Si5350B-B [SILICON]

I2C-PROGRAMMABLE ANY-FREQUENCY CMOS CLOCK GENERATOR VCXO;
Si5350B-B
型号: Si5350B-B
厂家: SILICON    SILICON
描述:

I2C-PROGRAMMABLE ANY-FREQUENCY CMOS CLOCK GENERATOR VCXO

石英晶振 压控振荡器
文件: 总41页 (文件大小:1787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5351A/B/C-B  
2
I C-PROGRAMMABLE ANY-FREQUENCY CMOS CLOCK  
GENERATOR + VCXO  
Features  
www.silabs.com/custom-timing  
Generates up to 8 non-integer-related  
frequencies from 2.5 kHz to 200 MHz  
Glitchless frequency changes  
Separate voltage supply pins provide  
level translation:  
10-MSOP  
Core VDD: 2.5 or 3.3 V  
Output VDDO: 1.8, 2.5, or 3.3 V  
Excellent PSRR eliminates external  
power supply filtering  
Very low power consumption  
Adjustable output delay  
Available in 2 packages types:  
10-MSOP: 3 outputs  
20-QFN (4x4 mm): 8 outputs  
PCIE Gen 1 compatible  
I2C user definable configuration  
Exact frequency synthesis at each output  
(0 ppm error)  
Highly linear VCXO  
Optional clock input (CLKIN)  
Low output period jitter: < 70 ps pp, typ  
Configurable spread spectrum selectable  
at each output  
Operates from a low-cost, fixed frequency  
crystal: 25 or 27 MHz  
20-QFN  
Supports HCSL compatible swing  
Supports static phase offset  
Programmable rise/fall time control  
Ordering Information:  
See page 29  
Applications  
HDTV, DVD/Blu-ray, set-top box  
Audio/video equipment, gaming  
Printers, scanners, projectors  
Handheld Instrumentation  
Residential gateways  
Networking/communication  
Servers, storage  
XO replacement  
Description  
The Si5351 is an I2C configurable clock generator that is ideally suited for replacing  
crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in  
cost-sensitive applications. Based on a PLL/VCXO + high resolution MultiSynth fractional  
divider architecture, the Si5351 can generate any frequency up to 200 MHz on each of its  
outputs with 0 ppm error. Three versions of the Si5351 are available to meet a wide  
variety of applications. The Si5351A generates up to 8 free-running clocks using an  
internal oscillator for replacing crystals and crystal oscillators. The Si5351B adds an  
internal VCXO and provides the flexibility to replace both free-running clocks and  
synchronous clocks. It eliminates the need for higher cost, custom pullable crystals while  
providing reliable operation over a wide tuning range. The Si5351C offers the same  
flexibility but synchronizes to an external reference clock (CLKIN).  
Functional Block Diagram  
Si5351C (20-QFN)  
Si5351B (20-QFN)  
VDDOA  
CLK0  
VDDOA  
MultiSynth  
0
MultiSynth  
0
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
XA  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
XA  
XB  
CLK0  
CLK1  
PLL  
A
PLL  
OSC  
OSC  
MultiSynth  
1
CLK1  
MultiSynth  
1
XB  
VDDOB  
CLK2  
VDDOB  
CLK2  
MultiSynth  
2
MultiSynth  
2
PLL  
B
VCXO  
CLKIN  
VC  
MultiSynth  
3
CLK3  
MultiSynth  
3
CLK3  
VDDOC  
CLK4  
VDDOC  
CLK4  
MultiSynth  
4
MultiSynth  
4
SDA  
SDA  
SCL  
I2C  
I2C  
MultiSynth  
5
CLK5  
SCL  
MultiSynth  
5
CLK5  
INTR  
VDDOD  
CLK6  
VDDOD  
CLK6  
MultiSynth  
6
MultiSynth  
6
OEB  
Control  
Logic  
Control  
Logic  
OEB  
MultiSynth  
7
CLK7  
SSEN  
MultiSynth  
7
CLK7  
Rev. 1.0 4/15  
Copyright © 2015 by Silicon Laboratories  
Si5351A/B/C-B  
Si5351A/B/C-B  
Table 1. The Complete Si5350/51 Clock Generator Family  
Part Number  
I2C or Pin  
I2C  
Frequency Reference  
XTAL only  
Programmed?  
Blank  
Outputs Datasheet  
3
8
8
8
3
8
8
8
3
8
3
8
3
8
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5350A-B  
Si5350A-B  
Si5350B-B  
Si5350B-B  
Si5350C-B  
Si5350C-B  
Si5351A-B-GT  
I2C  
XTAL only  
Blank  
Si5351A-B-GM  
I2C  
XTAL and/or Voltage  
XTAL and/or CLKIN  
XTAL only  
Blank  
Si5351B-B-GM  
I2C  
Blank  
Si5351C-B-GM  
I2C  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Si5351A-Bxxxxx-GT  
Si5351A-Bxxxxx-GM  
Si5351B-Bxxxxx-GM  
Si5351C-Bxxxxx-GM  
Si5350A-Bxxxxx-GT  
Si5350A-Bxxxxx-GM  
Si5350B-Bxxxxx-GT  
Si5350B-Bxxxxx-GM  
Si5350C-Bxxxxx-GT  
Si5350C-Bxxxxx-GM  
Notes:  
I2C  
XTAL only  
I2C  
XTAL and/or Voltage  
XTAL and/or CLKIN  
XTAL only  
I2C  
Pin  
Pin  
XTAL only  
Pin  
XTAL and/or Voltage  
XTAL and/or Voltage  
XTAL and/or CLKIN  
XTAL and/or CLKIN  
Pin  
Pin  
Pin  
1. XTAL = 25/27 MHz, Voltage = 0 to VDD, CLKIN = 10 to 100 MHz. "xxxxx" = unique custom code.  
2. Create custom, factory pre-programmed parts at www.silabs.com/ClockBuilder.  
2
Rev. 1.0  
Si5351A/B/C-B  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1. Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.2. Synthesis Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.3. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.4. Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5. Control Pins (OEB, SSEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5. Configuring the Si5351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.1. Writing a Custom Configuration to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.2. Si5351 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.3. Replacing Crystals and Crystal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.4. Replacing Crystals, Crystal Oscillators, and VCXOs . . . . . . . . . . . . . . . . . . . . . . . .20  
5.5. Replacing Crystals, Crystal Oscillators, and PLLs . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.6. Applying a Reference Clock at XTAL Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.7. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.1. Power Supply Decoupling/Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.2. Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.3. External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.4. External Crystal Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.5. Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.6. Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
7. Register Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
8. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
9. Si5351 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
9.1. Si5351A 20-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
9.2. Si5351B 20-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
9.3. Si5351C 20-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
9.4. Si5351A 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
11. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
11.1. 20-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
12. Land Pattern: 20-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
12.1. 10-Pin MSOP Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
13. Land Pattern: 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
14. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
14.1. 20-Pin QFN Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
14.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
14.3. 10-Pin MSOP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Rev. 1.0  
3
Si5351A/B/C-B  
14.4. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4
Rev. 1.0  
Si5351A/B/C-B  
1. Electrical Specifications  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
3.0  
Typ  
25  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
T
A
3.3  
2.5  
1.8  
2.5  
3.3  
3.60  
2.75  
1.89  
2.75  
3.60  
Core Supply Voltage  
V
DD  
2.25  
1.71  
2.25  
3.0  
V
V
Output Buffer Voltage  
V
V
DDOx  
V
Notes:All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
VDD and VDDOx can be operated at independent voltages.  
Power supply sequencing for VDD and VDDOx requires that all VDDOx be powered up either before or at the same  
time as VDD.  
Table 3. DC Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Enabled 3 outputs  
Enabled 8 outputs  
Min  
Typ  
22  
Max  
35  
Unit  
mA  
mA  
Core Supply Current  
I
DD  
27  
45  
Output Buffer Supply Current  
(Per Output)*  
I
C = 5 pF  
2.2  
5.6  
10  
mA  
µA  
DDOx  
L
CLKIN, SDA, SCL  
Vin < 3.6 V  
I
CLKIN  
Input Current  
I
VC  
30  
µA  
VC  
3.3 V VDDO, default high  
drive  
Output Impedance  
Z
50  
O
*Note: Output clocks less than or equal to 100 MHz.  
Rev. 1.0  
5
Si5351A/B/C-B  
Table 4. AC Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Power-up Time  
Symbol  
Test Condition  
From V = V to valid  
Min  
Typ  
Max  
Unit  
DD  
DDmin  
T
output clock, C = 5 pF,  
2
10  
ms  
RDY  
L
f
> 1 MHz  
CLKn  
From V = V  
output clock, C = 5 pF,  
to valid  
DDmin  
DD  
Power-up Time, PLL Bypass  
Mode  
T
0.5  
1
ms  
µs  
BYP  
L
f
> 1 MHz  
CLKn  
From OEB pulled low to valid  
clock output, C = 5 pF,  
Output Enable Time  
T
10  
OE  
L
f
> 1 MHz  
> 1 MHz  
CLKn  
CLKn  
Output Frequency Transition  
Time  
T
f
333  
10  
µs  
ps/step  
%
FREQ  
Output Phase Offset  
P
STEP  
Down spread. Selectable in 0.1%  
steps.  
–0.1  
–2.5  
Spread Spectrum Frequency  
Deviation  
SS  
DEV  
Center spread. Selectable in  
0.1% steps.  
±0.1  
30  
±1.5  
33  
%
Spread Spectrum Modulation  
Rate  
SS  
31.5  
kHz  
MOD  
VCXO Specifications (Si5351B only)  
VCXO Control Voltage Range  
VCXO Gain (configurable)  
Vc  
0
V
/2  
V
V
ppm/V  
%
DD  
DD  
Kv  
Vc = 10–90% of V , V = 3.3 V 18  
150  
+5  
DD  
DD  
VCXO Control Voltage Linearity  
KVL  
Vc = 10–90% of V  
–5  
±30  
DD  
VCXO Pull Range  
(configurable)  
PR  
V
= 3.3 V*  
0
±240  
ppm  
kHz  
DD  
VCXO Modulation Bandwidth  
10  
*Note: Contact Silicon Labs for 2.5 V VCXO operation.  
Table 5. Input Clock Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
MHz  
V
Crystal Frequency  
f
25  
–0.1  
27  
0.3 x V  
3.60  
XTAL  
CLKIN Input Low Voltage  
CLKIN Input High Voltage  
CLKIN Frequency Range  
V
IL  
DD  
V
0.7 x V  
10  
V
IH  
DD  
f
100  
MHz  
CLKIN  
6
Rev. 1.0  
Si5351A/B/C-B  
Table 6. Output Clock Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
0.0025  
Typ  
Max  
200  
15  
Unit  
MHz  
pF  
1
Frequency Range  
F
CLK  
Load Capacitance  
C
L
F
F
< 160 MHz, Measured  
CLK  
CLK  
45  
40  
50  
50  
55  
60  
%
%
at V /2  
DD  
Duty Cycle  
DC  
> 160 MHz, Measured  
at V /2  
DD  
t
1
1
1.5  
1.5  
ns  
ns  
V
r
20%–80%, C = 5 pF,  
Default high drive strength  
L
Rise/Fall Time  
t
f
Output High Voltage  
Output Low Voltage  
V
V
– 0.6  
DD  
OH  
C = 5 pF  
L
V
0.6  
V
OL  
20-QFN, 4 outputs running,  
1 per VDDO  
ps, pk-  
pk  
40  
70  
50  
70  
50  
70  
50  
70  
95  
155  
90  
2,3  
Period Jitter  
J
PER  
10-MSOP or 20-QFN,  
all outputs running  
ps, pk-  
pk  
20-QFN, 4 outputs running,  
1 per VDDO  
ps, pk  
ps, pk  
2,3  
Cycle-to-Cycle Jitter  
J
CC  
10-MSOP or 20-QFN,  
all outputs running  
150  
95  
20-QFN, 4 outputs running,  
1 per VDDO  
ps, pk-  
pk  
2,3  
Period Jitter VCXO  
J
PER_VCXO  
10-MSOP or 20-QFN,  
all outputs running  
ps, pk-  
pk  
155  
90  
20-QFN, 4 outputs running,  
1 per VDDO  
ps, pk  
ps, pk  
Cycle-to-Cycle Jitter  
J
2,3  
CC_VCXO  
VCXO  
10-MSOP or 20-QFN,  
all outputs running  
150  
Notes:  
1. Only two unique frequencies above 112.5 MHz can be simultaneously output.  
2. Measured over 10K cycles. Jitter is only specified at the default high drive strength (50 output impedance).  
3. Jitter is highly dependent on device frequency configuration. Specifications represent a “worst case, real world”  
frequency plan; actual performance may be substantially better. Three-output 10 MSOP package measured with clock  
outputs of 74.25, 24.576, and 48 MHz. Eight-output 20 QFN package measured with clock outputs of 33.333, 74.25,  
27, 24.576, 22.5792, 28.322, 125, and 48 MHz.  
Rev. 1.0  
7
Si5351A/B/C-B  
Table 7. Crystal Requirements1,2  
Parameter  
Crystal Frequency  
Symbol  
Min  
25  
6
Typ  
Max  
27  
Unit  
MHz  
pF  
f
XTAL  
Load Capacitance  
C
12  
L
Equivalent Series Resistance  
Crystal Max Drive Level  
Notes:  
r
150  
ESR  
d
100  
µW  
L
1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for  
optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a  
combination of the internal 10 pF load capacitance in addition to external 2 pF load capacitance (e.g., by using 4 pF  
capacitors on XA and XB).  
2. Refer to “AN551: Crystal Selection Guide” for more details.  
Table 8. I2C Specifications (SCL,SDA)1  
Parameter  
Symbol  
Test Condition  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
Unit  
Min  
–0.5  
Max  
Min  
–0.5  
0.7 x V  
Max  
0.3 x V  
LOW Level  
Input Voltage  
0.3 x V  
2
DDI2  
V
V
V
ILI2C  
DDI2C  
C
HIGH Level  
Input Voltage  
0.7 x V  
2
DDI2  
V
3.6  
3.6  
IHI2C  
DDI2C  
C
Hysteresis of  
Schmitt Trigger  
Inputs  
V
0.1  
0
V
V
HYS  
LOW Level  
Output Voltage  
(open drain or  
open collector)  
at 3 mA Sink  
Current  
2
2
V
V
= 2.5/3.3 V  
0
0.4  
0.4  
OLI2C  
DDI2C  
Input Current  
I
–10  
10  
4
–10  
10  
4
µA  
pF  
II2C  
Capacitance for  
Each I/O Pin  
C
V
= –0.1 to V  
IN DDI2C  
II2C  
2
I C Bus  
Timeout  
T
Timeout Enabled  
25  
35  
25  
35  
ms  
TO  
Notes:  
1. Refer to NXP’s UM10204 I2C-bus specification and user manual, revision 03, for further details, go to:  
www.nxp.com/acrobat_download/usermanuals/UM10204_3.pdf.  
2. Only I2C pullup voltages (VDDI2C) of 2.25 to 3.63 V are supported.  
8
Rev. 1.0  
Si5351A/B/C-B  
Table 9. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Package  
10-MSOP  
20-QFN  
Value  
131  
Unit  
°C/W  
°C/W  
Thermal Resistance  
Junction to Ambient  
Still Air  
JA  
JC  
119  
Thermal Resistance  
Junction to Case  
Still Air  
20-QFN  
16  
°C/W  
Table 10. Absolute Maximum Ratings1  
Parameter  
DC Supply Voltage  
Symbol  
Test Condition  
Value  
–0.5 to 3.8  
Unit  
V
V
DD_max  
V
CLKIN, SCL, SDA  
VC  
–0.5 to 3.8  
V
IN_CLKIN  
Input Voltage  
V
–0.5 to (VDD+0.3)  
–0.5 to 1.3 V  
–55 to 150  
V
IN_VC  
V
Pins XA, XB  
V
IN_XA/B  
Junction Temperature  
T
°C  
J
Soldering Temperature (Pb-free  
profile)  
T
260  
°C  
2
PEAK  
Soldering Temperature Time at  
TPEAK (Pb-free profile)  
T
20–40  
Sec  
2
P
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. The device is compliant with JEDEC J-STD-020.  
Rev. 1.0  
9
Si5351A/B/C-B  
2. Detailed Block Diagrams  
VDDO  
VDD  
Si5351A 3-Output  
PLL  
A
MultiSynth  
R0  
0
CLK0  
CLK1  
XA  
OSC  
PLL  
B
XB  
MultiSynth  
R1  
1
SDA  
I2C  
MultiSynth  
R2  
2
CLK2  
Interface  
SCL  
10-MSOP  
GND  
VDD  
Si5351A 8-Output  
VDDOA  
CLK0  
MultiSynth  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
PLL  
A
0
XA  
MultiSynth  
1
CLK1  
OSC  
VDDOB  
CLK2  
PLL  
B
XB  
MultiSynth  
2
MultiSynth  
3
CLK3  
A0  
VDDOC  
CLK4  
MultiSynth  
4
I2C  
SDA  
Interface  
MultiSynth  
5
CLK5  
SCL  
VDDOD  
CLK6  
MultiSynth  
6
OEB  
Control  
Logic  
CLK7  
MultiSynth  
7
SSEN  
20-QFN  
GND  
Figure 1. Block Diagrams of 3-Output and 8-Output Si5351A Devices  
10  
Rev. 1.0  
Si5351A/B/C-B  
VDD  
Si5351B  
VDDOA  
CLK0  
MultiSynth  
0
R0  
XA  
XB  
PLL  
OSC  
MultiSynth  
1
CLK1  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
VDDOB  
CLK2  
MultiSynth  
2
VCXO  
VC  
MultiSynth  
3
CLK3  
VDDOC  
CLK4  
MultiSynth  
4
SDA  
SCL  
I2C  
Interface  
CLK5  
MultiSynth  
5
VDDOD  
CLK6  
MultiSynth  
6
OEB  
Control  
Logic  
SSEN  
CLK7  
MultiSynth  
7
20-QFN  
GND  
VDD  
Si5351C  
VDDOA  
CLK0  
MultiSynth  
0
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
XA  
XB  
PLL  
A
OSC  
MultiSynth  
1
CLK1  
VDDOB  
CLK2  
MultiSynth  
2
PLL  
B
CLKIN  
MultiSynth  
3
CLK3  
VDDOC  
CLK4  
MultiSynth  
4
SDA  
I2C  
Interface  
CLK5  
MultiSynth  
5
SCL  
INTR  
VDDOD  
CLK6  
MultiSynth  
6
Control  
Logic  
OEB  
CLK7  
MultiSynth  
7
20-QFN  
GND  
Figure 2. Block Diagrams of Si5351B and Si5351C 8-Output Devices  
Rev. 1.0  
11  
Si5351A/B/C-B  
3. Functional Description  
2
The Si5351 is a versatile I C programmable clock generator that is ideally suited for replacing crystals, crystal  
oscillators, VCXOs, PLLs, and buffers. A block diagram showing the general architecture of the Si5351 is shown in  
Figure 3. The device consists of an input stage, two synthesis stages, and an output stage.  
The input stage accepts an external crystal (XTAL), a control voltage input (VC), or a clock input (CLKIN)  
depending on the version of the device (A/B/C). The first stage of synthesis multiplies the input frequencies to an  
high-frequency intermediate clock, while the second stage of synthesis uses high resolution MultiSynth fractional  
dividers to generate the desired output frequencies. Additional integer division is provided at the output stage for  
generating output frequencies as low as 2.5 kHz. Crosspoint switches at each of the synthesis stages allows total  
flexibility in routing any of the inputs to any of the outputs.  
Because of this high resolution and flexible synthesis architecture, the Si5351 is capable of generating  
synchronous or free-running non-integer related clock frequencies at each of its outputs, enabling one device to  
synthesize clocks for multiple clock domains in a design.  
Input  
Stage  
Synthesis  
Stage 1  
Synthesis  
Stage 2  
Output  
Stage  
VDDOA  
Multi  
Synth  
0
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
CLK0  
CLK1  
Multi  
Synth  
1
Div  
CLKIN  
PLL A  
VDDOB  
Multi  
Synth  
2
(SSC)  
CLK2  
CLK3  
XA  
XB  
PLL B  
(VCXO)  
Multi  
Synth  
3
OSC  
XTAL  
VDDOC  
Multi  
Synth  
4
CLK4  
CLK5  
Multi  
Synth  
5
VCXO  
VC  
VDDOD  
Multi  
Synth  
6
CLK6  
CLK7  
Multi  
Synth  
7
Figure 3. Si5351 Block Diagram  
12  
Rev. 1.0  
Si5351A/B/C-B  
3.1. Input Stage  
3.1.1. Crystal Inputs (XA, XB)  
The Si5351 uses a fixed-frequency standard AT-cut crystal as a reference to the internal oscillator. The output of  
the oscillator can be used to provide a free-running reference to one or both of the PLLs for generating  
asynchronous clocks. The output frequency of the oscillator will operate at the crystal frequency, either 25 MHz or  
27 MHz. The crystal is also used as a reference to the VCXO to help maintain its frequency accuracy.  
Internal load capacitors are provided to eliminate the need for external components when connecting a crystal to  
the Si5351. The total internal XTAL load capacitance (C ) can be selected to be 0, 6, 8, or 10 pF. Crystals with  
L
alternate load capacitance requirements are supported using additional external load capacitance 2 pF (e.g., by  
using 4 pF capacitors on XA and XB) as shown in Figure 4. Refer to application note AN551 for crystal  
recommendations.  
XA  
XB  
Optional internal  
load capacitance  
0, 6, 8,10 pF  
Optional additional  
external load  
capacitance  
(< 2 pF)  
Figure 4. External XTAL with Optional Load Capacitors  
3.1.2. External Clock Input (CLKIN)  
The external clock input is used as a clock reference for the PLLs when generating synchronous clock outputs.  
CLKIN can accept any frequency from 10 to 100 MHz. A divider at the input stage limits the PLL input frequency to  
30 MHz.  
3.1.3. Voltage Control Input (VC)  
The VCXO architecture of the Si5351B eliminates the need for an external pullable crystal. Only a standard, low-  
cost, fixed-frequency (25 or 27 MHz) AT-cut crystal is required.  
The tuning range of the VCXO is configurable allowing for a wide variety of applications. Key advantages of the  
VCXO design in the Si5351 include high linearity, a wide operating range (linear from 10 to 90% of VDD), and  
reliable startup and operation. Refer to Table 4 on page 6 for VCXO specification details.  
A unique feature of the Si5351B is its ability to generate multiple output frequencies controlled by the same control  
voltage applied to the VC pin. This replaces multiple PLLs or VCXOs that would normally be locked to the same  
reference. An example is illustrated in Figure 5 on page 14.  
Rev. 1.0  
13  
Si5351A/B/C-B  
3.2. Synthesis Stages  
The Si5351 uses two stages of synthesis to generate its final output clocks. The first stage uses PLLs to multiply  
the lower frequency input references to a high-frequency intermediate clock. The second stage uses high-  
resolution MultiSynth fractional dividers to generate the required output frequencies. Only two unique frequencies  
above 112.5 MHz can be simultaneously output. For example, 125 MHz (CLK0), 130 MHz (CLK1), and 150 MHz  
(CLKx) is not allowed. Note that multiple copies of frequencies above 112.5 MHz can be provided, for example,  
125 MHz could be provided on four outputs (CLKS0-3) simultaneously with 130 MHz on four different outputs  
(CLKS4-7).  
A crosspoint switch at the input of the first stage allows each of the PLLs to lock to the CLKIN or the XTAL input.  
This allows each of the PLLs to lock to a different source for generating independent free-running and synchronous  
clocks. Alternatively, both PLLs could lock to the same source. The crosspoint switch at the input of the second  
stage allows any of the MultiSynth dividers to connect to PLLA or PLLB. This flexible synthesis architecture allows  
any of the outputs to generate synchronous or non-synchronous clocks, with spread spectrum or without spread  
spectrum, and with the flexibility of generating non-integer related clock frequencies at each output.  
All VCXO outputs are generated by PLLB only. The Multisynth high-resolution dividers synthesizes the VCXO  
output’s center frequency up to 112.5 MHz. The center frequency is then controlled (or pulled) by the VC input. An  
interesting feature of the Si5351 is that the VCXO output can be routed to more than one MultiSynth divider. This  
creates a VCXO with multiple output frequencies controlled from one VC input as shown in Figure 5.  
Frequencies down to 2.5 kHz can be generated by applying the R divider at the output of the Multisynth (see  
Figure 5 below).  
Fixed Frequency  
Crystal (non-pullable)  
XA  
XB  
Multi  
The clock frequency  
generated from CLK0 is  
controlled by the VC input  
OSC  
R0  
Synth  
0
CLK0  
CLK1  
CLK2  
VC  
Multi  
Synth  
1
Control  
Voltage  
R1  
R2  
VCXO  
Additional MultiSynths  
can be “linked” to the  
VCXO to generate  
additional clock  
Multi  
Synth  
2
frequencies  
Figure 5. Using the Si5351 as a Multi-Output VCXO  
14  
Rev. 1.0  
Si5351A/B/C-B  
3.3. Output Stage  
An additional level of division (R) is available at the output stage for generating clocks as low as 2.5 kHz. All output  
drivers generate CMOS level outputs with separate output voltage supply pins (VDDOx) allowing a different voltage  
signal level (1.8, 2.5, or 3.3 V) at each of the four 2-output banks.  
3.4. Spread Spectrum  
Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Spread spectrum is  
useful for reducing electromagnetic interference (EMI). Enabling spread spectrum on an output clock modulates its  
frequency, which effectively reduces the overall amplitude of its radiated energy. Note that spread spectrum is not  
available on clocks synchronized to PLLB or to the VCXO.  
The Si5351 supports several levels of spread spectrum allowing the designer to chose an ideal compromise  
between system performance and EMI compliance.  
Reduced  
Amplitude  
and EMI  
Reduced  
Amplitude  
and EMI  
Center  
Frequency  
Amplitude  
fc  
fc  
fc  
No Spread  
Spectrum  
Center Spread  
Down Spread  
Figure 6. Available Spread Spectrum Profiles  
3.5. Control Pins (OEB, SSEN)  
The Si5351 offers control pins for enabling/disabling clock outputs and spread spectrum.  
3.5.1. Output Enable (OEB)  
The output enable pin allows enabling or disabling outputs clocks. Output clocks are enabled when the OEB pin is  
held low, and disabled when pulled high. When disabled, the output state is configurable as output high, output low,  
or high-impedance.  
The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading  
edge after OEB is pulled low. When OEB is pulled high, the clock is allowed to complete its full clock cycle before  
going into a disabled state.  
3.5.2. Spread Spectrum Enable (SSEN)—Si5351A and Si5351B only  
This control pin allows disabling the spread spectrum feature for all outputs that were configured with spread  
spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient method of  
evaluating the effect of using spread spectrum clocks during EMI compliance testing.  
Rev. 1.0  
15  
Si5351A/B/C-B  
4. I2C Interface  
Many of the functions and features of the Si5351 are controlled by reading and writing to the RAM space using the  
2
2
I C interface. The following is a list of the common features that are controllable through the I C interface. For a  
2
complete listing of available I C registers and programming steps, please see “AN619: Manually Generating an  
Si5351 Register Map.”  
Read Status Indicators  
Crystal Reference Loss of signal, LOS_XTAL, reg0[3]  
CLKIN Loss of signal, LOS_CLKIN, reg0[4]  
PLLA and/or PLLB Loss of lock, LOL_A or LOL_B, reg0[6:5]  
Configuration of multiplication and divider values for the PLLs, MultiSynth dividers  
Configuration of the Spread Spectrum profile (down or center spread, modulation percentage)  
Control of the cross point switch selection for each of the PLLs and MultiSynth dividers  
Set output clock options  
Enable/disable for each clock output  
Invert/non-invert for each clock output  
Output divider values (2n, n=1.. 7)  
Output state when disabled (stop hi, stop low, Hi-Z)  
Output phase offset  
2
The I C interface operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps) or  
Fast-Mode (400 kbps) and supports burst data transfer with auto address increments.  
2
The I C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL) as shown in Figure 7.  
Both the SDA and SCL pins must be connected to the VDD supply via an external pull-up as recommended by the  
2
I C specification.  
VDD  
>1k  
>1k  
Si5351  
SCL  
SDA  
I2C Bus  
4.7 k  
INTR  
A0  
I2C Address Select:  
Pull-up to VDD (A0 = 1)  
Pull-down to GND (A0 = 0)  
Figure 7. I2C and Control Signals  
The 7-bit device (slave) address of the Si5351 consist of a 6-bit fixed address plus a user selectable LSB bit as  
shown in Figure 8. The LSB bit is selectable as 0 or 1 using the optional A0 pin which is useful for applications that  
2
require more than one Si5351 on a single I C bus.  
6
5
4
3
2
1
0
Slave Address  
1
1
0
0
0
0
0/1  
A0  
Figure 8. Si5351 I2C Slave Address  
16  
Rev. 1.0  
Si5351A/B/C-B  
Data is transferred MSB first in 8-bit words as specified by the I C specification. A write command consists of a 7-  
bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in Figure 9. A write  
burst operation is also shown where every additional data word is written using to an auto-incremented address.  
2
Write Operation – Single Byte  
S
Slv Addr [6:0]  
0
A
Reg Addr [7:0]  
A
Data [7:0]  
A
A
P
Write Operation - Burst (Auto Address Increment)  
Slv Addr [6:0] Reg Addr [7:0] Data [7:0]  
S
0
A
A
Data [7:0] A P  
Reg Addr +1  
1 – Read  
0 – Write  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH)  
S – START condition  
From slave to master  
From master to slave  
P– STOPcondition  
Figure 9. I2C Write Operation  
A read operation is performed in two stages. A data write is used to set the register address, then a data read is  
performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in  
Figure 10.  
Read Operation – Single Byte  
S
Slv Addr [6:0]  
0
A
Reg Addr [7:0]  
A
P
P
S
Slv Addr [6:0]  
1
A
Data [7:0]  
N
Read Operation - Burst (Auto Address Increment)  
S
S
Slv Addr [6:0]  
Slv Addr [6:0]  
0
1
A
A
Reg Addr [7:0]  
Data [7:0]  
A P  
A
Data [7:0]  
N P  
Reg Addr +1  
1 – Read  
0 – Write  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH)  
S – START condition  
From slave to master  
From master to slave  
P– STOPcondition  
Figure 10. I2C Read Operation  
AC and DC electrical specifications for the SCL and SDA pins are shown in Table 8. The timing specifications and  
2
2
timing diagram for the I C bus is compatible with the I C-Bus Standard. SDA timeout is supported for compatibility  
with SMBus interfaces.  
Rev. 1.0  
17  
Si5351A/B/C-B  
5. Configuring the Si5351  
2
The Si5351 is a highly flexible clock generator which is entirely configurable through its I C interface. The device’s  
default configuration is stored in non-volatile memory (NVM) as shown in Figure 11. The NVM is a one time  
programmable memory (OTP) which can store a custom user configuration at power-up. This is a useful feature for  
applications that need a clock present at power-up (e.g., for providing a clock to a processor).  
Power-Up  
NVM  
(OTP)  
RAM  
Default  
Config  
I2C  
Figure 11. Si5351 Memory Configuration  
During a power cycle the contents of the NVM are copied into random access memory (RAM), which sets the  
device configuration that will be used during normal operation. Any changes to the device configuration after  
2
power-up are made by reading and writing to registers in the RAM space through the I C interface.  
5.1. Writing a Custom Configuration to RAM  
To simplify device configuration, Silicon Labs has released the ClockBuilder Desktop. The software serves two  
purposes: to configure the Si5351 with optimal configuration based on the desired frequencies and to control the  
EVB when connected to a host PC.  
The optimal configuration can be saved from the software in text files that can be used in any system, which  
2
configures the device over I C. ClockBuilder Desktop can be downloaded from www.silabs.com/ClockBuilder and  
runs on Windows XP, Windows Vista, and Windows 7.  
2
Once the configuration file has been saved, the device can be programmed via I C by following the steps shown in  
Figure 12.  
18  
Rev. 1.0  
Si5351A/B/C-B  
Disable Outputs  
Set CLKx_DIS high; Reg. 3 = 0xFF  
Powerdown all output drivers  
Reg. 16, 17, 18, 19, 20, 21, 22, 23 =  
0x80  
Set interrupt masks  
(see register 2 description)  
Write new configuration to device using  
the contents of the register map  
Register  
Map  
generated by ClockBuilder Desktop. This  
step also powers up the output drivers.  
Use ClockBuilder  
, 149-170 and 183)  
(Registers 15-92
Desktop v3.1 or later  
Apply PLLA and PLLB soft reset  
Reg. 177 = 0xAC  
Enable desired outputs  
(see Register 3)  
Figure 12. I2C Programming Procedure  
Rev. 1.0  
19  
Si5351A/B/C-B  
5.2. Si5351 Application Examples  
The Si5351 is a versatile clock generator which serves a wide variety of applications. The following examples show  
how it can be used to replace crystals, crystal oscillators, VCXOs, and PLLs.  
5.3. Replacing Crystals and Crystal Oscillators  
Using an inexpensive external crystal, the Si5351A can generate up to 8 different free-running clock frequencies  
for replacing crystals and crystal oscillators. A 3-output version packaged in a small 10-MSOP is also available for  
applications that require fewer clocks. An example is shown in Figure 13.  
XA  
XB  
CLK0  
CLK1  
Multi  
Synth  
0
125 MHz  
48 MHz  
Ethernet  
PHY  
OSC  
PLL  
27 MHz  
Multi  
Synth  
1
USB  
Controller  
CLK2  
CLK3  
Multi  
Synth  
2
28.322 MHz  
74.25 MHz  
HDMI  
Port  
Multi  
Synth  
3
CLK4  
CLK5  
Multi  
Synth  
4
74.25/1.001 MHz  
24.576 MHz  
Video/Audio  
Processor  
Multi  
Synth  
5
Multi  
Synth  
6
CLK6  
CLK7  
22.5792 MHz  
33.3333 MHz  
Multi  
Synth  
7
CPU  
Si5351A  
Note: Si5351A replaces crystals, XOs, and PLLs.  
Figure 13. Using the Si5351A to Replace Multiple Crystals, Crystal Oscillators, and PLLs  
5.4. Replacing Crystals, Crystal Oscillators, and VCXOs  
The Si5351B combines free-running clock generation and a VCXO in a single package for cost sensitive video  
applications. An example is shown in Figure 14.  
Free-running  
Clocks  
Ethernet  
PHY  
XA  
XB  
CLK0  
CLK1  
Multi  
Synth  
0
125 MHz  
OSC  
PLL  
27 MHz  
Multi  
Synth  
1
48 MHz  
USB  
Controller  
CLK2  
CLK3  
Multi  
Synth  
2
28.322 MHz  
74.25 MHz  
HDMI  
Port  
Multi  
Synth  
3
VC  
VCXO  
CLK4  
CLK5  
Multi  
Synth  
4
74.25/1.001 MHz  
24.576 MHz  
Video/Audio  
Processor  
Multi  
Synth  
5
Si5351B  
VCXO Clock  
Outputs  
Note: FBW = 10 kHz  
Figure 14. Using the Si5351B to Replace Crystals, Crystal Oscillators, VCXOs, and PLLs  
20  
Rev. 1.0  
Si5351A/B/C-B  
5.5. Replacing Crystals, Crystal Oscillators, and PLLs  
The Si5351C generates synchronous clocks for applications that require a fully integrated PLL instead of a VCXO.  
Because of its dual PLL architecture, the Si5351C is capable of generating both synchronous and free-running  
clocks. An example is shown in Figure 15.  
Free-running  
Clocks  
Ethernet  
PHY  
XA  
XB  
CLK0  
CLK1  
Multi  
Synth  
0
125 MHz  
48 MHz  
OSC  
PLL  
25 MHz  
Multi  
Synth  
1
USB  
Controller  
CLK2  
CLK3  
Multi  
Synth  
2
28.322 MHz  
74.25 MHz  
HDMI  
Port  
Multi  
Synth  
3
CLKIN  
PLL  
54 MHz  
CLK4  
CLK5  
Multi  
Synth  
4
74.25/1.001 MHz  
24.576 MHz  
Video/Audio  
Processor  
Multi  
Synth  
5
Si5351C  
Synchronous  
Clocks  
Figure 15. Using the Si5351C to Replace Crystals, Crystal Oscillators, and PLLs  
5.6. Applying a Reference Clock at XTAL Input  
The Si5351 can be driven with a clock signal through the XA input pin. This is especially useful when in need of  
generating clock outputs in two synchronization domains. With the Si5351C, one reference clock can be provided  
at the CLKIN pin and at XA.  
VIN = 1 VPP  
25/27 MHz  
Multi  
Synth  
0
PLLA  
PLLB  
XA  
Multi  
Synth  
1
0.1 µF  
OSC  
XB  
Multi  
Synth  
N
Note: Float the XB input while driving  
the XA input with a clock  
Figure 16. Si5351 Driven by a Clock Signal  
Rev. 1.0  
21  
Si5351A/B/C-B  
5.7. HCSL Compatible Outputs  
The Si5351 can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is  
set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on).  
The circuit in the figure below must be applied to each of the two clocks used, and one of the clocks in the pair  
must also be inverted to generate a differential pair. See register setting CLKx_INV.  
ZO = 50  
R1  
Multi  
Synth  
0
PLLA  
PLLB  
0   
0   
511   
240   
R2  
OSC  
HCSL  
CLKIN  
ZO = 50   
R1  
Multi  
Synth  
1
511   
240   
R2  
Multi  
Synth  
N
Note: The complementary -180 degree  
out of phase output clock is generated  
using the INV function  
Figure 17. Si5351 Output is HCSL Compatible  
22  
Rev. 1.0  
Si5351A/B/C-B  
6. Design Considerations  
The Si5351 is a self-contained clock generator that requires very few external components. The following general  
guidelines are recommended to ensure optimum performance. Refer to “AN554: Si5350/51 PCB Layout Guide” for  
additional layout recommendations.  
6.1. Power Supply Decoupling/Filtering  
The Si5351 has built-in power supply filtering circuitry and extensive internal Low Drop Out (LDO) voltage  
regulators to help minimize the number of external bypass components. All that is recommended is one 0.1 to  
1.0 µF decoupling capacitor per power supply pin. This capacitor should be mounted as close to the VDD and  
VDDOx pins as possible without using vias.  
6.2. Power Supply Sequencing  
The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow  
flexibility in output signal levels. Power supply sequencing for VDD and VDDOx requires that all VDDOx be  
powered up either before or at the same time as VDD. Unused VDDOx pins should be tied to VDD.  
6.3. External Crystal  
The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB  
traces should be kept away from other high-speed signal traces. See “AN551: Crystal Selection Guide” for more  
details.  
6.4. External Crystal Load Capacitors  
The Si5351 provides the option of using internal and external crystal load capacitors. If internal load capacitance is  
insufficient, capacitors of value < 2 pF may be used to increased equivalent load capacitance. If external load  
capacitors are used, they should be placed as close to the XA/XB pads as possible. See “AN551: Crystal Selection  
Guide” for more details.  
6.5. Unused Pins  
Unused voltage control pin should be tied to GND.  
Unused CLKIN pin should be tied to GND.  
Unused XA/XB pins should be left floating. Refer to "5.6. Applying a Reference Clock at XTAL Input" on page 21  
when using XA as a clock input pin.  
Unused output pins (CLK0–CLK7) should be left floating.  
Unused VDDOx pins should be tied to VDD.  
6.6. Trace Characteristics  
The Si5351A/B/C features various output current drive strengths. It is recommended to configure the trace  
characteristics as shown in Figure 18 when the default high drive strength is used.  
ZO = 50 ohms  
R = 0 ohms  
CLK  
(Optional resistor for  
EMI management)  
Figure 18. Recommended Trace Characteristics with Default Drive Strength Setting  
Rev. 1.0  
23  
Si5351A/B/C-B  
7. Register Map Summary  
For many applications, the Si5351's register values are easily configured using ClockBuilder Desktop software.  
However, for customers interested in using the Si5351 in operating modes beyond the capabilities available with  
ClockBuilder™, refer to “AN619: Manually Generating an Si5351 Register Map” for a detailed description of the  
Si5351 registers and their usage.  
8. Register Descriptions  
Refer to “AN619: Manually Generating an Si5351 Register Map” for a detailed description of Si5351 registers.  
24  
Rev. 1.0  
Si5351A/B/C-B  
9. Si5351 Pin Descriptions  
9.1. Si5351A 20-pin QFN  
XA  
XB  
1
2
3
4
5
15  
14  
13  
12  
11  
CLK7  
VDDOD  
CLK0  
GND  
PAD  
A0  
SCL  
SDA  
CLK1  
VDDOA  
Figure 19. Si5351A 20-QFN Top View  
Table 11. Si5351A Pin Descriptions  
Pin  
Number  
1
Pin Name  
Function  
Pin Type  
XA  
XB  
1
I
I
Input pin for external crystal.  
Input pin for external crystal.  
Output clock 0.  
2
CLK0  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
A0  
13  
O
O
O
O
O
O
O
O
I
12  
Output clock 1.  
9
Output clock 2.  
8
Output clock 3.  
19  
Output clock 4.  
17  
Output clock 5.  
16  
Output clock 6.  
15  
Output clock 7.  
2
3
I C address bit.  
2
SCL  
4
I
I C bus serial clock input. Pull-up to VDD core with 1 k  
2
SDA  
5
I/O  
I
I C bus serial data input. Pull-up to VDD core with 1 k  
SSEN  
OEB  
6
Spread spectrum enable. High = enabled, Low = disabled.  
Output driver enable. Low = enabled, High = disabled.  
Core voltage supply pin. See 6.2.  
7
I
VDD  
20  
P
P
P
P
P
P
VDDOA  
VDDOB  
VDDOC  
VDDOD  
GND  
11  
Output voltage supply pin for CLK0 and CLK1. See 6.2.  
Output voltage supply pin for CLK2 and CLK3. See 6.2.  
Output voltage supply pin for CLK4 and CLK5. See 6.2.  
Output voltage supply pin for CLK6 and CLK7. See 6.2.  
Ground. Use multiple vias to ensure a solid path to GND.  
10  
18  
14  
Center Pad  
1. I = Input, O = Output, P = Power.  
2. Input pins are not internally pulled up.  
Rev. 1.0  
25  
Si5351A/B/C-B  
9.2. Si5351B 20-Pin QFN  
CLK7  
XA  
XB  
1
2
3
4
5
15  
14  
13  
12  
11  
VDDOD  
CLK0  
GND  
PAD  
VC  
CLK1  
SCL  
SDA  
VDDOA  
Figure 20. Si5351B 20-QFN Top View*  
Table 12. Si5351B Pin Descriptions  
Pin  
Pin Name  
1
Function  
Input pin for external crystal  
Pin Type  
Number  
XA  
XB  
1
I
I
2
Input pin for external crystal  
Output clock 0  
CLK0  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
VC  
13  
O
O
O
O
O
O
O
O
I
12  
Output clock 1  
9
Output clock 2  
8
Output clock 3  
19  
Output clock 4  
17  
Output clock 5  
16  
Output clock 6  
15  
Output clock 7  
3
VCXO control voltage input  
2
SCL  
4
I
I C bus serial clock input. Pull-up to VDD core with 1 k  
2
SDA  
5
I/O  
I
I C bus serial data input. Pull-up to VDD core with 1 k  
SSEN  
OEB  
6
Spread spectrum enable. High = enabled, Low = disabled.  
Output driver enable. Low = enabled, High = disabled.  
Core voltage supply pin  
7
I
VDD  
20  
P
P
P
P
P
P
VDDOA  
VDDOB  
VDDOC  
VDDOD  
GND  
11  
Output voltage supply pin for CLK0 and CLK1. See 6.2  
Output voltage supply pin for CLK2 and CLK3. See 6.2  
Output voltage supply pin for CLK4 and CLK5. See 6.2  
Output voltage supply pin for CLK6 and CLK7. See 6.2  
Ground  
10  
18  
14  
Center Pad  
1. I = Input, O = Output, P = Power  
2. Input pins are not internally pulled up.  
26  
Rev. 1.0  
Si5351A/B/C-B  
9.3. Si5351C 20-Pin QFN  
XA  
XB  
1
2
3
4
5
15 CLK7  
14 VDDOD  
GND  
PAD  
13  
12  
INTR  
SCL  
SDA  
CLK0  
CLK1  
11 VDDOA  
Table 13. Si5351C Pin Descriptions  
Pin  
1
Number  
Pin Name  
Function  
Input pin for external crystal.  
Pin Type  
20-QFN  
XA  
1
2
I
XB  
I
Input pin for external crystal.  
Output clock 0.  
Output clock 1.  
Output clock 2.  
Output clock 3.  
Output clock 4.  
Output clock 5.  
Output clock 6.  
Output clock 7.  
CLK0  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
INTR  
13  
12  
9
O
O
O
O
O
O
O
O
O
8
19  
17  
16  
15  
3
Interrupt pin. Open drain active low output, requires a pull-up  
resistor greater than 1 k  
2
SCL  
SDA  
4
I
I/O  
I
I C bus serial clock input. Pull-up to VDD core with 1 k  
2
5
I C bus serial data input. Pull-up to VDD core with 1 k  
CLKIN  
OEB  
6
PLL clock input.  
7
I
Output driver enable. Low = enabled, High = disabled.  
Core voltage supply pin  
VDD  
20  
P
P
P
P
P
P
VDDOA  
VDDOB  
VDDOC  
VDDOD  
GND  
11  
Output voltage supply pin for CLK0 and CLK1. See 6.2  
Output voltage supply pin for CLK2 and CLK3. See 6.2  
Output voltage supply pin for CLK4 and CLK5. See 6.2  
Output voltage supply pin for CLK6 and CLK7. See 6.2  
Ground.  
10  
18  
14  
Center Pad  
Notes:  
1. I = Input, O = Output, P = Power.  
2. Input pins are not internally pulled up.  
Rev. 1.0  
27  
Si5351A/B/C-B  
9.4. Si5351A 10-Pin MSOP  
VDD  
XA  
CLK0  
CLK1  
GND  
1
2
3
10  
9
XB  
8
SCL  
SDA  
VDDO  
CLK2  
4
5
7
6
Figure 21. Si5351A 10-MSOP Top View  
Table 14. Si5351A 10-MSOP Pin Descriptions  
Pin  
Number  
Pin Name  
Pin Type*  
Function  
10-MSOP  
XA  
2
3
I
I
Input pin for external crystal.  
Input pin for external crystal.  
Output clock 0.  
XB  
CLK0  
CLK1  
CLK2  
SCL  
10  
9
O
O
O
I
Output clock 1.  
6
Output clock 2.  
2
4
Serial clock input for the I C bus. This pin must be pulled-up using a pull-  
up resistor of at least 1 k.  
2
SDA  
5
I/O  
Serial data input for the I C bus. This pin must be pulled-up using a pull-up  
resistor of at least 1 k.  
VDD  
1
7
P
P
Core voltage supply pin.  
VDDO  
Output voltage supply pin for CLK0, CLK1, and CLK2. See "6.2. Power  
Supply Sequencing" on page 23.  
GND  
8
P
Ground.  
*Note: I = Input, O = Output, P = Power  
28  
Rev. 1.0  
Si5351A/B/C-B  
10. Ordering Information  
Factory pre-programmed Si5351 devices (e.g., with bootup frequencies) can be requested using the ClockBuilder  
web-based utility available at: www.silabs.com/ClockBuilder. A unique part number is assigned to each custom  
configuration as indicated in Figure 22. Blank, un-programmed Si5351 devices (with no boot-up frequency) do not  
contain a custom code.  
Figure 22. Device Part Numbers  
An evaluation kit containing ClockBuilder Desktop software and hardware enable easy evaluation of the Si5351A/B/  
C. The orderable part numbers for the evaluation kits are provided in Figure 23.  
Figure 23. Si5351A/B/C Evaluation Kit  
Rev. 1.0  
29  
Si5351A/B/C-B  
11. Package Outlines  
Figure 24 shows the package details for the Si5351 in a 20-QFN package. Table 15 lists the values for the  
dimensions shown in the illustration.  
11.1. 20-pin QFN  
C
D2  
A
D
B
D2/2  
A1  
L
E
E2  
E2/2  
b
A
e
Figure 24. 20-pin QFN Package Drawing  
30  
Rev. 1.0  
Si5351A/B/C-B  
Table 15. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.20  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.25  
D
4.00 BSC  
2.70  
D2  
e
2.65  
2.75  
0.50 BSC  
4.00 BSC  
2.70  
E
E2  
L
2.65  
0.35  
2.75  
0.45  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MO-220, variation VGGD-5.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
Rev. 1.0  
31  
Si5351A/B/C-B  
12. Land Pattern: 20-Pin QFN  
Figure 25 shows the recommended land pattern details for the Si5351 in a 20-Pin QFN package. Table 16 lists the  
values for the dimensions shown in the illustration.  
Figure 25. 20-Pin QFN Land Pattern  
32  
Rev. 1.0  
Si5351A/B/C-B  
Table 16. PCB Land Pattern Dimensions  
Symbol  
C1  
Millimeters  
4.0  
C2  
4.0  
E
0.50 BSC  
0.30  
X1  
X2  
2.70  
Y1  
0.80  
Y2  
2.70  
Notes:  
General  
1. All dimensions shown are in millimeters  
(mm) unless otherwise noted.  
2. This land pattern design is based on IPC-  
7351 guidelines.  
Solder Mask Design  
3. All metal pads are to be non-solder mask  
defined (NSMD). Clearance between the  
solder mask and the metal pad is to be  
60 µm minimum, all the way around the pad.  
Stencil Design  
4. A stainless steel, laser-cut and electro-  
polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm  
(5 mils).  
6. The ratio of stencil aperture to land pad size  
should be 1:1 for all perimeter pads.  
7. A 2x2 array of 1.10 x 1.10 mm openings on  
1.30 mm pitch should be used for the center  
ground pad.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is  
recommended.  
9. The recommended card reflow profile is per  
the JEDEC/IPC J-STD-020 specification for  
Small Body components.  
Rev. 1.0  
33  
Si5351A/B/C-B  
12.1. 10-Pin MSOP Package Outline  
Figure 26 illustrates the package details for the Si5351 in a 10-pin MSOP package. Table 17 lists the values for the  
dimensions shown in the illustration.  
Figure 26. 10-pin MSOP Package Drawing  
34  
Rev. 1.0  
Si5351A/B/C-B  
Table 17. 10-MSOP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.10  
0.15  
0.95  
0.33  
0.23  
A
A1  
A2  
b
0.00  
0.75  
0.17  
0.08  
0.85  
c
D
3.00 BSC  
4.90 BSC  
3.00 BSC  
0.50 BSC  
0.60  
E
E1  
e
L
0.40  
0.80  
L2  
q
0.25 BSC  
0
8
aaa  
bbb  
ccc  
ddd  
0.20  
0.25  
0.10  
0.08  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
Rev. 1.0  
35  
Si5351A/B/C-B  
13. Land Pattern: 10-Pin MSOP  
Figure 27 shows the recommended land pattern details for the Si5351 in a 10-Pin MSOP package. Table 18 lists  
the values for the dimensions shown in the illustration.  
Figure 27. 10-Pin MSOP Land Pattern  
36  
Rev. 1.0  
Si5351A/B/C-B  
Table 18. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min  
Max  
C1  
E
4.40 REF  
0.50 BSC  
G1  
X1  
Y1  
Z1  
3.00  
0.30  
1.40 REF  
5.80  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ASME Y14.5M-1994.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-  
020C specification for Small Body components.  
Rev. 1.0  
37  
Si5351A/B/C-B  
14. Top Marking  
14.1. 20-Pin QFN Top Marking  
Figure 28. 20-Pin QFN Top Marking  
14.2. Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Filled Circle = 0.50 mm Diameter  
(Bottom-Left Corner)  
Font Size:  
0.60 mm (24 mils)  
Line 1 Mark Format  
Line 2 Mark Format:  
Device Part Number  
TTTTTT = Mfg Code*  
Si5351  
Manufacturing Code from the Assembly Purchase  
Order Form.  
Line 3 Mark Format:  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to  
the year and work week of the assembly date.  
*Note: The code shown in the “TTTTTT” line does not correspond to the orderable part number or frequency plan. It is used  
for package assembly quality tracking purposes only.  
38  
Rev. 1.0  
Si5351A/B/C-B  
14.3. 10-Pin MSOP Top Marking  
Figure 29. 10-Pin MSOP Top Marking  
14.4. Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Mold Dimple (Bottom-Left Corner)  
0.60 mm (24 mils)  
Device Part Number  
TTTT = Mfg Code*  
Font Size:  
Line 1 Mark Format  
Line 2 Mark Format:  
Si5351  
Line 2 from the “Markings” section of the Assembly  
Purchase Order form.  
Line 3 Mark Format:  
YWW = Date Code  
Assigned by the Assembly House.  
Y = Last Digit of Current Year (Ex: 2013 = 3)  
WW = Work Week of Assembly Date.  
*Note: The code shown in the “TTTT” line does not correspond to the orderable part number or frequency plan. It is used for  
package assembly quality tracking purposes only.  
Rev. 1.0  
39  
Si5351A/B/C-B  
DOCUMENT CHANGE LIST  
Revision 0.75 to Revision 1.0  
Extended frequency range from 8 MHz-160 MHz to  
2.5 kHz-200 MHz.  
Updated block diagrams for clarity.  
Added complete Si5350/1 family table, Table 1.  
Added top mark information.  
Added land pattern drawings.  
Added PowerUp Time, PLL Bypass mode, Table 4.  
Clarified Down Spread step sizes in Table 4.  
Updated max jitter specs (typ unchanged) in Table 6.  
Clarified power supply sequencing requirement,  
Section 6.2.  
40  
Rev. 1.0  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5350B-B07683-GT

Processor Specific Clock Generator,
SILICON

SI5350B-B10401-GMR

Processor Specific Clock Generator,
SILICON

SI5350B-B10734-GTR

Processor Specific Clock Generator,
SILICON

Si5350C

Timing Selector Guide
SILICON

SI5350C-A-GM

Processor Specific Clock Generator, 133MHz, CMOS, 4 X 4 MM, MO-220VGGD-8, QFN-20
SILICON

SI5350C-A-GMR

Clock Generator
SILICON

Si5350C-A-GT

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC

Si5350C-A-GU

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC

SI5350C-A01123-GUR

Clock Generator
SILICON

SI5350C-A01145-GUR

Clock Generator
SILICON

SI5350C-A01298-GT

Clock Generator
SILICON

SI5350C-A01314-GM

Clock Generator
SILICON