Si5324B-C-GM [SILICON]

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR; 任何频率精密时钟乘法器/抖动衰减器
Si5324B-C-GM
型号: Si5324B-C-GM
厂家: SILICON    SILICON
描述:

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
任何频率精密时钟乘法器/抖动衰减器

ATM集成电路 SONET集成电路 SDH集成电路 电信集成电路 电信电路 衰减器 异步传输模式 时钟
文件: 总72页 (文件大小:518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5324  
ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/  
JITTER ATTENUATOR  
Features  
Generates any frequency from  
2 kHz to 945 MHz and select  
frequencies to 1.4 GHz from an  
input frequency of 2 kHz to  
710 MHz  
Ultra-low jitter clock outputs as low  
as 290 fs rms (12 kHz–20 MHz),  
320 fs rms (50 kHz–80 MHz)  
Integrated loop filter with  
selectable loop bandwidth  
(4– 525 Hz)  
Freerun, Digital Hold operation  
Configurable signal format per  
output (LVPECL, LVDS, CML,  
CMOS)  
Support for ITU G.709 and custom  
FEC ratios (255/238, 255/237,  
255/236, 239/237, 66/64, 239/238,  
15/14, 253/221, 255/238)  
LOL, LOS, FOS alarm outputs  
I2C or SPI programmable  
On-chip voltage regulator with high  
PSNR  
Single supply 1.8 ±5%, 2.5 ±10%,  
or 3.3 V ±10%  
Meets ITU-T G.8251 and Telcordia  
GR-253-CORE jitter specification  
Hitless input clock switching with  
phase build-out  
Ordering Information:  
See page 63.  
Small size: 6 x 6 mm 36-lead QFN  
Pb-free, ROHS-compliant  
Pin Assignments  
Applications  
Broadcast video –3G/HD/SD-SDI, 1/2/4/8/10G Fibre Channel line  
Genlock cards  
Packet Optical Transport Systems GbE/10/40/100G Synchronous  
36 35 34 33 32 31 30 29 28  
RST  
NC  
1
2
3
4
5
6
7
8
9
27 SDI  
26  
(P-OTS), MSPP  
Ethernet (LAN/WAN)  
Data converter clocking  
Wireless base stations  
Test and measurement  
A2_SS  
25 A1  
INT_C1B  
C2B  
OTN/OTU-1/2/3/4 Asynchronous  
Demapping (Gapped Clock)  
SONET OC-48/192/768,  
SDH/STM-16/64/256 line cards  
24  
23  
A0  
GND  
Pad  
VDD  
XA  
SDA_SDO  
22 SCL  
XB  
21  
20  
CS_CA  
GND  
GND  
NC  
19 GND  
10 11 12 13 14 15 16 17 18  
Description  
The Si5324 is a low-bandwidth, jitter-attenuating, precision clock multiplier  
for applications requiring sub 1 ps jitter performance with loop bandwidths  
between 4 Hz and 525 Hz. The Si5324 accepts two input clocks ranging  
from 2 kHz to 710 MHz and generates two output clocks ranging from 2 kHz  
to 945 MHz and select frequencies to 1.4 GHz. The two outputs are divided  
down separately from a common source. The Si5324 can also use its  
external reference as a clock source for frequency synthesis. The device  
provides virtually any frequency translation combination across this  
operating range. The Si5324 input clock frequency and clock multiplication  
ratio are programmable via an I2C or SPI interface. The Si5324 is based on  
Silicon Laboratories' 3rd-generation DSPLL® technology, which provides  
any-frequency synthesis and jitter attenuation in a highly integrated PLL  
solution that eliminates the need for external VCXO and filter components.  
The DSPLL loop bandwidth is digitally programmable, providing jitter  
performance optimization at the application level. The Si5324 is ideal for  
providing clock multiplication and jitter attenuation in high performance  
timing applications.  
Rev. 1.0 1/13  
Copyright © 2013 by Silicon Laboratories  
Si5324  
Si5324  
Functional Block Diagram  
Xtal or Refclock  
÷ N31  
÷ N32  
CKIN1  
CKIN2  
÷ NC1_LS  
÷ NC2_LS  
CKOUT1  
CKOUT2  
®
DSPLL  
÷N1_HS  
Xtal/Refclock  
÷ N2  
Loss of Signal/  
Frequency Offset  
Loss of Lock  
VDD (1.8, 2.5, or 3.3 V)  
GND  
Control  
Signal Detect  
I2C/SPI Port  
Clock Select  
Skew Adjust  
Device Interrupt  
Rate Select  
2
Rev. 1.0  
Si5324  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.2. Additional Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.3. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.1. ICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
8. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
9. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
10. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
10.1. Si5324 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
10.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Rev. 1.0  
3
Si5324  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Ambient Temperature  
T
-40  
25  
85  
C
V
A
Supply Voltage during  
Normal Operation  
V
3.3 V Nominal  
2.97  
3.3  
3.63  
DD  
2.5 V Nominal  
1.8 V Nominal  
2.25  
1.71  
2.5  
1.8  
2.75  
1.89  
V
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.  
V
SIGNAL +  
Single-Ended  
Peak-to-Peak Voltage  
V
ICM , VOCM  
Differential I/Os  
VISE,VOSE  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
V ,VOD  
ID  
VICM, VOCM  
t
SIGNAL +  
SIGNAL –  
V = (SIGNAL+) – (SIGNAL–)  
ID  
Figure 1. Differential Voltage Characteristics  
80%  
20%  
CKIN, CKOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
4
Rev. 1.0  
Si5324  
Table 2. DC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Supply Current  
I
LVPECL Format  
622.08 MHz Out  
251  
279  
mA  
DD  
Both CKOUTs Enabled  
LVPECL Format  
622.08 MHz Out  
1 CKOUT Enabled  
217  
204  
194  
165  
243  
234  
220  
mA  
mA  
mA  
mA  
CMOS Format  
19.44 MHz Out  
Both CKOUTs Enabled  
CMOS Format  
19.44 MHz Out  
1 CKOUT Enabled  
Disable Mode  
2
CKINn Input Pins  
Input Common Mode  
Voltage (Input Thresh-  
old Voltage)  
V
1.8 V ± 5%  
2.5 V ± 10%  
3.3 V ± 10%  
Single-ended  
0.9  
1
40  
1.4  
1.7  
1.95  
60  
V
V
ICM  
1.1  
20  
0.2  
V
Input Resistance  
CKN  
k  
RIN  
Single-Ended Input  
Voltage Swing  
(See Absolute Specs)  
V
f
f
f
< 212.5 MHz  
V
V
V
V
ISE  
CKIN  
PP  
PP  
PP  
PP  
See Figure 1.  
> 212.5 MHz  
0.25  
0.2  
CKIN  
See Figure 1.  
< 212.5 MHz  
CKIN  
Differential Input  
Voltage Swing  
(See Absolute Specs)  
V
ID  
See Figure 1.  
fCKIN > 212.5 MHz  
See Figure 1.  
0.25  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference  
Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
Rev. 1.0  
5
Si5324  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
3,5  
Output Clocks (CKOUTn)  
Common Mode  
CKO  
LVPECL 100 load line-  
V
1.42  
V –1.25  
DD  
V
VCM  
DD  
to-line  
Differential Output  
Swing  
CKO  
LVPECL 100 load line-  
1.1  
0.5  
1.9  
0.93  
500  
V
VD  
PP  
to-line  
Single Ended Output  
Swing  
CKO  
LVPECL 100 load line-  
V
VSE  
PP  
to-line  
Differential Output  
Voltage  
CKO  
CKO  
CML 100 load line-to-  
350  
425  
mV  
VD  
PP  
line  
Common Mode Output  
Voltage  
CML 100 load line-to-  
V
-0.36  
DD  
V
VCM  
line  
Differential Output  
Voltage  
CKO  
LVDS  
100 load line-to-line  
500  
350  
1.125  
700  
425  
1.2  
900  
500  
1.275  
mV  
mV  
VD  
PP  
PP  
Low Swing LVDS  
100 load line-to-line  
Common Mode Output  
Voltage  
CKO  
LVDS 100 load line-to-  
V
VCM  
line  
Differential Output  
Resistance  
CKO  
CML, LVPECL, LVDS  
200  
RD  
Output Voltage Low  
CKO  
CKO  
CMOS  
0.4  
V
V
VOLLH  
Output Voltage High  
V
= 1.71 V  
0.8 x  
VOHLH  
DD  
CMOS  
V
DD  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference  
Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6
Rev. 1.0  
Si5324  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
CKO  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Drive Current  
(CMOS driving into  
ICMOS[1:0] = 11  
7.5  
mA  
IO  
V
= 1.8 V  
DD  
CKO  
or CKO  
high. CKOUT+ and  
CKOUT– shorted  
externally)  
for output low  
VOL  
ICMOS[1:0] = 10  
= 1.8 V  
5.5  
3.5  
1.75  
32  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
for output  
VOH  
V
DD  
ICMOS[1:0] = 01  
= 1.8 V  
V
DD  
ICMOS[1:0] = 00  
= 1.8 V  
V
DD  
ICMOS[1:0] = 11  
= 3.3 V  
V
DD  
ICMOS[1:0] = 10  
= 3.3 V  
24  
V
DD  
ICMOS[1:0] = 01  
= 3.3 V  
16  
V
DD  
ICMOS[1:0] = 00  
8
V
= 3.3 V  
DD  
2-Level LVCMOS Input Pins  
Input Voltage Low  
Input Voltage High  
Notes:  
V
V
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 2.97 V  
= 1.89 V  
= 2.25 V  
= 3.63 V  
0.5  
0.7  
0.8  
V
V
V
V
V
V
IL  
DD  
DD  
DD  
DD  
DD  
DD  
V
1.4  
1.8  
2.5  
IH  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference  
Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
Rev. 1.0  
7
Si5324  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
3-Level Input Pins  
Input Voltage Low  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
4
V
0.15 x V  
0.55 x V  
V
V
ILL  
DD  
DD  
Input Voltage Mid  
Input Voltage High  
V
0.45 x  
IMM  
V
DD  
V
0.85 x  
V
IHH  
ILL  
V
DD  
Input Low Current  
Input Mid Current  
Input High Current  
I
See Note 4  
See Note 4  
See Note 4  
–20  
–2  
+2  
20  
µA  
µA  
µA  
I
IMM  
I
IHH  
LVCMOS Output Pins  
Output Voltage Low  
V
IO = 2 mA  
0.4  
0.4  
V
V
V
V
OL  
V
= 1.71 V  
DD  
Output Voltage Low  
Output Voltage High  
Output Voltage High  
Notes:  
IO = 2 mA  
= 2.97 V  
V
DD  
V
IO = –2 mA  
= 1.71 V  
V
DD  
0.4  
OH  
V
DD  
IO = –2 mA  
= 2.97 V  
V
DD  
0.4  
V
DD  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference  
Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
8
Rev. 1.0  
Si5324  
Table 3. AC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Single-Ended Reference Clock Input Pin XA (XB with cap to GND)  
Input Resistance  
XA  
RATE[1:0] = LM, ML, MH,  
or HM, ac coupled  
12  
k  
RIN  
Input Voltage Swing  
XA  
RATE[1:0] = LM, ML, MH,  
or HM, ac coupled  
0.5  
1.2  
V
VPP  
PP  
Differential Reference Clock Input Pins (XA/XB)  
Input Voltage Swing  
XA/XB  
RATE[1:0] = LM, ML, MH,  
or HM  
0.5  
2.4  
V
VPP  
PP  
CKINn Input Pins  
Input Frequency  
CKN  
0.002  
40  
710  
60  
MHz  
%
F
Input Duty Cycle  
(Minimum Pulse Width)  
CKN  
Whichever is smaller  
(i.e., the 40% / 60%  
limitation applies only  
to high frequency  
clocks)  
DC  
2
3
ns  
pF  
ns  
Input Capacitance  
CKN  
CIN  
Input Rise/Fall Time  
CKN  
20–80%  
11  
TRF  
See Figure 2  
CKOUTn Output Pins  
(See ordering section for speed grade vs frequency limits)  
Output Frequency  
(Output not configured  
for CMOS or  
CKO  
CKO  
N1 6  
N1 = 5  
N1 = 4  
0.002  
970  
945  
1134  
1.4  
MHz  
MHz  
GHz  
MHz  
F
Disabled)  
1.213  
Maximum Output  
Frequency in CMOS  
Format  
212.5  
F
Notes:  
1. Input to output phase skew after an ICAL is not controlled and can assume any value.  
2. Lock and settle time performance is dependent on the frequency plan and the XAXB reference frequency. Please visit  
the Silicon Labs Technical Support web page at: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
to submit a technical support request regarding the lock time of your frequency plan.  
Rev. 1.0  
9
Si5324  
Table 3. AC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Rise/Fall  
(20–80 %) @  
622.08 MHz output  
CKO  
CKO  
CKO  
Output not configured for  
CMOS or Disabled  
See Figure 2  
230  
350  
ps  
TRF  
TRF  
TRF  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CMOS Output  
8
2
ns  
ns  
ps  
V
= 1.71  
DD  
C
= 5 pF  
LOAD  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CMOS Output  
= 2.97  
V
DD  
C
= 5 pF  
LOAD  
Output Duty Cycle  
Uncertainty @  
622.08 MHz  
CKO  
100 Load  
Line-to-Line  
Measured at 50% Point  
(Not for CMOS)  
+/-40  
DC  
LVCMOS Input Pins  
Minimum Reset Pulse  
Width  
t
1
µs  
RSTMN  
Reset to Microproces-  
sor Access Ready  
t
10  
ms  
READY  
LVCMOS Output Pins  
Rise/Fall Times  
t
C
= 20pf  
LOAD  
25  
ns  
RF  
See Figure 2  
LOSn Trigger Window  
LOS  
From last CKINn to   
Internal detection of LOSn  
N3 1  
4.5 x N3  
T
CKIN  
TRIG  
Time to Clear LOL after  
LOS Cleared  
t
LOS to LOL  
Fold = Fnew  
10  
ms  
CLRLOL  
Stable Xa/XB reference  
Notes:  
1. Input to output phase skew after an ICAL is not controlled and can assume any value.  
2. Lock and settle time performance is dependent on the frequency plan and the XAXB reference frequency. Please visit  
the Silicon Labs Technical Support web page at: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
to submit a technical support request regarding the lock time of your frequency plan.  
10  
Rev. 1.0  
Si5324  
Table 3. AC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Device Skew  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Clock Skew  
t
of CKOUTn to of  
CKOUT_m, CKOUTn  
and CKOUT_m at same  
frequency and signal  
format  
100  
ps  
SKEW  
PHASEOFFSET = 0  
CKOUT_ALWAYS_ON = 1  
SQ_ICAL = 1  
Phase Change due to  
Temperature Variation  
t
Max phase changes from  
–40 to +85 °C  
300  
500  
ps  
TEMP  
1
PLL Performance  
(fin = fout = 622.08 MHz; BW = 7 Hz; LVPECL, XAXB = 114.285 MHz)  
2
Lock Time  
t
Start of ICAL to of LOL  
0.8  
4.2  
1.0  
5.0  
s
s
LOCKMP  
2
Settle Time  
t
Start of ICAL to Fout within  
5 ppm of final value  
SETTLE  
Output Clock Phase  
Change  
t
After clock switch  
200  
ps  
P_STEP  
f3 128 kHz  
Closed Loop Jitter  
Peaking  
J
0.05  
0.1  
dB  
PK  
Jitter Tolerance  
J
Jitter Frequency Loop  
5000/BW  
ns pk-pk  
TOL  
Bandwidth  
CKO  
100 Hz Offset  
1 kHz Offset  
–90  
–106  
–121  
–132  
–132  
–88  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
Phase Noise  
fout = 622.08 MHz  
PN  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
Subharmonic Noise  
Spurious Noise  
Notes:  
SP  
SP  
Phase Noise @ 100 kHz  
Offset  
–76  
SUBH  
SPUR  
Max spur @ n x F3  
(n 1, n x F3 < 100 MHz)  
–93  
–70  
dBc  
1. Input to output phase skew after an ICAL is not controlled and can assume any value.  
2. Lock and settle time performance is dependent on the frequency plan and the XAXB reference frequency. Please visit  
the Silicon Labs Technical Support web page at: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
to submit a technical support request regarding the lock time of your frequency plan.  
Rev. 1.0  
11  
Si5324  
Table 4. Microprocessor Control  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
I C Bus Lines (SDA, SCL)  
Input Voltage Low  
VIL  
0.25 x V  
V
V
V
V
V
I2C  
DD  
Input Voltage High  
VIH  
0.7 x V  
0.1 x V  
V
DD  
I2C  
DD  
Hysteresis of Schmitt  
trigger inputs  
VHYS  
V
= 1.8V  
DD  
I2C  
DD  
V
V
= 2.5 or 3.3 V  
0.05 x V  
DD  
DD  
Output Voltage Low  
VOL  
V
= 1.8 V  
0.2 x V  
DD  
I2C  
DD  
IO = 3 mA  
= 2.5 or 3.3 V  
IO = 3 mA  
0.4  
V
DD  
12  
Rev. 1.0  
Si5324  
Table 4. Microprocessor Control (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SPI Specifications  
Duty Cycle, SCLK  
Cycle Time, SCLK  
Rise Time, SCLK  
Fall Time, SCLK  
Low Time, SCLK  
High Time, SCLK  
t
SCLK = 10 MHz  
40  
100  
60  
25  
25  
25  
%
ns  
ns  
ns  
ns  
ns  
ns  
DC  
t
c
t
20–80%  
20–80%  
20–20%  
80–80%  
r
t
f
t
30  
30  
lsc  
t
hsc  
Delay Time, SCLK Fall  
to SDO Active  
t
d1  
d2  
d3  
Delay Time, SCLK Fall  
to SDO Transition  
t
25  
20  
25  
20  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay Time, SS Rise  
to SDO Tri-state  
t
Setup Time, SS to  
SCLK Fall  
t
su1  
Hold Time, SS to  
SCLK Rise  
t
h1  
Setup Time, SDI to  
SCLK Rise  
t
su2  
Hold Time, SDI to  
SCLK Rise  
t
h2  
Delay Time between  
Slave Selects  
t
cs  
Rev. 1.0  
13  
Si5324  
Table 5. Jitter Generation  
*
Parameter  
Symbol  
Min  
Typ  
Max  
GR-253-  
Specification  
Unit  
Test Condition  
Measurement  
Filter  
DSPLL  
2
BW  
Jitter Gen  
OC-192  
JGEN  
0.02–80 MHz  
120 Hz  
120 Hz  
120 Hz  
120 Hz  
4.2  
.27  
3.7  
.14  
4.4  
.26  
3.5  
.27  
6.2  
.42  
30  
N/A  
10  
ps  
PP  
ps  
rms  
4–80 MHz  
6.4  
ps  
PP  
0.31  
6.9  
N/A  
10  
ps  
rms  
0.05–80 MHz  
0.12–20 MHz  
ps  
PP  
0.41  
5.4  
1.0  
ps  
rms  
PP  
Jitter Gen  
OC-48  
JGEN  
40.2  
4.02  
ps  
ps  
0.41  
rms  
*Note: Test conditions:  
1. fIN = fOUT = 622.08 MHz  
2. Clock input: LVPECL  
3. Clock output: LVPECL  
4. PLL bandwidth: 120 Hz  
5. 114.285 MHz 3rd OT crystal used as XA/XB input  
6. DD = 2.5 V  
V
7. TA = 85 °C  
Table 6. Thermal Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
Still Air  
32  
C°/W  
JA  
JC  
Thermal Resistance Junction to Case  
Still Air  
14  
C°/W  
14  
Rev. 1.0  
Si5324  
Table 7. Absolute Maximum Ratings*  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
3.8  
Unit  
DC Supply Voltage  
V
–0.5  
V
DD  
LVCMOS Input Voltage  
V
–0.3  
0
V
+0.3  
DD  
V
V
DIG  
CKINn Voltage Level Limits  
XA/XB Voltage Level Limits  
Operating Junction Temperature  
Storage Temperature Range  
CKN  
V
DD  
VIN  
XA  
0
1.2  
V
VIN  
T
–55  
–55  
2
150  
150  
ºC  
ºC  
kV  
JCT  
T
STG  
ESD HBM Tolerance  
(100 pF, 1.5 k); All pins except  
CKIN+/CKIN–  
ESD MM Tolerance; All pins  
except CKIN+/CKIN–  
150  
750  
100  
V
V
V
ESD HBM Tolerance  
(100 pF, 1.5 k); CKIN+/CKIN–  
ESD MM Tolerance;  
CKIN+/CKIN–  
Latch-up Tolerance  
JESD78 Compliant  
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions specified in the operation sections of this data sheet. Exposure to absolute maximum rating  
conditions for extended periods of time may affect device reliability.  
Rev. 1.0  
15  
Si5324  
2. Typical Application Circuits  
C4  
C1  
1 µF  
System  
Power  
0.1 µF  
Ferrite  
Supply  
Bead  
C2  
C3  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
130  
82   
130   
82   
0.1 µF  
CKIN1+  
CKIN1–  
CKOUT1+  
CKOUT1–  
+
100   
0.1 µF  
0.1 µF  
Clock Outputs  
Input  
Clock  
Sources*  
CKOUT2+  
CKOUT2–  
+
VDD = 3.3 V  
100   
130   
82   
130   
82   
0.1 µF  
CKIN2+  
CKIN2–  
INT_C1B  
C2B  
Interrupt/CKIN_1 Invalid Indicator  
CKIN_2 Invalid Indicator  
Si5324  
XA  
XB  
Option 1:  
LOL  
PLL Loss of Lock Indicator  
114.285 MHz Crystal  
VDD  
15 k  
A[2:0]  
SDA  
SCL  
Serial Port Address  
RATE[1:0]2  
XA  
Crystal/Ref Clk Rate  
15 k  
I2C Interface  
Serial Data  
Serial Clock  
0.1 µF  
Option 2:  
Refclk+  
Refclk–  
0.1 µF  
XB  
CS_CA  
Clock Select/Clock Active  
Control Mode (L)  
Reset  
CMODE  
RST  
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.  
Notes:  
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).  
2
Figure 3. Si5324 Typical Application Circuit (I C Control Mode)  
16  
Rev. 1.0  
Si5324  
C4  
C1  
1 µF  
System  
Power  
Supply  
0.1 µF  
Ferrite  
Bead  
C2  
C3  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
130  
82   
130   
82   
0.1 µF  
CKOUT1+  
CKOUT1–  
+
CKIN1+  
100   
CKIN1–  
0.1 µF  
0.1 µF  
Clock Outputs  
Input  
Clock  
Sources*  
CKOUT2+  
CKOUT2–  
+
VDD = 3.3 V  
100   
130   
82   
130   
82   
0.1 µF  
CKIN2+  
CKIN2–  
INT_C1B  
C2B  
Interrupt/CLKIN_1 Invalid Indicator  
CLKIN_2 Invalid Indicator  
Si5324  
XA  
XB  
Option 1:  
LOL  
PLL Loss of Lock Indicator  
114.285 MHz Crystal  
VDD  
SS  
SDO  
SDI  
Slave Select  
15 k  
RATE[1:0]2  
XA  
Crystal/Ref Clk Rate  
15 k  
Serial Data Out  
SPI Interface  
0.1 µF  
Option 2:  
Serial Data In  
Serial Clock  
Refclk+  
Refclk–  
0.1 µF  
SCLK  
XB  
Control Mode (H)  
Reset  
CMODE  
CS_CA  
Clock Select/Clock Active  
RST  
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.  
Notes:  
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).  
Figure 4. Si5324 Typical Application Circuit (SPI Control Mode)  
Rev. 1.0  
17  
Si5324  
3. Functional Description  
Xtal or Refclock  
÷ N31  
÷ N32  
CKIN1  
CKIN2  
÷ NC1_LS  
÷ NC2_LS  
CKOUT1  
CKOUT2  
®
DSPLL  
÷N1_HS  
Xtal/Refclock  
÷ N2  
Loss of Signal/  
Frequency Offset  
Loss of Lock  
VDD (1.8, 2.5, or 3.3 V)  
GND  
Control  
Signal Detect  
I2C/SPI Port  
Clock Select  
Skew Adjust  
Device Interrupt  
Rate Select  
Figure 5. Si5324 Functional Block Diagram  
The Si5324 is a low loop bandwidth, jitter-attenuating The Si5324 supports hitless switching between the two  
clock multiplier for high performance applications. The  
Si5324 accepts two input clocks ranging from 2 kHz to  
710 MHz and generates two output clocks ranging from  
2 kHz to 945 MHz and select frequencies to 1.4 GHz.  
The Si5324 can also use its external reference as a  
clock source for frequency synthesis. The device  
provides virtually any frequency translation combination  
across this operating range. Independent dividers are  
available for each input clock and output clock, so the  
Si5324 can accept input clocks at different frequencies  
and it can generate output clocks at different  
frequencies. The Si5324 input clock frequency and  
clock multiplication ratio are programmable through an  
synchronous input clocks in compliance with Telcordia  
GR-253-CORE that greatly minimizes the propagation  
of phase transients to the clock outputs during an input  
clock transition (maximum 200 ps phase change).  
Manual and automatic revertive and non-revertive input  
clock switching options are available. The Si5324  
monitors both input clocks for loss-of-signal (LOS) and  
provides a LOS alarm when it detects missing pulses on  
either input clock. The device monitors the lock status of  
the PLL. The lock detect algorithm works by  
continuously monitoring the phase of the input clock in  
relation to the phase of the feedback clock. Due to the  
low loop bandwidth of the part, the LOL indicator clears  
before the loop fully settles.  
2
I C or SPI interface. Silicon Laboratories offers a PC-  
based software utility, DSPLLsim, that can be used to  
determine the optimum PLL divider settings for a given  
input frequency/clock multiplication ratio combination  
The Si5324 also monitors frequency offset alarms  
(FOS), which indicate if an input clock is within a  
that minimizes phase noise and power consumption. specified frequency ppm accuracy relative to the  
This  
utility  
can  
be  
downloaded  
from  
frequency of an XA/XB reference clock. Both Stratum  
3/3E and SONET Minimum Clock (SMC) FOS  
thresholds are supported.  
http://www.silabs.com/timing.  
The Si5324 is based on Silicon Laboratories' 3rd-  
generation DSPLL technology, which provides any-  
®
The Si5324 provides a digital hold capability that allows  
the device to continue generation of a stable output  
clock when the selected input reference is lost. During  
digital hold, the DSPLL generates an output frequency  
based on a historical average frequency that existed a  
fixed amount of time before the error event occurred,  
eliminating the effects of phase and frequency  
transients that may occur immediately preceding digital  
hold.  
frequency synthesis and jitter attenuation in a highly  
integrated PLL solution that eliminates the need for  
external VCXO and loop filter components. The Si5324  
PLL loop bandwidth is digitally programmable and  
supports a range from 4 Hz to 525 Hz. A fast lock  
feature is available to reduce lock times inherent with  
low loop bandwidth PLLs. The DSPLLsim software  
utility can be used to calculate valid loop bandwidth  
settings for  
a given input clock frequency/clock  
multiplication ratio.  
18  
Rev. 1.0  
Si5324  
The Si5324 has two differential clock outputs. The this issue, a stable external reference, TXCO, OCXO, or  
signal format of each clock output is independently  
programmable to support LVPECL, LVDS, CML, or  
CMOS loads. When configured for CMOS, four clock  
outputs are available. If not required, the second clock  
output can be powered down to minimize power  
consumption. In addition, the phase of one output clock  
may be adjusted in relation to the phase of the other  
output clock. The resolution varies from 800 ps to 2.2 ns  
depending on the PLL divider settings. The DSPLLsim  
software utility determines the phase offset resolution  
for a given combination of input clock and multiplication  
thermally-isolated crystal is recommended.  
For example, with a 20 ppm oscillator as the reference  
on the XA/XB pins, temperature changes cause the  
oscillator to change frequency slightly. Although the  
Si5324 is locked to its input on CLKIN, it also uses the  
XA/XB as a reference.  
If there is a need to use a reference oscillator instead of  
a crystal, Silicon Labs does not recommend using  
MEMS based oscillators. Instead, Silicon Labs  
recommends the Si530EB121M109DG, which is a very  
ratio. For system-level debugging, a bypass mode is low-jitter/wander, LVPECL, 2.5 V crystal oscillator. The  
available which drives the output clock directly from the  
input clock, bypassing the internal DSPLL. The device is  
powered by a single 1.8, 2.5, or 3.3 V supply with best-  
in-class PSNR.  
very low loop BW of the Si5324 means that it can be  
susceptible to XAXB reference sources that have high  
wander. Experience has shown that in spite of having  
low jitter, some MEMs oscillators have high wander, and  
these devices should be avoided. Contact Silicon Labs  
for details.  
3.1. External Reference  
An external, high quality 38.88 MHz clock or a low-cost  
114.285 MHz 3rd overtone crystal or external reference  
is used as part of a fixed-frequency oscillator within the  
DSPLL. This external reference is required for the  
device to perform jitter attenuation. Specific  
recommendations can be found in the Family Reference  
Manual.  
3.2. Additional Documentation  
Consult the Silicon Laboratories Any-Frequency  
Precision Clock Family Reference Manual (FRM) for  
detailed information about the Si5324. Additional design  
support is available from Silicon Laboratories through  
your distributor.  
In digital hold, the DSPLL remains locked and tracks the  
external reference. Note that crystals can have  
temperature sensitivities.  
Silicon Laboratories offers a PC-based software utility  
called DSPLLsim to simplify device configuration,  
including frequency planning and loop bandwidth  
selection. The FRM and this utility can be downloaded  
from http://www.silabs.com/timing.  
Due to the low bandwidth capabilities of this part, any  
low-frequency wander or instability on the external  
reference will transfer to the output clocks. To address  
Rev. 1.0  
19  
Si5324  
3.3. Typical Phase Noise Performance  
Figure 6. Broadcast Video  
Table 8. Broadcast Video Jitter1  
2
Jitter (Peak-Peak)  
Jitter (RMS)  
Jitter Bandwidth  
10 Hz to 20 MHz  
Notes:  
1. Number of samples: 8.91E9.  
5.24 ps  
484 fs  
2. Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-  
offs per Telecordia GR-253-CORE.  
20  
Rev. 1.0  
Si5324  
Figure 7. OTN/SONET/SDH Phase Noise  
Note: Phase noise plot uses brick wall integration.  
Table 9. SONET Jitter  
Jitter Bandwidth*  
Jitter, RMS  
266 fs  
SONET_OC48, 12 kHz to 20 MHz  
SONET_OC192_A, 20 kHz to 80 MHz  
SONET_OC192_B, 4 MHz to 80 MHz  
SONET_OC192_C, 50 kHz to 80 MHz  
Brick Wall_800 Hz to 80 MHz  
283 fs  
155 fs  
275 fs  
287 fs  
*Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs  
per Telecordia GR-253-CORE.  
Rev. 1.0  
21  
Si5324  
Figure 8. Wireless Base Station Phase Noise  
Table 10. Wireless Base Station Jitter*  
Jitter Bandwidth  
Jitter (peak-peak)  
Jitter (RMS)  
581 fs  
10 Hz to 20 MHz  
7.28 ps  
Note: Number of samples: 8.91E9  
22  
Rev. 1.0  
Si5324  
4. Register Map  
All register bits that are not defined in this map should always be written with the specified Reset Values. The  
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.  
Registers not listed, e.g. Register 64, should never be written to.  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
FREE_RUN  
CKOUT_  
BYPASS_REG  
ALWAYS_ON  
1
CK_PRIOR2[1:0]  
CK_PRIOR1[1:0]  
2
BWSEL_REG[3:0]  
3
CKSEL_REG[1:0]  
AUTOSEL_REG[1:0]  
ICMOS[1:0]  
DHOLD  
SQ_ICAL  
4
HST_DEL[4:0]  
5
6
SFOUT2_REG[2:0}  
SFOUT1_REG[2:0]  
FOSREFSEL[2:0]  
7
8
HLOG_2[1:0]  
HLOG_1[1:0]  
HIST_AVG[4:0]  
9
10  
11  
19  
20  
21  
22  
23  
24  
25  
31  
32  
33  
34  
35  
36  
40  
41  
42  
43  
44  
45  
46  
DSBL2_ REG  
DSBL1_ REG  
PD_CK2  
LOCK[T2:0]  
LOL_PIN  
PD_CK1  
FOS_EN  
FOS_THR[1:0]  
VALTIME[1:0]  
CK2_BAD_PIN CK1_ BAD_ PIN  
INT_PIN  
CKSEL_PIN  
INT_POL  
CK1_ACTV_PIN  
LOL_POL  
CK_ACTV_ POL CK_BAD_ POL  
LOS2_MSK  
LOS1_MSK  
FOS1_MSK  
LOSX_MSK  
LOL_MSK  
FOS2_MSK  
N1_HS[2:0]  
NC1_LS[19:16]  
NC1_LS[15:8]  
NC1_LS[7:0]  
NC2_LS[19:16]  
NC2_LS[15:8]  
NC2_LS[7:0]  
N2_HS[2:0]  
N2_LS[19:16]  
N2_LS[15:8]  
N2_LS[7:0]  
N31[18:16]  
N31[15:8]  
N31[7:0]  
N32[18:16]  
Rev. 1.0  
23  
Si5324  
Register  
D7  
D6  
D5  
D4  
D3  
N32[15:8]  
N32[7:0]  
D2  
D1  
D0  
47  
48  
55  
CLKIN2RATE[2:0]  
CLKIN1RATE[2:0]  
128  
129  
130  
CK2_ACTV_REG CK1_ACTV_REG  
LOS2_INT  
FOS2_INT  
LOS1_INT  
FOS1_INT  
LOSX_INT  
LOL_INT  
DIGHOLD-  
VALID  
131  
132  
134  
135  
136  
137  
LOS2_FLG  
FOS1_FLG  
LOS1_FLG  
LOL_FLG  
LOSX_FLG  
FOS2_FLG  
PARTNUM_RO[11:4]  
PARTNUM_RO[3:0]  
ICAL  
REVID_RO[3:0]  
RST_REG  
FASTLOCK  
LOS1_EN [1:1]  
FOS1_EN  
138  
139  
142  
143  
LOS2_EN [1:1]  
FOS2_EN  
LOS2_EN[0:0] LOS1_EN[0:0]  
INDEPENDENTSKEW1[7:0]  
INDEPENDENTSKEW2[7:0]  
Table 11. CKOUT_ALWAYS_ON and SQ_ICAL Truth Table  
CKOUT_ALWAYS_ON  
SQ_ICAL  
Results  
0
0
0
1
CKOUT OFF until after the first ICAL  
CKOUT OFF until after the first successful  
ICAL (i.e., when LOL is low)  
1
1
0
1
CKOUT always ON, including during an ICAL  
CKOUT always ON, including during an ICAL.  
Use these settings to preserve output-to-output  
skew  
24  
Rev. 1.0  
Si5324  
5. Register Descriptions  
Register 0.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
FREE_RUN  
CKOUT_  
ALWAYS_ON  
BYPASS_  
REG  
Type  
R
R/W  
R/W  
R
R
R
R/W  
R
Reset value = 0001 0100  
Bit  
7
Name  
Function  
Reserved  
Reserved.  
6
FREE_RUN Free Run.  
Internal to the device, route XA/XB to CKIN2. This allows the device to lock to its XA-XB  
reference.  
0: Disable  
1: Enable  
5
CKOUT_  
CKOUT Always On.  
ALWAYS_ON  
This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on  
and ICAL is not complete or successful. See Table 11 on page 24.  
0: Squelch output until part is calibrated (ICAL).  
1: Provide an output.  
Notes:  
1. The frequency may be significantly off until the part is calibrated.  
2. Must be 1 to control output to output skew.  
4:2  
1
Reserved  
Reserved.  
BYPASS_  
REG  
Bypass Register.  
This bit enables or disables the PLL bypass mode. Use only when the device is in digital  
hold or before the first ICAL. Bypass mode is not supported for CMOS output clocks.  
0: Normal operation  
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL.  
0
Reserved  
Reserved.  
Rev. 1.0  
25  
Si5324  
Register 1.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK_PRIOR2 [1:0]  
R/W  
CK_PRIOR1 [1:0]  
R/W  
R
R
R
R
Reset value = 1110 0100  
Bit  
7:4  
3:2  
Name  
Function  
Reserved  
Reserved.  
CK_PRIOR2 CK_PRIOR 2.  
[1:0]  
Selects which of the input clocks will be 2nd priority in the autoselection state machine.  
00: CKIN1 is 2nd priority.  
01: CKIN2 is 2nd priority.  
10: Reserved  
11: Reserved  
1:0  
CK_PRIOR1 CK_PRIOR 1.  
[1:0]  
Selects which of the input clocks will be 1st priority in the autoselection state machine.  
00: CKIN1 is 1st priority.  
01: CKIN2 is 1st priority.  
10: Reserved  
11: Reserved  
Register 2.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BWSEL_REG [3:0]  
R/W  
R
R
R
R
Reset value = 0100 0010  
Bit  
Name  
BWSEL_REG BWSEL_REG.  
Function  
7:4  
[3:0]  
Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After  
BWSEL_REG is written with a new value, an ICAL is required for the change to take  
effect.  
3:0  
Reserved  
Reserved.  
26  
Rev. 1.0  
Si5324  
Register 3.  
Bit  
D7  
D6  
D5  
DHOLD  
R/W  
D4  
SQ_ICAL  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CKSEL_REG [1:0]  
R/W  
R
R
R
R
Reset value = 0000 0101  
Bit  
Name  
Function  
7:6  
CKSEL_REG CKSEL_REG.  
[1:0]  
If the device is operating in register-based manual clock selection mode  
(AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input clock  
will be the active input clock. If CKSEL_PIN = 1 and AUTOSEL_REG = 00, the CS_CA  
input pin continues to control clock selection and CKSEL_REG is of no consequence.  
00: CKIN_1 selected.  
01: CKIN_2 selected.  
10: Reserved  
11: Reserved  
5
DHOLD  
DHOLD.  
Forces the part into digital hold. This bit overrides all other manual and automatic clock  
selection controls.  
0: Normal operation.  
1: Force digital hold mode. Overrides all other settings and ignores the quality of all of the  
input clocks.  
4
SQ_ICAL  
Reserved  
SQ_ICAL.  
This bit determines if the output clocks will remain enabled or be squelched (disabled)  
during an internal calibration. See Table 11 on page 24.  
0: Output clocks enabled during ICAL.  
1: Output clocks disabled during ICAL.  
3:0  
Reserved.  
Rev. 1.0  
27  
Si5324  
Register 4.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
HIST_DEL [4:0]  
R/W  
D1  
D0  
Name  
Type  
AUTOSEL_REG [1:0]  
R/W  
R
Reset value = 0001 0010  
Bit  
Name  
AUTOSEL_ AUTOSEL_REG [1:0].  
Function  
7:6  
REG [1:0]  
Selects method of input clock selection to be used.  
00: Manual (either register or pin controlled, see CKSEL_PIN)  
01: Automatic Non-Revertive  
10: Automatic Revertive  
11: Reserved  
5
Reserved  
Reserved.  
4:0  
HIST_DEL HIST_DEL [4:0].  
[4:0]  
Selects amount of delay to be used in generating the history information used for Digital  
Hold.  
Register 5.  
Bit  
D7  
ICMOS [1:0]  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 1110 1101  
Bit  
Name  
Function  
7:6  
ICMOS [1:0] ICMOS [1:0].  
When the output buffer is set to CMOS mode, these bits determine the output buffer drive  
strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation.  
These values assume CKOUT+ is tied to CKOUT-.  
00: 8mA/2mA.  
01: 16mA/4mA  
10: 24mA/6mA  
11: 32mA/8mA  
5:0  
Reserved  
Reserved.  
28  
Rev. 1.0  
Si5324  
Register 6.  
Bit  
D7  
D6  
D5  
D4  
SFOUT2_REG [2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
SFOUT1_REG [2:0]  
R/W  
R
R
Reset value = 0010 1101  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
Reserved.  
SFOUT2_  
REG [2:0]  
SFOUT2_REG [2:0].  
Controls output signal format and disable for CKOUT2 output buffer. Bypass mode is not  
supported for CMOS output clocks.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
SFOUT1_  
REG [2:0]  
SFOUT1_REG [2:0].  
Controls output signal format and disable for CKOUT1 output buffer. Bypass mode is not  
supported for CMOS output clocks.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
Rev. 1.0  
29  
Si5324  
Register 7.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
FOSREFSEL [2:0]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0010 1010  
Bit  
7:3  
2:0  
Name  
Function  
Reserved.  
Reserved.  
FOSREFSEL FOSREFSEL [2:0].  
[2:0]  
Selects which input clock is used as the reference frequency for Frequency Off-Set  
(FOS) alarms.  
000: XA/XB (External reference)  
001: CKIN1  
010: CKIN2  
011: Reserved  
100: Reserved  
101: Reserved  
110: Reserved  
111: Reserved  
30  
Rev. 1.0  
Si5324  
Register 8.  
Bit  
D7  
HLOG_2[1:0]  
R/W  
D6  
D5  
HLOG_1[1:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7:6  
HLOG_2 [1:0] HLOG_2 [1:0].  
00: Normal operation  
01: Holds CKOUT2 output at static logic 0.  
Entrance and exit from this state will occur without glitches or runt pulses.  
10:Holds CKOUT2 output at static logic 1.  
Entrance and exit from this state will occur without glitches or runt pulses.  
11: Reserved  
5:4  
3:0  
HLOG_1 [1:0] HLOG_1 [1:0].  
00: Normal operation  
01: Holds CKOUT1 output at static logic 0.  
Entrance and exit from this state will occur without glitches or runt pulses.  
10: Holds CKOUT1 output at static logic 1.  
Entrance and exit from this state will occur without glitches or runt pulses.  
11: Reserved  
Reserved  
Reserved.  
Register 9.  
Bit  
D7  
D6  
D5  
HIST_AVG [4:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
Reset value = 1100 0000  
Bit  
Name  
HIST_AVG HIST_AVG [4:0].  
Function  
7:3  
[4:0]  
Selects amount of averaging time to be used in generating the history information for  
Digital Hold.  
2:0  
Reserved  
Reserved.  
Rev. 1.0  
31  
Si5324  
Register 10.  
Bit  
D7  
D6  
D5  
D4  
D3  
DSBL2_REG  
R/W  
D2  
DSBL1_REG  
R/W  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3
Name  
Function  
Reserved  
Reserved.  
DSBL2_REG DSBL2_REG.  
This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is  
selected, the NC2_LS output divider is also powered down.  
0: CKOUT2 enabled.  
1: CKOUT2 disabled.  
2
DSBL1_REG DSBL1_REG.  
This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is  
selected, the NC1_LS output divider is also powered down.  
0: CKOUT1 enabled.  
1: CKOUT1 disabled.  
1:0  
Reserved  
Reserved.  
Register 11.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PD_CK2  
R/W  
D0  
Name  
Type  
PD_CK1  
R/W  
R
R
R
R
R
R
Reset value = 0100 0000  
Bit  
7:2  
1
Name  
Function  
Reserved  
PD_CK2  
Reserved.  
PD_CK2.  
This bit controls the powerdown of the CKIN2 input buffer.  
0: CKIN2 enabled.  
1: CKIN2 disabled.  
0
PD_CK1  
PD_CK1.  
This bit controls the powerdown of the CKIN1 input buffer.  
0: CKIN1 enabled.  
1: CKIN1 disabled.  
32  
Rev. 1.0  
Si5324  
Register 19.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOS_EN  
R/W  
FOS_THR [1:0]  
R/W  
VALTIME [1:0]  
R/W  
LOCKT [2:0]  
R/W  
Reset value = 0010 1100  
Bit  
Name  
Function  
7
FOS_EN  
FOS_EN.  
Frequency Offset Enable globally disables FOS. See the individual FOS enables (FOS-  
x_EN, register 139).  
0: FOS disable  
1: FOS enabled by FOSx_EN  
6:5 FOS_THR [1:0] FOS_THR [1:0].  
Frequency Offset at which FOS is declared:  
00: ± 11 to 12 ppm (Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK  
01: ± 48 to 49 ppm (SMC)  
10: ± 30 ppm (SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK.  
11: ± 200 ppm  
4:3  
2:0  
VALTIME [1:0] VALTIME [1:0].  
Sets amount of time for input clock to be valid before the associated alarm is removed.  
00: 2 ms  
01: 100 ms  
10: 200 ms  
11: 13 seconds  
LOCKT [2:0] LOCKT [2:0].  
Sets retrigger interval for one shot monitoring phase detector output. One shot is trig-  
gered by phase slip in DSPLL. Refer to the Family Reference Manual for more details.  
To minimize lock time, the value 001 for LOCKT is recommended.  
000: 106 ms  
001: 53 ms  
010: 26.5 ms  
011: 13.3 ms  
100: 6.6 ms  
101: 3.3 ms  
110: 1.66 ms  
111: .833 ms  
Rev. 1.0  
33  
Si5324  
Register 20.  
Bit  
D7  
D6  
D5  
D4  
D3  
CK2_BAD_PIN CK1_BAD_PIN  
R/W R/W  
D2  
D1  
LOL_PIN  
R/W  
D0  
INT_PIN  
R/W  
Name  
Type  
R
R
R
R
Reset value = 0011 1110  
Bit  
7:4  
3
Name  
Function  
Reserved  
Reserved.  
CK2_BAD_PIN CK2_BAD_PIN.  
The CK2_BAD status can be reflected on the C2B output pin.  
0: C2B output pin tristated  
1: C2B status reflected to output pin  
2
1
0
CK1_BAD_PIN CK1_BAD_PIN.  
The CK1_BAD status can be reflected on the C1B output pin.  
0: C1B output pin tristated  
1: C1B status reflected to output pin  
LOL_PIN  
INT_PIN  
LOL_PIN.  
The LOL_INT status bit can be reflected on the LOL output pin.  
0: LOL output pin tristated  
1: LOL_INT status reflected to output pin  
INT_PIN.  
Reflects the interrupt status on the INT_C1B output pin.  
0: Interrupt status not displayed on INT_C1B output pin. If CK1_BAD_PIN = 0, INT_C1B  
output pin is tristated.  
1: Interrupt status reflected to output pin. Instead, the INT_C1B pin indicates when  
CKIN1 is bad.  
34  
Rev. 1.0  
Si5324  
Register 21.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK1_ACTV_PIN CKSEL_ PIN  
R/W R/W  
R
R
R
R
R
R
Reset value = 1111 1111  
Bit  
7:2  
1
Name  
Function  
Reserved  
Reserved.  
CK1_ACTV_PIN CK1_ACTV_PIN.  
The CK1_ACTV_REG status bit can be reflected to the CS_CA output pin using the  
CK1_ACTV_PIN enable function. CK1_ACTV_PIN is of consequence only when pin  
controlled clock selection is not being used.  
0: CS_CA output pin tristated.  
1: Clock Active status reflected to output pin.  
0
CKSEL_PIN  
CKSEL_PIN.  
If manual clock selection is being used, clock selection can be controlled via the  
CKSEL_REG[1:0] register bits or the CS_CA input pin. This bit is only active when  
AUTOSEL_REG = Manual.  
0: CS_CA pin is ignored. CKSEL_REG[1:0] register bits control clock selection.  
1: CS_CA input pin controls clock selection.  
Rev. 1.0  
35  
Si5324  
Register 22.  
Bit  
D7  
D6  
D5  
D4  
D3  
CK_ACTV_POL  
R/W  
D2  
CK_BAD_ POL  
R/W  
D1  
LOL_POL  
R/W  
D0  
INT_POL  
R/W  
Name  
Type  
R
R
R
R
Reset value = 1101 1111  
Bit  
7:4  
3
Name  
Function  
Reserved  
Reserved.  
CK_ACTV_ POL CK_ACTV_POL.  
Sets the active polarity for the CS_CA signals when reflected on an output pin.  
0: Active low  
1: Active high  
2
CK_BAD_ POL  
CK_BAD_POL.  
Sets the active polarity for the INT_C1B and C2B signals when reflected on output  
pins.  
0: Active low  
1: Active high  
1
0
LOL_POL  
INT_POL  
LOL_POL.  
Sets the active polarity for the LOL status when reflected on an output pin.  
0: Active low  
1: Active high  
INT_POL.  
Sets the active polarity for the interrupt status when reflected on the INT_C1B out-  
put pin.  
0: Active low  
1: Active high  
36  
Rev. 1.0  
Si5324  
Register 23.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
LOS2_ MSK  
R/W  
D1  
LOS1_ MSK  
R/W  
D0  
LOSX_ MSK  
R/W  
Name  
Type  
R
R
R
R
R
Reset value = 0001 1111  
Bit  
7:3  
2
Name  
Function  
Reserved  
LOS2_MSK  
Reserved.  
LOS2_MSK.  
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS2_FLG register.  
0: LOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).  
1: LOS2_FLG ignored in generating interrupt output.  
1
0
LOS1_MSK  
LOSX_MSK  
LOS1_MSK.  
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS1_FLG register.  
0: LOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).  
1: LOS1_FLG ignored in generating interrupt output.  
LOSX_MSK.  
Determines if a LOS on XA/XB(LOSX_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOSX_FLG register.  
0: LOSX alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).  
1: LOSX_FLG ignored in generating interrupt output.  
Rev. 1.0  
37  
Si5324  
Register 24.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
FOS2_MSK  
R/W  
D1  
FOS1_MSK  
R/W  
D0  
LOL_MSK  
R/W  
Name  
Type  
R
R
R
R
R
Reset value = 0011 1111  
Bit  
7:3  
2
Name  
Function  
Reserved  
Reserved.  
FOS2_MSK FOS2_MSK.  
Determines if the FOS2_FLG is used to in the generation of an interrupt. Writes to this  
register do not change the value held in the FOS2_FLG register.  
0: FOS2 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).  
1: FOS2_FLG ignored in generating interrupt output.  
1
0
FOS1_MSK FOS1_MSK.  
Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS1_FLG register.  
0: FOS1 alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).  
1: FOS1_FLG ignored in generating interrupt output.  
LOL_MSK  
LOL_MSK.  
Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this regis-  
ter do not change the value held in the LOL_FLG register.  
0: LOL alarm triggers active interrupt on INT_C1B output (if INT_PIN=1).  
1: LOL_FLG ignored in generating interrupt output.  
38  
Rev. 1.0  
Si5324  
Register 25.  
Bit  
D7  
D6  
N1_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0010 0000  
Bit  
Name  
Function  
7:5  
N1_HS [2:0] N1_HS [2:0].  
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 2) low-speed divider.  
000: N1= 4  
001: N1= 5  
010: N1=6  
011: N1= 7  
100: N1= 8  
101: N1= 9  
110: N1= 10  
111: N1= 11  
4:0  
Reserved  
Reserved.  
Register 31.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
NC1_LS  
[19:16]  
NC1_LS [19:16].  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
11111111111111111111=2^20  
Valid divider values=[1, 2, 4, 6, ..., 2^20]  
Rev. 1.0  
39  
Si5324  
Register 32.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
NC1_LS [15:8] NC1_LS [15:8].  
Function  
7:0  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
11111111111111111111=2^20  
Valid divider values=[1, 2, 4, 6, ..., 2^20]  
Register 33.  
Bit  
D7  
D6  
D5  
D4  
NC1_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC1_LS [19:0] NC1_LS [7:0].  
Function  
7:0  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
11111111111111111111=2^20  
Valid divider values=[1, 2, 4, 6, ..., 2^20]  
40  
Rev. 1.0  
Si5324  
Register 34.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Reserved.  
NC2_LS  
[19:16]  
NC2_LS [19:16].  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000=1  
00000000000000000001=2  
00000000000000000011=4  
00000000000000000101=6  
...  
11111111111111111111=2^20  
Valid divider values=[1, 2, 4, 6, ..., 2^20]  
Register 35.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
NC2_LS [15:8] NC2_LS [15:8].  
Function  
7:0  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
11111111111111111111=2^20  
Valid divider values=[1, 2, 4, 6, ..., 2^20]  
Rev. 1.0  
41  
Si5324  
Register 36.  
Bit  
D7  
D6  
D5  
D4  
NC2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC2_LS [7:0] NC2_LS [7:0].  
Function  
7:0  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ]  
42  
Rev. 1.0  
Si5324  
Register 40.  
Bit  
D7  
D6  
N2_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
N2_LS [19:16]  
R/W  
D1  
D0  
Name  
Type  
R
Reset value = 1100 0000  
Bit  
Name  
Function  
7:5  
N2_HS [2:0]  
N2_HS [2:0].  
Sets value for N2 high speed divider which drives N2LS low-speed divider.  
000: 4  
001: 5  
010: 6  
011: 7  
100: 8  
101: 9  
110: 10  
111: 11  
4
Reserved  
Reserved.  
3:0  
N2_LS [19:16] N2_LS [19:16].  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
Rev. 1.0  
43  
Si5324  
Register 41.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N2_LS [15:8] N2_LS [15:8].  
Function  
7:0  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
Register 42.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 1111 1001  
Bit  
Name  
N2_LS [7:0] N2_LS [7:0].  
Function  
7:0  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
44  
Rev. 1.0  
Si5324  
Register 43.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31 [18:16]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
Reserved.  
N31 [18:16] N31 [18:16].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 44.  
Bit  
D7  
D6  
D5  
D4  
N31_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N31_[15:8] N31_[15:8].  
Function  
7:0  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Rev. 1.0  
45  
Si5324  
Register 45.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N31_[7:0  
N31_[7:0].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 46.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
N32_[18:16]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
Reserved.  
N32_[18:16] N32_[18:16].  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
46  
Rev. 1.0  
Si5324  
Register 47.  
Bit  
D7  
D6  
D5  
D4  
N32_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N32_[15:8] N32_[15:8].  
Function  
7:0  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 48.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N32_[7:0]  
N32_[7:0].  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Rev. 1.0  
47  
Si5324  
Register 55.  
Bit  
D7  
D6  
D5  
D4  
CLKIN2RATE_[2:0]  
R/W  
D3  
D2  
D1  
CLKIN1RATE[2:0]  
R/W  
D0  
Name  
Type  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
Reserved.  
CLKIN2RATE[2:0] CLKIN2RATE_[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
2:0  
CLKIN1RATE [2:0] CLKIN1RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
48  
Rev. 1.0  
Si5324  
Register 128.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK2_ACTV_REG CK1_ACTV_REG  
R
R
R
R
R
R
R
R
Reset value = 0010 0000  
Bit  
7:2  
1
Name  
Function  
Reserved  
Reserved.  
CK2_ACTV_REG CK2_ACTV_REG.  
Indicates if CKIN2 is currently the active clock for the PLL input.  
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.  
1: CKIN2 is the active input clock.  
0
CK1_ACTV_REG CK1_ACTV_REG.  
Indicates if CKIN1 is currently the active clock for the PLL input.  
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.  
1: CKIN1 is the active input clock.  
Register 129.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LOS2_INT LOS1_INT LOSX_INT  
R
R
R
R
R
R
R
R
Reset value = 0000 0110  
Bit  
7:3  
2
Name  
Function  
Reserved  
Reserved.  
LOS2_INT LOS2_INT.  
Indicates the LOS status on CKIN2.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN2 input.  
1
0
LOS1_INT LOS1_INT.  
Indicates the LOS status on CKIN1.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN1 input.  
LOSX_INT LOSX_INT.  
Indicates the LOS status of the external reference on the XA/XB pins.  
0: Normal operation.  
1: Internal loss-of-signal alarm on XA/XB reference clock input.  
Rev. 1.0  
49  
Si5324  
Register 130.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
FOS2_INT  
R
D1  
FOS1_INT  
R
D0  
LOL_INT  
R
Name  
Type  
DIGHOLDVALID  
R
R
R
R
R
Reset value = 0000 0001  
Bit  
7
Name  
Function  
Reserved  
Reserved.  
6
DIGHOLDVALID  
Digital Hold Valid.  
Indicates if the digital hold circuit has enough samples of a valid clock to meet dig-  
ital hold specifications.  
0: Indicates digital hold history registers have not been filled. The digital hold  
output frequency may not meet specifications.  
1: Indicates digital hold history registers have been filled. The digital hold output  
frequency is valid.  
5:3  
2
Reserved  
Reserved.  
FOS2_INT  
CKIN2 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN2 input.  
1
0
FOS1_INT  
LOL_INT  
CKIN1 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN1 input.  
PLL Loss of Lock Status.  
0: PLL locked.  
1: PLL unlocked.  
50  
Rev. 1.0  
Si5324  
Register 131.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LOS2_FLG LOS1_FLG LOSX_FLG  
R/W R/W R/W  
R
R
R
R
R
Reset value = 0001 1111  
Bit  
7:3  
2
Name  
Function  
Reserved  
Reserved.  
LOS2_FLG CKIN2 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to  
this bit.  
1
0
LOS1_FLG CKIN1 Loss-of-Signal Flag.  
0: Normal operation  
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to  
this bit.  
LOSX_FLG External Reference (signal on pins XA/XB) Loss-of-Signal Flag.  
0: Normal operation  
1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOSX_MSK bit. Flag cleared by writing 0 to  
this bit.  
Rev. 1.0  
51  
Si5324  
Register 132.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOS2_FLG FOS1_FLG LOL_FLG  
R
R
R
R
R/W  
R/W  
R/W  
R
Reset value = 0000 0010  
Bit  
7:4  
3
Name  
Function  
Reserved  
Reserved.  
FOS2_FLG CLKIN_2 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing 0 to  
this bit.  
2
1
0
FOS1_FLG CLKIN_1 Frequency Offset Flag.  
0: Normal operation  
1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing 0 to  
this bit.  
LOL_FLG  
Reserved  
PLL Loss of Lock Flag.  
0: PLL locked  
1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing 0 to  
this bit.  
Reserved.  
52  
Rev. 1.0  
Si5324  
Register 134.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PARTNUM_RO [11:4]  
R
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
PARTNUM_RO [11:0] Device ID (1 of 2).  
0000 0001 1000: Si5324  
Others Reserved  
Register 135.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PARTNUM_RO [3:0]  
R
REVID_RO [3:0]  
R
Reset value = 1000 0010  
Bit  
Name  
PARTNUM_RO [11:0] Device ID (2 of 2).  
Function  
7:4  
0000 0001 1000: Si5324  
Others Reserved  
3:0  
REVID_RO [3:0]  
Indicates Revision Number of Device.  
0010: Revision C  
Others Reserved.  
Rev. 1.0  
53  
Si5324  
Register 136.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name RST_REG  
Type R/W  
Reset value = 0000 0000  
ICAL  
R/W  
R
R
R
R
R
R
Bit  
Name  
Function  
7
RST_REG  
Internal Reset (Same as Pin Reset).  
Note: The I2C (or SPI) port may not be accessed until 10 ms after RST_REG is asserted.  
0: Normal operation.  
1: Reset of all internal logic. Outputs disabled or tristated during reset.  
6
ICAL  
Start an Internal Calibration Sequence.  
For proper operation, the device must go through an internal calibration sequence.  
ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibra-  
tion is complete once the LOL alarm goes low. A valid stable clock (within 100 ppm)  
must be present to begin ICAL.  
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take  
effect.  
0: Normal operation.  
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-cali-  
bration, LOL will go low.  
5:0  
Reserved  
Reserved.  
54  
Rev. 1.0  
Si5324  
Register 137.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FASTLOCK  
R/W  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:1  
0
Name  
Function  
Reserved  
FASTLOCK  
Do not modify.  
This bit must be set to 1 to enable FASTLOCK. This improves initial lock time by  
dynamically changing the loop bandwidth.  
Register 138.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LOS2_EN [1:1]  
R/W  
D0  
LOS1_EN [1:1]  
R/W  
Name  
Type  
R
R
R
R
R
R
Reset value = 0000 1111  
Bit  
7:2  
1
Name  
Function  
Reserved  
Reserved.  
LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).  
Note: LOS2_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual  
for details.  
0
LOS1_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual  
for details.  
Rev. 1.0  
55  
Si5324  
Register 139.  
Bit  
D7  
D6  
D5  
LOS2_EN [0:0] LOS1_EN [0:0]  
R/W R/W  
D4  
D3  
D2  
D1  
FOS2_EN FOS1_EN  
R/W R/W  
D0  
Name  
Type  
R
R
R
R
Reset value = 1111 1111  
Bit  
7:6  
5
Name  
Function  
Reserved  
Reserved.  
LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).  
Note: LOS2_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
4
LOS_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
3:2  
1
Reserved  
FOS2_EN  
Reserved.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
0
FOS1_EN  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
56  
Rev. 1.0  
Si5324  
Register 142.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW1 [7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW1 [7:0] INDEPENDENTSKEW1.  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in  
terms of clocks from the high speed output divider. Default = 0.  
Register 143.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW2 [7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW2 [7:0] INDEPENDENTSKEW2.  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider. Default = 0.  
Rev. 1.0  
57  
Si5324  
5.1. ICAL  
The device's registers must be configured for the intended applications. After the part is configured, the part must  
perform a calibration procedure when there is a stable clock on the selected CLKINn input. The calibration process  
is triggered by writing a "1" to bit D6 in register 136. See the Family Reference Manual for details. In addition, after  
a successful calibration operation, changing any of the Registers indicated in Table 12 requires that a calibration be  
performed again by the same procedure (writing a "1" to bit D6 in register 136).  
Table 12. ICAL-Sensitive Registers  
Address  
0
Register  
BYPASS_REG  
CKOUT_ALWAYS_ON  
CK_PRIOR1  
CK_PRIOR2  
BWSEL_REG  
HIST_DEL  
ICMOS  
0
1
1
2
4
5
7
FOSREFSEL  
HIST_AVG  
DSBL1_REG  
DSBL2_REG  
PD_CK1  
9
10  
10  
11  
11  
19  
19  
19  
19  
25  
31  
34  
40  
40  
43  
46  
55  
55  
PD_CK2  
FOS_EN  
FOS_THR  
LOCKT  
VALTIME  
N1HS  
NC1_LS  
NC2_LS  
N2_HS  
N2_LS  
N31  
N32  
CLKIN1RATE  
CLKIN2RATE  
58  
Rev. 1.0  
Si5324  
6. Pin Descriptions  
36 35 34 33 32 31 30 29 28  
RST  
NC  
1
2
3
4
5
6
7
8
9
27 SDI  
26  
A2_SS  
25 A1  
INT_C1B  
C2B  
24  
23  
A0  
GND  
Pad  
VDD  
XA  
SDA_SDO  
22 SCL  
XB  
21  
20  
19  
CS_CA  
GND  
GND  
NC  
GND  
10 11 12 13 14 15 16 17 18  
Pin #  
Pin Name I/O Signal Level  
Description  
1
I
LVCMOS External Reset.  
RST  
Active low input that performs external hardware reset of device.  
Resets all internal logic to a known state and forces the device reg-  
isters to their default value. Clock outputs are disabled during reset.  
The part must be programmed after a reset or power-on to get a  
clock output. See Family Reference Manual for details.  
This pin has a weak pull-up.  
No Connection.  
2, 9, 14,  
30, 33  
NC  
Leave floating. Make no external connections to this pin for normal  
operation.  
3
INT_C1B  
O
LVCMOS Interrupt/CKIN1 Invalid Indicator.  
This pin functions as a device interrupt output or an alarm output for  
CKIN1. If used as an interrupt output, INT_PIN must be set to 1. The  
pin functions as a maskable interrupt output with active polarity con-  
trolled by the INT_POL register bit.  
If used as an alarm output, the pin functions as a LOS (and option-  
ally FOS) alarm indicator for CKIN1. Set CK1_BAD_PIN = 1 and  
INT_PIN = 0.  
0 = CKIN1 present.  
1 = LOS (FOS) on CKIN1.  
The active polarity is controlled by CK_BAD_POL. If no function is  
selected, the pin tristates.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5324 Register Map.  
Rev. 1.0  
59  
Si5324  
Pin #  
Pin Name I/O Signal Level  
C2B LVCMOS CKIN2 Invalid Indicator.  
Description  
4
O
This pin functions as a LOS (and optionally FOS) alarm indicator for  
CKIN2 if CK2_BAD_PIN = 1.  
0 = CKIN2 present.  
1 = LOS (FOS) on CKIN2.  
The active polarity can be changed by CK_BAD_POL. If  
CK2_BAD_PIN = 0, the pin tristates.  
5, 10, 32  
V
V
Supply  
Analog  
Supply.  
DD  
DD  
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capac-  
itors should be associated with the following Vdd pins:  
5
10  
32  
0.1 µF  
0.1 µF  
0.1 µF  
A 1.0 µF should also be placed as close to the device as is practical.  
7
6
XB  
XA  
I
External Crystal or Reference Clock.  
External crystal should be connected to these pins to use internal  
oscillator based reference. Refer to Family Reference Manual for  
interfacing to an external reference. External reference must be  
from a high-quality clock source (TCXO, OCXO). Frequency of crys-  
tal or external clock is set by RATE[1:0] pins.  
8, 31, 20,  
19  
GND  
Supply  
3-Level  
Ground.  
GND  
Must be connected to system ground. Minimize the ground path  
impedance for optimal performance of this device. Grounding these  
pins does not eliminate the requirement to ground the GND PAD on  
the bottom of the package.  
11  
15  
RATE0  
RATE1  
I
External Crystal or Reference Clock Rate.  
Three level inputs that select the type and rate of external crystal or  
reference clock to be applied to the XA/XB port. Refer to the Family  
Reference Manual for settings. These pins have both a weak pull-up  
and a weak pull-down; they default to M.  
L setting corresponds to ground.  
M setting corresponds to V /2.  
DD  
H setting corresponds to V  
.
DD  
Some designs may require an external resistor voltage divider when  
driven by an active device that will tri-state.  
16  
17  
CKIN1+  
CKIN1–  
I
I
Multi  
Multi  
Clock Input 1.  
Differential input clock. This input can also be driven with a single-  
ended signal. Input frequency range is 2 kHz to 710 MHz.  
12  
13  
CKIN2+  
CKIN2–  
Clock Input 2.  
Differential input clock. This input can also be driven with a single-  
ended signal. Input frequency range is 2 kHz to 710 MHz.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5324 Register Map.  
60  
Rev. 1.0  
Si5324  
Pin #  
Pin Name I/O Signal Level  
Description  
18  
LOL  
O
LVCMOS PLL Loss of Lock Indicator.  
This pin functions as the active high PLL loss of lock indicator if the  
LOL_PIN register bit is set to 1.  
0 = PLL locked.  
1 = PLL unlocked.  
If LOL_PIN = 0, this pin will tristate. Active polarity is controlled by  
the LOL_POL bit. The PLL lock status will always be reflected in the  
LOL_INT read only register bit.  
21  
CS_CA  
I/O  
LVCMOS Input Clock Select/Active Clock Indicator.  
Input: In manual clock selection mode, this pin functions as the  
manual input clock selector if the CKSEL_PIN is set to 1.  
0 = Select CKIN1.  
1 = Select CKIN2.  
If CKSEL_PIN = 0, the CKSEL_REG register bit controls this func-  
tion and this input tristates. If configured for input, must be tied high  
or low.  
Output: In automatic clock selection mode, this pin indicates which  
of the two input clocks is currently the active clock. If alarms exist on  
both clocks, CK_ACTV will indicate the last active clock that was  
used before entering the digital hold state. The CK_ACTV_PIN reg-  
ister bit must be set to 1 to reflect the active clock status to the  
CK_ACTV output pin.  
0 = CKIN1 active input clock.  
1 = CKIN2 active input clock.  
If CK_ACTV_PIN = 0, this pin will tristate. The CK_ACTV status will  
always be reflected in the CK_ACTV_REG read only register bit.  
22  
23  
SCL  
I
LVCMOS Serial Clock.  
2
This pin functions as the serial clock input for both SPI and I C  
modes.  
This pin has a weak pull-down.  
SDA_SDO I/O  
LVCMOS Serial Data.  
2
In I C control mode (CMODE = 0), this pin functions as the bidirec-  
tional serial data port.  
In SPI control mode (CMODE = 1), this pin functions as the serial  
data output.  
25  
24  
A1  
A0  
I
LVCMOS Serial Port Address.  
2
In I C control mode (CMODE = 0), these pins function as hardware  
controlled address bits. The I C address is 1101 [A2] [A1] [A0].  
2
In SPI control mode (CMODE = 1), these pins are ignored.  
These pins have a weak pull-down.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5324 Register Map.  
Rev. 1.0  
61  
Si5324  
Pin #  
Pin Name I/O Signal Level  
Description  
26  
A2_SS  
I
LVCMOS Serial Port Address/Slave Select.  
2
In I C control mode (CMODE = 0), this pin functions as a hardware  
controlled address bit [A2].  
In SPI control mode (CMODE = 1), this pin functions as the slave  
select input.  
This pin has a weak pull-down.  
27  
SDI  
I
LVCMOS Serial Data In.  
2
In I C control mode (CMODE = 0), this pin is ignored.  
In SPI control mode (CMODE = 1), this pin functions as the serial  
data input.  
This pin has a weak pull-down.  
29  
28  
CKOUT1–  
CKOUT1+  
O
Multi  
Multi  
Output Clock 1.  
Differential output clock with a frequency range of 8 kHz to  
1.4175 GHz. Output signal format is selected by SFOUT1_REG  
register bits. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive identi-  
cal single-ended clock outputs.  
34  
35  
CKOUT2–  
CKOUT2+  
O
Output Clock 2.  
Differential output clock with a frequency range of 8 kHz to  
1.4175 GHz. Output signal format is selected by SFOUT2_REG  
register bits. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive identi-  
cal single-ended clock outputs.  
36  
CMODE  
I
LVCMOS Control Mode.  
2
Selects I C or SPI control mode for the Si5324.  
2
0 = I C Control Mode  
1 = SPI Control Mode  
This pin must not be NC. Tie either high or low.  
Ground Pad.  
GND PAD  
GND  
GND  
Supply  
The ground pad must provide a low thermal and electrical  
impedance to a ground plane.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5324 Register Map.  
62  
Rev. 1.0  
Si5324  
7. Ordering Guide  
Ordering Part  
Number  
Output Clock Frequency  
Package  
ROHS6, Temperature Range  
Pb-Free  
Range  
Si5324A-C-GM  
2 kHz–945 MHz  
970–1134 MHz  
1.213–1.417 GHz  
36-Lead 6 x 6 mm QFN  
Yes  
–40 to 85 °C  
Si5324B-C-GM  
Si5324C-C-GM  
Si5324D-C-GM  
2 kHz–808 MHz  
2 kHz–346 MHz  
2 kHz–150 MHz  
36-Lead 6 x 6 mm QFN  
36-Lead 6 x 6 mm QFN  
36-Lead 6 x 6 mm QFN  
Yes  
Yes  
Yes  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
Note: Add an R at the end of the device to denote tape and reel options.  
Rev. 1.0  
63  
Si5324  
Table 13. Product Selection Guide  
Part  
Control Number of  
Input  
Output  
RMS Phase Jitter  
PLL  
Hitless  
Free  
Package  
Number  
Inputsand Frequency Frequency (12 kHz–20 MHz) Bandwidth Switching Run  
(MHz)*  
(MHz)*  
Outputs  
Mode  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
Si5315  
Si5316  
Si5317  
Si5319  
Si5323  
Si5324  
Si5326  
Si5327  
Si5366  
Si5368  
Si5369  
Si5374  
Si5375  
Pin  
Pin  
Pin  
1PLL, 2 | 2 0.008–644 0.008–644  
0.45 ps  
0.3 ps  
0.3 ps  
0.3 ps  
0.3 ps  
0.3 ps  
0.3 ps  
0.5 ps  
0.3 ps  
0.3 ps  
0.3 ps  
0.4 ps  
0.4 ps  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
1PLL, 2 | 1  
1PLL, 1 | 2  
19–710  
1–710  
19–710  
1–710  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
I2C/SPI 1PLL, 1 | 1 0.002–710 0.002–1417  
Pin 1PLL, 2 | 2 0.008–707 0.008–1050  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
4 Hz to  
525 Hz  
6x6 mm  
36-QFN  
I2C/SPI 1PLL, 2 | 2 0.002–710 0.002–1417  
I2C/SPI 1PLL, 2 | 2 0.002–710 0.002–1417  
I2C/SPI 1PLL, 2 | 2 0.002–710 0.002–808  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
60 Hz to  
8 kHz  
6x6 mm  
36-QFN  
60 Hz to  
8 kHz  
14x14 mm  
100-TQFP  
Pin  
1PLL, 4 | 5 0.008–707 0.008–1050  
60 Hz to  
8 kHz  
14x14 mm  
100-TQFP  
I2C/SPI 1PLL, 4 | 5 0.002–710 0.002–1417  
I2C/SPI 1PLL, 4 | 5 0.002–710 0.002–1417  
4 Hz to  
525 Hz  
14x14 mm  
100-TQFP  
4 Hz to  
525 Hz  
10x10 mm  
80-BGA  
I2C  
I2C  
4PLL, 8 | 8 0.002–710 0.002–808  
4PLL, 4 | 4 0.002–710 0.002–808  
60 Hz to  
8 kHz  
10x10 mm  
80-BGA  
*Note: Maximum input and output rates may be limited by speed rating of device. See each device’s data sheet for ordering  
information.  
64  
Rev. 1.0  
Si5324  
Table 14. Product Selection Guide (Si5322/25/65/67)  
Low Jitter Precision Clock Multipliers (Wideband)  
Si5322  
Si5325  
Si5365  
Si5367  
2
2
4
4
2
2
5
5
707  
710  
707  
710  
1050  
1400  
1050  
1400  
0.6 ps rms typ  
0.6 ps rms typ  
0.6 ps rms typ  
0.6 ps rms typ  
Notes:  
1. Maximum input and output rates may be limited by speed rating of device. See each device’s data sheet for ordering  
information.  
2. Requires external low-cost, fixed frequency 3rd overtone 114.285 MHz crystal or reference clock.  
Rev. 1.0  
65  
Si5324  
8. Package Outline: 36-Pin QFN  
Figure 9 illustrates the package details for the Si5324. Table 15 lists the values for the dimensions shown in the  
illustration.  
Figure 9. 36-Pin Quad Flat No-lead (QFN)  
Table 15. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Min  
0.50  
Nom  
0.60  
Max  
0.70  
12º  
A
A1  
b
L
0.02  
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
D
6.00 BSC  
4.10  
D2  
e
3.95  
4.25  
0.50 BSC  
6.00 BSC  
4.10  
E
E2  
3.95  
4.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
66  
Rev. 1.0  
Si5324  
9. PCB Land Pattern  
Figure 10. PCB Land Pattern Diagram  
Figure 11. Ground Pad Recommended Layout  
Rev. 1.0  
67  
Si5324  
Table 16. PCB Land Pattern Dimensions  
Dimension  
MIN  
MAX  
e
E
0.50 BSC.  
5.42 REF.  
5.42 REF.  
D
E2  
D2  
GE  
GD  
X
4.00  
4.00  
4.53  
4.53  
4.20  
4.20  
0.28  
Y
0.89 REF.  
ZE  
ZD  
6.31  
6.31  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the  
center ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
68  
Rev. 1.0  
Si5324  
10. Top Marking  
10.1. Si5324 Top Marking (QFN)  
10.2. Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Line 3 Marking:  
Si5324Q  
Customer Part Number  
Q = Speed Code: A, B, C, D  
See Ordering Guide for options.  
C-GM  
C = Product Revision  
G = Temperature Range –40 to 85 °C (RoHS6)  
M = QFN Package  
YYWWRF  
YY = Year  
WW = Work Week  
R = Die Revision  
F = Internal code  
Assigned by the Assembly House. Corresponds to the year  
and work week of the mold date.  
Line 4 Marking:  
Pin 1 Identifier  
XXXX  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
Internal Code  
Rev. 1.0  
69  
Si5324  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Updated Rise/Fall Time values.  
Updated minimum loop BW value.  
Revision 0.2 to Revision 0.25  
Updated features and applications.  
Changed maximum loop bandwidth to 525 Hz  
(global).  
Updated PLL performance specifications in Table 1.  
Added Typical Video Phase Noise Plot and data.  
Removed references to Si5325.  
Added note to register CKOUT_ALWAYS_ON on  
how to control output to output skew.  
Added Product Selection Guide to Section “7.  
Ordering Guide”.  
Corrected typographical errors in Table 1.  
Updated typical phase noise performance page.  
Updated functional description.  
Added additional phase noise plots to Section “3.3.  
Typical Phase Noise Performance”.  
Updated Register Map.  
Revised Device Top Mark.  
Revision 0.25 to Revision 0.3  
Changed Any-Rate to Any-Frequency  
Changed Table 2, “Absolute Maximum Ratings,” on  
page 6.  
Added Table 11, “CKOUT_ALWAYS_ON and  
SQ_ICAL Truth Table,” on page 24  
Added “no bypass with CMOS outputs”  
Revision 0.3 to Revision 1.0  
Expanded spec Tables 1 and 2 to include all  
specifications in the Reference Manual.  
Reordered sections to conform to data sheet quality  
convention.  
Added t  
specification.  
SETTLE  
Corrected minor register map typos.  
Minor changes to Table 2.  
Added maximum lock and settle times to Table 3.  
Added titles to Tables 8, 9, and 10.  
Updated/added selection guide Tables 13 and 14.  
Removed SLEEP from register map.  
Added warning about MEMS reference oscillators to  
"3.1. External Reference" on page 19.  
70  
Rev. 1.0  
Si5324  
NOTES:  
Rev. 1.0  
71  
Si5324  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
72  
Rev. 1.0  

相关型号:

SI5324C-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

Si5324D-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

SI5324D-C-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5324E-C-GM

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5324E-C-GMR

Support Circuit, 1-Func, QFN-36
SILICON

SI5325

UP-PROGRAMMABLE PRECISION CLOCK MULTIPLIER
SILICON

Si5325/26-EVB

ANY FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI53254A-D01AMR

Processor Specific Clock Generator,
SILICON

SI53254A-D02AMR

Processor Specific Clock Generator,
SILICON

SI53258A-D01AM

Processor Specific Clock Generator,
SILICON

SI5325A-B-GM

UP-PROGRAMMABLE PRECISION CLOCK MULTIPLIER
SILICON

SI5325A-B-GMR

暂无描述
SILICON