Si4720-B20-GM [SILICON]

BROADCAST FM RADIO TRANSCEIVER FOR PORTABLE APPLICATIONS;
Si4720-B20-GM
型号: Si4720-B20-GM
厂家: SILICON    SILICON
描述:

BROADCAST FM RADIO TRANSCEIVER FOR PORTABLE APPLICATIONS

文件: 总48页 (文件大小:1857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4720/21-B20  
BROADCAST FM RADIO TRANSCEIVER FOR PORTABLE APPLICATIONS  
Features  
Full FM RX and TX in 3 x 3 QFN Adjustable seek parameters  
Worldwide FM RX band support  
Adjustable mono/stereo blend  
Adjustable soft mute  
Compliant with worldwide FM TX  
regulations  
Advanced modulation control  
Audio dynamic range control  
Audio silence detector  
Excellent real-world performance  
Supports integrated TX/RX  
antenna  
Ordering Information:  
Programmable transmit output  
Programmable reference clock  
See page 42.  
voltage  
input  
Frequency synthesizer with  
2-wire and 3-wire control  
integrated VCO  
interface  
Pin Assignments  
Integrated LDO regulator  
2.7 to 5.5 V supply voltage  
Si4720/21  
2
Minimal BOM (15 mm )  
3 x 3 x 0.55 mm 20-pin Pb-free  
(Top View)  
QFN package  
Digital audio output  
(Si4721 only)  
RDS/RDBS encoder/decoder  
(Si4721 only)  
Digital audio input  
Applications  
Cellular handsets/hands-free  
MP3 players  
Wireless speakers/microphone  
Satellite digital audio radios  
Personal computers/notebooks  
20 19 18 17  
NC  
FMI  
1
16  
2
15 RIN/DOUT  
14 LOUT/DFS  
13 ROUT/DIN  
12 GND  
Portable media players  
RFGND  
TXO  
3
4
5
GND  
PAD  
Description  
RST  
The Si4720/21 integrates the complete tuner and transmit functions for  
FM broadcast reception and standards-compliant, unlicensed FM  
broadcast stereo transmission. Users must comply with local radio  
frequency (RF) transmission regulations.  
6
11 VDD  
7
8
9
10  
Functional Block Diagram  
Patents pending  
Notes:  
1. To ensure proper operation and FM  
transceiver performance, follow the  
guidelines in “AN383: 3 mm x 3 mm  
QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate  
schematics and layouts for qualified  
customers.  
2. Place the Si4720/21 as close as  
possible to the antenna jack, and  
keep the FMI trace as short as  
possible.  
Si4720/21  
Tx/Rx Ant  
TXO  
LIN/DFS  
L1  
120 nH  
RIN/DOUT  
ROUT/DIN  
Rx Ant*  
ADC  
ADC  
DAC  
DAC  
FMI  
LNA  
AGC  
PGA  
AFC  
DSP  
RFGND  
VDD  
LOUT/DFS  
2.7–5.5 V  
CONTROL  
INTERFACE  
LDO  
GPO  
C1 GND  
22 uF  
*Note: Dedicated Rx antenna is optional  
Rev. 1.0 2/08  
Copyright © 2008 by Silicon Laboratories  
Si4720/21-B20  
.
Si4720/21-B20  
2
Rev. 1.0  
Si4720/21-B20  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.1. Test Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.2. Test Circuit Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.1. Analog Audio Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.2. Typical Application Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.3. Digital Audio Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.4. Typical Application Schematic Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4. Universal AM/FM RX/FM TX Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.1. Universal AM/FM RX/FM TX Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.2. Application Schematics and Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.4. Integrated Antenna Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.5. Receiver Digital Audio Interface (Si4721 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.6. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.7. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.8. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.9. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.10. RDS/RBDS Processor (Si4721 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.11. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.12. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.13. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.14. FM Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.15. Receive Power Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.16. Transmitter Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.17. Line Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.18. Audio Dynamic Range Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.19. Audio Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.20. Pre-emphasis and De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.21. RDS/RBDS Processor (Si4721 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.22. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.23. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.24. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.25. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5.26. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
5.27. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
6. Commands and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
7. Pin Descriptions: Si4720/21-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Rev. 1.0  
3
Si4720/21-B20  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
9. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
9.1. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
9.2. Si4720/21 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
9.3. Si4721 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
10. Package Outline: Si4720/21-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
11. PCB Land Pattern: Si4720/21-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
12. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
4
Rev. 1.0  
Si4720/21-B20  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol Test Condition  
Min  
2.7  
1.5  
10  
Typ  
Max  
5.5  
3.6  
Unit  
V
Supply Voltage  
V
DD  
Interface Supply Voltage  
V
V
IO  
DDRISE  
Power Supply Power-Up Rise Time  
Interface Power Supply Power-Up Rise Time  
Ambient Temperature  
V
µs  
µs  
C  
V
10  
IORISE  
T
–20  
25  
85  
A
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 C unless otherwise stated. Parameters are tested in production unless  
otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Supply Voltage  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 3.9  
10  
Unit  
V
V
DD  
Interface Supply Voltage  
V
V
IO  
IN  
3
Input Current  
I
mA  
V
3
Input Voltage  
V
T
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
Storage Temperature  
–40 to 95  
–55 to 150  
0.4  
C  
C  
OP  
T
STG  
4
RF Input Level  
V
PK  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended  
operating conditions for extended periods may affect device reliability.  
2. The Si4720/21 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV  
HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2/INT, and GPO3.  
4. At RF input pin FMI.  
Rev. 1.0  
5
Si4720/21-B20  
Table 3. DC Characteristics  
Parameter  
FM Receiver  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RX Supply Current  
I
I
19.2  
19.8  
320  
22  
23  
mA  
mA  
µA  
RX  
1
RX Supply Current  
Low SNR level  
RX  
RX Interface Supply Current  
I
600  
23  
IORX  
2
RX RDS Supply Current  
I
Analog Output Mode  
Digital Output Mode  
19.9  
18.0  
mA  
mA  
FM  
2
RX Supply Current  
I
20.5  
FMD  
FM Transmitter  
TX Supply Current  
I
18.8  
320  
22.8  
600  
mA  
µA  
TX  
TX Interface Supply Current  
I
IOTX  
FM Transmitter from Digital Audio Input  
TX Supply Current  
I
DCLK = 3.072 MHz  
DCLK = 3.072 MHz  
18.3  
320  
mA  
µA  
DTX  
TX Interface Supply Current  
I
DIO  
FM Transmitter in Receive Power Scan Mode  
RX Supply Current  
I
16.8  
400  
mA  
µA  
RX  
RX Interface Supply Current  
Supplies and Interface  
I
IORPS  
V
V
Powerdown Current  
Powerdown Current  
I
Powerdown mode  
10  
3
20  
10  
µA  
µA  
DD  
DDPD  
I
SCLK, RCLK inactive  
Powerdown mode  
IO  
IOPD  
3
High Level Input Voltage  
V
0.7 x V  
–0.3  
–10  
VIO + 0.3  
V
V
IH  
IO  
3
Low Level Input Voltage  
High Level Input Current  
V
0.3 x V  
10  
IL  
IO  
3
I
V
= V = 3.6 V  
µA  
µA  
V
IH  
IN  
IO  
3
Low Level Input Current  
I
V
= 0 V, V = 3.6 V  
–10  
10  
IL  
IN  
IO  
4
High Level Output Voltage  
V
I
= 500 µA  
0.8 x VIO  
OH  
OUT  
OUT  
4
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x V  
V
OL  
IO  
Notes:  
1. LNA is automatically switched to higher current mode for optimum sensitivity in weak signal conditions.  
2. Guaranteed by characterization.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2/INT, and GPO3.  
4. For output pins SDIO, GPO1, GPO2/INT, and GPO3.  
6
Rev. 1.0  
Si4720/21-B20  
Table 4. Reset Timing Characteristics1,2,3  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Min  
100  
30  
Typ  
Max  
Unit  
µs  
RST Pulse Width and GPO1, GPO2/INT Setup to RST  
GPO1, GPO2/INT Hold from RST  
Important Notes:  
t
SRST  
t
ns  
HRST  
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the 1st start condition.  
3. When selecting 3-wire or SPI modes, the user must ensure that a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then  
minimum tSRST is 100 µs, to provide time for on-chip 1 Mdevices (active while RST is low) to pull GPO1 high and  
GPO2 low.  
tHRST  
tSRST  
70%  
30%  
RST  
70%  
30%  
GPO1  
70%  
30%  
GPO2/  
INT  
Figure 1. Reset Timing Parameters for Busmode Select  
Rev. 1.0  
7
Si4720/21-B20  
Table 5. 2-Wire Control Interface Characteristics1,2,3  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCLK Frequency  
SCLK Low Time  
SCLK High Time  
f
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIOSetup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIOHold (START)  
SDIO Input to SCLKSetup  
0.6  
100  
0
µs  
ns  
ns  
µs  
µs  
ns  
HD:STA  
SU:DAT  
t
t
4,5  
SDIO Input to SCLKHold  
900  
HD:DAT  
SU:STO  
SCLK input to SDIOSetup (STOP)  
STOP to START Time  
t
0.6  
1.3  
t
BUF  
SDIO Output Fall Time  
t
250  
f:OUT  
Cb  
-----------  
20 + 0.1  
1 pF  
SDIO Input, SCLK Rise/Fall Time  
t
t
300  
ns  
f:IN  
r:IN  
Cb  
-----------  
1 pF  
20 + 0.1  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VIO = 0 V, SCLK and SDIO are low-impedance. 2-wire control interface is I2C compatible.  
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the first start condition.  
4. The Si4720/21 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum  
tHD:DAT specification.  
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated as long as all other timing parameters are met.  
8
Rev. 1.0  
Si4720/21-B20  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
30%  
SCLK  
SDIO  
70%  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
SDIO  
A6-A0,  
R/W  
D7-D0  
D7-D0  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram  
Rev. 1.0  
9
Si4720/21-B20  
Table 6. 3-Wire Control Interface Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
SCLK Frequency  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
f
CLK  
SCLK High Time  
t
25  
25  
20  
10  
10  
2
HIGH  
SCLK Low Time  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall time  
t
ns  
S
t
ns  
HSDIO  
t
ns  
HSEN  
t
Read  
Read  
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t , t  
ns  
R
F
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHSDIO  
tHIGH  
tLOW  
tHSEN  
tS  
70%  
30%  
tS  
SEN  
A6-A5,  
R/W,  
A4-A1  
70%  
30%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
Address In  
Data In  
Figure 4. 3-Wire Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN  
tS  
tCDZ  
70%  
30%  
tS  
70%  
30%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 5. 3-Wire Control Interface Read Timing Parameters  
10  
Rev. 1.0  
Si4720/21-B20  
Table 7. SPI Control Interface Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
f
CLK  
SCLK High Time  
t
25  
25  
15  
10  
5
HIGH  
SCLK Low Time  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall time  
t
ns  
S
t
ns  
HSDIO  
t
ns  
HSEN  
t
Read  
Read  
2
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t
t
ns  
R, F  
Note: When selecting SPI mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHIGH  
tLOW  
tHSDIO  
tHSEN  
70%  
30%  
tS  
SEN  
tS  
70%  
30%  
C7  
C6–C1  
C0  
D7  
D6–D1  
D0  
SDIO  
Control Byte In  
8 Data Bytes In  
Figure 6. SPI Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
tCDV  
tS  
tHSEN  
tHSDIO  
70%  
30%  
tS  
SEN  
tCDZ  
70%  
30%  
SDIO  
C7  
C6–C1  
C0  
D7  
D6–D1  
D0  
16 Data Bytes Out  
(SDIO or GPO1)  
Bus  
Turnaround  
Control Byte In  
Figure 7. SPI Control Interface Read Timing Parameters  
Rev. 1.0  
11  
Si4720/21-B20  
Table 8. Digital Audio Interface Characteristics (Receive)  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
26  
10  
10  
5
Typ  
Max  
1000  
Unit  
ns  
DCLK Cycle Time  
t
DCT  
DCH  
DCLK pulse width high  
t
ns  
DCLK pulse width low  
t
ns  
DCL  
DFS set-up time to DCLK rising edge  
DFS hold time from DCLK rising edge  
DOUT propagation delay from DCLK falling edge t  
t
ns  
SU:DFS  
HD:DFS  
t
5
ns  
0
12  
ns  
PD:DOUT  
tDCH  
tDCL  
DCLK  
DFS  
tDCT  
tHD:DFS  
tSU:DFS  
DOUT  
tPD:OUT  
Figure 8. Digital Audio Interface Timing Parameters, I2S Mode  
12  
Rev. 1.0  
Si4720/21-B20  
Table 9. FM Receiver Characteristics1,2  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
Input Frequency  
f
RF  
Sensitivity with Headphone Net-  
(S+N)/N = 26 dB  
(S+N)/N = 26 dB  
2.2  
µV EMF  
3,4,5  
work  
3,4,5,6  
Sensitivity with 50 Network  
1.1  
15  
µV EMF  
µV EMF  
6
RDS Sensitivity  
f = 2 kHz,  
RDS BLER < 5%  
6
TXO Receiver Mode Sensitivity  
3
3.5  
4
5
µV EMF  
6,7  
LNA Input Resistance  
k  
6,7  
LNA Input Capacitance  
4
5
6
pF  
6,8  
Input IP3  
100  
40  
35  
60  
35  
72  
15  
25  
55  
70  
45  
10  
105  
50  
50  
70  
80  
63  
58  
0.1  
75  
50  
90  
1
dBµV EMF  
3,4,6,7  
m = 0.3  
±200 kHz  
±400 kHz  
In-band  
dB  
dB  
dB  
dB  
AM Suppression  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
6
Spurious Response Rejection  
3,4,7  
mV  
Audio Output Voltage  
RMS  
3,7,9  
dB  
Hz  
kHz  
dB  
dB  
dB  
%
Audio Output L/R Imbalance  
Audio Frequency Response Low  
6
–3 dB  
–3 dB  
30  
0.5  
80  
54  
6
Audio Frequency Response High  
7,9  
Audio Stereo Separation  
3,4,5,7,10  
Audio Mono S/N  
4,5,7,10,11  
Audio Stereo S/N  
3,7,9  
Audio THD  
6
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
Single-ended  
µs  
µs  
6,10  
R
k  
Audio Output Load Resistance  
L
Notes:  
1. Additional testing information is available in Application Note AN388. Volume = maximum for all tests. Tested at  
RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Antenna Selection and  
Universal Layout Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
4. f = 22.5 kHz.  
5. BAF = 300 Hz to 15 kHz, A-weighted.  
6. Guaranteed by characterization.  
7. VEMF = 1 mV.  
8. |f2 – f1| > 2 MHz, f = 2 x f – f . AGC is disabled. Refer to "7. Pin Descriptions: Si4720/21-GM" on page 41.  
0
1
2
9. f = 75 kHz.  
10. At LOUT and ROUT pins.  
11. Analog audio output mode.  
12. At temperature 25 °C.  
Rev. 1.0  
13  
Si4720/21-B20  
Table 9. FM Receiver Characteristics1,2 (Continued)  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
50  
Unit  
pF  
6,10  
C
Single-ended  
Audio Output Load Capacitance  
L
6
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
80  
ms/channel  
6
Powerup Time  
From powerdown  
110  
3
ms  
dB  
12  
RSSI Offset  
Input levels of 8 and  
60 dBµV at RF Input  
–3  
Notes:  
1. Additional testing information is available in Application Note AN388. Volume = maximum for all tests. Tested at  
RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Antenna Selection and  
Universal Layout Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. FMOD = 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
4. f = 22.5 kHz.  
5. BAF = 300 Hz to 15 kHz, A-weighted.  
6. Guaranteed by characterization.  
7. VEMF = 1 mV.  
8. |f2 – f1| > 2 MHz, f = 2 x f – f . AGC is disabled. Refer to "7. Pin Descriptions: Si4720/21-GM" on page 41.  
0
1
2
9. f = 75 kHz.  
10. At LOUT and ROUT pins.  
11. Analog audio output mode.  
12. At temperature 25 °C.  
14  
Rev. 1.0  
Si4720/21-B20  
Table 10. FM Transmitter Characteristics1  
Test conditions: VRF = 118 dBµV, stereo, f = 68.25 kHz, fpilot = 6.75 kHz, REFCLK = 32.768 kHz, 75 µs pre-emphasis,  
unless otherwise specified.  
Production test conditions: VDD = 3.3 V, VIO = 3.3 V, TA = 25 °C, FRF = 98 MHz.  
Characterization test conditions: VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz.  
All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.  
Parameters are tested in production unless otherwise specified.  
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
kHz  
2
Transmit Frequency Range  
f
RF  
Transmit Frequency Accuracy and  
–3.5  
2,3  
Stability  
2
Transmit Voltage Accuracy  
V
V
= 103–117 dBµV  
= 102, 118 dBµV  
–2.5  
–2.5  
2.5  
2.5  
dB  
dB  
RF  
RF  
Transmit Voltage Accuracy  
Transmit Voltage Temperature Coef-  
–0.075  
–0.025  
dB/°C  
2
ficient  
Transmit Channel Edge Power  
Transmit Adjacent Channel Power  
Transmit Alternate Channel Power  
Transmit Emissions  
> ±100 kHz,  
pre-emphasis off  
–20  
–26  
–26  
dBc  
dBc  
dBc  
> ±200 kHz,  
pre-emphasis off  
–30  
–30  
> ±400 kHz,  
pre-emphasis off  
In-band (76–108 MHz)  
70  
45  
58  
53  
5
–30  
dBc  
pF  
pF  
µs  
2
Output Capacitance Max  
C
C
TUNE  
TUNE  
2
Output Capacitance Min  
2
Pre-emphasis Time Constant  
TX_PREMPHASIS = 75 µs  
TX_PREMPHASIS = 50 µs  
75  
50  
63  
80  
54  
µs  
2
Audio SNR Mono  
f = 22.5 kHz, Mono,  
dB  
limiter off  
Audio SNR Stereo  
f = 22.5 kHz,  
fpilot = 6.75 kHz, Stereo,  
limiter off  
53  
58  
dB  
%
Audio THD Mono  
f = 75 kHz, Mono,  
0.1  
0.5  
limiter off  
Notes:  
1. FM transmitter performance specifications are subject to adherence to Silicon Laboratories guidelines in “AN383:  
Universal Antenna Selection and Layout Guidelines.” Silicon Laboratories will evaluate schematics and layouts for  
qualified customers. Tested with test schematic (L = 120 nH, Q > 30) shown in Figure 10 on page 19.  
2. Guaranteed by characterization.  
3. No measurable fRF/VDD at VDD of 500 mVpk-pk at 100 Hz to 10 kHz.  
Rev. 1.0  
15  
Si4720/21-B20  
Table 10. FM Transmitter Characteristics1 (Continued)  
Test conditions: VRF = 118 dBµV, stereo, f = 68.25 kHz, fpilot = 6.75 kHz, REFCLK = 32.768 kHz, 75 µs pre-emphasis,  
unless otherwise specified.  
Production test conditions: VDD = 3.3 V, VIO = 3.3 V, TA = 25 °C, FRF = 98 MHz.  
Characterization test conditions: VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz.  
All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.  
Parameters are tested in production unless otherwise specified.  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
Audio THD Stereo  
f = 22.5 kHz,  
fpilot = 6.75 kHz, Stereo,  
limiter off  
0.1  
0.5  
%
2
Audio Stereo Separation  
left channel only  
30  
40  
30  
35  
50  
dB  
dB  
ms  
Sub Carrier Rejection Ratio  
SCR  
2
Powerup Settling Time  
110  
0.636  
15 k  
2
Input Signal Level  
V
V
PK  
AI  
2
Frequency Flatness  
Mono, ±1.5 dB,  
f = 75 kHz, 0, 50, 75 µs  
pre-emphasis, limiter off  
Hz  
Hz  
Hz  
2
High Pass Corner Frequency  
Mono, –3 dB, f = 75 kHz,  
0, 50, 75 µs pre-emphasis,  
limiter off  
5
30  
2
Low Pass Corner Frequency  
Mono, –3 dB, f = 75 kHz,  
0, 50, 75 µs pre-emphasis,  
limiter off  
15 k  
16 k  
Audio Imbalance  
Mono  
–1  
1
dB  
%
2
Pilot Modulation Rate Accuracy  
f = 68.25 kHz,  
–10  
10  
fpilot = 6.75 kHz, Stereo  
2
Audio Modulation Rate Accuracy  
f = 68.25 kHz,  
–10  
10  
%
fpilot = 6.75 kHz, Stereo  
2
Input Resistance  
LIATTEN[1:0] = 11  
50  
60  
10  
54  
k  
pF  
2
Input Capacitance  
Received Noise Level Accuracy  
60 dBµV input, T = 25 ºC  
dBuV  
A
2
(Si4720/21 Only)  
Notes:  
1. FM transmitter performance specifications are subject to adherence to Silicon Laboratories guidelines in “AN383:  
Universal Antenna Selection and Layout Guidelines.” Silicon Laboratories will evaluate schematics and layouts for  
qualified customers. Tested with test schematic (L = 120 nH, Q > 30) shown in Figure 10 on page 19.  
2. Guaranteed by characterization.  
3. No measurable fRF/VDD at VDD of 500 mVpk-pk at 100 Hz to 10 kHz.  
16  
Rev. 1.0  
Si4720/21-B20  
Table 11. Digital Audio Interface Characteristics (Transmit)  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
DCLK pulse width high  
Symbol Test Condition  
Min  
10  
10  
5
Typ  
Max  
Unit  
ns  
t
DCH  
DCLK pulse width low  
t
ns  
DCL  
DFS set-up time to DCLK rising edge  
DFS hold time from DCLK rising edge  
DIN set-up time from DCLK rising edge  
DIN hold time from DCLK rising edge  
t
t
ns  
SU:DFS  
HD:DFS  
5
ns  
t
5
ns  
SU:DIN  
t
5
ns  
HD:DIN  
t
t
R
10  
ns  
DCLK, DFS, DIN, Rise/Fall time  
F
1,2  
1.0  
40.0  
MHz  
DCLK Tx Frequency  
Notes:  
1. Guaranteed by characterization.  
2. The DCLK frequency may be set below the minimum specification if DIGITAL_INPUT_SAMPLE_RATE is first set to 0  
(disable).  
DCLK  
tR  
tF  
tHD:DFS  
tSU:DFS  
DFS  
DIN  
tSU:DIN  
tHD:DIN  
Figure 9. Digital Audio Interface Timing Parameters, I2S Mode  
Rev. 1.0  
17  
Si4720/21-B20  
Table 12. FM Receive Power Scan Characteristics1  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Tune and Signal Strength Measurement  
Time per Channel  
80  
ms  
2
Notes:  
1. Settling time for ac coupling capacitors on the audio input pins after Receive to Transmit transition can take a few  
hundred milliseconds. The actual settling time depends on the values of the ac-coupling capacitors. Using digital audio  
input mode avoids this settling time.  
2. Guaranteed by characterization.  
Table 13. Reference Clock and Crystal Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock  
1
RCLK Supported Frequencies  
31.130  
–50  
1
32.768  
40,000  
50  
kHz  
2
RCLK Frequency Tolerance  
ppm  
REFCLK_PRESCALE  
4095  
REFCLK  
31.130  
32.768  
34.406  
kHz  
Crystal Oscillator  
Crystal Oscillator Frequency  
–100  
32.768  
kHz  
ppm  
pF  
2
Crystal Frequency Tolerance  
100  
3.5  
Board Capacitance  
Notes:  
1. The Si4720/21 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK  
frequencies between 31.130 kHz and 40 MHz that are not supported. See “AN332: Si4704/05/06/1x/2x/3x/4x FM  
Transmitter/AM/FM/SW/LW/WB Receiver Programming Guide” for more details.  
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing.  
18  
Rev. 1.0  
Si4720/21-B20  
2. Test Circuit  
2.1. Test Circuit Schematic  
C2  
VIO  
0.47 µF  
LIN  
RIN  
C3  
0.47 µF  
1
2
3
4
5
15  
14  
13  
12  
11  
NC  
RIN  
LOUT  
ROUT  
GND  
VDD  
FMI  
FMI  
TX Antenna  
C4  
LOUT  
ROUT  
U1  
Si4720/21  
RFGND  
TXO  
RST  
2 pF  
L1  
120 nH  
VBATTERY  
2.7 to 5.5 V  
VTXOUT  
C1  
22 nF  
50  
R1  
RST  
SEN  
SCLK  
SDIO  
RCLK  
X1  
RCLK  
VIO  
1.5 to 3.6 V  
C5  
C6  
Notes:  
1. Si4720/21 is shown configured in I2C compatible bus mode.  
2. GPO2/INT can be configured for interrupts with the powerup command.  
3. To ensure proper operation and FM transmitter performance, follow the guidelines in  
“AN383: 3 mm x 3 mm QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
4. LIN, RIN line inputs must be ac-coupled.  
Figure 10. Test Circuit Schematic  
2.2. Test Circuit Bill of Materials  
Table 14. Si4720/21 Test Circuit Bill of Materials  
Component(s)  
C1  
Value/Description  
Supply bypass capacitor, 22 nF, 20%, Z5U/X7R  
AC Coupling Capacitor, 0.47 µF  
Supplier(s)  
Murata  
Murata  
AVX  
C2, C3  
C4  
2 pF, ±.05 pF, 06035JZR0AB  
C5, C6  
Crystal load capacitors, 22 pF, ±5%, COG  
(Optional: for crystal oscillator option)  
Venkel  
L1  
R1  
X1  
U1  
120 nH inductor, Qmin = 30  
49.9 , 5%  
Murata  
Murata  
32.768 kHz crystal (Optional: for crystal oscillator option)  
Si4720/21 FM Radio Transceiver  
Epson  
Silicon Laboratories  
Rev. 1.0  
19  
Si4720/21-B20  
3. Typical Application Schematic  
3.1. Analog Audio Inputs/Outputs  
C2  
VIO  
0.47 µF  
LIN  
RIN  
C3  
0.47 µF  
1
15  
14  
13  
12  
11  
NC  
RIN  
LOUT  
ROUT  
GND  
VDD  
RX Antenna  
TX/RX Antenna  
2
3
4
5
FMI  
LOUT  
ROUT  
U1  
Si4720/21  
RFGND  
TXO  
RST  
L1  
120 nH  
VBATTERY  
2.7 to 5.5 V  
C1  
22 nF  
RST  
SEN  
SCLK  
SDIO  
RCLK  
X1  
RCLK  
VIO  
1.5 to 3.6 V  
C4  
C5  
Notes:  
1. Si4720/21 is shown configured in I2C compatible bus mode.  
2. GPO2/INT can be configured for interrupts with the powerup command.  
3. To ensure proper operation and FM transmitter performance, follow the guidelines in  
“AN383: 3 mm x 3 mm QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
4. LIN, RIN line inputs must be ac-coupled.  
5. Dedicated RX antenna at FMI input optional.  
Figure 11. Analog Audio Inputs/Outputs (LIN, RIN, LOUT, ROUT  
)
3.2. Typical Application Bill of Materials  
Table 15. Si4720/21 Typical Application Bill of Materials  
Component(s)  
C1  
Value/Description  
Supplier(s)  
Murata  
Supply bypass capacitor, 22 nF, 20%, Z5U/X7R  
AC Coupling Capacitor, 0.47 µF  
C2, C3  
Murata  
C4, C5  
Crystal load capacitors, 22 pF, ±5%, COG  
(Optional: for crystal oscillator option)  
Venkel  
L1  
X1  
U1  
120 nH inductor, Qmin = 30  
32.768 kHz crystal (Optional: for crystal oscillator option)  
Si4720/21 FM Radio Transceiver  
Murata  
Epson  
Silicon Laboratories  
20  
Rev. 1.0  
Si4720/21-B20  
3.3. Digital Audio Inputs/Outputs  
R1  
VIO  
DCLK  
DFS  
DOUT  
DFS  
R2  
DIN  
1
15  
14  
13  
12  
11  
NC  
DOUT  
DFS  
DIN  
R3  
RX Antenna  
TX/RX Antenna  
2
3
4
5
FMI  
U1  
Si4720/21  
RFGND  
TXO  
GND  
VDD  
RST  
L1  
120 nH  
VBATTERY  
C1  
2.7 to 5.5 V  
22 nF  
RST  
SEN  
SCLK  
SDIO  
RCLK  
VIO  
1.5 to 3.6 V  
Notes:  
1. Si4720/21 is shown configured in I2C compatible bus mode.  
2. GPO2/INT can be configured for interrupts with the powerup command.  
3. To ensure proper operation and FM transmitter performance, follow the  
guidelines in “AN383: Si47xx 3 mm x 3 mm QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
4. Dedicated RX antenna at FMI input optional.  
Figure 12. Digital Audio Inputs (DIN, DFS, DCLK)  
3.4. Typical Application Schematic Bill of Materials  
Table 16. Si4720/21 Bill of Materials  
Component(s)  
Value/Description  
Supply bypass capacitor, 22 nF, 20%, Z5U/X7R  
AC Coupling Capacitor, 0.47 µF  
120 nH inductor, Qmin = 30  
2 kResistor  
Supplier(s)  
Murata  
C1  
C2, C3  
L1  
Murata  
Murata  
R1, R2  
R3  
Any  
600 Resistor  
Any  
U1  
Si4720/21 FM Radio Transceiver  
Silicon Laboratories  
Rev. 1.0  
21  
Si4720/21-B20  
4. Universal AM/FM RX/FM TX Application Schematic  
Figure 13 shows an application schematic that supports the Si47xx family of 3 mm x 3 mm QFN products,  
including the Si4702/3/4/5 FM receivers, Si471x FM transmitters, Si472x FM transceivers, and Si473x AM/FM  
receivers.  
FB1  
2.5 k@ 100 MHz  
R 2  
T 5  
S 1  
Right  
Audio  
U2  
Headphone Amplifier  
Left  
Audio  
FB2  
2.5 k@ 100 MHz  
Si4702/03: Populate R12, R13, R21, C14, and C15  
Si4704/05/1x/2x/3x Analog: Populate C7, C8, C14  
and C15 as shown  
Si4704/05/1x/2x/3x Digital: Populate R16, R17,  
R18, R19, and R20 as shown  
J1 HP Jack  
R16  
2 k  
VBATTERY  
2.7 to 5.5 V  
System Component  
GPIO3  
GPIO2  
GPIO1  
C4  
1 nF  
LHEADPHONE  
270 nH  
R13  
0   
C7/R17  
0.39 uF/ 2 k  
LIN  
System Component  
FM Embedded RX/TX Antenna  
RIN  
R12  
0   
C8/R18  
0.39 uF/ 600   
R14  
L1  
D3  
0   
10 nH  
C14/R19  
0.39 uF/ 0   
C17/R21  
3.3pF/0   
D4  
1
2
3
4
5
15  
14  
13  
12  
11  
LSHORT  
NC  
GND/RIN/DOUT  
120 nH  
FMI  
LOUT/DFS  
ROUT/DIN  
GND  
U1  
Si47xx  
RFGND  
TXO/AMI  
RST  
System Component  
C15/R20  
System Component  
0.39 uF/ 0   
VDD  
AM Ferrite Antenna  
VBATTERY  
2.7 to 5.5 V  
System Components  
C1  
22 nF  
LFERRITE  
180–  
600 uH  
C16  
470 nF  
D5  
RST  
SEN  
SCLK  
SDIO  
RCLK  
VIO  
Figure 13. Universal AM/FM RX/FM TX Application Schematic  
Following the schematic and layout recommendations detailed in “AN383: Universal Antenna Selection and Layout  
Guidelines” will result in optimal performance with the minimal application schematic shown in Figure 13. “Universal  
AM/FM RX/FM TX Application Schematic”. System components are those that are likely to be present for any tuner  
or transmitter design.  
22  
Rev. 1.0  
Si4720/21-B20  
4.1. Universal AM/FM RX/FM TX Bill of Materials  
The bill of materials for the expanded application schematic shown in Figure 13 is provided in Table 17. Refer to  
the individual device layout guides and antenna interface guides for a discussion of the purpose of each  
component.  
Table 17. Universal AM/FM/RX/FM TX Bill of Materials  
Designator  
Description  
Note  
C1  
U1  
Supply bypass capacitor, 22 nF, 10%, Z5U/X7R, 0402  
Silicon Laboratories Si47xx, 3 mm x 3 mm, 20 pin, QFN  
R12, R13, R19, 0 jumper, 0402  
R12, R13, and R21 for  
Si4702/03 Only  
R20, R21  
C16  
AM antenna ac coupling capacitor, 470 nF, 20%, Z5U/X7R  
AM Ferrite Antenna  
AM Ferrite Antenna  
LFERRITE AM Ferrite loop stick, 180–600 µH  
FB1,FB2  
Ferrite bead, 2.5 k@ 100 MHZ, 0603, Murata BLM18BD252SN1D Headphone Antenna  
LHEADPHONE Headphone antenna matching inductor, 270 nH, 0603, Q>15, Murata Headphone Antenna  
LQW18ANR27J00D  
LSHORT  
Embedded antenna matching inductor, 120 nH, 0603, Q>30, Murata Embedded Antenna  
LQW18ANR12J00D  
R14  
C2  
Embedded antenna jumper, 2.2 , 0402  
Optional  
Optional  
Optional  
Supply bypass capacitor, 22 nF, 10%, Z5U/X7R, 0402  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R, 0402  
C3  
C5, C6  
R7-R11  
C12, C13  
X1  
Headphone amp output shunt capacitor, 100 pF, 10%, Z5U/X7R, 0402 Optional  
Current limiting resistor, 20 –2 k, 0402  
Optional  
Crystal load capacitor, 22 pF, 5%, COG  
Optional  
Crystal, Epson FC-135  
Optional  
C7, C8  
D1-D5  
C11  
Si47xx input ac coupling capacitor, 0.39 µF, X7R/X5R, 0402  
ESD Diode, SOT23-3, California Micro Devices CM1214-01ST  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R, 0402  
System Component  
System Component  
Headphone Amplifier  
C4  
Headphone antenna ac coupling capacitor, 1 nF, 10%, Z5U/X7R, 0402 Headphone Antenna  
Headphone amp output ac coupling capacitor, 125 uF, X7R, 0805 Headphone Amplifier  
Headphone amp input ac coupling capacitor, 0.39 µF, X7R/X5R, 0402 Headphone Amplifier  
C9, C10  
C14, C15  
R1,R2,R3,R4 Headphone amp feedback/gain resistor, 20 k, 0402  
Headphone Amplifier  
Headphone Amplifier  
Headphone Amplifier  
System Component  
System Component  
R5, R6  
U2  
Headphone amp bleed resistor, 100 k, 0402  
Headphone amplifier, National Semiconductor, LM4910MA  
Current limiting resistor, 2 k0402  
R16, R17  
R18  
Current limiting resistor, 600 , 0402  
L1  
VCO filter inductor, 10 nH, 0603, Q30, Murata, LQW18ANR01J00D Optional  
C17  
VCO filter capacitor, 3.3 pF, 0402, COG, Venkel,  
C0402COG2503R3JN  
Optional  
Rev. 1.0  
23  
Si4720/21-B20  
5. Functional Description  
5.1. Overview  
Si4720  
Tx/Rx Ant  
TXO  
LIN  
L1  
120 nH  
RIN  
Rx Ant*  
FMI  
ADC  
ADC  
DAC  
DAC  
ROUT  
LNA  
PGA  
AFC  
DSP  
RFGND  
AGC  
LOUT  
2.7–5.5 V  
VDD  
CONTROL  
INTERFACE  
LDO  
GPO  
C1 GND  
22 uF  
*Note: Dedicated Rx antenna is optional  
Figure 14. Functional Block Diagram  
The Si4720/21 is the first single-chip FM radio bypass capacitor, and a PCB space of approximately  
2
transceiver. The proven and patented digital 15 mm . The Si4720/21 is layout compatible with  
architecture of the Si4720/21 combines the functionality Silicon Laboratories' Si470x FM radio receivers, Si473x  
of the Si470x FM radio receiver with the Si471x FM AM/FM radio receivers, and the Si471x FM radio  
transmitter, offering full FM receive and transmit transmitter solutions, allowing a single PCB layout to  
capabilities in a single, ultra-small 3x3x0.55 mm QFN accommodate a variety of music features. High yield  
package. The device leverages Silicon Laboratories’ manufacturability, unmatched performance, easy  
highly successful and proven FM technology and offers design-in, and software programmability are key  
unmatched integration and performance. FM receiver advantages of the Si4720.  
and transmit functionality may be added to any portable  
The Si4720/21’s integrated receive power scan function  
device by using this single chip. As with the Si470x and  
shares the same antenna as the transmitter allowing for  
Si471x products, the Si4720/21 offers industry leading  
a compact printed circuit board design. The device  
size, performance, low power consumption, and ease of  
operates in half duplex mode, meaning the transmitter  
and receiver do not operate at the same time.  
use.  
The Si4720/21 is the first FM radio transceiver  
The Si4720/21 performs FM modulation in the digital  
integrated circuit to support a small loop antenna, which  
domain to achieve high fidelity, optimal performance  
can be integrated into the enclosure or PCB of a  
versus power consumption, and flexibility of design. The  
portable device. This feature enables applications that  
onboard DSP provides modulation adjustment and  
also include Bluetooth functionality to perform FM radio  
audio dynamic range control for optimum sound quality.  
reception without cables. For portable navigation  
The Si4721 supports the European Radio Data System  
devices, the Si4720’s antenna architecture permits  
(RDS) and the US Radio Broadcast Data System  
integration of the traffic messaging antenna into the  
(RBDS) including all the symbol encoding, block  
enclosure of the portable device, and eliminates the  
synchronization, and error correction functions. Using  
need for external antenna cables.  
this feature, the Si4721 enables data such as artist  
The Si4720's digital integration reduces the required  
name and song title to be transmitted to an RDS/RBDS  
external components of traditional offerings, resulting in  
receiver.  
a solution requiring only an external inductor and  
24  
Rev. 1.0  
Si4720/21-B20  
The transmit output (TXO) connects directly to the The Si4720/21 reference clock is programmable,  
transmit antenna with only one external inductor to supporting many RCLK inputs as shown in Table 10.  
provide harmonic filtering. The output is programmable  
The S4720/21 are part of a family of broadcast audio  
over a 10 dB voltage range in 1 dB steps. The TXO  
solutions offered in standard, 3 x 3 mm 20-pin QFN  
output pin can also be configured for loop antenna  
packages. All solutions are layout compatible, allowing  
support. Users are responsible for complying with local  
a single PCB to accommodate various feature offerings.  
regulations on RF transmission (FCC, ETSI, ARIB,  
The Si4720/21 includes line inputs to the on-chip  
etc.).  
analog-to-digital converters (ADC), a programmable  
The digital audio interface operates in slave mode and  
reference clock input, and a configurable digital audio  
2
supports a variety of MSB-first audio data formats  
interface. The chip supports I C-compliant 2-wire, 8-bit  
2
including I S and left-justified modes. The interface has  
SPI, and a 3-wire control interface.  
three pins: digital data input (DIN), digital frame  
5.2. Application Schematics and Operating  
Modes  
synchronization input (DFS), and  
a
digital bit  
synchronization input clock (DCLK). The Si4720/21  
supports a number of industry-standard sampling rates  
including 32, 40, 44.1, and 48 kHz. The digital audio  
interface enables low-power operation by eliminating  
the need for redundant DACs and ADCs on the audio  
baseband processor.  
The application schematic for the Si4720/21 is shown in  
Section "3. Typical Application Schematic" on page 20.  
The Si4720/21 supports selectable analog, digital, or  
concurrent analog and digital audio output modes. In  
the analog output mode, pin 13 is ROUT, pin 14 is  
LOUT, and pin 17 is GPO3. In the digital output mode,  
pin 15 is DOUT, pin 16 is DFS, and pin 17 is DCLK.  
Concurrent analog and digital audio output mode  
requires pins 13, 14, 15, 16, and 17. In addition to  
output mode, there is a clocking mode to clock the  
Si4720/21 from a reference clock or crystal oscillator.  
The user sets the operating modes with commands as  
described in Section "6. Commands and Properties" on  
page 36.  
The Si4720/21 includes a low-noise stereo line input  
(LIN/RIN) with programmable attenuation. To ensure  
optimal audio performance, the Si4720/21 has a  
transmit line input property that allows the user to  
specify the peak amplitude of the analog input required  
to reach maximum deviation level. The deviation levels  
of the audio, pilot, and RDS/RBDS signals can be  
independently programmed to customize FM transmitter  
designs. The Si4720/21 has a programmable low audio  
level and high audio level indicators that allows the user  
to selectively enable and disable the carrier based on  
the presence of audio content. In addition, the device  
provides an overmodulation indicator to allow the user  
to dynamically set the maximum deviation level. The  
Si4720/21 has a programmable audio dynamic range  
control that can be used to reduce the dynamic range of  
the audio input signal and increase the volume at the  
receiver. These features can dramatically improve the  
end user’s listening experience.  
5.3. FM Receiver  
The Si4720/21 FM receiver is based on the proven  
Si4700/01/02/03 FM radio receiver. The part leverages  
Silicon Laboratories' proven and patented Si4700/01 FM  
broadcast radio receiver digital architecture, delivering  
superior RF performance and interference rejection. The  
proven digital techniques provide excellent sensitivity in  
weak signal environments while providing superb  
selectivity and inter-modulation immunity in strong signal  
environments.  
The Si4720/21 is reset by applying a logic low on the  
RST pin. This causes all register values to be reset to  
their default values. The digital input/output interface  
The FM receiver supports the worldwide FM broadcast  
band (76 to 108 MHz) with channel spacings of 50–  
200 kHz. The Low-IF architecture utilizes a single  
converter stage and digitizes the signal using a high-  
resolution analog-to-digital converter. The resulting  
digital signals are further processed through an on-chip  
DSP for digital channel selection, FM demodulation, and  
ultimately stereo audio output. The audio output can be  
directed either to an external headphone amplifier via  
analog in/out or to other system ICs through digital audio  
supply (V ) provides voltage to the RST, SEN, SDIO,  
IO  
RCLK, DIN, DFS, and DCLK pins and can be connected  
to the audio baseband processor's supply voltage to  
save power and remove the need for voltage level  
translators. RCLK is not required for register operation.  
2
interface (I S).  
Rev. 1.0  
25  
Si4720/21-B20  
5.4. Integrated Antenna Support  
5.5. Receiver Digital Audio Interface  
(Si4721 Only)  
The Si4720/21 is the first FM receiver to support the fast  
growing trend to integrate the FM receiver antenna into  
the device enclosure. The chip is designed with this  
function in mind from the outset, with multiple  
international patents pending, thus it is superior to many  
other options in price, board space, and performance.  
The digital audio interface operates in slave mode and  
supports three different audio data formats:  
2
I S  
Left-Justified  
DSP Mode  
The Si4720/21 supports an internal RX antenna  
allowing for "wire free" listening to FM over Bluetooth.  
The user can receive FM over the integrated RX  
antenna and stream it via Bluetooth to a Bluetooth-  
enabled headset.  
5.5.1. Audio Data Formats  
2
In I S mode, by default the MSB is captured on the  
second rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is low, and the right channel is  
transferred when the DFS is high.  
Testing indicates that using Silicon Laboratories'  
patented techniques provides FM performance over an  
integrated antenna that can be very similar in many key  
metrics to performance using standard FM receive  
antennas (e.g., wired headset). Refer to “AN383:  
Antenna Selection and Universal Layout Guidelines” for  
additional details on the implementation of support for  
an integrated antenna.  
In Left-Justified mode, by default the MSB is captured  
on the first rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is high, and the right channel is  
transferred when the DFS is low.  
Figure 15 shows a conceptual block diagram of the  
Si4720/21 architecture used to support the short  
antenna. The headphone/dedicated FM receive  
antenna is therefore optional. Host software can detect  
the presence of a headphone antenna and switch  
between the integrated antenna if desired.  
In DSP mode, the DFS becomes a pulse with a width of  
1DCLK period. The left channel is transferred first,  
followed right away by the right channel. There are two  
options in transferring the digital audio data in DSP  
mode: the MSB of the left channel can be transferred on  
the first rising edge of DCLK following the DFS pulse or  
on the second rising edge.  
Headphone  
In all audio formats, depending on the word size, DCLK  
frequency, and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word. In addition, if  
preferred, the user can configure the MSB to be  
captured on the falling edge of DCLK via properties.  
Ant*  
FMI  
LNA  
RFGND  
AGC  
Short/  
Embedded  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
LPI  
Ant  
L1  
120 nH  
5.5.2. Audio Sample Rates  
The device supports a number of industry-standard  
sampling rates including 32, 40, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs on the audio  
baseband processor.  
*Note: Dedicated RX antenna is optional.  
Figure 15. Conceptual Block Diagram of the  
Si4720/21 Short Antenna Support  
26  
Rev. 1.0  
Si4720/21-B20  
INVERTED  
DCLK  
(OFALL = 1)  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
I2S  
RIGHT CHANNEL  
(OMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 16. I2S Digital Audio Format  
INVERTED  
DCLK  
(OFALL = 1)  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
n-2  
Left-Justified  
(OMODE = 0110)  
DOUT  
1
2
3
n-2  
n-1  
n
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 17. Left-Justified Digital Audio Format  
(OFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DOUT  
1
2
3
2
n-1  
n
(OMODE = 1100)  
(OMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 18. DSP Digital Audio Format  
5.6.1. Stereo Decoder  
5.6. Stereo Audio Processing  
The  
Si4720/21's  
integrated  
stereo  
decoder  
The output of the FM demodulator is a stereo  
multiplexed (MPX) signal. The MPX standard was  
developed in 1961, and is used worldwide. Today's  
MPX signal format consists of left + right (L+R) audio,  
left – right (L–R) audio, a 19 kHz pilot tone, and  
RDS/RBDS data as shown in Figure 19 below.  
automatically decodes the MPX signal using DSP  
techniques. The 0 to 15 kHz (L+R) signal is the mono  
output of the FM tuner. Stereo is generated from the  
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is  
used as a reference to recover the (L–R) signal. Output  
left and right channels are obtained by adding and  
subtracting the (L+R) and (L–R) signals respectively.  
The Si4721 uses frequency information from the 19 kHz  
stereo pilot to recover the 57 kHz RDS/RBDS signal.  
Mono Audio  
5.6.2. Stereo-Mono Blending  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
Adaptive noise suppression is employed to gradually  
combine the stereo left and right audio channels to a  
mono (L+R) audio signal as the signal quality degrades  
to maintain optimum sound fidelity under varying  
reception conditions. Stereo/mono status can be  
monitored with the FM_RSQ_STATUS command. Mono  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
operation  
can  
be  
forced  
with  
the  
Figure 19. MPX Signal Spectrum  
FM_BLEND_MONO_THRESHOLD property.  
Rev. 1.0  
27  
Si4720/21-B20  
during reception. The tuning frequency can be directly  
programmed using the FM_TUNE_FREQ and  
command. The Si4720/21 supports channel spacing of  
50, 100, or 200 kHz in FM receiver mode.  
5.7. De-Emphasis  
Pre-emphasis and de-emphasis is a technique used by  
FM broadcasters to improve the signal-to-noise ratio of  
FM receivers by reducing the effects of high-frequency  
interference and noise. When the FM signal is  
5.12. Seek  
transmitted,  
a
pre-emphasis filter is applied to  
Seek tuning will search up or down for a valid channel.  
Valid channels are found when the receive signal  
strength indicator (RSSI) and the signal-to-noise ratio  
(SNR) values exceed the set threshold. Using the SNR  
qualifier rather than solely relying on the more  
traditional RSSI qualifier can reduce false stops and  
increase the number of valid stations detected. Seek is  
initiated using the FM_SEEK_START command. The  
RSSI and SNR threshold settings are adjustable using  
properties (see Table 15).  
accentuate the high audio frequencies. The Si4720/21  
incorporates a de-emphasis filter which attenuates high  
frequencies to restore a flat frequency response. Two  
time constants are used in various regions. The de-  
emphasis time constant is programmable to 50 or 75 µs  
and is set by the FM_DEEMPHASIS property.  
5.8. Stereo DAC  
High-fidelity stereo digital-to-analog converters (DACs)  
drive analog audio signals onto the LOUT and ROUT  
pins. The audio output may be muted. Volume is  
adjusted digitally with the RX_VOLUME property.  
Two seek options are available. The device will either  
wrap or stop at the band limits. If the seek operation is  
unable to find a channel, the device will indicate failure  
and return to the channel selected before the seek  
operation began.  
5.9. Soft Mute  
The soft mute feature is available to attenuate the audio  
outputs and minimize audible noise in very weak signal  
5.13. Reference Clock  
conditions. The softmute attenuation level is adjustable The Si4720/21 reference clock is programmable,  
using the FM_SOFT_MUTE_MAX_ATTENUATION supporting RCLK frequencies in Table 13. Refer to  
property.  
Table 3, “DC Characteristics,” on page 6 for switching  
voltage levels and Table 9, “FM Receiver  
Characteristics,” on page 13 for frequency tolerance  
5.10. RDS/RBDS Processor (Si4721 Only)  
The Si4721 implements an RDS/RBDS* processor for information.  
symbol decoding, block synchronization, error  
detection, and error correction.  
An onboard crystal oscillator is available to generate the  
32.768 kHz reference when an external crystal and load  
capacitors are provided. Refer to "3. Typical Application  
Schematic" on page 20. This mode is enabled using the  
POWER_UP command. Refer to Table 21 "Si472x  
Property Summary".  
The Si4721 device is user configurable and provides an  
optional interrupt when RDS is synchronized, loses  
synchronization, and/or the user configurable RDS  
FIFO threshold has been met.  
The Si4721 reports RDS decoder synchronization  
status and detailed bit errors in the information word for  
each RDS block with the FM_RDS_STATUS command.  
The range of reportable block errors is 0, 1–2, 3–5, or  
6+. More than six errors indicates that the  
corresponding block information word contains six or  
more non-correctable errors or that the block checkword  
contains errors.  
The Si4720/21 performance may be affected by data  
activity on the SDIO bus when using the integrated  
internal oscillator. SDIO activity results from polling the  
tuner for status or communicating with other devices  
that share the SDIO bus. If there is SDIO bus activity  
while the Si4720/21 is performing the seek/tune  
function, the crystal oscillator may experience jitter,  
which may result in mistunes, false stops, and/or lower  
SNR.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
For best seek/tune results, Silicon Laboratories  
recommends that all SDIO data traffic be suspended  
during Si4720/21 seek and tune operations. This is  
achieved by keeping the bus quiet for all other devices  
on the bus, and delaying tuner polling until the tune or  
seek operation is complete. The seek/tune complete  
(STC) interrupt should be used instead of polling to  
determine when a seek/tune operation is complete.  
5.11. Tuning  
The frequency synthesizer uses Silicon Laboratories’  
proven technology, including a completely integrated  
VCO. The frequency synthesizer generates the  
quadrature local oscillator signal used to downconvert  
the RF input to a low intermediate frequency. The VCO  
frequency is locked to the reference clock and adjusted  
with an automatic frequency control (AFC) servo loop  
28  
Rev. 1.0  
Si4720/21-B20  
frequency deviation of 75 kHz corresponds to 100  
percent modulation). Frequency deviation is related to  
the amplitude of the MPX signal by a gain constant,  
5.14. FM Transmitter  
The transmitter (TX) integrates a stereo audio ADC to  
convert analog audio signals to high fidelity digital  
signals. Alternatively, digital audio signals can be  
applied to the Si4720/21 directly to reduce power  
consumption by eliminating the need to convert audio  
K
, as given by the following equation:  
VCO  
f = KVCOAm  
baseband signals to analog and back again to digital. where f is the frequency deviation; K  
is the  
VCO  
Digital signal processing is used to perform the stereo voltage-to-frequency gain constant, and A is the  
m
MPX encoding and FM modulation to a low digital IF. amplitude of the MPX message signal. For a fixed  
Transmit baseband filters suppress out-of-channel  
K
, the amplitude of all the subchannel signals within  
VCO  
noise and images from the digital low-IF signal. A the MPX message signal must be scaled to give the  
quadrature single-sideband mixer up-converts the appropriate total frequency deviation.  
digital IF signal to RF, and internal RF filters suppress  
noise and harmonics to support the harmonic emission  
requirements of cellular phones, GPS, WLAN, and other  
wireless standards.  
MPX Encoder  
RDS(t)  
L(t)  
C2  
C0  
57 kHz  
m(t)  
The TXO output has over 10 dB of output level control,  
programmable in approximately 1 dB steps. This large  
output range enables a variety of antennas to be used  
for transmit, such as a monopole stub antenna or a loop  
antenna. The 1 dB step size provides fine adjustment of  
the output voltage.  
Frequency  
Tripler  
C1  
C0  
Frequency  
Doubler  
38 kHz  
19 kHz  
R(t)  
The TXO output requires only one external 120 nH  
inductor. The inductor is used to resonate the antenna  
and is automatically calibrated within the integrated  
circuit to provide the optimum output level and  
frequency response for supported transmit frequencies.  
Users are responsible for adjusting their system’s  
radiated power levels to comply with local regulations  
on RF transmission (FCC, ETSI, ARIB, etc.).  
Figure 20. MPX Encoder  
Figure 20 shows a conceptual block diagram of an MPX  
encoder used to generate the MPX signal. L(t) and R(t)  
denote the time domain waveforms from the left and  
right audio channels, and RDS(t) denotes the time  
domain waveform of the RDS/RBDS signal.  
The MPX message signal can be expressed as follows:  
5.15. Receive Power Scan  
m(t) = C [L(t) + R(t)] + C cos(2  
19 kHz)  
38 kHz)  
57 kHz)  
0
1
The Si4720/21 is the industry’s first FM transmitter with  
integrated receive functionality to measure received  
signal strength. This has been designed to specifically  
handle various antenna lengths including integrated  
PCB antennas, wire antennas, and loop antennas,  
allowing it to share the same antenna as the transmitter.  
The receive function reuses the on-chip varactor from  
the transmitter to optimize the receive signal power  
applied to the front-end amplifier. Auto-calibration of the  
varactor occurs with each tune command for consistent  
performance across the FM band.  
+ C [L(t) – R(t)] cos(2  
0
+ C RDS(t) cos(2  
2
where C , C , and C are gains used to scale the  
0
1
2
amplitudes of the audio signals (L(t) ± R(t)), the 19 kHz  
pilot tone, and the RDS subcarrier respectively, to  
generate the appropriate modulation level. To achieve  
the  
modulation  
levels  
of  
Figure 20  
with  
K
= 75 kHz/V, C would be set to 0.45; C would be  
VCO  
0
1
set to 0.1, and C would be set to 0.0267 giving a peak  
2
audio frequency deviation of 0.9 x 75 kHz = 67.5 kHz, a  
5.15.1. Stereo Encoder  
peak  
pilot  
frequency  
deviation  
of  
Figure 19 shows an example modulation level  
breakdown for the various components of a typical MPX  
signal.  
0.1 x 75 kHz = 7.5 kHz, and a peak RDS frequency  
deviation of 0.0267 x 75 kHz = 2.0025 kHz for a total  
peak frequency deviation of 77.0025 kHz.  
The total modulation level for the MPX signal shown in  
Figure 19, assuming no correlation, is equal to the  
arithmetic sum of each of the subchannel levels  
resulting in 102.67 percent modulation or a peak  
frequency deviation of 77.0025 kHz (an instantaneous  
In the Si4720/21, the peak audio, pilot, and RDS  
frequency deviations can be programmed directly with  
the Transmit Audio, Pilot, and RDS Deviation  
commands with an accuracy of 10 Hz. For the example  
in Figure 20, the Transmit Audio Deviation is  
Rev. 1.0  
29  
Si4720/21-B20  
programmed with the value 6750, the Transmit Pilot In Left-Justified mode, the MSB is captured on the first  
Deviation with 750, and the Transmit RDS Deviation rising edge of DCLK following each DFS transition. The  
with 200, generating peak audio frequency deviations of remaining bits of the word are sent in order, down to the  
67.5 kHz, peak pilot deviations of 7.5 kHz, and peak LSB. The Left Channel is transferred first when the DFS  
RDS deviations of 2.0 kHz for a total peak frequency is high, and the Right Channel is transferred when the  
deviation of 77 kHz. The total peak transmit frequency DFS is low.  
deviation of the Si4720/21 can range from 0 to 100 kHz  
In DSP mode, the DFS becomes a pulse with a width of  
and is equal to the arithmetic sum of the Transmit  
1 DCLK period. The Left Channel is transferred first,  
Audio, Pilot, and RDS deviations. Users must comply  
followed right away by the Right Channel. There are two  
with local regulations on radio frequency transmissions.  
options in transferring the digital audio data in DSP  
Each of the individual deviations (transmit audio, pilot, mode: the MSB of the left channel can be transferred on  
and RDS) can be independently programmed; however, the first rising edge of DCLK following the DFS pulse or  
the total peak frequency deviation cannot exceed on the second rising edge.  
100 kHz.  
In all audio formats, depending on the word size, DCLK  
The Si4720/21 provides an overmodulation indicator to frequency and sample rates, there may be unused  
allow the user to dynamically set the maximum DCLK cycles after the LSB of each word before the next  
deviation level. If the instantaneous frequency exceeds DFS transition and MSB of the next word.  
the  
deviation  
level  
specified  
by  
the  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
TX_AUDIO_DEVIATION property, the SQINT interrupt  
bit (and optional interrupt) will be set.  
5.16.2. Audio Sample Rates  
5.16. Transmitter Digital Audio Interface  
The device supports a number of industry-standard  
sampling rates including 32, 40, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs and ADCs on  
the audio baseband processor. The sampling rate is  
selected using the DIGITAL_INPUT_SAMPLE_RATE  
property.  
The digital audio interface operates in slave mode and  
supports 3 different audio data formats:  
2
1. I S  
2. Left-Justified  
3. DSP Mode  
5.16.1. Audio Data Formats  
The device supports DCLK frequencies above 1 MHz.  
After powerup the DIGITAL_INPUT_SAMPLE_RATE  
property defaults to 0 (disabled). After DCLK is  
2
In I S mode, the MSB is captured on the second rising  
edge of DCLK following each DFS transition. The  
remaining bits of the word are sent in order, down to the  
LSB. The Left Channel is transferred first when the DFS  
is low, and the Right Channel is transferred when the  
DFS is high.  
supplied,  
property should be set to the desired audio sample rate  
such as 32, 40, 44.1, or 48 kHz. The  
the  
DIGITAL_INPUT_SAMPLE_RATE  
DIGITAL_INPUT_SAMPLE_RATE property must be set  
to 0 before DCLK is removed or the DCLK frequency  
drops below 1 MHz. A device reset is required if this  
requirement is not followed.  
INVERTED  
(IFALL = 1)  
DCLK  
(IFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
I2S  
(IMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DIN/DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 21. I2S Digital Audio Format  
30  
Rev. 1.0  
Si4720/21-B20  
INVERTED  
DCLK  
(IFALL = 1)  
(IFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
n-2  
RIGHT CHANNEL  
Left-Justified  
(IMODE = 0110)  
DIN/DOUT  
1
2
3
n-1  
n
n-2  
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 22. Left-Justified Digital Audio Format  
(IFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DIN/DOUT  
1
2
3
2
n-1  
n
(IMODE = 1100)  
(IMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DIN/DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 23. DSP Digital Audio Format  
The line attenuation code is chosen by picking the  
lowest Peak Input Voltage in Table 18 that is just above  
the expected peak input voltage coming from the audio  
baseband processor. For example, if the expected peak  
input voltage from the audio baseband processor is  
400 mV, the user chooses LIATTEN[1:0] = 10 since the  
Peak Input Voltage of 416 mV associated with  
LIATTEN[1:0] = 10 is just greater than the expected  
peak input voltage of 400 mV. The user also enters  
400 mV into the LILEVEL[9:0] to associate this input  
level to the maximum frequency deviation level  
programmed into the audio deviation property. Note that  
selecting a particular value of LIATTEN[1:0] changes  
the input resistance of the LIN and RIN pins. This  
feature is used for cases where the expected peak input  
level exceeds the maximum input level of the LIN and  
RIN pins.  
5.17. Line Input  
The Si4720/21 provides left and right channel line inputs  
(LIN and RIN). The inputs are high-impedance and low-  
capacitance, suited to receiving line level signals from  
external audio baseband processors. Both line inputs  
are low-noise inputs with programmable attenuation.  
Passive and active anti-aliasing filters are incorporated  
to prevent high frequencies from aliasing into the audio  
band and degrading performance.  
To ensure optimal audio performance, the Si4720/21  
has a TX_LINE_INPUT_LEVEL property that allows the  
user to specify the peak amplitude of the analog input  
(LILEVEL[9:0]) required to reach the maximum  
deviation level programmed in the audio deviation  
property, TX_AUDIO_DEVIATION. A corresponding line  
input attenuation code, LIATTEN[1:0], is also selected  
by the expected peak amplitude level. Table 18 shows  
the line attenuation codes.  
The maximum analog input level is 636 mVpK. If the  
analog input level from the audio baseband processor  
exceeds this voltage, series resistors must be inserted  
in front of the LIN and RIN pins to attenuate the voltage  
such that it is within the allowable operating range. For  
example, if the audio baseband's expected peak  
Table 18. Line Attenuation Codes  
LIATTEN[1:0]  
Peak Input  
Voltage [mV] Resistance [k]  
RIN/LIN Input  
amplitude is 900 mV and the V supply voltage is 1.8 V,  
IO  
00  
01  
10  
11  
190  
301  
416  
636  
396  
100  
74  
the designer can use 30 kseries resistors in front of  
the LIN and RIN pins and select LIATTEN[1:0] = 11. The  
resulting expected peak input voltage at the LIN/RIN  
pins is 600 mV, since this is just a voltage divider  
between the LIN/RIN input resistance (see Table 18,  
60 kfor this example) and the external resistor. Note  
that the Peak Input Voltage corresponding to the chosen  
60  
Rev. 1.0  
31  
Si4720/21-B20  
LIATTEN[1:0] code still needs to satisfy the condition of  
being just greater than the attenuated voltage. In this  
example, a line attenuation code of LIATTEN[1:0] = 11  
has a Peak Input Voltage of 636 mV, which is just  
greater than the expected peak attenuated voltage of  
600 mV. Also, the expected peak attenuated voltage is  
entered into the LILEVEL[9:0] parameter. Again, in this  
example, 600 mV is entered into LILVEVEL[9:0]. This  
example shows one possible solution, but many other  
solutions exist. The optimal solution is to apply the  
largest possible voltage to the LIN and RIN pins for  
signal-to-noise considerations; however, practical  
resistor values may limit the choices.  
Input [dBFS]  
–50 –40  
–90  
–80  
–70  
–60  
–30  
–20  
–10  
0
Compression  
2:1 dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
Threshold  
= –40 dB  
No  
Compression  
M = 1  
M = 1  
Gain  
= 20 dB  
Note that the TX_LINE_INPUT_LEVEL parameter will  
affect the high-pass filter characteristics of the ac-  
coupling capacitors and the resistance of the audio  
inputs.  
The Si4720/21 has a programmable low audio level and  
high audio level indicators that allows the user to  
selectively enable and disable the carrier based on the  
presence of audio content. The TX_ASQ_LEVEL_LOW  
and TX_ASQ_LEVEL_HIGH parameters set the low  
level and high level thresholds in dBFS, respectively.  
The time required for the audio level to be below the low  
threshold is set with the TX_ASQ_DURATION_LOW  
parameter, and similarly, the time required for the audio  
level to be above the high threshold is set with the  
TX_ASQ_DURATION_HIGH parameter.  
Figure 24. Audio Dynamic Range Transfer  
Function  
For input signals below the threshold of –40 dBFS, the  
output signal is amplified or gained up by 20 dB relative  
to an uncompressed signal. Audio inputs above the  
threshold are compressed by a 2 to 1 dB ratio, meaning  
that every 2 dB increase in audio input level above the  
threshold results in an audio output increase of 1 dB. In  
this example, the input dynamic range of 90 dB is  
reduced to an output dynamic range of 70 dB.  
Figure 25 shows the time domain characteristics of the  
audio dynamic range controller. The attack rate sets the  
speed with which the audio dynamic range controller  
responds to changes in the input level, and the release  
rate sets the speed with which the audio dynamic range  
controller returns to no compression once the audio  
input level drops below the threshold.  
5.18. Audio Dynamic Range Control  
The Si4720/21 includes digital audio dynamic range  
control with programmable gain, threshold, attack rate,  
and release rate. The total dynamic range reduction is  
set by the gain value and the audio output compression  
above  
the  
threshold  
is  
equal  
to  
Threshold/(Gain + Threshold) in dB. The gain specified  
cannot be larger than the absolute value of the  
threshold. This feature can also be disabled if audio  
compression is not desired.  
Threshold  
Audio  
Input  
The audio dynamic range control can be used to reduce  
the dynamic range of the audio signal, which improves  
the listening experience on the FM receiver. Audio  
dynamic range reduction increases the transmit volume  
by decreasing the peak amplitudes of audio signals and  
increasing the root mean square content of the audio  
signal. In other words, it amplifies signals below a  
threshold by a fixed gain and compresses audio signals  
Audio  
Output  
above  
a
threshold  
by  
the  
ratio  
of  
Threshold/(Gain + Threshold). Figure 24 shows an  
example transfer function of an audio dynamic range  
controller with the threshold set at –40 dBFS and a  
Gain = 20 dB relative to an uncompressed transfer  
function.  
Attack  
time  
Release  
time  
Figure 25. Time Domain Characteristics of the  
Audio Dynamic Range Controller  
32  
Rev. 1.0  
Si4720/21-B20  
controller to burst data into the BCD buffer, which  
emulates a FIFO. The data does not repeat, but, when  
the buffer is nearly empty, the Si4721 signals the  
outside device to initiate another data burst. This mode  
permits the outside device to use any RDS functionality  
(including open data applications) that it wants.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
5.19. Audio Limiter  
The 4720/21 also includes a digital audio limiter. The  
audio limiter prevents over-modulation of the FM  
transmit output by dynamically attenuating peaks in the  
audio input signal that exceed a programmable  
threshold. The limiter threshold is set to the  
programmed audio deviation + ten percent. The  
threshold ensures that the output signal audio deviation  
does not exceed the programmed levels, avoiding  
audible artifacts or distortion in the target FM receiver,  
and complying with FCC or ETSI regulatory standards.  
5.22. Tuning  
The frequency synthesizer uses Silicon Laboratories’  
proven technology including a completely integrated  
VCO. The frequency synthesizer generates the  
quadrature local oscillator signal used to upconvert the  
low intermediate frequency to RF. The VCO frequency  
is locked to the reference clock and adjusted with an  
automatic frequency control (AFC) servo loop during  
transmission. The tuning frequency can be directly  
programmed with commands. For example, to tune to  
98.1 MHz, the user writes the TX_TUNE_FREQ  
command with an argument = 9810. The Si4720/21  
supports channel spacing of 50, 100, or 200 kHz.  
The limiter performs as a peak detector with an attack  
rate set to one audio sample, resulting in an almost  
immediate attenuation of the input peak. The recover  
rate is programmable to the customer’s preference, and  
is set by default to 5 ms. This is the recommended  
setting to avoid audible pumping or popping. Refer to  
“AN332: Universal Programming Guide.”  
5.20. Pre-emphasis and De-emphasis  
Pre-emphasis and de-emphasis is a technique used by  
FM broadcasters to improve the signal-to-noise ratio of  
FM receivers by reducing the effects of high-frequency  
interference and noise. When the FM signal is  
5.23. Reference Clock  
The Si4720/21 reference clock is programmable,  
supporting RCLK frequencies from 31.130 kHz to  
40 MHz. The RCLK frequency divided by an integer  
number (the prescaler value) must fall in the range of  
31,130 to 34,406 Hz. Therefore, the range of RCLK  
frequencies is not continuous below frequencies of  
311.3 kHz. The default RCLK frequency is 32.768 kHz.  
Please refer to “AN332: Universal Programming Guide”  
for using other RCLK frequencies.  
transmitted,  
a
pre-emphasis filter is applied to  
accentuate the high audio frequencies. All FM receivers  
incorporate a de-emphasis filter that attenuates high  
frequencies to restore a flat frequency response. Two  
time constants are used in various regions. The pre-  
emphasis time constant is programmable to 50 or 75 µs  
and is set by using the TX_PREEMPHASIS property.  
5.21. RDS/RBDS Processor (Si4721 Only)  
5.24. Control Interface  
The Si4721 implements an RDS/RBDS* processor for  
symbol encoding, block synchronization, and error  
correction. Digital data can be transmitted with the  
Si4721 RDS/RBDS encoding feature.  
A serial port slave interface is provided; this allows an  
external controller to send commands to the Si4720/21  
and receive responses from the device. The serial port  
can operate in three bus modes: 2-wire mode, SPI  
mode, or 3-wire mode. The Si4720/21 selects the bus  
mode by sampling the state of the GPO1 and  
GPO2/INT pins on the rising edge of RST. The GPO1  
pin includes an internal pull-up resistor that is  
connected while RST is low, and the GPO2/INT pin  
includes an internal pull-down resistor that is connected  
while RST is low. Therefore, it is only necessary for the  
user to actively drive pins that differ from these states.  
RDS transmission is supported with three different  
modes. The first mode is the simplest mode and  
requires no additional user support except for pre-  
loading the desired RDS PI and PTY codes and up to  
12 8-byte PS character strings. The Si4721 will transmit  
the PI code and rotate through the transmission of the  
PS character strings with no further control required  
from outside the device. The second mode allows for  
more complicated transmissions. The PI and PTY  
codes are written to the device as in mode 1. The  
remaining blocks (B, C, and D) are written to a 252 byte  
buffer. This buffer can hold 42 sets of BCD blocks. The  
Si4721 creates RDS groups by creating block A from  
the PI code, concatenating blocks BCD from the buffer,  
and rotating through the buffer. The BCD buffer is  
circular; so, the pattern is repeated until the buffer is  
changed. Finally, the third mode allows the outside  
Table 19. Bus Mode Select on Rising Edge of  
RST  
Bus Mode  
2-Wire  
SPI  
GPO1  
GPO2/INT  
1
0
1
1 (must drive)  
0
3-Wire  
0 (must drive)  
Rev. 1.0  
33  
Si4720/21-B20  
After the rising edge of RST, the pins, GPO1 and and Write Timing Diagram,” on page 9.  
GPO2/INT, are used as general-purpose output (O) pins  
as described in Section “5.15. GPO Outputs”. In any  
5.24.2. SPI Control Interface Mode  
When selecting SPI mode, the user must ensure that a  
rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
bus mode, commands may only be sent after V and  
IO  
V
supplies are applied.  
DD  
5.24.1. 2-Wire Control Interface Mode  
SPI bus mode uses the SCLK, SDIO, and SEN pins for  
read/write operations. For reads, the user can choose to  
receive data from the device on either SDIO or GPO1. A  
transaction begins when the user drives SEN low. The  
user then pulses SCLK eight times while driving an 8-bit  
control byte (MSB first) serially on SDIO. The device  
captures the data on rising edges of SCLK. The control  
byte must have one of these values:  
When selecting 2-wire mode, the user must ensure that  
SCLK is high during the rising edge of RST, and stays  
high until after the first start condition. Also, a start  
condition must not occur within 300 ns before the rising  
edge of RST.  
2-wire bus mode uses only the SCLK and SDIO pins for  
signaling. A transaction begins with the START  
condition, which occurs when SDIO falls while SCLK is  
high. Next, the user drives an 8-bit control word serially  
on SDIO, which is captured by the device on rising  
edges of SCLK. The control word consists of a seven bit  
device address followed by a read/write bit (read = 1,  
write = 0). The Si4720/21 acknowledges the control  
word by driving SDIO low on the next falling edge of  
SCLK.  
0x48 = write eight command/argument bytes (user  
drives write data on SDIO)  
0x80 = read status byte (device drives read data on  
SDIO)  
0xA0 = read status byte (device drives read data on  
GPO1)  
0xC0 = read 16 response bytes (device drives read data  
on SDIO)  
Although the Si4720/21 responds to only a single  
device address, this address can be changed with the  
SEN pin (note that the SEN pin is not used for signaling  
in 2-wire mode). When SEN = 0, the seven-bit device  
address is 0010001. When SEN = 1, the address is  
1100011.  
0xE0 = read 16 response bytes (device drives read data  
on GPO1)  
When writing a command, after the control byte has  
been written, the user must drive exactly eight data  
bytes (a command byte and seven argument bytes) on  
SDIO. The data will be captured by the device on the  
rising edges of SCLK. After all eight data bytes have  
been written, the user raises SEN after the last falling  
edge of SCLK to end the transaction.  
For write operations, the user then sends an eight bit  
data byte on SDIO, which is captured by the device on  
rising edges of SCLK. The Si4720/21 acknowledges  
each data byte by driving SDIO low for one cycle, on the  
next falling edge of SCLK. The user may write up to  
eight data bytes in a single two-wire transaction. The  
first byte is a command, and the next seven bytes are  
arguments.  
In any bus mode, before sending a command or reading  
a response, the user must first read the status byte to  
ensure that the device is ready (CTS bit is high). In SPI  
mode, this is done by sending control byte 0x80 or  
0xA0, followed by reading a single byte on SDIO or  
GPO1. The Si4720/21 changes the state of SDIO or  
GPO1 after the falling edges of SCLK. Data should be  
captured by the user on the rising edges of SCLK. After  
the status byte has been read, the user raises SEN after  
the last falling edge of SCLK to end the transaction.  
For read operations, after the Si4720/21 has  
acknowledged the control byte, it drives an eight-bit  
data byte on SDIO, changing the state of SDIO on the  
falling edge of SCLK. The user acknowledges each data  
byte by driving SDIO low for one cycle, on the next  
falling edge of SCLK. If  
a
data byte is not  
When reading a response, the user must read exactly  
16 data bytes after sending the control byte. It is  
recommended that the user keep SEN low until all bytes  
have transferred. However, it will not disrupt the  
protocol if SEN temporarily goes high at any time, as  
long as the user does not change the state of SCLK  
while SEN is high. After 16 bytes have been read, the  
user raises SEN after the last falling edge of SCLK to  
end the transaction.  
acknowledged, the transaction ends. The user may  
read up to 16 data bytes in a single two-wire  
transaction. These bytes contain the response data  
from the Si4720/21.  
A 2-wire transaction ends with the STOP condition,  
which occurs when SDIO rises while SCLK is high.  
For details on timing specifications and diagrams, refer  
to  
Table 5,  
“2-Wire  
Control  
Interface  
1,2,3  
Characteristics  
,” on page 8, Figure 2, “2-Wire  
At the end of any SPI transaction, the user must drive  
SEN high after the final falling edge of SCLK. At any  
Control Interface Read and Write Timing Parameters,”  
on page 9, and Figure 3, “2-Wire Control Interface Read  
34  
Rev. 1.0  
Si4720/21-B20  
time during a transaction, if SEN is sampled high by the  
device on a rising edge of SCLK, the transaction will be  
aborted. When SEN is high, SCLK may toggle without  
affecting the device.  
5.26. Reset, Powerup, and Powerdown  
Setting the RST pin low will disable analog and digital  
circuitry, reset the registers to their default settings, and  
disable the bus. Setting the RST pin high will bring the  
device out of reset and place it in powerdown mode.  
For details on timing specifications and diagrams, refer  
to Figure 6 and Figure 7 on page 11.  
A powerdown mode is available to reduce power  
consumption when the part is idle. Putting the device in  
5.24.3. 3-Wire Control Interface Mode  
When selecting 3-wire mode, the user must ensure that powerdown mode will disable analog and digital circuitry  
a rising edge of SCLK does not occur within 300 ns and keep the bus active. For more information  
before the rising edge of RST.  
concerning Reset, Powerup, Powerdown, and  
Initialization, refer to “AN332: Universal Programming  
Guide.”  
3-wire bus mode uses the SCLK, SDIO and SEN pins.  
A transaction begins when the system controller drives  
SEN low. Next, the system controller drives a 9-bit  
control word on SDIO, which is captured by the device  
on rising edges of SCLK. The control word is comprised  
of a three bit chip address (A7:A5 = 101b), a read/write  
bit (write = 0, read = 1), the chip address (A4 = 0), and a  
four bit register address (A3:A0).  
5.27. Programming with Commands  
To ease development time and offer maximum  
customization, the Si4720/21 provides a simple yet  
powerful software interface to program the transmitter.  
The device is programmed using commands,  
arguments, properties, and responses.  
For write operations, the control word is followed by a  
16-bit data word, which is captured by the device on  
rising edges of SCLK.  
To perform an action, the user writes a command byte  
and associated arguments causing the chip to execute  
the given command. Commands control actions, such  
as powering up the device, shutting down the device, or  
tuning to a station. Arguments are specific to a given  
command and are used to modify the command. For  
example, after the TX_TUNE_FREQ command,  
arguments are required to set the tune frequency. A  
complete list of commands is available in Table 17,  
“Si471x Command Summary,” on page 30.  
For read operations, the control word is followed by a  
delay of one-half SCLK cycle for bus turnaround. Next,  
the Si4720/21 drives the 16-bit read data word serially  
on SDIO, changing the state of SDIO on each rising  
edge of SCLK.  
A transaction ends when the user sets SEN high, then  
pulses SCLK high and low one final time. SCLK may  
either stop or continue to toggle while SEN is high.  
Properties are a special command argument used to  
modify the default chip operation and are generally  
configured immediately after powerup. Examples of  
In 3-wire mode, commands are sent by first writing each  
argument to register(s) 0xA1–0xA3, then writing the  
command word to register 0xA0. A response is  
retrieved by reading registers 0xA8–0xAF.  
properties  
are  
TX_PREEMPHASIS  
and  
GPO_CONFIGURE. A complete list of properties is  
available in Table 21, “Si472x Property Summary,” on  
page 37.  
For details on timing specifications and diagrams, refer  
to Table 6, “3-Wire Control Interface Characteristics,” on  
page 10, Figure 4, “3-Wire Control Interface Write  
Timing Parameters,” on page 10, and Figure 5, “3-Wire  
Control Interface Read Timing Parameters,” on page  
10.  
Responses provide the user information and are  
echoed after a command and associated arguments are  
issued. At a minimum, all commands provide a one-byte  
status update indicating interrupt and clear-to-send  
status information. For a detailed description of using  
the commands and properties of the Si4720/21, see  
“AN332: Universal Programming Guide.”  
5.25. GPO Outputs  
The Si4720/21 provides three general-purpose output  
pins. The GPO pins can be configured to output a  
constant low, constant high, or high-Z. The GPO pins  
are multiplexed with the bus mode pins or DCLK  
depending on the application schematic of the device.  
GPO2/INT can be configured to provide interrupts for  
seek and tune complete, receive signal quality, and  
RDS.  
Rev. 1.0  
35  
Si4720/21-B20  
6. Commands and Properties  
Table 20. Si472x Command Summary  
Cmd  
Name  
Description  
Transmit Commands  
Power up device and mode selection. Modes include FM transmit  
and analog/digital audio interface configuration.  
0x01  
POWER_UP  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x30  
0x31  
0x32  
GET_REV  
POWER_DOWN  
SET_PROPERTY  
GET_PROPERTY  
GET_INT_STATUS  
PATCH_ARGS  
Returns revision information on the device.  
Power down device.  
Sets the value of a property.  
Retrieves a property’s value.  
Read interrupt status bits.  
Reserved command used for patch file downloads.  
Reserved command used for patch file downloads.  
Tunes to given transmit frequency.  
PATCH_DATA  
TX_TUNE_FREQ  
TX_TUNE_POWER  
TX_TUNE_MEASURE  
Sets the output power level and tunes the antenna capacitor.  
Measure the received noise level at the specified frequency.  
Queries the status of a previously sent TX Tune Freq, TX Tune  
Power, or TX Tune Measure command.  
0x33  
0x34  
0x35  
TX_TUNE_STATUS  
TX_ASQ_STATUS  
TX_RDS_BUFF  
Queries the TX status and input audio signal metrics.  
Queries the status of the RDS Group Buffer and loads new data into  
buffer.  
0x36  
0x80  
0x81  
TX_RDS_PS  
GPIO_CTL  
GPIO_SET  
Set up default PS strings.  
Configures GPO1, 2, and 3 as output or Hi-Z.  
Sets GPO1, 2, and 3 output level (low or high).  
Receive Commands  
0x01  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x20  
0x21  
POWER_UP  
Power up device and mode selection.  
Returns revision information on the device.  
Power down device.  
GET_REV  
POWER_DOWN  
SET_PROPERTY  
GET_PROPERTY  
GET_INT_STATUS  
PATCH_ARGS  
Sets the value of a property.  
Retrieves a property’s value.  
Reads interrupt status bits.  
Reserved command used for patch file downloads.  
Reserved command used for patch file downloads.  
Selects the FM tuning frequency.  
Begins searching for a valid frequency.  
PATCH_DATA  
FM_TUNE_FREQ  
FM_SEEK_START  
Queries the status of previous FM_TUNE_FREQ or FM_-  
SEEK_START command.  
0x22  
0x23  
FM_TUNE_STATUS  
FM_RSQ_STATUS  
Queries the status of the Received Signal Quality (RSQ) of the cur-  
rent channel.  
36  
Rev. 1.0  
Si4720/21-B20  
Table 20. Si472x Command Summary (Continued)  
Returns RDS information for current channel and reads an entry  
from RDS FIFO (Si4721 only).  
0x24  
FM_RDS_STATUS  
0x27  
0x28  
0x80  
0x81  
FM_AGC_STATUS  
FM_AGC_OVERRIDE  
GPIO_CTL  
Queries the current AGC settings  
Override AGC setting by disabling and forcing it to a fixed value  
Configures GPO1, 2, and 3 as output or Hi-Z.  
Sets GPO1, 2, and 3 output level (low or high).  
GPIO_SET  
Table 21. Si472x Property Summary  
Prop  
Name  
Description  
Default  
Transmit Properties  
0x0001  
GPO_IEN  
DIGITAL_INPUT _FORMAT  
Enables interrupt sources.  
0x0000  
0x0000  
0x0101  
Configures the digital input format.  
Configures the digital input sample rate in 1 Hz steps.  
Default is 0.  
0x0103 DIGITAL_INPUT _SAMPLE_RATE  
0x0000  
Sets frequency of the reference clock in Hz. The range is  
31130 to 34406 Hz, or 0 to disable the AFC. Default is  
32768 Hz.  
0x0201  
REFCLK_FREQ  
0x8000  
0x0202  
0x2100  
REFCLK_PRESCALE  
Sets the prescaler value for the reference clock.  
0x0001  
0x0003  
Enable transmit multiplex signal components.  
Default has pilot and L-R enabled.  
TX_COMPONENT_ENABLE  
Configures audio frequency deviation level. Units are in  
10 Hz increments. Default is 6825 (68.25 kHz).  
0x2101  
0x2102  
TX_AUDIO_DEVIATION  
TX_PILOT_DEVIATION  
0x1AA9  
0x02A3  
Configures pilot tone frequency deviation level. Units are  
in 10 Hz increments. Default is 675 (6.75 kHz)  
Si4721 Only. Configures the RDS/RBDS frequency  
0x2103  
0x2104  
TX_RDS_DEVIATION  
deviation level. Units are in 10 Hz increments. Default is 0x00C8  
2 kHz.  
Configures maximum analog line input level to the  
LIN/RIN pins to reach the maximum deviation level pro-  
grammed into the audio deviation property TX Audio  
TX_LINE_INPUT_LEVEL  
0x327C  
Deviation. Default is 636 mV  
.
PK  
Sets line input mute. L and R inputs may be inde-  
pendently muted. Default is not muted.  
0x2105  
0x2106  
0x2107  
TX_LINE_INPUT_MUTE  
TX_PREEMPHASIS  
0x0000  
0x0000  
0x4A38  
Configures pre-emphasis time constant.  
Default is 0 (75 µS).  
Configures the frequency of the stereo pilot. Default is  
19000 Hz.  
TX_PILOT_FREQUENCY  
Enables audio dynamic range control and limiter.  
0x2200  
TX_ACOMP_ENABLE  
0x0002  
Default is 2 (limiter is enabled, audio dynamic range  
control is disabled).  
Sets the threshold level for audio dynamic range control.  
Default is –40 dB.  
0x2201  
0x2202  
TX_ACOMP_THRESHOLD  
TX_ACOMP_ATTACK_TIME  
0xFFD8  
0x0000  
Sets the attack time for audio dynamic range control.  
Default is 0 (0.5 ms).  
Rev. 1.0  
37  
Si4720/21-B20  
Table 21. Si472x Property Summary (Continued)  
Prop  
Name  
Description  
Default  
Sets the release time for audio dynamic range control.  
Default is 4 (1000 ms).  
0x2203  
TX_ACOMP_RELEASE_TIME  
0x0004  
Sets the gain for audio dynamic range control.  
Default is 15 dB.  
0x2204  
0x2205  
TX_ACOMP_GAIN  
0x000F  
0x0066  
0x0000  
TX_LIMITER_RELEASE_TIME  
Sets the limiter release time. Default is 102 (5.01 ms)  
Configures measurements related to signal quality met-  
rics. Default is none selected.  
0x2300 TX_ASQ_INTERRUPT_SOURCE  
Configures low audio input level detection threshold.  
This threshold can be used to detect silence on the  
incoming audio.  
0x2301  
0x2302  
0x2303  
0x2304  
TX_ASQ_LEVEL_LOW  
TX_ASQ_DURATION_LOW  
TX_ASQ_LEVEL_HIGH  
0x0000  
Configures the duration which the input audio level must  
be below the low threshold in order to detect a low audio 0x0000  
condition.  
Configures high audio input level detection threshold.  
This threshold can be used to detect activity on the  
incoming audio.  
0x0000  
0x0000  
Configures the duration which the input audio level must  
be above the high threshold in order to detect a high  
audio condition.  
TX_ASQ_DURATION_HIGH  
Si4721 Only. Configure RDS interrupt sources. Default  
is none selected.  
0x2C00 TX_RDS_INTERRUPT_SOURCE  
0x0000  
0x40A7  
0x0003  
0x2C01  
0x2C02  
TX_RDS_PI  
Si4721 Only. Sets transmit RDS program identifier.  
Si4721 Only. Configures mix of RDS PS Group with  
RDS Group Buffer.  
TX_RDS_PS_MIX  
Si4721 Only. Miscellaneous bits to transmit along with  
RDS_PS Groups.  
0x2C03  
TX_RDS_PS_MISC  
0x1008  
Si4721 Only. Number of times to repeat transmission of  
0x2C04 TX_RDS_PS_REPEAT_COUNT a PS message before transmitting the next PS mes-  
sage.  
0x0003  
0x0001  
0x2C05 TX_RDS_PS_MESSAGE_COUNT Si4721 Only. Number of PS messages in use.  
Si4721 Only. RDS Program Service Alternate Fre-  
quency. This provides the ability to inform the receiver of  
a single alternate frequency using AF Method A coding  
and is transmitted along with the RDS_PS Groups.  
0x2C06  
0x2C07  
TX_RDS_PS_AF  
0xE0E0  
0x0000  
Si4721 Only. Number of blocks reserved for the FIFO.  
Note that the value written must be one larger than the  
desired FIFO size.  
TX_RDS_FIFO_SIZE  
Receive Properties  
0x0001  
GPO_IEN  
Enables interrupt sources.  
0x0000  
0x0000  
DIGITAL_OUTPUT_  
FORMAT  
0x0102  
0x0104  
Configure digital audio outputs (Si4721 only)  
DIGITAL_OUTPUT_  
SAMPLE_RATE  
Configure digital audio output sample rate (Si4721 only) 0x0000  
38  
Rev. 1.0  
Si4720/21-B20  
Table 21. Si472x Property Summary (Continued)  
Prop  
Name  
Description  
Default  
Sets frequency of reference clock in Hz. The range is  
31130 to 34406 Hz, or 0 to disable the AFC. Default is  
32768 Hz.  
0x0201  
REFCLK_FREQ  
0x8000  
0x0202  
0x1100  
REFCLK_PRESCALE  
FM_DEEMPHASIS  
Sets the prescaler value for RCLK input.  
0x0001  
0x0002  
Sets deemphasis time constant. Default is 75 µs.  
Sets RSSI threshold for stereo blend (Full stereo above  
FM_BLEND_STEREO_THRESH- threshold, blend below threshold). To force stereo set this  
0x1105  
0x1106  
0x0031  
0x001E  
OLD  
to 0. To force mono set this to 127. Default value is  
49 dBµV.  
Sets RSSI threshold for mono blend (Full mono below  
threshold, blend above threshold). To force stereo set this  
to 0. To force mono set this to 127. Default value is  
30 dBµV.  
FM_BLEND_MONO_  
THRESHOLD  
Selects the antenna type and the pin to which it is con-  
nected. (Si4721 only).  
0x1107  
0x1108  
0x1200  
0x1201  
0x1202  
0x1203  
0x1204  
0x1207  
0x1300  
0x1302  
0x1303  
0x1400  
0x1401  
0x1402  
0x1403  
0x1404  
FM_ANTENNA_INPUT  
0x0000  
0x001E  
0x0000  
0x007F  
0x0000  
0x007F  
0x0000  
0x0081  
0x0040  
0x0010  
FM_MAX_TUNE_  
ERROR  
Sets the maximum freq error allowed before setting the  
AFC rail (AFCRL) indicator. Default value is 30 kHz.  
FM_RSQ_INT_  
SOURCE  
Configures interrupt related to Received Signal Quality  
metrics.  
FM_RSQ_SNR_HI_  
THRESHOLD  
Sets high threshold for SNR interrupt.  
Sets low threshold for SNR interrupt.  
Sets high threshold for RSSI interrupt.  
Sets low threshold for RSSI interrupt.  
FM_RSQ_SNR_LO_  
THRESHOLD  
FM_RSQ_RSSI_HI_  
THRESHOLD  
FM_RSQ_RSSI_LO_  
THRESHOLD  
FM_RSQ_BLEND_  
THRESHOLD  
Sets the blend threshold for blend interrupt when bound-  
ary is crossed.  
Sets the attack and decay rates when entering and leav-  
ing soft mute.  
FM_SOFT_MUTE_RATE  
FM_SOFT_MUTE_  
MAX_ATTENUATION  
Sets maximum attenuation during soft mute (dB). Set to 0  
to disable soft mute. Default is 16 dB.  
FM_SOFT_MUTE_  
SNR_THRESHOLD  
Sets SNR threshold to engage soft mute. Default is 4 dB. 0x0004  
FM_SEEK_BAND_  
BOTTOM  
Sets the bottom of the FM band for seek.  
0x222E  
Default is 8750 (87.5 MHz).  
Sets the top of the FM band for seek.  
0x2A26  
FM_SEEK_BAND_TOP  
Default is 10790 (107.9 MHz).  
FM_SEEK_FREQ_  
SPACING  
Selects frequency spacing for FM seek.  
0x000A  
Default value is 10 (100 kHz).  
FM_SEEK_TUNE_  
SNR_THRESHOLD  
Sets the SNR threshold for a valid FM Seek/Tune.  
Default value is 3 dB.  
0x0003  
FM_SEEK_TUNE_  
RSSI_TRESHOLD  
Sets the RSSI threshold for a valid FM Seek/Tune.  
0x0014  
Default value is 20 dBµV.  
Rev. 1.0  
39  
Si4720/21-B20  
Table 21. Si472x Property Summary (Continued)  
Prop  
Name  
Description  
Default  
0x1500  
RDS_INT_SOURCE  
Configures RDS interrupt behavior (Si4721 only).  
0x0000  
Sets the minimum number of RDS groups stored in the  
receive FIFO required before RDSRECV is set (Si4721  
only).  
RDS_INT_FIFO_  
COUNT  
0x1501  
0x0000  
0x1502  
0x4000  
RDS_CONFIG  
RX_VOLUME  
Configures RDS setting (Si4721 only).  
Sets the output volume.  
0x0000  
0x003F  
Mutes the audio output. L and R audio outputs may be  
muted independently.  
0x4001  
RX_HARD_MUTE  
0x0000  
40  
Rev. 1.0  
Si4720/21-B20  
7. Pin Descriptions: Si4720/21-GM  
20 19 18 17  
NC  
1
16  
FMI 2  
RFGND 3  
TXO 4  
15 RIN/DOUT  
14 LOUT/DFS  
13 ROUT/DIN  
12 GND  
GND  
PAD  
RST 5  
6
11 VDD  
7
8
9
10  
Pin Number(s)  
Name  
NC  
Description  
1, 20  
No connect. Leave floating.  
FM RF input.  
2
FMI  
3
RFGND  
TXO  
RF ground. Connect to ground plane on PCB.  
FM transmit output connection to transmit antenna.  
Device reset (active low) input.  
4
5
RST  
6
SEN  
Serial enable input (active low).  
7
SCLK  
Serial clock input.  
8
SDIO  
Serial data input/output.  
9
RCLK  
VIO  
External reference oscillator input.  
10  
I/O supply voltage.  
11  
VDD  
Supply voltage. May be connected directly to battery.  
Right audio line output—digital input data.  
Left audio line output—digital frame synchronization.  
Right audio line input—digital output data.  
Left audio line input—digital frame synchronization.  
13  
ROUT/DIN  
LOUT/DFS  
RIN/DOUT  
LIN/DFS  
14  
15  
16  
17  
GPO3/DCLK General purpose output—digital bit synchronous clock.  
18  
19  
GPO2/INT  
GPO1  
General purpose output—interrupt request.  
General purpose output.  
12, GND PAD  
GND  
Ground. Connect to ground plane on PCB.  
Rev. 1.0  
41  
Si4720/21-B20  
8. Ordering Guide  
Part Number*  
Description  
Package  
Type  
Operating  
Temperature  
Si4720-B20-GM Broadcast FM Radio Transceiver for Portable Applica-  
tions  
QFN  
Pb-free  
–20 to 85 °C  
Si4721-B20-GM Broadcast FM Radio Transceiver for Portable Applica-  
tions with RDS/RBDS Encoder/Decoder  
QFN  
Pb-free  
–20 to 85 °C  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option; 2500 quantity per reel.  
42  
Rev. 1.0  
Si4720/21-B20  
9. Package Markings (Top Marks)  
9.1. Top Mark Explanation  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
20 = Si4720; 21 = Si4721  
20 = Firmware Revision 2.0  
B = Revision B Die  
Firmware Revision  
Die Revision  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier  
(Bottom-Left Justified)  
Y = Year  
WW = ‘Workweek  
Assigned by the Assembly House. Corresponds to the last  
significant digit of the year and workweek of the mold date.  
9.2. Si4720/21 Top Mark  
9.3. Si4721 Top Mark  
Rev. 1.0  
43  
Si4720/21-B20  
10. Package Outline: Si4720/21-GM  
Figure 26 illustrates the package details for the Si4720. Table 22 lists the values for the dimensions shown in the  
illustration.  
Figure 26. 20-Pin Quad Flat No-Lead (QFN)  
Table 22. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.20  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.05  
0.05  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
44  
Rev. 1.0  
Si4720/21-B20  
11. PCB Land Pattern: Si4720/21-GM  
Figure 27 illustrates the PCB land pattern details for the Si4720-GM. Table 23 lists the values for the dimensions  
shown in the illustration.  
Figure 27. PCB Land Pattern  
Rev. 1.0  
45  
Si4720/21-B20  
Table 23. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This land pattern design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a fabrication allowance of 0.05 mm.  
Note: Solder Mask Design  
1. All metal pads are to be non-solder-mask-defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component standoff.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C  
specification for small body components.  
46  
Rev. 1.0  
Si4720/21-B20  
12. Additional Reference Resources  
Si47xx Evaluation Board User’s Guide  
AN307: Si4712/13/20/21 Receive Power Scan  
AN332: Universal Programming Guide  
AN341: Si4720/21 Evalution Board Quick Start Guide  
AN383: Universal Antenna Selection and Layout Guidelines  
AN388: Universal Evaluation Board Test Procedure  
Si4720/21 Customer Support Site: www.mysilabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA  
is required for access. To request access, send mysilabs user name and request for access to  
fminfo@silabs.com.  
Rev. 1.0  
47  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI4720-B20-GMR

BROADCAST FM RADIO TRANSCEIVER FOR PORTABLE APPLICATIONS
SILICON

SI4720CY

Battery Disconnect Switch
VISHAY

SI4720CY-T1-E3

Power Switch 0A 16-Pin SOIC N T/R
VISHAY

SI4721

Broadcast FM Radio Transceiver for Portable Applications
SILICON

SI4721-B20

BROADCAST FM RADIO TRANSCEIVER FOR PORTABLE APPLICATIONS
SILICON

SI4721-B20-GM

RF and Baseband Circuit, 3 X 3 MM, 0.55 MM HEIGHT, LEAD FREE, QFN-20
SILICON

SI4724

N-Channel Synchronous MOSFETs With Break-Before-Make
VISHAY

SI4724CY

N-Channel Synchronous MOSFETs
VISHAY

SI4724CY-T1

N-Channel Synchronous MOSFETs With Break-Before-Make
VISHAY

SI4724CY-T1-E3

N-Channel Synchronous MOSFETs With Break-Before-Make
VISHAY

SI4724CY_05

N-Channel Synchronous MOSFETs
VISHAY

SI4726CY

N-Channel Synchronous MOSFETs with Break-Before-Make
VISHAY