = ±400 kHz, ±800 kHz  
f = ±4 MHz, ±8 MHz  
Single-ended  
Min  
Typ  
40  
35  
Max  
Unit  
dBµV  
dBµV  
k  
3,4,5,6,7,11,12  
Intermod Sensitivity  
7,14  
R
10  
Audio Output Load Resistance  
L
7,14  
C
Single-ended  
50  
60  
pF  
Audio Output Load Capacitance  
L
7
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
7
Powerup Time  
From powerdown  
110  
3
ms  
dB  
13  
RSSI Offset  
Input levels of 8 and  
60 dBµV at RF Input  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Analog audio output mode.  
7. Guaranteed by characterization.  
8. V  
= 1 mV.  
EMF  
9. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
10. f = 75 kHz.  
11. Sensitivity measured at (S+N)/N = 26 dB.  
12. Blocker Amplitude = 100 dBµV.  
13. At temperature (25 °C).  
14. At LOUT and ROUT pins.  
Rev. 1.2  
13  
Si4704/05-D60  
Table 8. 64–75.9 MHz Input Frequency FM Receiver Characteristics1,2,3  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
64  
3
Typ  
Max  
75.9  
5
Unit  
MHz  
µV EMF  
k  
Input Frequency  
f
RF  
,
4,5,6 8  
Sensitivity  
LNA Input Resistance  
(S+N)/N = 26 dB  
3.5  
4
3,7  
3,7  
LNA Input Capacitance  
4
5
6
pF  
9
Input IP3  
72  
15  
70  
45  
10  
105  
50  
50  
70  
80  
90  
1
dBµV EMF  
dB  
3,4,5,7  
m = 0.3  
±200 kHz  
±400 kHz  
AM Suppression  
dB  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
dB  
4,5,7  
mV  
Audio Output Voltage  
RMS  
4,7,10  
dB  
Audio Output L/R Imbalance  
3
–3 dB  
–3 dB  
30  
80  
54  
50  
60  
Hz  
Audio Frequency Response Low  
3
kHz  
Audio Frequency Response High  
4,3,5,7  
63  
0.1  
75  
50  
dB  
Audio Mono S/N  
4,7,10  
%
Audio THD  
3
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
Single-ended  
µs  
µs  
k  
3,11  
R
Audio Output Load Resistance  
L
L
3,11  
C
Single-ended  
pF  
Audio Output Load Capacitance  
3
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
3
Powerup Time  
From powerdown  
110  
3
ms  
dB  
12  
RSSI Offset  
Input levels of 8 and  
60 dBµV EMF  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. Guaranteed by characterization.  
4. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
5. f = 22.5 kHz.  
6. B = 300 Hz to 15 kHz, A-weighted.  
AF  
7. V  
= 1 mV.  
EMF  
8. Analog output mode.  
9. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
10. f = 75 kHz.  
11. At LOUT and ROUT pins.  
12. At temperature (25 °C).  
14  
Rev. 1.2  
Si4704/05-D60  
Table 9. Reference Clock and Crystal Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock  
1
RCLK Supported Frequencies  
31.130  
–100  
1
32.768  
40,000  
100  
kHz  
2
RCLK Frequency Tolerance  
ppm  
REFCLK_PRESCALE  
REFCLK  
4095  
31.130  
32.768  
34.406  
kHz  
Crystal Oscillator  
Crystal Oscillator Frequency  
–100  
32.768  
100  
3.5  
50  
kHz  
ppm  
pF  
2
Crystal Frequency Tolerance  
Board Capacitance  
ESR  
  
pF  
3
CL  
7
12  
22  
3
CL–single ended  
14  
24  
44  
pF  
Notes:  
1. The Si473x-D60 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK  
frequencies between 31.130 kHz and 40 MHz that are not supported. For more details, see Table 6 of “AN332: Si47xx  
Programming Guide”.  
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing.  
3. Guaranteed by characterization.  
Table 10. Thermal Conditions  
Parameter  
Thermal Resistance*  
Ambient Temperature  
Junction Temperature  
Symbol  
Min  
Typ  
80  
Max  
Unit  
°C/W  
°C  
JA  
T
–20  
25  
85  
A
T
92  
°C  
J
*Note: Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.  
Rev. 1.2  
15  
Si4704/05-D60  
Table 11. Absolute Maximum Ratings1,2  
Parameter  
Analog Supply Voltage  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 3.9  
10  
Unit  
V
V
A
Digital and I/O Supply Voltage  
V
V
D
3
Input Current  
I
mA  
V
IN  
3
Input Voltage  
V
T
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
–40 to 95  
–55 to 150  
0.4  
C  
C  
OP  
Storage Temperature  
T
STG  
4
RF Input Level  
V
pk  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond  
recommended operating conditions for extended periods may affect device reliability.  
2. The Si4704/05-D60 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2  
kV HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. For input pins DFS, SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2, GPO3, and DCLK.  
4. At RF input pin FMI and LPI.  
16  
Rev. 1.2  
Si4704/05-D60  
2. Typical Application Schematic  
2.1. QFN Typical Application Schematic  
Optional: Digital Audio Out  
OPMODE: 0xB0, 0xB5  
C9  
GPO1  
GPO2/INT  
R3  
R2  
R1  
GPO3/DCLK  
DFS  
DOUT  
1
15  
NC  
DOUT  
C2  
2
3
4
5
14  
FM Antenna  
FMI  
LOUT  
LOUT  
13  
RFGND  
ROUT  
ROUT  
12  
Embedded Antenna  
Si4704/05  
LPI  
GND  
2.7 to 5.5 V  
C1  
D60  
11  
RSTB  
VA  
VA  
1.62 to 3.6 V  
C4  
VD  
RSTB  
RCLK  
SDIO  
SCLK  
SENB  
GPO3  
RCLK  
X1  
C6  
C5  
Optional: For Crystal OSC  
Notes:  
1. Place C1 close to VA pin and C4 close to VD pin.  
2. All grounds connect directly to GND plane on PCB.  
3. Pins 1 and 20 are no connects, leave floating.  
4. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
5. Pin 2 connects to the FM antenna interface.  
6. Place Si4704/05-D60 as close as possible to antenna and keep the FMI traces as short as possible.  
Rev. 1.2  
17  
Si4704/05-D60  
2.2. SSOP Typical Application Schematic  
Optional: Digital Audio Out  
OPMODE: 0xB0, 0xB5  
C9  
R1  
R2  
R3  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DOUT  
LOUT  
ROUT  
DBYP  
VA  
DOUT  
DFS  
LOUT  
ROUT  
2
DFS  
3
GPO3/DCLK  
GPO2/INT  
GPO3/DCLK  
GPO2/INT  
GPO1  
C1  
4
2.0 to 5.5 V  
VA  
1.62 to 3.6 V  
C4  
5
GPO1  
NC  
VD  
VD  
6
RCLK  
SDIO  
SCLK  
SENB  
RCLK  
SDIO  
SCLK  
SENB  
RSTB  
7
NC  
C2  
8
FM Antenna  
FMI  
9
RFGND  
NC  
10  
11  
12  
RSTB  
GND  
LPI  
NC  
Embedded Antenna  
GND  
GPO3  
RCLK  
X1  
C6  
C5  
Optional: For Crystal OSC  
Notes:  
1. Place C1 close to VA and C4 close to VD pin.  
2. All grounds connect directly to GND plane on PCB.  
3. Pins 6 and 7 are no connects, leave floating.  
4. Pin 10 is unused. Tie this pin to GND.  
5. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
6. Pin 8 connects to the FM antenna interface.  
7. Place Si4704/05-D60 as close as possible to antenna and keep the FMI traces as short as possible.  
18  
Rev. 1.2  
Si4704/05-D60  
3. QFN/SSOP Bill of Materials  
Table 12. Si4704/05-D60 QFN/SSOP Bill of Materials  
Component(s)  
Value/Description  
Supplier  
Murata  
C1  
C2  
C4  
U1  
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R  
Coupling capacitor, 1 nF, ±20%, Z5U/X7R  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R  
Si4704/05-D60 FM Radio Tuner  
Murata  
Murata  
Silicon Laboratories  
Optional Components  
C5, C6  
C9  
Crystal load capacitors, 22 pF, ±5%, COG  
(Optional for crystal oscillator)  
Venkel  
Murata  
Venkel  
Venkel  
Venkel  
Epson  
Noise mitigating capacitor, 2~5 pF  
(Optional for digital audio)  
R1  
Resistor, 600   
(Optional for digital audio)  
R2  
Resistor, 2 k  
(Optional for digital audio)  
R3  
Resistor, 2 k  
(Optional for digital audio)  
X1  
32.768 kHz crystal  
(Optional for crystal oscillator)  
Rev. 1.2  
19  
Si4704/05-D60  
4. Functional Description  
4.1. Overview  
FM Antenna  
Si4704/05-D60  
DOUT  
RDS  
(Si4705)  
FMI  
DIGITAL  
AUDIO  
DFS  
LNA  
AGC  
RFGND  
GPO/DCLK  
LOW-IF  
0/90  
Mux  
ADC  
ADC  
DAC  
DAC  
ROUT  
LOUT  
DSP  
32.768 kHz  
RCLK  
Mux  
AFC  
LDO  
2.7~5.5 V (QFN) / 2.0~5.5 V (SSOP)  
+
VA  
CONTROL  
INTERFACE  
VD  
1.62 - 3.6 V  
GND  
Figure 7. Functional Block Diagram  
The Si4704/05-D60 CMOS FM radio receiver IC The Si4704/05-D60 is a feature-rich solution that  
integrates the complete tuner function from antenna includes advanced seek algorithms, soft mute, auto-  
input to audio output. This feature enables a cost- calibrated digital tuning, FM stereo processing and  
efficient digital audio platform for consumer electronics advanced audio processing.  
applications with high TDMA noise immunity, superior  
radio performance, and high fidelity audio power  
digital audio outputs and a programmable reference  
amplification. Offering unmatched integration and PCB  
In addition, the Si4704/05-D60 provides analog and  
2
clock. The device supports I C-compatible 2-wire  
space savings, the Si4704/05-D60 requires only few  
control interface, and  
a
Si4700/01 backwards-  
2
external components and less than 15 mm of board  
compatible 3-wire control interface.  
area, excluding the antenna inputs. The Si4704/05-D60  
FM radio provides the space savings and low power  
consumption necessary for portable devices while  
delivering the high performance and design simplicity  
desired for all FM solutions.  
The Si4704/05-D60 utilizes digital signal processing to  
achieve high fidelity, optimal performance, and design  
flexibility. The chip provides excellent pilot rejection,  
selectivity, and unmatched audio performance, and  
offers both the manufacturer and the end-user  
Leveraging Silicon Laboratories' proven and patented  
Si4700/01 FM tuner's digital low intermediate frequency  
(low-IF) receiver architecture, the Si4704/05-D60  
delivers superior RF performance and interference  
rejection in the FM bands. The high level of integration  
and complete system production test simplifies design-  
in, increases system quality, and improves reliability and  
manufacturability.  
extensive programmability and  
experience.  
a better listening  
The Si4705-D60 incorporates a digital signal processor  
for the European Radio Data System (RDS) and the  
North American Radio Broadcast Data System (RBDS)  
including all required symbol decoding, block  
synchronization, error detection, and error correction  
functions. Using this feature, the Si4705-D60 enables  
broadcast data such as station identification and song  
name to be displayed to the user.  
20  
Rev. 1.2  
Si4704/05-D60  
4.4.1. Audio Data Formats  
4.2. Operating Modes  
The digital audio interface operates in slave mode and  
supports three different audio data formats:  
The Si4704/05-D60 operates in FM receive mode. In  
FM mode, radio signals are received on FMI and  
processed by the FM front-end circuitry. In addition to  
the receiver mode, there is a clocking mode to choose  
to clock the Si4704/05-D60 from a reference clock or  
crystal. On the Si4704/05-D60, there is an audio output  
mode to choose between an analog and/or digital audio  
output. In the analog audio output mode, ROUT and  
LOUT are used for the audio output pins. In the digital  
audio mode, DOUT, DFS, and DCLK pins are used.  
Concurrent analog/digital audio output mode is also  
available requiring all five pins.  
2
I S  
Left-Justified  
DSP Mode  
2
In I S mode, by default the MSB is captured on the  
second rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is low, and the right channel is  
transferred when the DFS is high.  
In left-justified mode, by default the MSB is captured on  
the first rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is high, and the right channel is  
transferred when the DFS is low.  
4.3. FM Receiver  
The Si4704/05-D60 FM receiver is based on the proven  
Si4700/01 FM tuner. The receiver uses a digital low-IF  
architecture allowing the elimination of external  
components and factory adjustments. The Si4704/05-  
D60 integrates a low noise amplifier (LNA) supporting  
the worldwide FM broadcast band (64 to 108 MHz). An  
AGC circuit controls the gain of the LNA to optimize  
sensitivity and rejection of strong interferers. An image-  
reject mixer downconverts the RF signal to low-IF. The  
quadrature mixer output is amplified, filtered, and  
digitized with high resolution analog-to-digital  
converters (ADCs). This advanced architecture allows  
the Si4704/05-D60 to perform channel selection, FM  
demodulation, and stereo audio processing to achieve  
superior performance compared to traditional analog  
architectures.  
In DSP mode, the DFS becomes a pulse with a width of  
1DCLK period. The left channel is transferred first,  
followed right away by the right channel. There are two  
options in transferring the digital audio data in DSP  
mode: the MSB of the left channel can be transferred on  
the first rising edge of DCLK following the DFS pulse or  
on the second rising edge.  
In all audio formats, depending on the word size, DCLK  
frequency, and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word. In addition, if  
preferred, the user can configure the MSB to be  
captured on the falling edge of DCLK via properties.  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
4.4. Digital Audio Interface  
The digital audio interface operates in slave mode and  
supports a variety of MSB-first audio data formats  
2
4.4.2. Audio Sample Rates  
including I S and left-justified modes. The interface has  
three pins: digital data input (DIN), digital frame  
The device supports a number of industry-standard  
sampling rates including 32, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs on the audio  
baseband processor.  
synchronization input (DFS), and  
a
digital bit  
synchronization input clock (DCLK). The Si4704/05-D60  
supports a number of industry-standard sampling rates  
including 32, 44.1, and 48 kHz. The digital audio  
interface enables low-power operation by eliminating  
the need for redundant DACs and ADCs on the audio  
baseband processor.  
Rev. 1.2  
21  
Si4704/05-D60  
INVERTED  
(OFALL = 1)  
DCLK  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
I2S  
RIGHT CHANNEL  
(OMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 8. I2S Digital Audio Format  
INVERTED  
DCLK  
(OFALL = 1)  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
n-2  
Left-Justified  
(OMODE = 0110)  
DOUT  
1
2
3
n-2  
n-1  
n
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 9. Left-Justified Digital Audio Format  
(OFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DOUT  
1
2
3
2
n-1  
n
(OMODE = 1100)  
(OMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 10. DSP Digital Audio Format  
22  
Rev. 1.2  
Si4704/05-D60  
4.5. Stereo Audio Processing  
4.6. Received Signal Qualifiers  
The output of the FM demodulator is a stereo The quality of a tuned signal can vary depending on  
multiplexed (MPX) signal. The MPX standard was many factors including environmental conditions, time of  
developed in 1961, and is used worldwide. Today's day, and position of the antenna. To adequately manage  
MPX signal format consists of left + right (L+R) audio, the audio output and avoid unpleasant audible effects to  
left – right (L–R) audio, a 19 kHz pilot tone, and the end-user, the Si4704/05-D60 monitors and provides  
RDS/RBDS data as shown in Figure 11 below.  
indicators of the signal quality, allowing the host  
processor to perform additional processing if required  
by the customer. The Si4704/05-D60 monitors signal  
quality metrics including RSSI, SNR, and multipath  
interference on FM signals. These metrics are used to  
optimize signal processing and are also reported to the  
host processor. The signal processing algorithms can  
Mono Audio  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
use  
either  
Silicon  
Labs'  
optimized  
settings  
(recommended) or be customized to modify  
performance.  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
4.7. Volume Control  
Figure 11. MPX Signal Spectrum  
The audio output may be muted. Volume is adjusted  
digitally by the RX_VOLUME property.  
4.5.1. Stereo Decoder  
The Si4704/05-D60's integrated stereo decoder  
automatically decodes the MPX signal using DSP  
techniques. The 0 to 15 kHz (L+R) signal is the mono  
output of the FM tuner. Stereo is generated from the  
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is  
used as a reference to recover the (L–R) signal. Output  
left and right channels are obtained by adding and  
subtracting the (L+R) and (L–R) signals respectively.  
4.8. Stereo DAC  
High-fidelity stereo digital-to-analog converters (DACs)  
drive analog audio signals onto the LOUT and ROUT  
pins. The audio output may be muted.  
4.9. Soft Mute  
The soft mute feature is available to attenuate the audio  
outputs and minimize audible noise in very weak signal  
conditions. The soft mute feature is triggered by the  
SNR metric. The SNR threshold for activating soft mute  
is programmable, as are soft mute attenuation levels  
and attack and release rates.  
4.5.2. Stereo-Mono Blending  
Adaptive noise suppression is employed to gradually  
combine the stereo left and right audio channels to a  
mono (L+R) audio signal as the signal quality degrades  
to maintain optimum sound fidelity under varying  
reception conditions. Three metrics, received signal  
strength indicator (RSSI), signal-to-noise ratio (SNR),  
4.10. FM Hi-Cut Control  
Hi-cut control is employed on audio outputs with  
degradation of the signal due to low SNR and/or  
multipath interference. Two metrics, SNR and multipath  
interference, are monitored concurrently in forcing hi-cut  
of the audio outputs. Programmable minimum and  
maximum thresholds are available for both metrics. The  
transition frequency for hi-cut is also programmable with  
up to seven hi-cut filter settings. A single set of attack  
and release rates for hi-cut are programmable for both  
metrics from a range of 2 ms to 64 s. The level of hi-cut  
applied can be monitored with the FM_RSQ_STATUS  
command. Hi-cut can be disabled by setting the hi-cut  
filter to audio bandwidth of 15 kHz.  
and  
multipath  
interference,  
are  
monitored  
simultaneously in forcing a blend from stereo to mono.  
The metric which reflects the minimum signal quality  
takes precedence and the signal is blended  
appropriately.  
All three metrics have programmable stereo/mono  
thresholds and attack/release rates. If a metric falls  
below its mono threshold, the signal is blended from  
stereo to full mono. If all metrics are above their  
respective stereo thresholds, then no action is taken to  
blend the signal. If a metric falls between its mono and  
stereo thresholds, then the signal is blended to the level  
proportional to the metric’s value between its mono and  
stereo thresholds, with an associated attack and  
release rate.  
Rev. 1.2  
23  
Si4704/05-D60  
The Si4704/05-D60 uses RSSI, SNR, and AFC to  
qualify stations. Most of these variables have  
programmable thresholds for modifying the seek  
function according to customer needs.  
4.11. De-emphasis  
Pre-emphasis and de-emphasis is a technique used by  
FM broadcasters to improve the signal-to-noise ratio of  
FM receivers by reducing the effects of high-frequency  
interference and noise. When the FM signal is  
RSSI is employed first to screen all possible candidate  
stations. SNR and AFC are subsequently used in  
screening the RSSI qualified stations. The more  
thresholds the system engages, the higher the  
confidence that any found stations will indeed be valid  
broadcast stations. The Si4704/05-D60 defaults set  
RSSI to a mid-level threshold and add an SNR  
threshold set to a level delivering acceptable audio  
performance. This trade-off will eliminate very low RSSI  
stations while keeping the seek time to acceptable  
levels. Generally, the time to auto-scan and store valid  
channels for an entire FM band with all thresholds  
engaged is very short depending on the band content.  
Seek is initiated using the FM_SEEK_START  
command. The RSSI, SNR, and AFC threshold settings  
are adjustable using properties.  
transmitted,  
a
pre-emphasis filter is applied to  
accentuate the high audio frequencies. The Si4704/05-  
D60 incorporates a de-emphasis filter which attenuates  
high frequencies to restore a flat frequency response.  
Two time constants are used in various regions. The de-  
emphasis time constant is programmable to 50 or 75 µs  
and is set by the FM_DEEMPHASIS property.  
4.12. RDS/RBDS Processor (Si4705-D60  
Only)  
The Si4705-D60 implements an RDS/RBDS* processor  
for symbol decoding, block synchronization, error  
detection, and error correction.  
The Si4705-D60 device is user configurable and  
provides an optional interrupt when RDS is  
synchronized, loses synchronization, and/or the user  
configurable RDS FIFO threshold has been met.  
4.15. Reference Clock  
The Si4704/05-D60 reference clock is programmable,  
supporting RCLK frequencies listed in Table 9,  
“Reference Clock and Crystal Characteristics,” on  
page 15. Refer to Table 2, “DC Characteristics,” on  
page 6 for switching voltage levels and Table 9 for  
frequency tolerance information.  
The Si4705-D60 reports RDS decoder synchronization  
status and detailed bit errors in the information word for  
each RDS block with the FM_RDS_STATUS command.  
The range of reportable block errors is 0, 1–2, 3–5, or  
6+. More than six errors indicates that the  
corresponding block information word contains six or  
more non-correctable errors or that the block checkword  
contains errors. The pilot does not have to be present to  
decode RDS/RBDS.  
An onboard crystal oscillator is available to generate the  
32.768 kHz reference when an external crystal and load  
capacitors are provided. Refer to "2. Typical Application  
Schematic" on page 17. This mode is enabled using the  
POWER_UP command. Refer to “AN332: Si47xx  
Programming Guide”.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
4.13. Tuning  
The Si4704/05-D60 performance may be affected by  
data activity on the SDIO bus when using the integrated  
internal oscillator. SDIO activity results from polling the  
tuner for status or communicating with other devices  
that share the SDIO bus. If there is SDIO bus activity  
while the Si4704/05-D60 is performing the seek/tune  
function, the crystal oscillator may experience jitter,  
which may result in mistunes, false stops, and/or lower  
SNR.  
The tuning frequency is directly programmed using the  
FM_TUNE_FREQ command. The Si4704/05-D60  
supports channel spacing steps of 10 kHz in FM mode.  
4.14. Seek  
The Si4704/05-D60 seek functionality is performed  
completely on-chip and will search up or down the  
selected frequency band for a valid channel. A valid  
channel is qualified according to  
a
series of  
For best seek/tune results, Silicon Laboratories  
recommends that all SDIO data traffic be suspended  
during Si4704/05-D60 seek and tune operations. This is  
achieved by keeping the bus quiet for all other devices  
on the bus, and delaying tuner polling until the tune or  
seek operation is complete. The seek/tune complete  
(STC) interrupt should be used instead of polling to  
determine when a seek/tune operation is complete.  
programmable signal indicators and thresholds. The  
seek function can be made to stop at the band edge and  
provide an interrupt, or wrap the band and continue  
seeking until arriving at the original departure frequency.  
The device sets interrupts with found valid stations or, if  
the seek results in zero found valid stations, the device  
indicates failure and again sets an interrupt. Refer to  
“AN332: Si47xx Programming Guide”.  
24  
Rev. 1.2  
Si4704/05-D60  
edges of SCLK. The Si4704/05-D60 acknowledges  
each data byte by driving SDIO low for one cycle, on the  
next falling edge of SCLK. The user may write up to 8  
data bytes in a single 2-wire transaction. The first byte is  
a command, and the next seven bytes are arguments.  
4.16. Control Interface  
A serial port slave interface is provided, which allows an  
external controller to send commands to the Si4704/05-  
D60 and receive responses from the device. The serial  
port can operate in two bus modes: 2-wire mode and 3-  
wire mode. The Si4704/05-D60 selects the bus mode by  
sampling the state of the GPO1 and GPO2 pins on the  
rising edge of RST. The GPO1 pin includes an internal  
pull-up resistor, which is connected while RST is low,  
and the GPO2 pin includes an internal pull-down  
resistor, which is connected while RST is low.  
Therefore, it is only necessary for the user to actively  
drive pins which differ from these states. See Table 13.  
For read operations, after the Si4704/05-D60 has  
acknowledged the control byte, it will drive an 8-bit data  
byte on SDIO, changing the state of SDIO on the falling  
edge of SCLK. The user acknowledges each data byte  
by driving SDIO low for one cycle, on the next falling  
edge of SCLK. If a data byte is not acknowledged, the  
transaction will end. The user may read up to 16 data  
bytes in a single 2-wire transaction. These bytes contain  
the response data from the Si4704/05-D60.  
Table 13. Bus Mode Select on Rising Edge of  
RST  
A 2-wire transaction ends with the STOP condition,  
which occurs when SDIO rises while SCLK is high.  
For details on timing specifications and diagrams, refer  
to Table 4, “2-Wire Control Interface Characteristics” on  
page 8; Figure 2, “2-Wire Control Interface Read and  
Write Timing Parameters,” on page 9, and Figure 3, “2-  
Wire Control Interface Read and Write Timing Diagram,”  
on page 9.  
Bus Mode  
2-Wire  
3-Wire  
GPO1  
1
0 (must drive)  
GPO2  
0
0
After the rising edge of RST, the pins GPO1 and GPO2  
are used as general purpose output (O) pins, as  
described in Section “4.17. GPO Outputs”. In any bus  
mode, commands may only be sent after VD and VA  
supplies are applied.  
4.16.2. 3-Wire Control Interface Mode  
When selecting 3-wire mode, the user must ensure that  
a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
In any bus mode, before sending a command or reading  
a response, the user must first read the status byte to  
ensure that the device is ready (CTS bit is high).  
The 3-wire bus mode uses the SCLK, SDIO, and SEN_  
pins. A transaction begins when the user drives SEN  
low. Next, the user drives a 9-bit control word on SDIO,  
which is captured by the device on rising edges of  
SCLK. The control word consists of a 9-bit device  
address (A7:A5 = 101b), a read/write bit (read = 1, write  
= 0), and a 5-bit register address (A4:A0).  
4.16.1. 2-Wire Control Interface Mode  
When selecting 2-wire mode, the user must ensure that  
SCLK is high during the rising edge of RST, and stays  
high until after the first start condition. Also, a start  
condition must not occur within 300 ns before the rising  
edge of RST.  
For write operations, the control word is followed by a  
16-bit data word, which is captured by the device on  
rising edges of SCLK.  
The 2-wire bus mode uses only the SCLK and SDIO  
pins for signaling. A transaction begins with the START  
condition, which occurs when SDIO falls while SCLK is  
high. Next, the user drives an 8-bit control word serially  
on SDIO, which is captured by the device on rising  
edges of SCLK. The control word consists of a 7-bit  
device address, followed by a read/write bit (read = 1,  
write = 0). The Si4704/05-D60 acknowledges the  
control word by driving SDIO low on the next falling  
edge of SCLK.  
For read operations, the control word is followed by a  
delay of one-half SCLK cycle for bus turn-around. Next,  
the Si4704/05-D60 will drive the 16-bit read data word  
serially on SDIO, changing the state of SDIO on each  
rising edge of SCLK.  
A transaction ends when the user sets SEN high, then  
pulses SCLK high and low one final time. SCLK may  
either stop or continue to toggle while SEN is high.  
Although the Si4704/05-D60 will respond to only a  
single device address, this address can be changed  
with the SEN pin (note that the SEN pin is not used for  
signaling in 2-wire mode). Refer to “AN332: Si47xx  
Programming Guide”  
In 3-wire mode, commands are sent by first writing each  
argument to register(s) 0xA1–0xA3, then writing the  
command word to register 0xA0. A response is  
retrieved by reading registers 0xA8–0xAF.  
For details on timing specifications and diagrams, refer  
to Table 5, “3-Wire Control Interface Characteristics,” on  
page 10, Figure 4, and Figure 5.  
For write operations, the user then sends an 8-bit data  
byte on SDIO, which is captured by the device on rising  
Rev. 1.2  
25  
Si4704/05-D60  
4.17. GPO Outputs  
4.21. Programming with Commands  
The Si4704/05-D60 provides three general-purpose To ease development time and offer maximum  
output pins. The GPO pins can be configured to output customization, the Si4704/05-D60 provides a simple yet  
a constant low, constant high, or high-impedance. The powerful software interface to program the receiver. The  
GPO pins can be reconfigured as specialized functions. device is programmed using commands, arguments,  
properties, and responses.  
4.18. Firmware Upgrades  
To perform an action, the user writes a command byte  
The Si4704/05-D60 contains on-chip program RAM to  
and associated arguments, causing the chip to execute  
accommodate minor changes to the firmware. This  
the given command. Commands control an action such  
allows Silicon Labs to provide future firmware updates  
as powerup the device, shut down the device, or tune to  
to optimize the characteristics of new radio designs and  
a station. Arguments are specific to a given command  
those already deployed in the field.  
and are used to modify the command.  
Properties are a special command argument used to  
4.19. Reset, Powerup, and Powerdown  
modify the default chip operation and are generally  
Setting the RST pin low will disable analog and digital  
configured immediately after powerup. Examples of  
circuitry, reset the registers to their default settings, and  
properties are de-emphasis level, RSSI seek threshold,  
disable the bus. Setting the RST pin high will bring the  
and soft mute attenuation threshold.  
device out of reset.  
Responses provide the user information and are  
echoed after a command and associated arguments are  
issued. All commands provide a 1-byte status update,  
indicating interrupt and clear-to-send status information.  
The Si4704/05-D60 contains an on-board non-volatile  
memory for storing its operational firmware. Proper  
timing as specified in this data sheet, particularly with  
respect to keeping RST pin low during any power  
For a detailed description of the commands and  
supply transitions, must be honored to avoid the risk of  
properties for the Si4704/05-D60, see “AN332: Si47xx  
corrupting the contents of this memory, which can  
render the device permanently non-functional.  
Programming Guide.”  
A powerdown mode is available to reduce power  
consumption when the part is idle. Putting the device in  
powerdown mode will disable analog and digital circuitry  
while keeping the bus active.  
4.20. 2 V Operation (SSOP Only)  
The Si4704/05-D60 is capable of operating down to 2 V  
as the battery drains in an application. Any power-up or  
reset is not guaranteed to work below the dc  
characteristics defined in Table 2. This capability  
enables a much longer run time in battery operated  
devices.  
26  
Rev. 1.2  
Si4704/05-D60  
5. Pin Descriptions  
5.1. Si4704/05-D60-GM  
20 19 18 17  
NC  
FMI  
1
16  
2
15 DOUT  
14 LOUT/[DFS]  
13 ROUT/[DOUT]  
12 GND  
RFGND  
LPI  
3
4
5
GND  
PAD  
RST  
6
11 VA  
7
8
9
10  
Pin Number(s)  
Name  
NC  
Description  
1, 20  
No connect. Leave floating.  
2
FMI  
FM RF inputs. FMI should be connected to the antenna trace.  
RF ground. Connect to ground plane on PCB.  
Embedded antenna input.  
3
RFGND  
LPI  
4
5
Device reset input (active low).  
RST  
6
Serial enable input (active low).  
SEN  
7
SCLK  
SDIO  
RCLK  
Serial clock input.  
8
Serial data input/output.  
9
External reference oscillator input.  
Digital and I/O supply voltage.  
10  
V
D
11  
V
Analog supply voltage. May be connected directly to battery.  
Ground. Connect to ground plane on PCB.  
A
12, GND PAD  
GND  
13  
14  
15  
16  
17  
ROUT/[DOUT] Right audio line output for analog output mode.  
LOUT/[DFS] Left audio line output for analog output mode.  
DOUT  
DFS  
Digital output data for digital output mode.  
Digital frame synchronization input for digital output mode.  
GPO3/[DCLK] General purpose output, crystal oscillator, or digital bit synchronous clock input  
in digital output mode.  
18  
19  
General purpose output or interrupt pin.  
General purpose output.  
GPO2/[INT]  
GPO1  
Rev. 1.2  
27  
Si4704/05-D60  
5.2. Si4704/05-D60-GU  
DOUT  
DFS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
LOUT/[DFS]  
ROUT/[DOUT]  
GPO3/[DCLK]  
GPO2/[INT]  
GPO1  
NC  
3
DBYP  
VA  
4
5
VD  
RCLK  
SDIO  
SCLK  
SEN  
RST  
6
NC  
7
FMI  
8
RFGND  
NC  
9
10  
11  
12  
LPI  
GND  
GND  
NC  
Pin Number(s)  
Name  
DOUT  
DFS  
Description  
1
2
3
Digital output data for digital output mode.  
Digital frame synchronization input for digital output mode.  
GPO3/[DCLK] General purpose output, crystal oscillator, or digital bit synchronous clock input  
in digital output mode.  
4
5
GPO2/[INT]  
GPO1  
NC  
General purpose output or interrupt pin.  
General purpose output.  
6,7  
8
No connect. Leave floating.  
FMI  
FM RF inputs. FMI should be connected to the antenna trace.  
RF ground. Connect to ground plane on PCB.  
Unused. Tie these pins to GND.  
9
RFGND  
NC  
10  
11  
LPI  
Embedded antenna input.  
12  
13,14  
NC  
Unused. Tie these pins to GND.  
GND  
Ground. Connect to ground plane on PCB.  
15  
RST  
Device reset input (active low).  
16  
17  
18  
19  
20  
SEN  
SCLK  
SDIO  
RCLK  
Serial enable input (active low).  
Serial clock input.  
Serial data input/output.  
External reference oscillator input.  
Digital and I/O supply voltage.  
V
D
21  
Analog supply voltage. May be connected directly to battery.  
Bypass capacitor.  
V
A
22  
23  
24  
DBYP  
ROUT/[DOUT] Right audio line output in analog output mode.  
LOUT/[DFS] Left audio line output in analog output mode.  
28  
Rev. 1.2  
Si4704/05-D60  
6. Ordering Guide  
1
Description  
Package  
Type  
Operating  
Temperature/Voltage  
Part Number  
Si4704-D60-GM  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
FM Broadcast Radio Receiver  
2
Si4704-D60-GU  
Si4705-D60-GM  
SSOP  
Pb-free  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
FM Broadcast Radio Receiver with  
RDS/RBDS  
2
Si4705-D60-GU  
SSOP  
Pb-free  
Notes:  
1. Add an “(R)” at the end of the device part number to denote tape and reel option.  
2. SSOP devices operate down to V = 2 V at 25 °C.  
A
Rev. 1.2  
29  
Si4704/05-D60  
7. Package Outline  
7.1. Si4704/05-D60 QFN  
Figure 12 illustrates the package details for the Si4704/05-D60. Table 14 lists the values for the dimensions shown  
in the illustration.  
Figure 12. 20-Pin Quad Flat No-Lead (QFN)  
Table 14. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.20  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.05  
0.05  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
30  
Rev. 1.2  
Si4704/05-D60  
7.2. Si4704/05-D60 SSOP  
Figure 13 illustrates the package details for the Si4704/05-D60. Table 15 lists the values for the dimensions shown  
in the illustration.  
Figure 13. 24-Pin SSOP  
Table 15. Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.75  
0.25  
0.30  
0.25  
A
A1  
b
0.10  
0.20  
0.10  
c
D
8.65 BSC  
6.00 BSC  
3.90 BSC  
0.635 BSC  
E
E1  
e
L
0.40  
0°  
1.27  
8°  
L2  
θ
0.25 BSC  
aaa  
bbb  
ccc  
ddd  
0.20  
0.18  
0.10  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AE.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 1.2  
31  
Si4704/05-D60  
8. PCB Land Pattern  
8.1. Si4704/05-D60 QFN  
Figure 14 illustrates the PCB land pattern details for the Si4704/05-D60-GM QFN. Table 16 lists the values for the  
dimensions shown in the illustration.  
Figure 14. PCB Land Pattern  
32  
Rev. 1.2  
Si4704/05-D60  
Table 16. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes: Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component stand-off.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 1.2  
33  
Si4704/05-D60  
8.2. Si4704/05-D60 SSOP  
Figure 15 illustrates the PCB land pattern details for the Si4704/05-D60-GU SSOP. Table 17 lists the values for the  
dimensions shown in the illustration.  
Figure 15. PCB Land Pattern  
Table 17. PCB Land Pattern Dimensions  
Dimension  
Min  
Max  
C
E
5.20  
5.30  
0.635 BSC  
X
0.30  
1.50  
0.40  
1.60  
Y1  
General:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
Solder Mask Design:  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design:  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
Card Assembly:  
7. A No-Clean, Type-3 solder paste is recommended.  
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
34  
Rev. 1.2  
Si4704/05-D60  
9. Top Markings  
9.1. Si4704/05-D60 Top Marking (QFN)  
0560  
DTTT  
0460  
DTTT  
YWW YWW  
9.2. Top Marking Explanation (QFN)  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
04 = Si4704, 05 = Si4705-D60.  
60 = Firmware Revision 6.0.  
D = Revision D Die.  
Firmware Revision  
Die Revision  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier.  
(Bottom-Left Justified)  
Y = Year  
Assigned by the Assembly House. Corresponds to the last  
significant digit of the year and work week of the mold date.  
WW = Workweek  
Rev. 1.2  
35  
Si4704/05-D60  
9.3. Si4704/05-D60 Top Marking (SSOP)  
470XD60GU  
YYWWTTTTTT  
9.4. Top Marking Explanation (SSOP)  
Mark Method:  
YAG Laser  
Part Number  
Die Revision  
Firmware Revision  
Package Type  
4704 = Si4704; 4705 = Si4705-D60.  
D = Revision D die.  
Line 1 Marking:  
60 = Firmware Revision 6.0.  
GU = 24-pin SSOP Pb-free package  
YY = Year  
Line 2 Marking:  
WW = Work week  
TTTTTT = Manufacturing code  
Assigned by the Assembly House.  
36  
Rev. 1.2  
Si4704/05-D60  
10. Additional Reference Resources  
Contact your local sales representatives for more information or to obtain copies of the following references:  
EN55020 Compliance Test Certificate  
AN332: Si47xx Programming Guide  
AN383: Si47xx Antenna, Schematic, Layout, and Design Guidelines  
AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure  
Si47xx EVB User’s Guide  
Customer Support Site: www.silabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA  
is required for complete access. Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support  
request.  
Rev. 1.2  
37  
Si4704/05-D60  
DOCUMENT CHANGE LIST:  
Revision 0.4 to Revision 1.0  
Updated application schematic.  
Updated pin descriptions.  
Revision 1.0 to Revision 1.1  
Updated front page pin assignments.  
Updated Table 6, “Digital Audio Interface  
Characteristics,” on page 11.  
Updated Table 9, “Reference Clock and Crystal  
Characteristics,” on page 15.  
Added Table 10, “Thermal Conditions,” on page 15.  
Updated Section "5. Pin Descriptions" on page 27.  
Updated Section "5.1. Si4704/05-D60-GM" on page  
27.  
Updated Section "5.2. Si4704/05-D60-GU" on page  
28.  
Revision 1.1 to Revision 1.2  
Deleted the AUXIN feature.  
Updated Table 3, “Reset Timing Characteristics.”  
Updated Table 10, “Thermal Conditions.”  
Updated Section 4.19, “Reset, Powerup, and  
Powerdown.”  
38  
Rev. 1.2  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI4705-D60-GUR

Audio Single Chip Receiver, FM, CMOS, PDSO24, SSOP-24
SILICON

SI4706

在全球FM频段支持( 76-108 MHz)的集成天线的支持EN55020标准 [Worldwide FM band support (76-108 MHz) integrated antenna support EN55020 compliant]
SILICON

SI4706-D5

HIGH-PERFORMANCE FM AND RDS/RBDS RECEIVER
SILICON

SI4706-D50

HIGH-PERFORMANCE FM AND RDS/RBDS RECEIVER
SILICON

SI4706-D50-GM

Audio Demodulator,
SILICON

SI4707

Audio Single Chip Receiver, FM, 3 X 3 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, QFN-20
SILICON

SI4708

Audio Demodulator, FM, CMOS, QFN-20
SILICON

SI4708-B-GM

Receiver IC
SILICON

SI4708-B-GM(R)

Receiver IC
SILICON

SI4708-C

BROADCAST FM RADIO TUNER FOR PORTABLE APPLICATIONS
SILICON

SI4709

Audio Demodulator, FM, CMOS, QFN-20
SILICON

SI4709-B-GM

Receiver IC
SILICON