Si4731-D60-GM [SILICON]

BROADCAST AM/FM/SW/LW RADIO RECEIVER; 广播的AM / FM / SW / LW无线电接收器
Si4731-D60-GM
型号: Si4731-D60-GM
厂家: SILICON    SILICON
描述:

BROADCAST AM/FM/SW/LW RADIO RECEIVER
广播的AM / FM / SW / LW无线电接收器

消费电路 商用集成电路 接收器集成电路 无线
文件: 总44页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4730/31/34/35-D60  
BROADCAST AM/FM/SW/LW RADIO RECEIVER  
Features  
Worldwide FM band support  
(64–108 MHz)  
Worldwide AM band support  
(520–1710 kHz)  
SW band support (Si4734/35)  
(2.3–26.1 MHz)  
LW band support (Si4734/35)  
(153–279 kHz)  
Excellent real-world performance  
Integrated VCO  
Advanced AM/FM seek tuning  
Automatic frequency control (AFC)  
Automatic gain control (AGC)  
Digital FM stereo decoder  
Programmable de-emphasis  
Advanced Audio Processing  
Multiplexed stereo audio AUXIN  
ADC with 85 dB dynamic range  
Seven selectable AM channel filters  
AM/FM/SW/LW digital tuning  
EN55020 compliant  
No manual alignment necessary  
Programmable reference clock  
Adjustable soft mute control  
RDS/RBDS processor (Si4731/35)  
Digital audio out  
2-wire and 3-wire control interface  
Integrated LDO regulator  
Wide range of ferrite loop sticks and  
air loop antennas supported  
QFN and SSOP packages  
RoHS compliant  
Ordering Information:  
See page 33.  
Pin Assignments  
Si473x-D60 (QFN)  
Applications  
20 19 18 17  
NC  
FMI  
1
16  
Table and portable radios  
Mini/micro systems  
CD/DVD and Blu-ray players  
Stereo boom boxes  
Modules for consumer electronics  
Clock radios  
Mini HiFi and docking stations  
Entertainment systems  
2
15 DOUT/[LIN]  
14 LOUT/[DFS]  
13 ROUT/[DOUT]  
12 GND  
RFGND  
AMI  
3
4
5
GND  
PAD  
RST  
6
11 VA  
7
8
9
10  
Description  
Si473x-D60(SSOP)  
The Si473x-D60 digital CMOS AM/FM radio receiver IC integrates the complete  
tuner function from antenna input to digital audio output and includes a stereo  
audio AUXIN ADC input for converting analog audio into standard I2S digital  
audio, enabling a cost efficient digital audio platform for consumer electronic  
applications with high TDMA noise immunity, superior radio performance, and  
high fidelity audio power amplification. When enabling the analog inputs in stereo  
AUXIN ADC-mode, the Si473x-D60 supports I2S digital audio output only (no  
analog output).  
DOUT/[LIN]  
DFS/[RIN]  
GPO3/[DCLK]  
GPO2/[INT]  
GPO1  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
LOUT/[DFS]  
ROUT/[DOUT]  
3
DBYP  
VA  
4
5
VD  
NC  
RCLK  
SDIO  
SCLK  
SEN  
RST  
6
NC  
7
Functional Block Diagram  
FMI  
8
RFGND  
NC  
9
FM / SW  
RIN  
10  
11  
12  
Si473x-D60  
ANT  
LIN  
NC  
GND  
GND  
RDS  
(Si4731/  
35)  
DOUT  
FMI  
DIGITAL  
AUDIO  
AMI  
DFS  
LNA  
AGC  
GPO/DCLK  
LOW -IF  
DSP  
Mux  
AMI  
RFGND  
AM / LW  
ANT  
ADC  
ADC  
DAC  
DAC  
ROUT  
LOUT  
This product, its features, and/or its  
architecture is covered by one or more of  
the following patents, as well as other  
patents, pending and issued, both  
foreign and domestic: 7,127,217;  
LNA  
AGC  
Mux  
2.7~5.5 V (QFN)  
2.0~5.5 V (SSOP)  
VA  
CONTROL  
INTERFACE  
LDO  
AFC  
VD  
1.62 - 3.6 V  
+
GND  
7,272,373;  
7,355,476;  
7,272,375;  
7,426,376;  
7,321,324;  
7,471,940;  
7,339,503; 7,339,504.  
Rev. 1.1 11/11  
Copyright © 2011 by Silicon Laboratories  
Si473x-D60  
Si4730/31/34/35-D60  
2
Rev. 1.1  
Si4730/31/34/35-D60  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.1. QFN Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.2. SSOP Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.1. QFN/SSOP Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.4. AM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.5. SW Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.6. LW Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.7. Stereo Audio AUXIN ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.8. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.9. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.10. Received Signal Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.11. Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.12. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.13. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.14. FM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.15. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.16. RDS/RBDS Processor  
(Si4731/35 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.17. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.18. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.19. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.20. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.21. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.22. Firmware Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.23. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.24. 2 V Operation (SSOP Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.25. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.1. Si473x-D60-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.2. Si473x-D60-GU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7.1. Si473x-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7.2. Si473x-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
8. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.1  
3
Si4730/31/34/35-D60  
8.1. Si473x-D60 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
8.2. Si473x-D60 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
9. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9.1. Si473x-D60 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9.2. Top Marking Explanation (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9.3. Si473x-D60 Top Marking (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
9.4. Top Marking Explanation (SSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
10. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
4
Rev. 1.1  
Si4730/31/34/35-D60  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Parameter  
Analog Supply Voltage  
Symbol Test Condition  
Min  
Typ  
Max  
5.5  
3.6  
Unit  
V
2
V
2.7  
A
Digital and I/O Supply Voltage  
V
1.62  
10  
V
D
Power Supply Powerup Rise Time  
Interface Power Supply Powerup Rise Time  
V
µs  
µs  
C  
DDRISE  
V
10  
IORISE  
Ambient Temperature  
T
–20  
25  
85  
A
Notes:  
1. All minimum and maximum specifications apply across the recommended operating conditions. Typical values apply at  
VA = 3.3 V and 25 C unless otherwise stated.  
2. SSOP devices operate down to 2 V at 25 °C. See section “4.24. 2 V Operation (SSOP Only)” for details.  
Rev. 1.1  
5
Si4730/31/34/35-D60  
Table 2. DC Characteristics  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Mode  
V
Supply Current  
Supply Current  
I
8.2  
10.5  
18.5  
0.15  
9.1  
9.5  
13.5  
21.5  
0.6  
AQFN  
FMVA  
V
I
DQFN  
FMVD  
1
Digital Output Mode  
V
Supply Current  
Supply Current  
I
ASSOP  
FMVA  
V
I
DSSOP  
FMVD  
mA  
V
Supply Current  
Supply Current  
I
10.3  
12.8  
21.3  
0.6  
AQFN  
FMVA  
V
I
9.9  
DQFN  
FMVD  
2
Analog Output Mode  
V
Supply Current  
Supply Current  
I
19.1  
0.1  
ASSOP  
FMVA  
V
I
DSSOP  
FMVD  
AM Mode  
V
Supply Current  
Supply Current  
I
6.5  
8.5  
7.5  
11.0  
16.5  
0.50  
8.5  
AQFN  
AMVA  
V
I
DQFN  
AMVD  
Digital Output Mode  
Analog Output Mode  
V
Supply Current  
Supply Current  
I
14.5  
0.15  
7.5  
8
ASSOP  
AMVA  
V
I
DSSOP  
AMVD  
mA  
V
Supply Current  
Supply Current  
I
AQFN  
AMVA  
V
I
10.2  
17.2  
0.4  
DQFN  
AMVD  
V
Supply Current  
Supply Current  
I
15.3  
0.1  
ASSOP  
AMVA  
V
I
DSSOP  
AMVD  
AUXIN Mode  
V
Supply Current  
Supply Current  
I
5.7  
6.5  
6.3  
8.0  
AQFN  
AUXVA  
I
AUXVD  
V
DQFN  
mA  
V
Supply Current  
Supply Current  
I
0.3  
0.4  
ASSOP  
AUXVA  
AUXVD  
V
I
11.8  
13.0  
DSSOP  
Powerdown  
Powerdown Current  
V
4
9.5  
3
15  
15  
10  
10  
AQFN  
I
µA  
µA  
APD  
V
Powerdown Current  
ASSOP  
V
V
Powerdown Current  
SCLK, RCLK inactive  
SCLK, RCLK inactive  
DQFN  
I
DPD  
Powerdown Current  
3
DSSOP  
3
High Level Input Voltage  
V
0.7 x V  
–0.3  
–10  
V + 0.3  
V
V
IH  
D
D
3
Low Level Input Voltage  
High Level Input Current  
Notes:  
V
0.3 x V  
10  
IL  
D
3
I
V
= V = 3.6 V  
µA  
IH  
IN  
D
1. Guaranteed by characterization.  
2. Backwards compatible mode to rev B and rev C. Additional features on this device may increase typical supply current.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.  
4. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.  
6
Rev. 1.1  
Si4730/31/34/35-D60  
Table 2. DC Characteristics (Continued)  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
= 0 V,  
Min  
Typ  
Max  
Unit  
3
Low Level Input Current  
I
V
–10  
10  
µA  
IL  
IN  
V = 3.6 V  
D
4
High Level Output Voltage  
V
I
= 500 µA  
0.8 x V  
V
V
OH  
OUT  
D
4
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x V  
D
OL  
OUT  
Notes:  
1. Guaranteed by characterization.  
2. Backwards compatible mode to rev B and rev C. Additional features on this device may increase typical supply current.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.  
4. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.  
Rev. 1.1  
7
Si4730/31/34/35-D60  
Table 3. Reset Timing Characteristics1,2,3  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Min  
100  
30  
Typ  
Max  
Unit  
µs  
RST Pulse Width and GPO1, GPO2/INT Setup to RST  
GPO1, GPO2/INT Hold from RST  
Important Notes:  
t
SRST  
t
ns  
HRST  
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the first start condition.  
3. When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then  
minimum tSRST is 100 µs, to provide time for on-chip 1 Mdevices (active while RST is low) to pull GPO1 high and  
GPO2 low.  
tHRST  
tSRST  
70%  
30%  
RST  
70%  
30%  
GPO1  
70%  
30%  
GPO2/  
INT  
Figure 1. Reset Timing Parameters for Busmode Select  
8
Rev. 1.1  
Si4730/31/34/35-D60  
Table 4. 2-Wire Control Interface Characteristics1,2,3  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCLK Frequency  
SCLK Low Time  
SCLK High Time  
f
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIO Setup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIO Hold  
0.6  
µs  
HD:STA  
(START)  
SDIO Input to SCLK Setup  
t
t
100  
0
900  
ns  
ns  
µs  
SU:DAT  
4,5  
SDIO Input to SCLK Hold  
HD:DAT  
SU:STO  
SCLK input to SDIO Setup  
t
0.6  
(STOP)  
STOP to START Time  
SDIO Output Fall Time  
t
1.3  
µs  
ns  
BUF  
t
250  
f:OUT  
Cb  
----------  
1pF  
20 + 0.1  
SDIO Input, SCLK Rise/Fall Time  
t
t
300  
ns  
f:IN  
r:IN  
Cb  
----------  
1pF  
20 + 0.1  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VD = 0 V, SCLK and SDIO are low impedance.  
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the first start condition.  
4. The Si473x-D60 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum  
tHD:DAT specification.  
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated as long as all other timing parameters are met.  
Rev. 1.1  
9
Si4730/31/34/35-D60  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
30%  
SCLK  
SDIO  
70%  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
A6-A0,  
R/W  
D7-D0  
D7-D0  
SDIO  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram  
10  
Rev. 1.1  
Si4730/31/34/35-D60  
Table 5. 3-Wire Control Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
SCLK High Time  
SCLK Low Time  
f
CLK  
t
25  
25  
20  
10  
10  
2
HIGH  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
t
ns  
S
t
ns  
HSDIO  
SEN Input to SCLKHold  
t
ns  
HSEN  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall time  
t
Read  
Read  
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t , t  
ns  
R
F
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHSDIO  
tHIGH  
tLOW  
tHSEN  
tS  
70%  
30%  
tS  
SEN  
A6-A5,  
R/W,  
A4-A1  
70%  
30%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
Address In  
Data In  
Figure 4. 3-Wire Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN  
tS  
tCDZ  
70%  
30%  
tS  
70%  
30%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 5. 3-Wire Control Interface Read Timing Parameters  
Rev. 1.1  
11  
Si4730/31/34/35-D60  
Table 6. Digital Audio Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol Test Condition  
Min  
26  
10  
10  
5
Typ  
Max  
1000  
Unit  
ns  
DCLK Cycle Time  
t
DCT  
DCH  
DCLK Pulse Width High  
t
ns  
DCLK Pulse Width Low  
t
ns  
DCL  
DFS Set-up Time to DCLK Rising Edge  
DFS Hold Time from DCLK Rising Edge  
t
ns  
SU:DFS  
HD:DFS  
t
5
ns  
DOUT Propagation Delay from DCLK Falling  
Edge  
t
0
50  
ns  
PD:DOUT  
tDCH  
tDCL  
DCLK  
tDCT  
DFS  
tHD:DFS  
tSU:DFS  
DOUT  
tPD:OUT  
Figure 6. Digital Audio Interface Timing Parameters, I2S Mode  
12  
Rev. 1.1  
Si4730/31/34/35-D60  
Table 7. FM Receiver Characteristics1,2  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
Input Frequency  
f
RF  
3,4,5,6  
Sensitivity  
(S+N)/N = 26 dB  
2.2  
10  
µV EMF  
µV EMF  
6,7  
RDS Sensitivity  
f = 2 kHz,  
RDS BLER < 5%  
7,8  
7,8  
LNA Input Resistance  
3
4
4
5
5
6
k  
LNA Input Capacitance  
pF  
7,9  
Input IP3  
100  
40  
35  
60  
35  
72  
15  
35  
55  
70  
45  
105  
50  
50  
70  
90  
1
dBµV EMF  
3,4,7,8  
m = 0.3  
±200 kHz  
±400 kHz  
In-band  
dB  
dB  
dB  
dB  
AM Suppression  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
Spurious Response Rejection  
7
3,4,8  
80  
mV  
Audio Output Voltage  
RMS  
3,8,10  
7
dB  
Hz  
Audio Output L/R Imbalance  
–3 dB  
–3 dB  
30  
0.5  
80  
54  
Audio Frequency Response Low  
Audio Frequency Response High  
7
kHz  
dB  
8,10  
42  
63  
58  
0.1  
75  
50  
34  
30  
Audio Stereo Separation  
3,4,5,8  
dB  
Audio Mono S/N  
4,5,7,8  
dB  
Audio Stereo S/N  
3,8,10  
%
Audio THD  
7
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
f = ±400 kHz  
µs  
µs  
3,4,5,6,7,11, 12  
Blocking Sensitivity  
dBµV  
dBµV  
f = ±4 MHz  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Analog audio output mode.  
7. Guaranteed by characterization.  
8. V  
= 1 mV.  
EMF  
9. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
10. f = 75 kHz.  
11. Sensitivity measured at (S+N)/N = 26 dB.  
12. Blocker Amplitude = 100 dBuV.  
13. At temperature (25 °C).  
14. At LOUT and ROUT pins.  
Rev. 1.1  
13  
Si4730/31/34/35-D60  
Table 7. FM Receiver Characteristics1,2 (Continued)  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
f = ±400 kHz, ±800 kHz  
f = ±4 MHz, ±8 MHz  
Single-ended  
Min  
Typ  
40  
Max  
Unit  
dBµV  
dBµV  
k  
3,4,5,6,7,11,12  
Intermod Sensitivity  
35  
7,11,14  
R
10  
Audio Output Load Resistance  
L
Audio Output Load  
C
Single-ended  
50  
60  
pF  
L
7,11,14  
Capacitance  
7
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
7
Powerup Time  
From powerdown  
110  
3
ms  
dB  
12,13  
RSSI Offset  
Input levels of 8 and  
60 dBµV at RF Input  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Analog audio output mode.  
7. Guaranteed by characterization.  
8. V  
= 1 mV.  
EMF  
9. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
10. f = 75 kHz.  
11. Sensitivity measured at (S+N)/N = 26 dB.  
12. Blocker Amplitude = 100 dBuV.  
13. At temperature (25 °C).  
14. At LOUT and ROUT pins.  
14  
Rev. 1.1  
Si4730/31/34/35-D60  
Table 8. 64–75.9 MHz Input Frequency FM Receiver Characteristics1,2,3  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
64  
3
Typ  
Max  
75.9  
5
Unit  
MHz  
µV EMF  
k  
Input Frequency  
f
RF  
,
4,5,6 8  
Sensitivity  
LNA Input Resistance  
(S+N)/N = 26 dB  
3.5  
4
3,7  
3,7  
LNA Input Capacitance  
4
5
6
pF  
9
Input IP3  
72  
15  
70  
45  
10  
105  
50  
50  
70  
80  
90  
1
dBµV EMF  
dB  
3,4,5,7  
m = 0.3  
±200 kHz  
±400 kHz  
AM Suppression  
dB  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
dB  
4,5,7  
mV  
Audio Output Voltage  
RMS  
4,7,10  
dB  
Audio Output L/R Imbalance  
3
–3 dB  
–3 dB  
30  
80  
54  
50  
60  
Hz  
Audio Frequency Response Low  
3
kHz  
Audio Frequency Response High  
4,3,5,7,11  
63  
0.1  
75  
50  
dB  
Audio Mono S/N  
4,7,10  
%
Audio THD  
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
Single-ended  
µs  
µs  
k  
3,11  
R
Audio Output Load Resistance  
L
L
3,11  
C
Single-ended  
pF  
Audio Output Load Capacitance  
3
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
3
Powerup Time  
From powerdown  
110  
3
ms  
dB  
12  
RSSI Offset  
Input levels of 8 and  
60 dBµV EMF  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. Guaranteed by characterization.  
4. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
5. f = 22.5 kHz.  
6. B = 300 Hz to 15 kHz, A-weighted.  
AF  
7. V  
= 1 mV.  
EMF  
8. Analog output mode.  
9. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
10. f = 75 kHz.  
11. At LOUT and ROUT pins.  
12. At temperature (25 °C).  
Rev. 1.1  
15  
Si4730/31/34/35-D60  
Table 9. AM/SW/LW Receiver Characteristics1,2  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, T = –20 to 85 °C)  
A
A
A
Parameter  
Symbol  
Test Condition  
Long Wave (LW)  
Medium Wave (AM)  
Short Wave (SW)  
(S+N)/N = 26 dB  
THD < 8%  
Min  
153  
520  
2.3  
Typ  
Max  
279  
1710  
26.1  
35  
Unit  
kHz  
Input Frequency  
f
RF  
kHz  
MHz  
3,4,5  
Sensitivity  
25  
µV EMF  
5,6  
Large Signal Voltage Handling  
300  
40  
mV  
RMS  
RMS  
5
Power Supply Rejection Ratio  
V = 100 mVRMS, 100 Hz  
dB  
DD  
3,7  
Audio Output Voltage  
54  
60  
67  
mV  
3,4,7  
Audio S/N  
60  
dB  
3,7  
Audio THD  
0.1  
2800  
0.5  
%
5,8  
Antenna Inductance  
Long Wave (LW)  
Medium Wave (AM)  
From powerdown  
µH  
µH  
ms  
180  
450  
110  
5
Powerup Time  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 520 kHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter.  
4. B = 300 Hz to 15 kHz, A-weighted.  
AF  
5. Guaranteed by characterization.  
6. See “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure” for evaluation method.  
7. V = 5 mVrms.  
IN  
8. Stray capacitance on antenna and board must be < 10 pF to achieve full tuning range at higher inductance levels.  
16  
Rev. 1.1  
Si4730/31/34/35-D60  
Table 10. AC Receiver Characteristics—AUXIN Analog to Digital Converter  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, T = 20 to 85 °C)  
A
D
A
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Total Harmonic Distortion +  
Noise  
THD+N  
f = 1 kHz;  
measured 20 Hz—20 kHz  
0.035  
0.06  
%
Dynamic Range/Signal to Noise  
Ratio  
SNR  
f = 1 kHz at –60 dBFS  
A-weighted  
85  
78  
90  
dB  
dB  
dB  
f = 1 kHz at –60 dBFS  
non-weighted  
Crosstalk  
f = 1 kHz with 3% Bandpass  
filter  
Gain Mismatch  
Gain Drift  
0.03  
100  
48  
1.8  
dB  
PPM/°C  
kHz  
Input Sample Rate  
Input Voltage  
F
S
V
V
pkpk  
AI  
Input Resistance  
Input Capacitance  
R
LIATTEN[1:0]  
60  
k  
AI  
AI  
C
10  
pF  
Table 11. Digital Filter Characteristics—AUXIN Analog to Digital Converter  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, T = 20 to 85 °C)  
A
D
A
Parameter  
Symbol  
Test Condition  
–0.1 dB  
Min  
0.02  
–0.1  
25  
Typ  
Max  
20  
Unit  
kHz  
dB  
Passband Frequency Response  
Passband Ripple  
20—20 kHz  
0.1  
Stopband Corner Frequency  
Stopband Attenuation  
kHz  
dB  
70  
Rev. 1.1  
17  
Si4730/31/34/35-D60  
Table 12. Reference Clock and Crystal Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock  
1
RCLK Supported Frequencies  
31.130  
–100  
1
32.768  
40,000  
100  
kHz  
2
RCLK Frequency Tolerance  
ppm  
REFCLK_PRESCALE  
REFCLK  
4095  
31.130  
32.768  
34.406  
kHz  
Crystal Oscillator  
Crystal Oscillator Frequency  
–100  
32.768  
100  
3.5  
50  
kHz  
ppm  
pF  
2
Crystal Frequency Tolerance  
Board Capacitance  
ESR  
  
pF  
3
CL  
7
12  
22  
3
CL–single ended  
14  
24  
44  
pF  
Notes:  
1. The Si473x-D60 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK  
frequencies between 31.130 kHz and 40 MHz that are not supported. For more details, see Table 6 of “AN332: Si47xx  
Programming Guide”.  
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing and AM seek/tune in SW  
frequencies.  
3. Guaranteed by characterization.  
Table 13. Thermal Conditions  
Parameter  
Thermal Resistance*  
Ambient Temperature  
Junction Temperature  
Symbol  
Min  
Typ  
80  
Max  
Unit  
°C/W  
°C  
JA  
T
–15  
25  
85  
A
T
92  
°C  
J
*Note: Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.  
18  
Rev. 1.1  
Si4730/31/34/35-D60  
Table 14. Absolute Maximum Ratings1,2  
Parameter  
Analog Supply Voltage  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 3.9  
10  
Unit  
V
V
A
Digital and I/O Supply Voltage  
V
V
D
3
Input Current  
I
mA  
V
IN  
3
Input Voltage  
V
T
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
–40 to 95  
–55 to 150  
0.4  
C  
C  
OP  
Storage Temperature  
T
STG  
4
RF Input Level  
V
pk  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond  
recommended operating conditions for extended periods may affect device reliability.  
2. The Si473x-D60 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV  
HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. For input pins DFS, SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2, GPO3, and DCLK.  
4. At RF input pins FMI and AMI.  
Rev. 1.1  
19  
Si4730/31/34/35-D60  
2. Typical Application Schematic  
2.1. QFN Typical Application Schematic  
Optional: Digital Audio Out  
OPMODE: 0xB0, 0xB5  
16  
15  
C7  
C8  
DFS  
RIN  
LIN  
DOUT  
R3  
R2  
R1  
17  
14  
13  
GP03/DCLK  
LOUT  
ROUT  
DCLK  
DFS  
C9  
GPO1  
GPO2/INT  
DOUT  
R3  
R2  
R1  
GPO3/DCLK  
DFS  
Si473x  
C9  
Optional: AUXIN/Digital Audio Out  
OPMODE: 0x5B, 0x0B  
DOUT  
1
2
3
4
5
15  
NC  
DOUT  
C2  
14  
FM Antenna  
FMI  
LOUT  
LOUT  
13  
RFGND  
AMI  
ROUT  
ROUT  
Si473x  
12  
L1  
GND  
D60  
2.7 to 5.5 V  
C1  
C3  
11  
RSTB  
VA  
VA  
1.62 to 3.6 V  
C4  
VD  
RSTB  
RCLK  
SDIO  
SCLK  
SENB  
Optional: AM Air Loop Antenna  
L2  
GPO3  
RCLK  
T1  
C3  
1
3
X1  
AMI  
C6  
C5  
RFGND  
Optional: For Crystal OSC  
Notes:  
1. Place C1 close to VA pin and C4 close to VD pin.  
2. All grounds connect directly to GND plane on PCB.  
3. Pins 1 and 20 are no connects, leave floating.  
4. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
5. Pin 2 connects to the FM antenna interface, and pin 4 connects to the AM antenna interface.  
6. Place Si473x-D60 as close as possible to antenna and keep the FMI and AMI traces as short as possible.  
20  
Rev. 1.1  
Si4730/31/34/35-D60  
2.2. SSOP Typical Application Schematic  
2
1
C7  
C8  
DFS  
RIN  
LIN  
DOUT  
R3  
R2  
R1  
3
GP03/DCLK  
LOUT  
ROUT  
DCLK  
DFS  
24  
23  
DOUT  
Optional: Digital Audio Out  
OPMODE: 0xB0, 0xB5  
Si473x  
C9  
Optional: AUXIN/Digital Audio Out  
OPMODE: 0x5B, 0x0B  
C9  
R1  
R2  
R3  
1
24  
DOUT  
LOUT  
DOUT  
DFS  
LOUT  
ROUT  
2
23  
DFS  
ROUT  
3
22  
GPO3/DCLK  
GPO2/INT  
DBYP  
GPO3/DCLK  
GPO2/INT  
GPO1  
C1  
4
21  
VA  
2.0 to 5.5 V  
VA  
1.62 to 3.6 V  
C4  
5
20  
19  
18  
17  
16  
15  
14  
13  
GPO1  
NC  
VD  
RCLK  
SDIO  
SCLK  
SENB  
VD  
6
RCLK  
SDIO  
SCLK  
SENB  
RSTB  
7
NC  
C2  
C3  
8
FM Antenna  
FMI  
9
RFGND  
NC  
10  
11  
12  
RSTB  
GND  
L1  
NC  
GND  
AMI  
Optional: AM Air Loop Antenna  
L2  
GPO3  
RCLK  
T1  
C3  
1
3
X1  
AMI  
C6  
C5  
RFGND  
Optional: For Crystal OSC  
Notes:  
1. Place C1 close to VA and C4 close to VD pin.  
2. All grounds connect directly to GND plane on PCB.  
3. Pins 6 and 7 are no connects, leave floating.  
4. Pins 10 and 11 are unused. Tie these pins to GND.  
5. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
6. Pin 8 connects to the FM antenna interface, and pin 12 connects to the AM antenna interface.  
7. Place Si473x-D60 as close as possible to antenna and keep the FMI and AMI traces as short as possible.  
Rev. 1.1  
21  
Si4730/31/34/35-D60  
3. Bill of Materials  
3.1. QFN/SSOP Bill of Materials  
Table 15. Si473x-D60 QFN/SSOP Bill of Materials  
Component(s)  
Value/Description  
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R  
Coupling capacitor, 1 nF, ±20%, Z5U/X7R  
Coupling capacitor, 0.47 μF, ±20%, Z5U/X7R  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R  
Ferrite loop stick, 180–450 μH  
Supplier  
Murata  
C1  
C2  
C3  
C4  
L1  
Murata  
Murata  
Murata  
Jiaxin  
U1  
Si47xx AM/FM Radio Tuner  
Silicon Laboratories  
Optional Components  
C5, C6  
C7  
Crystal load capacitors, 22 pF, ±5%, COG  
(Optional for crystal oscillator)  
Venkel  
Murata  
Coupling capacitor, 0.39 μF, ±20%, Z5U/X7R  
(Optional for AUXIN)  
C8  
Coupling capacitor, 0.39 μF, ±20%, Z5U/X7R  
Murata  
(Optional for AUXIN)  
C9  
Noise mitigating capacitor, 2~5 pF  
(Optional for digital audio)  
Murata  
R1  
Resistor, 600 Ω  
Venkel  
(Optional for digital audio)  
R2  
Resistor, 2 kΩ  
Venkel  
(Optional for digital audio)  
R3  
Resistor, 2 kΩ  
Venkel  
(Optional for digital audio)  
L2  
Air Loop, 10-20 µH  
Jiaxin  
(Optional for AM Input)  
T1  
Transformer, 1:5 turns ratio  
(Optional for AM Input)  
Jiaxin, UMEC  
Epson  
X1  
32.768 kHz crystal  
(Optional for crystal oscillator)  
22  
Rev. 1.1  
Si4730/31/34/35-D60  
4. Functional Description  
4.1. Overview  
FM / SW  
RIN  
Si473x-D60  
ANT  
LIN  
RDS  
(Si4731/  
35)  
DOUT  
FMI  
DIGITAL  
AUDIO  
DFS  
LNA  
GPO/DCLK  
LOW-IF  
DSP  
AGC  
Mux  
AMI  
RFGND  
ADC  
ADC  
DAC  
DAC  
AM / LW  
ANT  
ROUT  
LOUT  
LNA  
AGC  
Mux  
2.7~5.5 V  
VA  
CONTROL  
INTERFACE  
LDO  
AFC  
VD  
1.62~3.6 V  
GND  
Figure 7. Functional Block Diagram  
The Si473x-D60 CMOS AM/FM radio receiver IC audio processing.  
integrates the complete tuner function from antenna  
In addition, the Si473x-D60 provides analog and digital  
audio outputs and a programmable reference clock. The  
device supports I C-compatible 2-wire control interface,  
and a Si4700/01 backwards-compatible 3-wire control  
interface.  
input to audio output, including a stereo audio AUXIN  
ADC input for converting analog audio to digital signals.  
This feature enables a cost-efficient digital audio  
platform for consumer electronics applications with high  
cell phone noise immunity, superior radio performance,  
and high fidelity audio power amplification. Offering  
unmatched integration and PCB space savings, the  
Si473x-D60 requires only a few external components  
2
The Si473x-D60 utilizes digital signal processing to  
achieve high fidelity, optimal performance, and design  
flexibility. The chip provides excellent pilot rejection,  
selectivity, and unmatched audio performance, and  
offers both the manufacturer and the end-user  
2
and less than 15 mm of board area, excluding the  
antenna inputs. The Si473x-D60 AM/FM radio provides  
the space savings and low power consumption  
necessary for portable devices while delivering the high  
performance and design simplicity desired for all  
AM/FM solutions.  
extensive programmability and  
experience.  
a better listening  
The Si4731/35 incorporates a digital signal processor  
for the European Radio Data System (RDS) and the  
North American Radio Broadcast Data System (RBDS)  
including all required symbol decoding, block  
synchronization, error detection, and error correction  
functions. Using this feature, the Si4731/35 enables  
broadcast data such as station identification and song  
name to be displayed to the user.  
Leveraging Silicon Laboratories' proven and patented  
Si4700/01 FM tuner's digital low intermediate frequency  
(low-IF) receiver architecture, the Si473x-D60 delivers  
superior RF performance and interference rejection in  
the AM, FM, SW, and LW bands. The high level of  
integration and complete system production test  
simplifies design-in, increases system quality, and  
improves reliability and manufacturability.  
The Si473x-D60 is a feature-rich solution that includes  
advanced seek algorithms, soft mute, auto-calibrated  
digital tuning, FM stereo processing and advanced  
Rev. 1.1  
23  
Si4730/31/34/35-D60  
optimize sensitivity and rejection of strong interferers  
allowing better reception of weak stations.  
4.2. Operating Modes  
The Si473x-D60 operates in either an FM receive, AM  
receive, or audio AUXIN ADC mode. In FM mode, radio  
signals are received on FMI and processed by the FM  
front-end circuitry. In AM mode, radio signals are  
received on AMI and processed by the AM front-end  
circuitry. In audio AUXIN ADC mode, stereo audio  
signals on LIN/RIN are sampled, converted to digital,  
The Si473x-D60 provides highly-accurate digital AM  
tuning without factory adjustments. To offer maximum  
flexibility, the receiver supports a wide range of ferrite  
loop sticks from 180–450 µH. An air loop antenna is  
supported by using a transformer to increase the  
effective inductance from the air loop. Using a 1:5 turn  
ratio inductor, the inductance is increased by 25 times  
and easily supports all typical AM air loop antennas  
which generally vary between 10 and 20 µH.  
2
filtered, and decimated to 32, 44.1, or 48 kHz for the I S  
digital audio interface. In addition to the receiver mode,  
there is a clocking mode to choose to clock the Si473x-  
D60 from a reference clock or crystal. On the Si473x-  
D60, there is an audio output mode to choose between  
an analog and/or digital audio output. In the analog  
audio output mode, ROUT and LOUT are used for the  
audio output pins. In the digital audio mode, DOUT,  
DFS, and DCLK pins are used. Concurrent  
analog/digital audio output mode is also available  
requiring all five pins.  
4.5. SW Receiver  
The Si4734/35 is the first fully integrated IC to support  
AM and FM, as well as short wave (SW) band reception  
from 2.3 to 26.1 MHz fully covering the 120 meter to  
11 meter bands. The Si4734/35 offers extensive  
shortwave features such as continuous digital tuning  
with minimal discrete components and no factory  
adjustments. Other SW features include adjustable  
channel step sizes in 1 kHz increments, adjustable  
channel bandwidth settings, advanced seek algorithm,  
and soft mute.  
4.3. FM Receiver  
The Si473x-D60 FM receiver is based on the proven  
Si4700/01 FM tuner. The receiver uses a digital low-IF  
architecture allowing the elimination of external The Si4734/35 uses the FM antenna to capture short  
components and factory adjustments. The Si473x-D60 wave signals. These signals are then fed directly into  
integrates a low noise amplifier (LNA) supporting the the AMI pin in a wide band configuration. See "AN332:  
worldwide FM broadcast band (64 to 108 MHz). An Si47xx Programming Guide” and “AN383: Si47xx  
AGC circuit controls the gain of the LNA to optimize Antenna and Schematic Guidelines" for more details.  
sensitivity and rejection of strong interferers. An image-  
4.6. LW Receiver  
reject mixer downconverts the RF signal to low-IF. The  
quadrature mixer output is amplified, filtered, and The Si4734/35 supports the long wave (LW) band from  
digitized with high resolution analog-to-digital 153 to 279 kHz. The highly integrated Si4734/35 offers  
converters (ADCs). This advanced architecture allows continuous digital tuning with minimal discrete  
the Si473x-D60 to perform channel selection, FM components and no factory adjustments. The Si4734/35  
demodulation, and stereo audio processing to achieve also offers adjustable channel step sizes in 1 kHz  
superior performance compared to traditional analog increments, adjustable channel bandwidth settings,  
architectures.  
advanced seek algorithm, and soft mute.  
The Si4734/35 uses a separate ferrite bar antenna to  
capture long wave signals.  
4.4. AM Receiver  
The highly-integrated Si473x-D60 supports worldwide  
AM band reception from 520 to 1710 kHz using a digital  
low-IF architecture with a minimum number of external  
components and no manual alignment required. This  
digital low-IF architecture allows for high-precision  
filtering offering excellent selectivity and SNR with  
minimum variation across the AM band. The DSP also  
provides adjustable channel step sizes in 1 kHz  
increments, AM demodulation, soft mute, seven  
different channel bandwidth filters, and additional  
features, such as a programmable automatic volume  
control (AVC) maximum gain allowing users to adjust  
the level of background noise.  
4.7. Stereo Audio AUXIN ADC  
The Si473x-D60 stereo audio AUXIN ADC can be  
multiplexed between low-IF input for radio operation  
and analog audio input for high fidelity data conversion  
at 32, 44.1, or 48 kHz sample rate. When operated in  
ADC-mode, the Si473x-D60 supports I2S digital audio  
output only (no analog output) while enabling the analog  
inputs and the stereo ADC.  
Similar to the FM receiver, the integrated LNA and AGC  
24  
Rev. 1.1  
Si4730/31/34/35-D60  
4.8. Digital Audio Interface  
The digital audio interface operates in slave mode and  
supports a variety of MSB-first audio data formats  
including I2S and left-justified modes. The interface has  
three pins: digital data input (DIN), digital frame  
synchronization input (DFS), and  
a
digital bit  
synchronization input clock (DCLK). The Si473x-D60  
supports a number of industry-standard sampling rates  
including 32, 44.1, and 48 kHz. The digital audio  
interface enables low-power operation by eliminating  
the need for redundant DACs and ADCs on the audio  
baseband processor.  
4.8.1. Audio Data Formats  
The digital audio interface operates in slave mode and  
supports three different audio data formats:  
I2S  
Left-Justified  
DSP Mode  
In I2S mode, by default the MSB is captured on the  
second rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is low, and the right channel is  
transferred when the DFS is high.  
In left-justified mode, by default the MSB is captured on  
the first rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is high, and the right channel is  
transferred when the DFS is low.  
In DSP mode, the DFS becomes a pulse with a width of  
1DCLK period. The left channel is transferred first,  
followed right away by the right channel. There are two  
options in transferring the digital audio data in DSP  
mode: the MSB of the left channel can be transferred on  
the first rising edge of DCLK following the DFS pulse or  
on the second rising edge.  
In all audio formats, depending on the word size, DCLK  
frequency, and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word. In addition, if  
preferred, the user can configure the MSB to be  
captured on the falling edge of DCLK via properties.  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
4.8.2. Audio Sample Rates  
The device supports a number of industry-standard  
sampling rates including 32, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs on the audio  
baseband processor.  
Rev. 1.1  
25  
Si4730/31/34/35-D60  
INVERTED  
(OFALL = 1)  
DCLK  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
I2S  
RIGHT CHANNEL  
(OMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 8. I2S Digital Audio Format  
INVERTED  
DCLK  
(OFALL = 1)  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
n-2  
Left-Justified  
(OMODE = 0110)  
DOUT  
1
2
3
n-2  
n-1  
n
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 9. Left-Justified Digital Audio Format  
(OFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DOUT  
1
2
3
2
n-1  
n
(OMODE = 1100)  
(OMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 10. DSP Digital Audio Format  
26  
Rev. 1.1  
Si4730/31/34/35-D60  
4.9. Stereo Audio Processing  
4.10. Received Signal Qualifiers  
The output of the FM demodulator is a stereo The quality of a tuned signal can vary depending on  
multiplexed (MPX) signal. The MPX standard was many factors including environmental conditions, time of  
developed in 1961, and is used worldwide. Today's day, and position of the antenna. To adequately manage  
MPX signal format consists of left + right (L+R) audio, the audio output and avoid unpleasant audible effects to  
left – right (L–R) audio, a 19 kHz pilot tone, and the end-user, the Si473x-D60 monitors and provides  
RDS/RBDS data as shown in Figure 11 below.  
indicators of the signal quality, allowing the host  
processor to perform additional processing if required  
by the customer. The Si473x-D60 monitors signal  
quality metrics including RSSI, SNR, and multipath  
interference on FM signals. These metrics are used to  
optimize signal processing and are also reported to the  
host processor. The signal processing algorithms can  
Mono Audio  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
use  
either  
Silicon  
Labs'  
optimized  
settings  
(recommended) or be customized to modify  
performance.  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
4.11. Volume Control  
Figure 11. MPX Signal Spectrum  
The audio output may be muted. Volume is adjusted  
digitally by the RX_VOLUME property.  
4.9.1. Stereo Decoder  
The Si473x-D60's  
integrated  
stereo  
decoder  
4.12. Stereo DAC  
automatically decodes the MPX signal using DSP  
techniques. The 0 to 15 kHz (L+R) signal is the mono  
output of the FM tuner. Stereo is generated from the  
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is  
used as a reference to recover the (L–R) signal. Output  
left and right channels are obtained by adding and  
subtracting the (L+R) and (L–R) signals respectively.  
High-fidelity stereo digital-to-analog converters (DACs)  
drive analog audio signals onto the LOUT and ROUT  
pins. The audio output may be muted.  
4.13. Soft Mute  
The soft mute feature is available to attenuate the audio  
outputs and minimize audible noise in very weak signal  
conditions. The soft mute feature is triggered by the  
SNR metric. The SNR threshold for activating soft mute  
is programmable, as are soft mute attenuation levels  
and attack and release rates.  
4.9.2. Stereo-Mono Blending  
Adaptive noise suppression is employed to gradually  
combine the stereo left and right audio channels to a  
mono (L+R) audio signal as the signal quality degrades  
to maintain optimum sound fidelity under varying  
reception conditions. Three metrics, received signal  
strength indicator (RSSI), signal-to-noise ratio (SNR),  
4.14. FM Hi-Cut Control  
Hi-cut control is employed on audio outputs with  
degradation of the signal due to low SNR and/or  
multipath interference. Two metrics, SNR and multipath  
interference, are monitored concurrently in forcing hi-cut  
of the audio outputs. Programmable minimum and  
maximum thresholds are available for both metrics. The  
transition frequency for hi-cut is also programmable with  
up to seven hi-cut filter settings. A single set of attack  
and release rates for hi-cut are programmable for both  
metrics from a range of 2 ms to 64 s. The level of hi-cut  
applied can be monitored with the FM_RSQ_STATUS  
command. Hi-cut can be disabled by setting the hi-cut  
filter to audio bandwidth of 15 kHz.  
and  
multipath  
interference,  
are  
monitored  
simultaneously in forcing a blend from stereo to mono.  
The metric which reflects the minimum signal quality  
takes precedence and the signal is blended  
appropriately.  
All three metrics have programmable stereo/mono  
thresholds and attack/release rates. If a metric falls  
below its mono threshold, the signal is blended from  
stereo to full mono. If all metrics are above their  
respective stereo thresholds, then no action is taken to  
blend the signal. If a metric falls between its mono and  
stereo thresholds, then the signal is blended to the level  
proportional to the metric’s value between its mono and  
stereo thresholds, with an associated attack and  
release rate.  
Rev. 1.1  
27  
Si4730/31/34/35-D60  
The Si473x-D60 uses RSSI, SNR, and AFC to qualify  
stations. Most of these variables have programmable  
thresholds for modifying the seek function according to  
customer needs.  
4.15. De-emphasis  
Pre-emphasis and de-emphasis is a technique used by  
FM broadcasters to improve the signal-to-noise ratio of  
FM receivers by reducing the effects of high-frequency  
interference and noise. When the FM signal is  
RSSI is employed first to screen all possible candidate  
stations. SNR and AFC are subsequently used in  
screening the RSSI qualified stations. The more  
thresholds the system engages, the higher the  
confidence that any found stations will indeed be valid  
broadcast stations. The Si473x-D60 defaults set RSSI  
to a mid-level threshold and add an SNR threshold set  
to a level delivering acceptable audio performance. This  
trade-off will eliminate very low RSSI stations while  
keeping the seek time to acceptable levels. Generally,  
the time to auto-scan and store valid channels for an  
entire FM band with all thresholds engaged is very short  
depending on the band content. Seek is initiated using  
the FM_SEEK_START command. The RSSI, SNR, and  
AFC threshold settings are adjustable using properties.  
transmitted,  
a
pre-emphasis filter is applied to  
accentuate the high audio frequencies. The Si473x-D60  
incorporates a de-emphasis filter which attenuates high  
frequencies to restore a flat frequency response. Two  
time constants are used in various regions. The de-  
emphasis time constant is programmable to 50 or 75 µs  
and is set by the FM_DEEMPHASIS property.  
4.16. RDS/RBDS Processor  
(Si4731/35 Only)  
The Si4731/35 implements an RDS/RBDS* processor  
for symbol decoding, block synchronization, error  
detection, and error correction.  
The Si4731/35 device is user configurable and provides  
an optional interrupt when RDS is synchronized, loses  
synchronization, and/or the user configurable RDS  
FIFO threshold has been met.  
4.19. Reference Clock  
The Si473x-D60 reference clock is programmable,  
supporting RCLK frequencies listed in Table 12,  
“Reference Clock and Crystal Characteristics,” on  
page 18. Refer to Table 2, “DC Characteristics,” on  
page 6 for switching voltage levels and Table 12 for  
frequency tolerance information.  
The Si4731/35 reports RDS decoder synchronization  
status and detailed bit errors in the information word for  
each RDS block with the FM_RDS_STATUS command.  
The range of reportable block errors is 0, 1–2, 3–5, or  
6+. More than six errors indicates that the  
corresponding block information word contains six or  
more non-correctable errors or that the block checkword  
contains errors. The pilot does not have to be present to  
decode RDS/RBDS.  
An onboard crystal oscillator is available to generate the  
32.768 kHz reference when an external crystal and load  
capacitors are provided. Refer to "2. Typical Application  
Schematic" on page 20. This mode is enabled using the  
POWER_UP command. Refer to “AN332: Si47xx  
Programming Guide”.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
The Si473x-D60 performance may be affected by data  
activity on the SDIO bus when using the integrated  
internal oscillator. SDIO activity results from polling the  
tuner for status or communicating with other devices  
that share the SDIO bus. If there is SDIO bus activity  
while the Si473x-D60 is performing the seek/tune  
function, the crystal oscillator may experience jitter,  
which may result in mistunes, false stops, and/or lower  
SNR.  
4.17. Tuning  
The tuning frequency is directly programmed using the  
FM_TUNE_FREQ and AM_TUNE_FREQ commands.  
The Si473x-D60 supports channel spacing steps of  
10 kHz in FM mode and 1 kHz in AM mode.  
4.18. Seek  
The Si473x-D60 seek functionality is performed  
completely on-chip and will search up or down the  
selected frequency band for a valid channel. A valid  
For best seek/tune results, Silicon Laboratories  
recommends that all SDIO data traffic be suspended  
during Si473x-D60 seek and tune operations. This is  
achieved by keeping the bus quiet for all other devices  
on the bus, and delaying tuner polling until the tune or  
seek operation is complete. The seek/tune complete  
(STC) interrupt should be used instead of polling to  
determine when a seek/tune operation is complete.  
channel is qualified according to  
a
series of  
programmable signal indicators and thresholds. The  
seek function can be made to stop at the band edge and  
provide an interrupt, or wrap the band and continue  
seeking until arriving at the original departure frequency.  
The device sets interrupts with found valid stations or, if  
the seek results in zero found valid stations, the device  
indicates failure and again sets an interrupt. Refer to  
“AN332: Si47xx Programming Guide”.  
28  
Rev. 1.1  
Si4730/31/34/35-D60  
edges of SCLK. The Si473x-D60 acknowledges each  
data byte by driving SDIO low for one cycle, on the next  
falling edge of SCLK. The user may write up to 8 data  
bytes in a single 2-wire transaction. The first byte is a  
command, and the next seven bytes are arguments.  
4.20. Control Interface  
A serial port slave interface is provided, which allows an  
external controller to send commands to the Si473x-  
D60 and receive responses from the device. The serial  
port can operate in two bus modes: 2-wire mode and 3-  
wire mode. The Si473x-D60 selects the bus mode by  
sampling the state of the GPO1 and GPO2 pins on the  
rising edge of RST. The GPO1 pin includes an internal  
pull-up resistor, which is connected while RST is low,  
and the GPO2 pin includes an internal pull-down  
resistor, which is connected while RST is low.  
Therefore, it is only necessary for the user to actively  
drive pins which differ from these states. See Table 16.  
For read operations, after the Si473x-D60 has  
acknowledged the control byte, it will drive an 8-bit data  
byte on SDIO, changing the state of SDIO on the falling  
edge of SCLK. The user acknowledges each data byte  
by driving SDIO low for one cycle, on the next falling  
edge of SCLK. If a data byte is not acknowledged, the  
transaction will end. The user may read up to 16 data  
bytes in a single 2-wire transaction. These bytes contain  
the response data from the Si473x-D60.  
Table 16. Bus Mode Select on Rising Edge of  
RST  
A 2-wire transaction ends with the STOP condition,  
which occurs when SDIO rises while SCLK is high.  
For details on timing specifications and diagrams, refer  
to Table 4, “2-Wire Control Interface Characteristics” on  
page 9; Figure 2, “2-Wire Control Interface Read and  
Write Timing Parameters,” on page 10, and Figure 3, “2-  
Wire Control Interface Read and Write Timing Diagram,”  
on page 10.  
Bus Mode  
2-Wire  
3-Wire  
GPO1  
1
0 (must drive)  
GPO2  
0
0
After the rising edge of RST, the pins GPO1 and GPO2  
are used as general purpose output (O) pins, as  
described in Section “4.21. GPO Outputs”. In any bus  
4.20.2. 3-Wire Control Interface Mode  
mode, commands may only be sent after V and V  
supplies are applied.  
D
A
When selecting 3-wire mode, the user must ensure that  
a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
In any bus mode, before sending a command or reading  
a response, the user must first read the status byte to  
ensure that the device is ready (CTS bit is high).  
The 3-wire bus mode uses the SCLK, SDIO, and SEN_  
pins. A transaction begins when the user drives SEN  
low. Next, the user drives a 9-bit control word on SDIO,  
which is captured by the device on rising edges of  
SCLK. The control word consists of a 9-bit device  
address (A7:A5 = 101b), a read/write bit (read = 1, write  
= 0), and a 5-bit register address (A4:A0).  
4.20.1. 2-Wire Control Interface Mode  
When selecting 2-wire mode, the user must ensure that  
SCLK is high during the rising edge of RST, and stays  
high until after the first start condition. Also, a start  
condition must not occur within 300 ns before the rising  
edge of RST.  
For write operations, the control word is followed by a  
16-bit data word, which is captured by the device on  
rising edges of SCLK.  
The 2-wire bus mode uses only the SCLK and SDIO  
pins for signaling. A transaction begins with the START  
condition, which occurs when SDIO falls while SCLK is  
high. Next, the user drives an 8-bit control word serially  
on SDIO, which is captured by the device on rising  
edges of SCLK. The control word consists of a 7-bit  
device address, followed by a read/write bit (read = 1,  
write = 0). The Si473x-D60 acknowledges the control  
word by driving SDIO low on the next falling edge of  
SCLK.  
For read operations, the control word is followed by a  
delay of one-half SCLK cycle for bus turn-around. Next,  
the Si473x-D60 will drive the 16-bit read data word  
serially on SDIO, changing the state of SDIO on each  
rising edge of SCLK.  
A transaction ends when the user sets SEN high, then  
pulses SCLK high and low one final time. SCLK may  
either stop or continue to toggle while SEN is high.  
Although the Si473x-D60 will respond to only a single  
device address, this address can be changed with the  
SEN pin (note that the SEN pin is not used for signaling  
in 2-wire mode). Refer to “AN332: Si47xx Programming  
Guide”  
In 3-wire mode, commands are sent by first writing each  
argument to register(s) 0xA1–0xA3, then writing the  
command word to register 0xA0. A response is  
retrieved by reading registers 0xA8–0xAF.  
For details on timing specifications and diagrams, refer  
to Table 5, “3-Wire Control Interface Characteristics,” on  
page 11; Figure 4, “3-Wire Control Interface Write  
For write operations, the user then sends an 8-bit data  
byte on SDIO, which is captured by the device on rising  
Rev. 1.1  
29  
Si4730/31/34/35-D60  
Timing Parameters,” on page 11, and Figure 5, “3-Wire  
Control Interface Read Timing Parameters,” on page 11.  
4.25. Programming with Commands  
To ease development time and offer maximum  
customization, the Si473x-D60 provides a simple yet  
powerful software interface to program the receiver. The  
device is programmed using commands, arguments,  
properties, and responses.  
4.21. GPO Outputs  
The Si473x-D60 provides three general-purpose output  
pins. The GPO pins can be configured to output a  
constant low, constant high, or high-impedance. The  
GPO pins can be reconfigured as specialized functions.  
To perform an action, the user writes a command byte  
and associated arguments, causing the chip to execute  
the given command. Commands control an action such  
as powerup the device, shut down the device, or tune to  
a station. Arguments are specific to a given command  
and are used to modify the command.  
4.22. Firmware Upgrades  
The Si473x-D60 contains on-chip program RAM to  
accommodate minor changes to the firmware. This  
allows Silicon Labs to provide future firmware updates  
to optimize the characteristics of new radio designs and Properties are a special command argument used to  
those already deployed in the field.  
modify the default chip operation and are generally  
configured immediately after powerup. Examples of  
properties are de-emphasis level, RSSI seek threshold,  
4.23. Reset, Powerup, and Powerdown  
Setting the RST pin low will disable analog and digital and soft mute attenuation threshold.  
circuitry, reset the registers to their default settings, and  
Responses provide the user information and are  
echoed after a command and associated arguments are  
issued. All commands provide a 1-byte status update,  
disable the bus. Setting the RST pin high will bring the  
device out of reset.  
A powerdown mode is available to reduce power indicating interrupt and clear-to-send status information.  
consumption when the part is idle. Putting the device in  
powerdown mode will disable analog and digital circuitry  
properties for the Si473x-D60, see “AN332: Si47xx  
while keeping the bus active.  
Programming Guide.”  
For a detailed description of the commands and  
4.24. 2 V Operation (SSOP Only)  
The Si473x-D60 is capable of operating down to 2 V as  
the battery drains in an application. Any power-up or  
reset is not guaranteed to work below the DC  
characteristics defined in Table 2. This capability  
enables a much longer run time in battery operated  
devices.  
30  
Rev. 1.1  
Si4730/31/34/35-D60  
5. Pin Descriptions  
5.1. Si473x-D60-GM  
20 19 18 17  
NC  
FMI  
1
16  
2
15 DOUT/[LIN]  
14 LOUT/[DFS]  
13 ROUT/[DOUT]  
12 GND  
RFGND  
AMI  
3
4
5
GND  
PAD  
RST  
6
11 VA  
7
8
9
10  
Pin Number(s)  
Name  
NC  
Description  
1, 20  
No connect. Leave floating.  
2
FMI  
FM RF inputs. FMI should be connected to the antenna trace.  
RF ground. Connect to ground plane on PCB.  
AM RF input. AMI should be connected to the AM antenna.  
Device reset input (active low).  
3
RFGND  
AMI  
4
5
RST  
6
Serial enable input (active low).  
SEN  
7
SCLK  
SDIO  
RCLK  
Serial clock input.  
8
Serial data input/output.  
9
External reference oscillator input.  
10  
V
Digital and I/O supply voltage.  
D
11  
V
Analog supply voltage. May be connected directly to battery.  
Ground. Connect to ground plane on PCB.  
A
12, GND PAD  
GND  
13  
14  
15  
ROUT/[DOUT] Right audio line output for analog output mode.  
LOUT/[DFS] Left audio line output for analog output mode.  
DOUT/[LIN] Digital output data for digital output mode or Left channel input for AUXIN ADC  
mode.  
16  
17  
DFS/[RIN]  
Digital frame synchronization input for digital output mode or Right channel input  
for AUXIN ADC mode.  
GPO3/[DCLK] General purpose output, crystal oscillator, or digital bit synchronous clock input  
in digital output mode.  
18  
19  
General purpose output or interrupt pin.  
General purpose output.  
GPO2/[INT]  
GPO1  
Rev. 1.1  
31  
Si4730/31/34/35-D60  
5.2. Si473x-D60-GU  
DOUT/[LIN]  
DFS/[RIN]  
GPO3/[DCLK]  
GPO2/[INT]  
GPO1  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
LOUT/[DFS]  
ROUT/[DOUT]  
3
DBYP  
VA  
4
VD  
5
NC  
RCLK  
SDIO  
SCLK  
SEN  
RST  
GND  
GND  
6
NC  
7
FMI  
8
RFGND  
NC  
9
10  
11  
12  
NC  
AMI  
Pin Number(s)  
Name  
Description  
1
DOUT/[LIN] Digital output data for digital output mode or Left channel input for AUX IN ADC  
mode.  
2
3
DFS/[RIN]  
Digital frame synchronization input for digital output mode or Right channel input  
for AUXIN ADC mode.  
GPO3/[DCLK] General purpose output, crystal oscillator, or digital bit synchronous clock input  
in digital output mode.  
4
5
GPO2/[INT] General purpose output or interrupt pin.  
GPO1  
NC  
General purpose output.  
6,7  
8
No connect. Leave floating.  
FMI  
FM RF inputs. FMI should be connected to the antenna trace.  
RF ground. Connect to ground plane on PCB.  
Unused. Tie these pins to GND.  
9
RFGND  
NC  
10,11  
12  
AMI  
AM/SW/LW RF input.  
13,14  
GND  
Ground. Connect to ground plane on PCB.  
15  
RST  
Device reset input (active low).  
16  
17  
18  
19  
20  
SEN  
SCLK  
SDIO  
RCLK  
Serial enable input (active low).  
Serial clock input.  
Serial data input/output.  
External reference oscillator input.  
Digital and I/O supply voltage.  
V
D
21  
Analog supply voltage. May be connected directly to battery.  
Bypass capacitor.  
V
A
22  
23  
24  
DBYP  
ROUT/[DOUT] Right audio line output in analog output mode.  
LOUT/[DFS] Left audio line output in analog output mode.  
32  
Rev. 1.1  
Si4730/31/34/35-D60  
6. Ordering Guide  
1
Description  
Package  
Type  
Operating  
Temperature/Voltage  
Part Number  
Si4730-D60-GM  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
AM/FM Broadcast Radio Receiver  
2
Si4730-D60-GU  
Si4731-D60-GM  
SSOP  
Pb-free  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
AM/FM Broadcast Radio Receiver with  
RDS/RBDS  
2
Si4731-D60-GU  
Si4734-D60-GM  
SSOP  
Pb-free  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
AM/FM/SW/LW Broadcast Radio Receiver  
2
Si4734-D60-GU  
Si4735-D60-GM  
SSOP  
Pb-free  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
AM/FM/SW/LW Broadcast Radio Receiver  
with RDS/RBDS  
2
Si4735-D60-GU  
SSOP  
Pb-free  
Notes:  
1. Add an “(R)” at the end of the device part number to denote tape and reel option.  
2. SSOP devices operate down to V = 2 V at 25 °C.  
A
Rev. 1.1  
33  
Si4730/31/34/35-D60  
7. Package Outline  
7.1. Si473x-D60 QFN  
Figure 12 illustrates the package details for the Si473x. Table 17 lists the values for the dimensions shown in the  
illustration.  
Figure 12. 20-Pin Quad Flat No-Lead (QFN)  
Table 17. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.20  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.05  
0.05  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
34  
Rev. 1.1  
Si4730/31/34/35-D60  
7.2. Si473x-D60 SSOP  
Figure 13 illustrates the package details for the Si473x. Table 18 lists the values for the dimensions shown in the  
illustration.  
Figure 13. 24-Pin SSOP  
Table 18. Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.75  
0.25  
0.30  
0.25  
A
A1  
b
0.10  
0.20  
0.10  
c
D
8.65 BSC  
6.00 BSC  
3.90 BSC  
0.635 BSC  
E
E1  
e
L
0.40  
0°  
1.27  
8°  
L2  
θ
0.25 BSC  
aaa  
bbb  
ccc  
ddd  
0.20  
0.18  
0.10  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AE.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 1.1  
35  
Si4730/31/34/35-D60  
8. PCB Land Pattern  
8.1. Si473x-D60 QFN  
Figure 14 illustrates the PCB land pattern details for the Si473x-D60-GM QFN. Table 19 lists the values for the  
dimensions shown in the illustration.  
Figure 14. PCB Land Pattern  
36  
Rev. 1.1  
Si4730/31/34/35-D60  
Table 19. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes: Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component stand-off.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 1.1  
37  
Si4730/31/34/35-D60  
8.2. Si473x-D60 SSOP  
Figure 15 illustrates the PCB land pattern details for the Si473x-D60-GU SSOP. Table 20 lists the values for the  
dimensions shown in the illustration.  
Figure 15. PCB Land Pattern  
Table 20. PCB Land Pattern Dimensions  
Dimension  
Min  
Max  
C
E
5.20  
5.30  
0.635 BSC  
X
0.30  
1.50  
0.40  
1.60  
Y1  
General:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
Solder Mask Design:  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design:  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
Card Assembly:  
7. A No-Clean, Type-3 solder paste is recommended.  
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
38  
Rev. 1.1  
Si4730/31/34/35-D60  
9. Top Markings  
9.1. Si473x-D60 Top Marking (QFN)  
3460  
3560  
3060 3160  
DTTT  
DTTT  
YWW  
YWW  
DTTT  
YWW  
DTTT  
YWW  
9.2. Top Marking Explanation (QFN)  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
30 = Si4730, 31 = Si4731, 34 = Si4734, 35 = Si4735.  
60 = Firmware Revision 6.0.  
D = Revision D Die.  
Firmware Revision  
Die Revision  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier.  
(Bottom-Left Justified)  
Y = Year  
Assigned by the Assembly House. Corresponds to the last  
significant digit of the year and work week of the mold date.  
WW = Workweek  
Rev. 1.1  
39  
Si4730/31/34/35-D60  
9.3. Si473x-D60 Top Marking (SSOP)  
473XD60GU  
YYWWTTTTTT  
9.4. Top Marking Explanation (SSOP)  
Mark Method:  
YAG Laser  
4730 = Si4730; 4731 = Si4731; 4734 = Si4734;  
4735 = Si4735.  
Part Number  
Die Revision  
D = Revision D die.  
Line 1 Marking:  
Firmware Revision  
Package Type  
60 = Firmware Revision 6.0.  
GU = 24-pin SSOP Pb-free package  
YY = Year  
Line 2 Marking:  
WW = Work week  
TTTTTT = Manufacturing code  
Assigned by the Assembly House.  
40  
Rev. 1.1  
Si4730/31/34/35-D60  
10. Additional Reference Resources  
Contact your local sales representatives for more information or to obtain copies of the following references:  
EN55020 Compliance Test Certificate  
AN332: Si47xx Programming Guide  
AN383: Si47xx Antenna, Schematic, Layout, and Design Guidelines  
AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure  
Si47xx EVB User’s Guide  
Customer Support Site: www.silabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA  
is required for complete access. Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support  
request.  
Rev. 1.1  
41  
Si4730/31/34/35-D60  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
Updated part number throughout.  
Updated pin assignments on front page.  
Updated block diagram on front page.  
Updated Table 6, “Digital Audio Interface  
Characteristics,” on page 12.  
Updated Table 12, “Reference Clock and Crystal  
Characteristics,” on page 18.  
Added Table 13, “Thermal Conditions,” on page 18.  
Updated Section "2. Typical Application Schematic"  
on page 20.  
Updated Section "4. Functional Description" on page  
23.  
Updated Section "5. Pin Descriptions" on page 31.  
42  
Rev. 1.1  
Si4730/31/34/35-D60  
NOTES:  
Rev. 1.1  
43  
Si4730/31/34/35-D60  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: FMinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
44  
Rev. 1.1  

相关型号:

Si4731-D60-GU2

BROADCAST AM/FM/SW/LW RADIO RECEIVER
SILICON

SI4732-A10-GS

Consumer IC, CMOS, PDSO16
SILICON

SI4732-A10-GSR

Consumer IC, CMOS, PDSO16
SILICON

SI4732CY

Power Management Circuit, MOS, PDSO16,
VISHAY

SI4732CY-E3

Peripheral Driver
VISHAY

SI4732CY-T1-E3

IC BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SOP-16, Peripheral Driver
VISHAY

SI4734

Telecom Circuit, 1-Func, CMOS, QFN-20
SILICON

SI4734-C40-GM

Audio Single Chip Receiver, ROHS COMPLIANT, QFN-20
SILICON

SI4734-C40-GMR

Audio Single Chip Receiver, ROHS COMPLIANT, QFN-20
SILICON

SI4734-C40-GU

Audio Single Chip Receiver, PDSO24, ROHS COMPLIANT, MO-137AE, SSOP-24
SILICON

SI4734-C40-GUR

Audio Single Chip Receiver, PDSO24, ROHS COMPLIANT, MO-137AE, SSOP-24
SILICON

Si4734-D60-GM

BROADCAST AM/FM/SW/LW RADIO RECEIVER
SILICON