Si7013-A10-GM [SILICON]

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR; I2C湿度和双区温度传感器
Si7013-A10-GM
型号: Si7013-A10-GM
厂家: SILICON    SILICON
描述:

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
I2C湿度和双区温度传感器

传感器 温度传感器
文件: 总43页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si7013  
I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR  
Features  
Precision Relative Humidity Sensor  
Factory-calibrated  
 ± 3% RH (max), 0–80% RH  
High Accuracy Temperature Sensor  
±0.4 °C (max), –10 to 85 °C  
0 to 100% RH operating range  
Up to –40 to +125 °C operating  
range  
Low Voltage Operation (1.9 to 3.6 V)  
Low Power Consumption  
150 µA active current  
I2C Interface  
Integrated on-chip heater  
Auxiliary Sensor input  
Direct readout of remote  
thermistor temperature in °C  
Package: 3x3 mm DFN  
Excellent long term stability  
Optional factory-installed cover  
Low-profile  
Si7013  
60 nA standby current  
Protection during reflow  
Excludes liquids and particulates  
Ordering Information:  
See page 35.  
Applications  
HVAC/R  
Micro-environments/data centers  
Industrial Controls  
Indoor weather stations  
Thermostats/humidistats  
Instrumentation  
White goods  
Pin Assignments  
Top View  
Description  
The Si7013 I2C Humidity and 2-Zone Temperature Sensor is a monolithic CMOS  
IC integrating humidity and temperature sensor elements, an analog-to-digital  
converter, signal processing, calibration data, and an I2C Interface. The patented  
use of industry-standard, low-K polymeric dielectrics for sensing humidity enables  
the construction of low-power, monolithic CMOS Sensor ICs with low drift and  
hysteresis, and excellent long term stability.  
SDA  
AD0/VOUT  
GNDD  
10 SCL  
1
2
3
4
5
VDDD  
VDDA  
9
8
7
6
GNDA  
VINN  
VINP  
VSNS  
The humidity and temperature sensors are factory-calibrated and the calibration  
data is stored in the on-chip non-volatile memory. This ensures that the sensors  
are fully interchangeable, with no recalibration or software changes required.  
Patent Protected. Patents pending  
An auxiliary sensor input with power management can be tied directly to an  
external thermistor network or other voltage-output sensor. On-board logic  
performs calibration/linearization of the external input using user-programmable  
coefficients. The least-significant bit of the Si7013's I2C address is programmable,  
allowing two devices to share the same bus.  
The Si7013 is available in a 3x3 mm DFN package and is reflow solderable. The  
optional factory-installed cover offers a low profile, convenient means of protecting  
the sensor during assembly (e.g., reflow soldering) and throughout the life of the  
product, excluding liquids (hydrophobic/oleophobic) and particulates.  
The Si7013 offers an accurate, low-power, factory-calibrated digital solution ideal  
for measuring humidity, dew-point, and temperature, in applications ranging from  
HVAC/R and asset tracking to industrial and consumer platforms.  
Rev. 0.95 11/13  
Copyright © 2013 by Silicon Laboratories  
Si7013  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si7013  
Functional Block Diagram  
VSNS  
Vdd  
Si7013  
Humidity  
Sensor  
1.25V  
Ref  
Calibration  
Memory  
AD0/VOUT  
Control Logic  
Temp  
Sensor  
ADC  
VINP  
VINN  
SDA  
SCL  
Analog  
Input  
I2C Interface  
GND  
2
Rev. 0.95  
Si7013  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.1. Relative Humidity Sensor Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.2. Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.3. Prolonged Exposure to High Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.4. PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.5. Protecting the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.6. Bake/Hydrate Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.7. Long Term Drift/Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.1. Issuing a Measurement Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5.2. Reading and Writing User Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.3. Measuring Analog Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.4. Nonlinear Correction of Voltage Inputs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.5. Firmware Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.6. Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.7. Electronic Serial Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
6. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6.1. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
7. Pin Descriptions: Si7013 (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
9. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
9.1. Package Outline: 3x3 10-pin DFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
9.2. Package Outline: 3x3 10-pin DFN with Protective Cover . . . . . . . . . . . . . . . . . . . . .38  
10. PCB Land Pattern and Solder Mask Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
11. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
11.1. Si7013 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
12. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Rev. 0.95  
3
Si7013  
1. Electrical Specifications  
Unless otherwise specified, all min/max specifications apply over the recommended operating conditions.  
Table 1. Recommended Operating Conditions  
Parameter  
Power Supply  
Symbol  
VDD  
TA  
Test Condition  
Min  
1.9  
Typ  
Max  
3.6  
Unit  
V
Operating Temperature  
Operating Temperature  
I and Y grade  
G grade  
–40  
–40  
+125  
+85  
°C  
°C  
TA  
Table 2. General Specifications  
1.9 < VDD < 3.6 V; TA = –40 to 85 °C (G grade) or –40 to 125 °C (I/Y grade); default conversion time unless otherwise noted.  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Input Voltage High  
Input Voltage Low  
Input Voltage Range  
V
AD0, SCL, SDA, VSNS pins  
AD0, SCL, SDA, VSNS pins  
0.7xVDD  
V
V
V
IH  
VIL  
VIN  
0.3xVDD  
VDD  
SCL, SDA, RSTb pins with respect to  
GND  
0.0  
Input Leakage  
IIL  
SCL, SDA pins; V = GND  
1
μA  
μA  
IN  
VSNS pin (200K nominal pull up);  
Vin = GND  
5xVDD  
Output Voltage Low  
Output Voltage High  
VOL  
VOH  
SDA pin; IOL = 2.5 mA; VDD = 3.3 V  
0.6  
0.4  
V
V
SDA pin; IOL = 1.2 mA;  
VDD = 1.9 V  
VOUT pin, I  
= –0.5 mA, VDD = 2.0 V V – 0.2  
V
V
OH  
DD  
VOUT pin, I = –10 μA  
V
– 0.1  
DD  
OH  
VOUT pin, I  
= –1.7 mA, VDD = 3.0 V V – 0.4  
V
OH  
DD  
Current Consump-  
tion  
IDD  
RH conversion in progress  
150  
180  
120  
0.62  
3.8  
4.0  
4.0  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
Temperature conversion in progress  
90  
2
Standby, –40 to +85 °C  
0.06  
0.06  
3.5  
2
Standby, –40 to +125 °C  
3
Peak IDD during powerup  
2
4
Peak IDD during I C operations  
3.5  
5
Heater Current  
3.1 to 94.2  
I
HEAT  
Notes:  
1. Initiating a RH measurement will also automatically initiate a temperature measurement. The total conversion time will  
be tCONV(RH) + tCONV(T).  
2. No conversion or I2C transaction in progress. Typical values measured at 25 °C.  
3. Occurs once during powerup. Duration is <5 msec.  
4. Occurs during I2C commands for Reset, Read/Write User Registers, Read EID, Read Firmware Version, Read/Write  
Thermistor Coefficients and Read Thermistor. Duration is <50 μs for all commands except Read Thermistor, which has  
<150 μs duration.  
5. Additional current consumption when HTRE bit enabled. See Section “5.6. Heater” for more information.  
4
Rev. 0.95  
Si7013  
Table 2. General Specifications (Continued)  
1.9 < VDD < 3.6 V; TA = –40 to 85 °C (G grade) or –40 to 125 °C (I/Y grade); default conversion time unless otherwise noted.  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
ms  
ms  
ms  
ms  
ms  
Parameter  
1
Conversion Time  
tCONV  
RH or Voltage Normal  
RH or Voltage Fast  
5.8  
2.6  
7
3.1  
Temp Normal  
Temp Fast  
4
4.8  
1.8  
25  
1.5  
18  
Powerup Time  
tPU  
From VDD 1.9 V to ready for a  
conversion, 25 °C  
From VDD 1.9 V to ready for a  
80  
ms  
conversion, full temperature range  
Notes:  
1. Initiating a RH measurement will also automatically initiate a temperature measurement. The total conversion time will  
be tCONV(RH) + tCONV(T).  
2. No conversion or I2C transaction in progress. Typical values measured at 25 °C.  
3. Occurs once during powerup. Duration is <5 msec.  
4. Occurs during I2C commands for Reset, Read/Write User Registers, Read EID, Read Firmware Version, Read/Write  
Thermistor Coefficients and Read Thermistor. Duration is <50 μs for all commands except Read Thermistor, which has  
<150 μs duration.  
5. Additional current consumption when HTRE bit enabled. See Section “5.6. Heater” for more information.  
Table 3. I2C Interface Specifications1  
1.9 VDD 3.6 V; TA = –40 to +85 °C (G grade) or –40 to +125 °C (I/Y grade) unless otherwise noted.  
Parameter  
Hysteresis  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High-to-low versus low-to- 0.05 x V  
high transition  
V
HYS  
DD  
2
SCLK Frequency  
SCL High Time  
SCL Low Time  
Start Hold Time  
Start Setup Time  
Stop Setup Time  
Bus Free Time  
SDA Setup Time  
SDA Hold Time  
Notes:  
f
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
SCL  
t
0.6  
1.3  
0.6  
0.6  
0.6  
SKH  
t
SKL  
t
STH  
t
STS  
SPS  
BUF  
t
t
Between Stop and Start  
1.3  
100  
100  
t
DS  
DH  
t
1. All values are referenced to VIL and/or VIH.  
2. Depending on the conversion command, the Si7013 may hold the master during the conversion (clock stretch). At  
above 300 kHz SCL, the Si7013 may hold the master briefly for user register and device ID transactions. At the highest  
I2C speed of 400 kHz the stretching will be <10 µs.  
3. Pulses up to and including 50ns will be suppressed.  
Rev. 0.95  
5
Si7013  
Table 3. I2C Interface Specifications1  
1.9 VDD 3.6 V; TA = –40 to +85 °C (G grade) or –40 to +125 °C (I/Y grade) unless otherwise noted.  
Parameter  
SDA Valid Time  
Symbol  
Test Condition  
Min  
Typ  
Max  
0.9  
0.9  
Unit  
µs  
t
From SCL low to data valid  
From SCL low to data valid  
VD;DAT  
VD;ACK  
SDA Acknowledge Valid Time  
t
µs  
3
Suppressed Pulse Width  
t
50  
ns  
SPS  
Notes:  
1. All values are referenced to VIL and/or VIH.  
2. Depending on the conversion command, the Si7013 may hold the master during the conversion (clock stretch). At  
above 300 kHz SCL, the Si7013 may hold the master briefly for user register and device ID transactions. At the highest  
I2C speed of 400 kHz the stretching will be <10 µs.  
3. Pulses up to and including 50ns will be suppressed.  
tSKH  
tSKL  
1/fSCL  
tSP  
SCL  
SDA  
tBUF  
tSTH  
tDS  
tDH  
tSPS  
D7  
D6  
D5  
D0  
R/W  
ACK  
Start Bit  
tSTS  
Stop Bit  
tVD  
:
ACK  
Figure 1. I2C Interface Timing Diagram  
6
Rev. 0.95  
Si7013  
Table 4. Humidity Sensor  
1.9 VDD 3.6 V; TA = 30 °C; default conversion time unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
Non-condensing  
0 – 80% RH  
Min  
0
Typ  
Max  
100  
±3  
Unit  
%RH  
1
Operating Range  
3, 4  
Accuracy  
±2  
%RH  
80 – 100% RH  
12-bit resolution  
11-bit resolution  
10-bit resolution  
8-bit resolution  
1 m/s airflow  
See Figure 2  
0.025  
0.05  
%RH  
Repeatability-Noise  
%RH RMS  
%RH RMS  
%RH RMS  
%RH RMS  
S
0.1  
0.2  
5
Response Time  
τ
18  
63%  
Drift vs. Temperature  
Hysteresis  
0.05  
%RH/°C  
%RH  
±1  
4
Long Term Stability  
< 0.25  
%RH/yr  
Notes:  
1. Recommended humidity operating range is 20% to 80% RH (non-condensing) over –10 °C to 60 °C. Prolonged  
operation beyond these ranges may result in a shift of sensor reading with slow recovery time.  
2. See conversion time specifications in Table 2.  
3. Excludes hysteresis, long term drift, and certain other factors and is applicable to non-condensing environments only.  
See Section “4.1. Relative Humidity Sensor Accuracy” for more details.  
4. Drift due to aging effects at typical room conditions of 30°C and 30% to 50% RH. May be impacted by dust, vaporized  
solvents or other contaminants, e.g., out-gassing tapes, adhesives, packaging materials, etc. See Section “4.7. Long  
Term Drift/Aging”  
5. Response time to a step change in RH. Time for the RH output to change by 63% of the total RH change.  
Rev. 0.95  
7
Si7013  
Figure 2. RH Accuracy at 30 °C  
8
Rev. 0.95  
Si7013  
Table 5. Temperature Sensor  
1.9 VDD 3.6 V; TA = –40 to +85 °C (G grade) or –40 to +125 °C (I/Y grade), default conversion time unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
I and Y Grade  
G Grade  
Min  
–40  
–40  
Typ  
Max  
+125  
+85  
Unit  
°C  
Operating Range  
°C  
1
Accuracy  
–10 °C < t < 85 °C  
±0.3  
Figure 3  
0.01  
0.02  
0.04  
0.08  
0.7  
±0.4  
°C  
A
–40 °C < t < 125 °C  
°C  
A
Repeatability-Noise  
14-bit resolution  
13-bit resolution  
12-bit resolution  
11-bit resolution  
Unmounted device  
Si7013-EB board  
°C RMS  
°C RMS  
°C RMS  
°C RMS  
s
2
Response Time  
τ
63%  
5.1  
s
Long Term Stability  
< 0.01  
°C/Yr  
Notes:  
1. 14b measurement resolution (default).  
2. Time to reach 63% of final value in response to a step change in temperature. Actual response time will vary  
dependent on system thermal mass and airflow.  
Figure 3. Temperature Accuracy*  
*Note: Applies only to I and Y devices beyond +85 °C.  
Rev. 0.95  
9
Si7013  
Table 6. Voltage Converter Specifications  
1.9 VDD 3.6 V; TA = –40 to +85 °C (G grade) or –40 to +125 °C (Y grade); default conversion time, VREF = 1.25 V internal or  
VDDA, buffered and unbuffered mode, unless otherwise noted.  
Parameter  
Resolution  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
/
V
REF  
32768  
Integral Non-linearity  
Differential Non-linearity  
Noise  
INL  
DNL  
N
|VINP-VINN| < V  
|VINP-VINN| < V  
/2  
/2  
1
1
LSB  
LSB  
REF  
REF  
|VINP-VINN| < V  
/2,  
25  
µV  
RMS  
REF  
V
= 1.25 V  
REF  
Input Offset  
(Buffered Mode)  
V
V
|VINP-VINN| = 0  
10  
1
mV  
mV  
OS  
OS  
Input Offset  
|VINP-VINN| = 0  
(Unbuffered Mode)  
Gain Accuracy  
G  
V
= 1.25 V; gain is absolute  
+1  
+2  
%
%
REF  
V
= V ; gain is relative to V  
DD  
+0.25  
+0.5  
REF  
DD  
Notes:  
1. In unbuffered mode, RIN*CIN should be < 0.5usec. CIN minimum is around 10 pF.  
2. In buffered mode, VINP and VINN must be > 0.5 V and < VDD for best performance.  
10  
Rev. 0.95  
Si7013  
Table 7. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
DFN-6  
Unit  
Junction to Air Thermal Resistance  
JEDEC 2-Layer board,  
No Airflow  
236  
203  
191  
°C/W  
JA  
Junction to Air Thermal Resistance  
Junction to Air Thermal Resistance  
JEDEC 2-Layer board,  
1 m/s Airflow  
°C/W  
°C/W  
JA  
JEDEC 2-Layer board,  
2.5 m/s Airflow  
JA  
Junction to Case Thermal Resistance  
Junction to Board Thermal Resistance  
JEDEC 2-Layer board  
JEDEC 2-Layer board  
20  
°C/W  
°C/W  
JC  
112  
JB  
Table 8. Absolute Maximum Ratings1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Ambient temperature  
under bias  
–55  
125  
°C  
Storage  
–65  
150  
°C  
TemperatureFigure 2  
Voltage on I/O pins  
–0.3  
–0.3  
VDD+0.3V  
4.2  
V
V
Voltage on VDD with  
respect to GND  
Notes:  
1. Absolute maximum ratings are stress ratings only, operation at or beyond these conditions is not implied and may  
shorten the life of the device or alter its performance.  
2. Special handling considerations apply; see application note, “AN607: Si70xx Humidity Sensor Designer’s Guide” for  
details.  
Rev. 0.95  
11  
Si7013  
2. Typical Application Circuits  
The primary function of the Si7013 is to measure relative humidity and temperature. Figure 4 demonstrates the  
typical application circuit to achieve these functions; pins 6 and 7 are not required and should be left unconnected.  
ꢂꢁꢅꢆWRꢆꢄꢁꢇ9  
ꢀꢁꢂ—)  
ꢂꢀN  
ꢂꢀN  
9''' 9''$  
ꢂꢀ  
6&/  
6'$  
6&/  
6'$  
6Lꢃꢀꢂꢄ  
9616  
$'ꢀꢊ9287  
9,13  
9,11  
*1'' *1'$  
Figure 4. Typical Application Circuit for Relative Humidity and Temperature Measurement  
The application circuit shown in Figure 5 uses the auxiliary analog pins for measuring a remote temperature using  
a thermistor.  
1.9V to 3.6V  
C1  
0.1µF  
R1  
R2  
10k10k  
8
9
VDDA VDDD  
SCL  
10  
1
SCL  
SDA  
R3  
24k  
C2  
0.1µF  
SDA  
RST  
6
VINP  
5
TH1  
10k  
NTC  
Si7013  
7
2
VINN  
C3  
0.1µF  
R4  
24k  
AD0/VOUT  
GNDD GNDA  
3
4
Figure 5. Typical Application Circuit for Thermistor Interface with AD0 = 1  
The voltage connected at VDDA serves as the reference voltage for both the Analog-to-Digital converter and the  
resistor string. Therefore, the ADC must be configured to take its reference from VDDA. The top of the resistor  
string is connected to the VOUT pin, allowing the resistor string to be powered down, saving power between  
temperature conversions. In this mode of operation, the analog inputs are buffered and present an input  
impedance of > 100 k  
12  
Rev. 0.95  
Si7013  
The AD0/VOUT pin is a dual function pin. At powerup, it functions as an address select pin and selects the least  
2
significant I C Figure 5, the AD0/VOUT pin is pulled high, selecting AD0 = 1. In Figure 6, the AD0/VOUT pin is  
pulled low selecting AD0 = 0.  
1.9 to 3.6V  
C1  
0.1µF  
R1  
R2  
10k10k  
8
9
2
6
VDDA VDDD  
AD0/VOUT  
VINP  
10  
1
SCL  
SCL  
SDA  
C2  
0.1µF  
R3  
24k  
SDA  
RST  
5
TH1  
10k  
NTC  
Si7013  
7
VINN  
R4  
24k  
GNDD GNDA  
3
4
Figure 6. Typical Application Circuit for Thermistor Interface with AD0 = 0  
ꢂꢁꢅꢆWRꢆꢄꢁꢇ9  
&ꢂ  
ꢀꢁꢂ—)  
5ꢂ  
ꢂꢀN  
5ꢌ  
ꢂꢀN  
5ꢄ  
ꢌꢁꢀN  
9''$ 9'''  
ꢀ9ꢆWRꢆꢄ9  
9ROWDJHꢆ,QSXW  
9,13  
ꢂꢀ  
6&/  
6&/  
6'$  
5ꢈ  
ꢂꢁꢀN  
6'$  
9616  
9,11  
6Lꢃꢀꢂꢄ  
$'ꢀꢊ9287  
*1'' *1'$  
Figure 7. Typical Application Circuit for Single Ended 0 to 3 V Measurement  
Figure 7 demonstrates a single ended 0 to 3 V input range configuration. The voltage reference is the internal  
1.25 V reference. The 1 kand 2 kresistor divider keeps the voltage range to 1.0 V, which is within the  
recommended 80% of V . Full scale of 32767 counts is 3.75 V.  
REF  
Rev. 0.95  
13  
Si7013  
3. Bill of Materials  
Table 9. Typical Application Circuit BOM for Relative Humidity and Temperature Measurement  
Reference  
Description  
Mfr Part Number  
CR0603-16W-103JT  
CR0603-16W-103JT  
C0603X7R160-104M  
Si7013  
Manufacturer  
Venkel  
R1  
R2  
C1  
U1  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
Capacitor, 0.1 µF, 16 V, X7R, 0603  
IC, Digital Temperature/humidity Sensor  
Venkel  
Venkel  
Silicon Labs  
Table 10. Typical Application Circuit BOM for Thermistor interface  
Reference  
R1  
Description  
Mfr Part Number  
CR0603-16W-103JT  
CR0603-16W-103JT  
CR0603-16W-2402F  
CR0603-16W-2402F  
C0603X7R160-104M  
C0603X7R160-104M  
NTCLE100E3103  
Si7013  
Manufacturer  
Venkel  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 24 k, ±1%, 1/16W, 0603  
Resistor, 24 k, ±1%, 1/16W, 0603  
Capacitor, 0.1 µF, 16 V, X7R, 0603  
Capacitor, 0.1 µF, 16 V, X7R, 0603  
Thermistor, 10 k  
R2  
Venkel  
R3  
Venkel  
R4  
Venkel  
C1  
Venkel  
C2  
Venkel  
TH1  
U1  
Vishay  
IC, digital temperature/humidity sensor  
Silicon Labs  
Table 11. Typical Application Circuit BOM for Single Ended 0 to 3 V Measurement  
Reference  
Description  
Mfr Part Number  
CR0603-16W-103JT  
CR0603-16W-103JT  
CR0603-16W-2001F  
CR0603-16W-1001F  
C0603X7R160-104M  
Si7013  
Manufacturer  
Venkel  
R1  
R2  
R3  
R4  
C1  
U1  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 10 k, ±5%, 1/16W, 0603  
Resistor, 2 k, ±1%, 1/16W, 0603  
Resistor, 1 k, ±1%, 1/16W, 0603  
Capacitor, 0.1 µF, 16 V, X7R, 0603  
IC, Digital Temperature/humidity Sensor  
Venkel  
Venkel  
Venkel  
Venkel  
Silicon Labs  
14  
Rev. 0.95  
Si7013  
4. Functional Description  
Si7013  
VSNS  
Vdd  
Humidity  
Sensor  
1.25V  
Ref  
Calibration  
Memory  
AD0/VOUT  
Control Logic  
Temp  
Sensor  
ADC  
VINP  
SDA  
SCL  
Analog  
Input  
I2C Interface  
VINN  
GND  
Figure 8. Si7013 Block Diagram  
The Si7013 is a digital relative humidity and temperature sensor that integrates temperature and humidity sensor  
elements, an analog-to-digital converter, signal processing, calibration, polynomial non-linearity correction, and an  
2
I C interface all in a single chip. The Si7013 is individually factory-calibrated for both temperature and humidity,  
with the calibration data stored in on-chip non-volatile memory. This ensures that the sensor is fully  
interchangeable, with no recalibration or changes to software required. Patented use of industry-standard CMOS  
and low-K dielectrics as a sensor enables the Si7013 to achieve excellent long term stability and immunity to  
contaminants with low drift and hysteresis. The Si7013 offers a low power, high accuracy, calibrated and stable  
solution ideal for a wide range of temperature, humidity, and dew-point applications including medical and  
instrumentation, high reliability automotive and industrial systems, and cost-sensitive consumer electronics.  
The auxiliary sensor input option exists to use the ADC with external inputs and reference. Suitable buffers are  
included to allow the part to be connected to high impedance circuitry such as bridges or other types of sensors,  
without introducing errors.  
While the Si7013 is largely a conventional mixed-signal CMOS integrated circuit, relative humidity sensors in  
general and those based on capacitive sensing using polymeric dielectrics have unique application and use  
requirements that are not common to conventional (non-sensor) ICs. Chief among those are:  
The need to protect the sensor during board assembly, i.e., solder reflow, and the need to subsequently  
rehydrate the sensor.  
The need to protect the sensor from damage or contamination during the product life-cycle.  
The impact of prolonged exposure to extremes of temperature and/or humidity and their potential effect on  
sensor accuracy.  
The effects of humidity sensor “memory”.  
Each of these items is discussed in more detail in the following sections.  
Rev. 0.95  
15  
Si7013  
4.1. Relative Humidity Sensor Accuracy  
To determine the accuracy of a relative humidity sensor, it is placed in a temperature and humidity controlled  
chamber. The temperature is set to a convenient fixed value (typically 25–30 °C) and the relative humidity is swept  
from 20 to 80% and back to 20% in the following steps: 20% – 40% – 60% – 80% – 80% – 60% – 40% – 20%. At  
each set-point, the chamber is allowed to settle for a period of 60 minutes before a reading is taken from the  
sensor. Prior to the sweep, the device is allowed to stabilize to 50%RH. The solid trace in Figure 9 shows the result  
of a typical sweep.  
Figure 9. Measuring Sensor Accuracy Including Hysteresis  
The RH accuracy is defined as the dotted line shown in Figure 9, which is the average of the two data points at  
each relative humidity set-point. In this case, the sensor shows an accuracy of 0.25%RH. The Si7013 accuracy  
specification (Table 4) includes:  
Unit-to-unit and lot-to-lot variation  
Accuracy of factory calibration  
Margin for shifts that can occur during solder reflow  
The accuracy specification does not include:  
Hysteresis (typically ±1%)  
Effects from long term exposure to very humid conditions  
Contamination of the sensor by particulates, chemicals, etc.  
Other aging related shifts ("Long-term stability")  
Variations due to temperature  
16  
Rev. 0.95  
Si7013  
4.2. Hysteresis  
The moisture absorbent film (polymeric dielectric) of the humidity sensor will carry a memory of its exposure  
history, particularly its recent or extreme exposure history. A sensor exposed to relatively low humidity will carry a  
negative offset relative to the factory calibration, and a sensor exposed to relatively high humidity will carry a  
positive offset relative to the factory calibration. This factor causes a hysteresis effect illustrated by the solid trace  
in Figure 9. The hysteresis value is the difference in %RH between the maximum absolute error on the decreasing  
humidity ramp and the maximum absolute error on the increasing humidity ramp at a single relative humidity  
setpoint and is expressed as a bipolar quantity relative to the average error (dashed trace). In the example of  
Figure 9, the measurement uncertainty due to the hysteresis effect is +/-1.0%RH.  
4.3. Prolonged Exposure to High Humidity  
Prolonged exposure to high humidity will result in a gradual upward drift of the RH reading. The shift in sensor  
reading resulting from this drift will generally disappear slowly under normal ambient conditions. The amount of  
shift is proportional to the magnitude of relative humidity and the length of exposure. In the case of lengthy  
exposure to high humidity, some of the resulting shift may persist indefinitely under typical conditions. It is generally  
possible to substantially reverse this affect by baking the device (see Section “4.6. Bake/Hydrate Procedure” ).  
4.4. PCB Assembly  
4.4.1. Soldering  
Like most ICs, Si7013 devices are shipped from the factory vacuum-packed with an enclosed desiccant to avoid  
any drift during storage and to prevent any moisture-related issues during solder reflow. The following guidelines  
should be observed during PCB assembly:  
Si7013 devices are compatible with standard board assembly processes. Devices should be soldered  
using reflow per the recommended card reflow profile. See Section “10. PCB Land Pattern and Solder  
Mask Design” for the recommended card reflow profile.  
A “no clean” solder process is recommended to minimize the need for water or solvent rinses after  
soldering. Cleaning after soldering is possible, but must be done carefully to avoid impacting the  
performance of the sensor. See application note “AN607: Si70xx Humidity Sensor Designer’s Guide” for  
more information on cleaning.  
It is essential that the exposed polymer sensing film be kept clean and undamaged. This can be  
accomplished by careful handling and a clean, well-controlled assembly process. When in doubt or for  
  
extra protection, a heat-resistant, protective cover such as Kapton KPPD-1/8 can be installed during PCB  
assembly.  
Si7013s may be ordered with a factory-fitted, solder-resistant protective cover. This cover provides protection  
during PCB assembly or rework but without the time and effort required to install and remove the Kapton tape. It  
can be left in place for the lifetime of the product, preventing liquids, dust or other contaminants from coming into  
contact with the polymer sensor film. See Section “8. Ordering Guide” for a list of ordering part numbers that  
include the cover.  
4.4.2. Rehydration  
The measured humidity value will generally shift slightly after solder reflow. A portion of this shift is permanent and  
is accounted for in the accuracy specifications in Table 4. After soldering, an Si7013 should be allowed to  
equilibrate under controlled RH conditions (room temperature, 45–55%RH) for at least 48 hours to eliminate the  
remainder of the shift and return the device to its specified accuracy performance.  
Rev. 0.95  
17  
Si7013  
4.4.3. Rework  
To maintain the specified sensor performance, care must be taken during rework to minimize the exposure of the  
device to excessive heat and to avoid damage/contamination or a shift in the sensor reading due to liquids, solder  
flux, etc. Manual touch-up using a soldering iron is permissible under the following guidelines:  
The exposed polymer sensing film must be kept clean and undamaged. A protective cover is  
recommended during any rework operation (Kapton® tape or the factory installed cover).  
Flux must not be allowed to contaminate the sensor; liquid flux is not recommended even with a cover in  
place. Conventional lead-free solder with rosin core is acceptable for touch-up as long as a cover is in  
place during the rework.  
If possible, avoid water or solvent rinses after touch-up. Cleaning after soldering is possible, but must be  
done carefully to avoid impacting the performance of the sensor. See AN607 for more information on  
cleaning.  
Minimize the heating of the device. Soldering iron temperatures should not exceed 350 °C and the contact  
time per pin should not exceed 5 seconds.  
Hot air rework is not recommended. If a device must be replaced, remove the device by hot air and solder  
a new part in its place by reflow following the guidelines above.  
*Note: All trademarks are the property of their respective owners.  
Figure 10. Si70xx with Factory-Installed Protective Cover  
18  
Rev. 0.95  
Si7013  
4.5. Protecting the Sensor  
Because the sensor operates on the principal of measuring a change in capacitance, any changes to the dielectric  
constant of the polymer film will be detected as a change in relative humidity. Therefore, it is important to minimize  
the probability of contaminants coming into contact with the sensor. Dust and other particles as well as liquids can  
affect the RH reading. It is recommended that a cover is employed in the end system that blocks contaminants but  
allows water vapor to pass through. Depending on the needs of the application, this can be as simple as plastic or  
metallic gauze for basic protection against particulates or something more sophisticated such as a hydrophobic  
membrane providing up to IP67 compliant protection.  
The Si7013 may be ordered with a factory-fitted, solder-resistant cover that can be left in place for the lifetime of  
the product. It is very low-profile, hydrophobic and oleophobic, and excludes particulates down to 0.35 microns in  
size. See Section “8. Ordering Guide” for a list of ordering part numbers that include the cover. A dimensioned  
drawing of the IC with the cover is included in Section “9. Package Outline ” . Other characteristics of the cover are  
listed in Table 12.  
Table 12. Specifications of Protective Cover  
Parameter  
Value  
ePTFE  
2.7 bar  
0.35 µ  
Material  
Water Entry Pressure  
Pore Size  
Operating Temperature  
Maximum Reflow Temperature  
Oleophobicity (AATCC 118-1992)  
IP Rating (per IEC 529)  
–40 to 125 °C  
260 °C  
7
IP67  
Rev. 0.95  
19  
Si7013  
4.6. Bake/Hydrate Procedure  
After exposure to extremes of temperature and/or humidity for prolonged periods, the polymer sensor film can  
become either very dry or very wet; in each case the result is either high or low relative humidity readings. Under  
normal operating conditions, the induced error will diminish over time. From a very dry condition, such as after  
shipment and soldering, the error will diminish over a few days at typical controlled ambient conditions, e.g., 48  
hours of 45 %RH 55. However, from a very wet condition, recovery may take significantly longer. To accelerate  
recovery from a wet condition, a bake and hydrate cycle can be implemented. This operation consists of the  
following steps:  
Baking the sensor at 125 °C for 12 hours  
Hydration at 30 °C in 75% RH for 10 hours  
Following this cycle, the sensor will return to normal operation in typical ambient conditions after a few days.  
4.7. Long Term Drift/Aging  
Over long periods of time, the sensor readings may drift due to aging of the device. Standard accelerated life  
testing of the Si7013 has resulted in the specifications for long-term drift shown in Table 4 and Table 5. This  
contribution to the overall sensor accuracy accounts only for the long-term aging of the device in an otherwise  
benign operating environment and does not include the effects of damage, contamination, or exposure to extreme  
environmental conditions.  
20  
Rev. 0.95  
Si7013  
5. I2C Interface  
2
The Si7013 communicates with the host controller over a digital I C interface. The 7-bit base slave address is 0x40  
or 0x41; the least significant bit is pin programmable.  
2
Table 13. I C Slave Address Byte  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
1
0
0
0
0
0
AD0  
1/0  
2
2
Master I C devices communicate with the Si7013 using a command structure. The commands are listed in the I C  
command table. Commands other than those documented below are undefined and should not be sent to the  
device.  
Table 14. I2C Command Table  
Command Description  
Measure Relative Humidity, Hold Master Mode  
Command Code  
0xE5  
Measure Relative Humidity, No Hold Master Mode  
Measure Temperature, Hold Master Mode  
Measure Temperature, No Hold Master Mode  
Measure Analog Voltage or Thermistor Temperature, Hold Master Mode  
Read Temperature Value from Previous RH Measurement  
Reset  
0xF5  
0xE3  
0xF3  
0xEE  
0xE0  
0xFE  
Write Voltage Measurement Setup (User register 2)  
Read Voltage Measurement Setup (User register 2)  
Write RH/T Measurement Setup (User register 1)  
Read RH/T Measurement Setup (User register 1)  
Write Heater Setup (User register 3)  
0x50  
0x10  
0xE6  
0xE7  
0x51  
Read Heater Setup (User register 3)  
0x11  
Write Thermistor Correction Coefficient  
Read Thermistor Correction Coefficient  
Read Electronic ID 1st Word  
0xC5  
0x84  
0xFA 0x0F  
0xFC 0xC9  
0x84 0xB8  
Read Electronic ID 2nd Word  
Read Firmware Revision  
Rev. 0.95  
21  
Si7013  
5.1. Issuing a Measurement Command  
The measurement commands instruct the Si7013 to perform one of four possible measurements; Relative  
Humidity, Temperature, Auxiliary Temperature, or Analog Voltage. The procedure to issue any one of these  
commands is identical. While the measurement is in progress, the option of either clock stretching (Hold Master  
Mode) or Not Acknowledging read requests (No Hold Master Mode) is available to indicate to the master that the  
measurement is in progress; the chosen command code determines which mode is used.  
Optionally, a checksum byte can be returned from the slave for use in checking for transmission errors. The  
checksum byte will follow the least significant measurement byte if it is acknowledged by the master. The  
checksum byte is not returned if the master “not acknowledges” the least significant measurement byte. The  
8
5
4
checksum byte is calculated using a CRC generator polynomial of x + x + x + 1 with an initialization of 0x00.  
Master  
Slave  
Sequence to perform a measurement and read back result (Hold Master Mode)  
Clock  
stretch  
during  
Slave  
Measure  
Cmd  
Slave  
S
W
A
A
A
Sr  
R
A
>  
Address  
Address  
measure‐  
ment  
MS Byte  
LS Byte  
NA  
P
A
Checksum  
NA  
P
Sequence to perform a measurement and read back result (No Hold Master Mode)  
Slave  
Measure  
Cmd  
Slave  
Slave  
S
W
A
A
Sr  
R
NA  
Slave Address  
R
NA  
P
Address  
Address  
Address  
R
A
MS Byte  
A
LS Byte  
NA  
P
A
Checksum NA  
22  
Rev. 0.95  
Si7013  
5.1.1. Measuring Relative Humidity  
Once a relative humidity measurement has been made, the results of the measurement may be converted to  
percent relative humidity by using the following expression:  
125 RH_Code  
---------------------------------------  
%RH =  
6  
65536  
Where:  
%RH is the measured relative humidity value in %RH  
RH Code is the 16-bit word returned by the Si7013  
A humidity measurement will always return XXXXXX10 in the LSB field.  
5.1.2. Measuring Temperature  
Each time a relative humidity measurement is made a temperature measurement is also made for the purposes of  
temperature compensation of the relative humidity measurement. If the temperature value is required, it can be  
read using command 0xE0; this avoids having to perform a second temperature measurement. The measure  
temperature commands 0xE3 and 0xF3 will perform a temperature measurement and return the measurement  
value, command 0xE0 does not perform a measurement but returns the temperature value measured during the  
relative humidity measurement.  
Sequence to read temperature value from previous RH measurement  
Slave  
Slave  
S
W
A
0xE0  
A
Sr  
R
A
MS Byte  
A
LS Byte NA  
P
Address  
Address  
The results of the temperature measurement may be converted to temperature in degrees Celsius (°C) using the  
following expression:  
175.72 Temp_Code  
-------------------------------------------------------  
Temperature (C=  
46.85  
65536  
Where:  
Temperature (°C) is the measured temperature value in °C  
Temp_Code is the 16-bit word returned by the Si7013  
A temperature measurement will always return XXXXXX00 in the LSB field.  
Rev. 0.95  
23  
Si7013  
5.2. Reading and Writing User Registers  
There are three user registers on the Si7013 that allow the user to set the configuration of the Si7013, the  
procedure for accessing these registers is set out below.  
Sequence to read a register  
Slave  
Slave  
Read Reg  
Cmd  
Read  
Data  
NA  
P
S
W
A
A
Sr  
Addres  
s
R
A
Address  
Sequence to write a register  
Slave  
Address  
Write Reg  
S
W
A
A
Write Data  
A
P
Cmd  
5.3. Measuring Analog Voltage  
The analog voltage input pins can accept voltage inputs within the ranges shown in Table 15. V  
is internally  
REFP  
connected to V  
or to an internal 1.25 V reference voltage.  
DDA  
Table 15. Analog Input Ranges  
V
Input Range  
VINN Input Range  
INP  
Min  
Max  
VDD  
VDD  
Min  
0.5 V  
0 V  
Max  
VDD  
VDD  
Buffered Input  
0.5 V  
0 V  
Unbuffered Input  
The voltage conversion output is a signed 16-bit integer that will vary from –32768 to 32767 as the input (V  
INP  
V
) goes from –V to +V. For best performance, it is recommended that |V –V | be limited to V /2. With  
INN  
INP INN ref  
minor degradation in performance, this can be extended to 0.8*Vref. The checksum option for voltage mode  
conversions is not supported.  
24  
Rev. 0.95  
Si7013  
5.4. Nonlinear Correction of Voltage Inputs:  
The Si7013 contains a look-up table for applying non-linear correction to external voltage measurements. The look-  
up table is contained in an internal, user-programmable OTP memory. The OTP memory is non-volatile, meaning  
the values are retained even when the device is powered off.  
Once the lookup table values have been programmed, this correction is invoked by writing a “1” to bit 5 of user  
register 1. Note that humidity measurements should not be performed when this bit is set.  
5.4.1. Calculating Lookup Table Values  
The non-linear correction is based on 10 points. Each point consists of the ideal output for a given expected A/D  
measurement result.  
Values between the ideal output points are interpolated based on the slope between the two output points.  
The lookup table is stored in the Si7013 memory. Values must be programmed for each pair of input values and  
ideal output points. In addition, the slope between each ideal output point must also be programmed (the Si7013  
th  
will not automatically calculate the slope). Only 9 of the input/output pairs need to be in the table because the 10  
output value is determined by the slope equation.  
The table contains 3 sets of 9 values:  
In(1-9): 16-bit signed values for each input point read from the ADC. See Section “5.3. Measuring Analog  
Voltage” for more information on setting up the ADC measurement.  
Out(1-9): 16-bit unsigned values for each ideal output point that should be used for each input point.  
Slope(1-9): 16-bit signed values for the slope between each ideal output point.  
Note: The table must be arranged in order of decreasing input values.  
The slope values must be calculated as follows:  
slope =256*(output  
– output )/(input  
– input )  
N+1 N  
N
N+1  
N
The actual output value is determined by extrapolation:  
If in >in2, out = out1+slope1*(in-in1)/256  
Else if in >in3, out = out2+slope2*(in-in2)/256  
Else if in >in4, out = out3+slope3*(in-in3)/256  
Else if in >in5, out = out4+slope4*(in-in4)/256  
Else if in >in6, out = out5+slope5*(in-in5)/256  
Else if in >in7, out = out6+slope6*(in-in6)/256  
Else if in >in8, out = out7+slope7*(in-in7)/256  
Else if in >in9, out = out8+slope8*(in-in8)/256  
Else out = out9+slope9*(in-in9)  
Rev. 0.95  
25  
Si7013  
5.4.2. Entering Lookup Table Values into OTP Memory:  
The table is entered into memory addresses 0x82 – 0xB7 one byte at a time. Until the OTP has been programmed,  
all memory addresses default to a value of 0xFF. The table below indicates where the values are written:  
Table 16. Lookup Table Memory Map  
Name  
Memory  
Location  
Name  
Memory  
Location  
Name  
Memory  
Location  
Input1 (MSB)  
Input1 (LSB)  
Input2 (MSB)  
Input2 (LSB)  
Input3 (MSB)  
Input3 (LSB)  
Input4 (MSB)  
Input4 (LSB)  
Input5 (MSB)  
Input5 (LSB)  
Input6 (MSB)  
Input6 (LSB)  
Input7 (MSB)  
Input7 (LSB)  
Input8 (MSB)  
Input8 (LSB)  
Input9 (MSB)  
Input9 (LSB)  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
Output1 (MSB)  
Output1 (LSB)  
Output2 (MSB)  
Output2 (LSB)  
Output3 (MSB)  
Output3 (LSB)  
Output4 (MSB)  
Output4 (LSB)  
Output5 (MSB)  
Output5 (LSB)  
Output6 (MSB)  
Output6 (LSB)  
Output7 (MSB)  
Output7 (LSB)  
Output8 (MSB)  
Output8 (LSB)  
Output9 (MSB)  
Output9 (LSB)  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
Slope1 (MSB)  
Slope1 (LSB)  
Slope2 (MSB)  
Slope2 (LSB)  
Slope3 (MSB)  
Slope3 (LSB)  
Slope4 (MSB)  
Slope4 (LSB)  
Slope5 (MSB)  
Slope5 (LSB)  
Slope6 (MSB)  
Slope6 (LSB)  
Slope7 (MSB)  
Slope7 (LSB)  
Slope8 (MSB)  
Slope8 (LSB)  
Slope9 (MSB)  
Slope9 (LSB)  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
The command code 0xC5 is used for programming, so for example, to program a Si7013 at slave address 0x40  
with the 16-bit value 0x4C2F, starting at memory location 0x82, you would write:  
<Start Condition> 0x40 W ACK 0xC5 ACK 0x82 ACK 0x4C ACK <Stop Condition>  
<Start Condition> 0x40 W ACK 0xC5 ACK 0x83 ACK 0x2F ACK <Stop Condition>  
The internal memory is one-time-programmable, so it is not possible to change the values once written. However,  
to verify the values were written properly use command 0x84. For example, to verify that 0x4C was written to  
location 0x82 use  
<Start Condition> 0x40 W ACK 0x84 ACK 0x82 ACK <Start Condition> 0x40R ACK 0x4C NACK <Stop  
Condition> where 0x4C is the expected return value of the read transaction.  
26  
Rev. 0.95  
Si7013  
5.4.3. Example Thermistor Calculations  
For the Si7013 evaluation board with a 10 K ohm thermistor and two 24.3 K ohm bias resistors and assuming the  
A/D conversion is done using VDD as a reference with buffered inputs, the ideal input voltage versus temperature  
is:  
Vin = V *Rthemistor/(Rthermisor+46.4 K)  
DD  
Since V is also the reference then the expected A/D conversion result is:  
DD  
A/D counts = 32768* Rthemistor/(Rthermisor+46.4 K)  
If it is desired to linearize this result for the same temperature representation as the on board temperature sensor:  
Temperature °C = (Output_Code*175.72/65536 – 46.85), then the desired output code is:  
Output_Code = 65536*(Temperature+46.85)/175.72  
Using thermistor data sheet values of resistance versus temperature and choosing to linearize at the points –15C,  
–5C, 5C, 15C, 25C, 35C, 45C, 55C, 65C and 75C results in the following. The values in gray are the table entries  
for Si7013:  
Table 17. Example Non-Linear Correction to Thermistor Voltage Measurements  
Temperature  
(Degrees C)  
Thermistor  
Resistance  
Vin/VDD  
A/D  
Codes  
Desired  
Code  
Slope  
Table Entry  
–15  
–5  
5
71746  
41813  
25194  
15651  
10000  
6556  
0.596164  
0.462467  
0.34141  
19535  
15154  
11187  
7982  
5592  
3895  
2721  
1916  
1367  
75  
11879  
15608  
19338  
23067  
26797  
30527  
34256  
37986  
41715  
45445  
–218  
–241  
–298  
–400  
–563  
–813  
–1186  
–1739  
–2513  
1
2
3
4
5
6
7
8
9
15  
25  
35  
45  
55  
65  
75  
0.243592  
0.170648  
0.118863  
0.83036  
4401  
3019  
0.058486  
0.041704  
0.030114  
2115  
1509  
Rev. 0.95  
27  
Si7013  
Once the table entry values are calculated, they should be programmed to the Si7013 memory locations as shown  
below:  
Table 18. Example Non-Linear Thermistor Correction Entries into Si7013 Memory  
Memory  
Location  
A/D  
Codes  
Value  
Memory  
Location  
Desired  
Codes  
Value  
Memory  
Location  
Slope  
Value  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
19535  
15154  
11187  
7982  
5592  
3895  
2721  
1916  
1367  
4C  
4F  
3B  
32  
2B  
B3  
1F  
2E  
15  
D8  
F
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
11879  
15608  
19338  
23067  
26797  
30527  
34256  
37986  
41715  
2E  
67  
3C  
F8  
4B  
8A  
5A  
1B  
68  
Ad  
77  
3F  
85  
D0  
94  
62  
A2  
F3  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
–218  
FF  
26  
–241  
–298  
FF  
0F  
FE  
D6  
FE  
70  
–400  
–563  
FD  
CD  
FC  
D3  
FB  
5E  
F9  
35  
–813  
37  
A
–1186  
–1739  
–2513  
A1  
7
7C  
5
F6  
2F  
57  
28  
Rev. 0.95  
Si7013  
5.5. Firmware Revision  
The internal firmware revision can be read with the following I2C transaction:  
Slave  
Address  
Slave  
Address  
S
W
A
0x84  
A
0xB8  
A
S
R
A
FWREV  
A
NA  
P
The upper nibble of the FWREV byte corresponds to the major firmware revision number, while the lower nibble of  
the FWREV byte corresponds to the minor firmware revision number. Therefore, firmware revision 1.0 would be  
encoded as 0x10 in the FWREV byte.  
5.6. Heater  
The Si7013 contains an integrated resistive heating element that may be used to raise the temperature of the  
sensor. This element can be used to test the sensor, to drive off condensation, or to implement dew-point  
measurement when the Si7013 is used in conjunction with a separate temperature sensor such as another Si7013  
(the heater will raise the temperature of the internal temperature sensor).  
The heater can be activated using HEATER[2:0], the three least-significant bits in User Register 3. Turning on the  
heater will reduce the tendency of the humidity sensor to accumulate an offset due to "memory" of sustained high  
humidity conditions. Five different power levels are available. The various settings are described in Table 18.  
Table 19. Heater Control Settings  
HEATER[3:0] Typical Current  
*
Draw (mA)  
0000  
0001  
0010  
...  
3.09  
9.18  
15.24  
...  
0100  
...  
27.39  
...  
1000  
...  
51.69  
...  
1111  
94.20  
*Note: Assumes VDD = 3.3 V.  
Rev. 0.95  
29  
Si7013  
5.7. Electronic Serial Number  
2
The Si7013 provides a serial number individualized for each device that can be read via the I C serial interface.  
2
Two I C commands are required to access the device memory and retrieve the complete serial number. The  
command sequence, and format of the serial number response is described in the figure below:  
Master  
Slave  
First access:  
S
S
Slave Address  
Slave Address  
SNA_3  
W
R
ACK  
ACK  
CRC  
CRC  
0x3A  
ACK  
0X0F  
ACK  
ACK  
ACK  
ACK  
ACK  
SNA_2  
SNA_0  
ACK  
ACK  
CRC  
CRC  
ACK  
SNA_1  
NACK  
P
2nd access:  
S
S
Slave Address  
Slave Address  
SNB_3  
W
R
ACK  
ACK  
0x3C  
ACK  
0X09  
ACK  
P
ACK  
ACK  
SNB_2  
SNB_0  
ACK  
ACK  
CRC  
CRC  
ACK  
SNB_1  
NACK  
The format of the complete serial number is 64-bits in length, divided into 8 data bytes. The complete serial number  
sequence is shown below:  
SNA_3  
SNA_2  
SNA_1  
SNA_0  
SNB_3  
SNB_2  
SNB_1  
SNB_0  
The SNB3 field contains the device identification to distinguish between the different Silicon Labs relative humidity  
and temperature devices. The value of this field maps to the following devices according to this table:  
0x00 or 0xFF engineering samples  
0x0D=13=Si7013  
0x14=20=Si7020  
0x15=21=Si7021  
30  
Rev. 0.95  
Si7013  
6. Control Registers  
Table 20. Register Summary  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
HTRE  
Bit 1  
Bit 0  
RES0  
VOUT  
User Register 1 RES1  
User Register 2  
VDDS  
RSVD  
RSVD  
MEASURE MEASURE_ CONV_  
_MODE1 MODE0 TIME  
RSVD  
VIN_BUF  
VREFP  
User Register 3  
RSVD  
HEATER[3:0]  
Notes:  
1. Any register not listed here is reserved and must not be written.The result of a read operation on these registers is  
undefined.  
2. Except where noted, reserved register bits must always be written as zero; the result of a read operation on these bits  
is undefined.  
Rev. 0.95  
31  
Si7013  
6.1. Register Descriptions  
Register 1. User Register 1  
Bit  
D7  
D6  
VDDS  
R
D5  
D4  
RSVD  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
RES1  
R/W  
HTRE  
R/W  
RSVD  
R/W  
RES0  
R/W  
Reset Settings = 0011_1010  
Bit  
Name  
Function  
D7; D0  
RES[1:0]  
Measurement Resolution:  
RH  
Temp  
14 bit  
12 bit  
13 bit  
11 bit  
00:  
01:  
10:  
11:  
12 bit  
8 bit  
10 bit  
11 bit  
D6  
VDDS  
VDD Status:  
0:  
1:  
V
V
OK  
Low  
DD  
DD  
The minimum recommended operating voltage is 1.9 V. A transi-  
tion of the VDD status bit from 0 to 1 indicates that VDD is  
between 1.8 V and 1.9 V. If the VDD drops below 1.8 V, the  
device will no longer operate correctly.  
D5, D4, D3  
D2  
RSVD  
HTRE  
Reserved  
1=On-chip Heater Enable  
0=On-chip Heater Disable  
D1  
RSVD  
Reserved  
Register 2. User Register 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
RSVD MEASURE_ MEASURE_  
CONV_  
TIME  
RSVD  
VIN_BUF VREFP  
VOUT  
MODE1  
MODE0  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Settings = 0000_100x  
32  
Rev. 0.95  
Si7013  
Bit  
D7  
Name  
Function  
RSVD  
Reserved  
D6:D5  
MEASURE_MODE  
[1:0]  
Measurement Mode. Selects the mode of the voltage measurement  
function.  
D6  
0
D5  
0
Function  
Voltage measurement hold master mode without  
thermistor correction. This is the recommended  
mode when temperature or humidity measure-  
ments are done.  
0
1
Voltage measurement hold master mode with  
thermistor correction. No humidity or internal tem-  
perature measurements are allowed in this mode.  
1
1
0
1
Voltage measurement no hold master mode with no  
thermistor correction.  
Voltage measurement no hold master mode with  
thermistor correction. No humidity or internal tem-  
perature measurements are allowed in this mode.  
Note: If no hold master mode is selected, ALL commands are no hold.  
D4  
CONV_TIME  
Conversion Time. Selects conversion time and noise floor of the  
voltage ADC.  
0
1
Conversion time 7 ms max noise floor 25 µV typical with  
= 1.25 V.  
V
REF  
Conversion time 3.1 ms max noise floor 50 µV typical  
with V = 1.25 V.  
REF  
D3  
D2  
RSVD  
Reserved  
VIN_BUF  
0: VINN and VINP inputs are unbuffered  
1: VINN and VINP inputs are buffered  
D1  
D0  
VREFP  
VOUT*  
0: A/D reference source is internal 1.25V  
1: A/D reference source is VDDA  
0: VOUT pin is set to GNDD  
1: VOUT pin is set to VDDD  
Note: Default is powerup state of VOUT pin  
*Note: VOUT is generally used for driving an external thermistor interface. Default setting is the same as the power up  
setting.  
Rev. 0.95  
33  
Si7013  
Register 3. User Register 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
Heater [3:0]  
R/W  
D1  
D0  
Name  
Type  
RSVD  
R/W  
Reset Settings = 0000_0000  
Bit  
Name  
Function  
D3:D0 HEATER[3:0]  
D3  
0
D2  
D1  
0
D0  
0
Heater Current  
0
0
0
3.09 mA  
9.18 mA  
15.24 mA  
0
0
1
0
1
0
...  
0
0
1
1
0
1
0
0
1
27.39 mA  
...  
0
51.69 mA  
94.20 mA  
...  
1
1
D7,D6,  
D5,D4  
RSVD  
Reserved  
34  
Rev. 0.95  
Si7013  
7. Pin Descriptions: Si7013 (Top View)  
SDA  
AD0/VOUT  
GNDD  
10 SCL  
1
2
3
4
5
VDDD  
VDDA  
9
8
7
6
GNDA  
VINN  
VINP  
VSNS  
Pin Name  
SDA  
Pin #  
Pin Description  
2
1
2
I C data.  
AD0/VOUT  
Dual function pin.  
This pin can be switched high or low and is generally used to drive an external  
thermistor interface.  
On powerup, this pin acts as a device address select pin. Tie high or low to set device  
address LSB.  
See Figure 5 and Figure 6.  
GNDD  
GNDA  
VSNS  
VINP  
3
4
Digital ground. This pin is connected to ground on the circuit board.  
Analog ground. This pin is connected to ground on the circuit board.  
Voltage Sense Input. Tie to VDD.*  
5
6
Analog to digital converter positive input.  
VINN  
VDDA  
VDDD  
SCL  
7
Analog to digital converter negative input.  
8
Analog power. This pin is connected to power on the circuit board.  
Digital power. This pin is connected to power on the circuit board.  
9
2
10  
I C clock  
T
Paddle This pad is connected to GND internally. This pad is the main thermal input to the on-  
GND  
chip temperature sensor. The paddle should be soldered to a floating pad.  
*Note: VSNS must be high at power up or device will be held in reset.  
Rev. 0.95  
35  
Si7013  
8. Ordering Guide  
Table 21. Device Ordering Guide  
P/N  
Description  
Max. Accuracy  
Temp RH  
Pkg  
Operating  
Range (°C)  
Protective Packing  
Cover  
Format  
Si7013-A10-GM  
Digital temperature/ humidity sensor  
Digital temperature/ humidity sensor  
±0.4 °C ± 3% DFN 6  
±0.4 °C ± 3% DFN 6  
–40 to +85 °C  
–40 to +85 °C  
N
N
Tube  
Si7013-A10-GMR  
Tape  
& Reel  
Si7013-A10-GM1  
Si7013-A10-GM1R  
Digital temperature/ humidity sensor  
Digital temperature/ humidity sensor  
±0.4 °C ± 3% DFN 6  
±0.4 °C ± 3% DFN 6  
–40 to +85 °C  
–40 to +85 °C  
Y
Y
Cut Tape  
Tape &  
Reel  
Si7013-A10-IM  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
industrial temp range  
N
N
Y
Y
N
N
Y
Y
Tube  
Si7013-A10-IMR  
Si7013-A10-IM1  
Si7013-A10-IM1R  
Si7013-A10-YM  
Si7013-A10-YMR  
Si7013-A10-YM1  
Si7013-A10-YM1R  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
industrial temp range  
Tape &  
Reel  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
industrial temp range  
Cut Tape  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
industrial temp range  
Tape &  
Reel  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
automotive  
Tube  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
automotive  
Tape &  
Reel  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
automotive  
Cut Tape  
Digital temperature/ humidity sensor— ±0.4 °C ± 3% DFN 6 –40 to +125 °C  
automotive  
Tape  
& Reel  
36  
Rev. 0.95  
Si7013  
9. Package Outline  
9.1. Package Outline: 3x3 10-pin DFN  
Figure 11 illustrates the package details for the Si7013. Table 21 lists the values for the dimensions shown in the  
illustration.  
Figure 11. 10-pin DFN Package Drawing  
Table 22. 10-Pin DFN Package Dimensions  
Dimension  
Min  
0.70  
0.00  
0.18  
Nom  
0.75  
Max  
0.80  
0.05  
0.30  
Dimension  
Min  
1.39  
0.50  
Nom  
1.44  
0.55  
0.10  
0.10  
0.05  
0.10  
0.05  
0.05  
Max  
1.49  
0.60  
A
A1  
b
H2  
L
0.02  
0.25  
aaa  
bbb  
ccc  
D
3.00 BSC.  
1.30  
D2  
e
1.20  
1.40  
0.50 BSC.  
3.00 BSC.  
2.50  
ddd  
eee  
E
E2  
H1  
Notes:  
2.40  
0.85  
2.60  
0.95  
fff  
0.90  
1. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
2. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 0.95  
37  
Si7013  
9.2. Package Outline: 3x3 10-pin DFN with Protective Cover  
Figure 12 illustrates the package details for the Si7013 with the optional protective cover. Table 22 lists the values  
for the dimensions shown in the illustration.  
Figure 12. 10-pin DFN with Protective Cover  
Table 23. 10-pin DFN with Protective Cover Diagram Dimensions  
Dimension  
Min  
Nom  
Max  
1.21  
0.05  
0.80  
0.30  
Dimension  
Min  
2.80  
2.80  
0.76  
0.50  
0.45  
Nom  
2.85  
2.85  
0.83  
0.55  
0.50  
0.10  
0.10  
0.05  
0.10  
0.05  
Max  
2.90  
2.90  
0.90  
0.60  
0.55  
A
A1  
A2  
b
F1  
F2  
0.00  
0.70  
0.18  
0.02  
0.75  
h
0.25  
L
D
3.00 BSC.  
1.30  
R1  
aaa  
bbb  
ccc  
ddd  
eee  
D2  
e
1.20  
2.40  
1.40  
2.60  
0.50 BSC.  
3.00 BSC.  
2.50  
E
E2  
Notes:  
1. All dimensions shown are in millimeters (mm).  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
38  
Rev. 0.95  
Si7013  
10. PCB Land Pattern and Solder Mask Design  
Table 24. PCB Land Pattern Dimensions  
Symbol  
C1  
mm  
2.80  
0.50  
1.40  
2.60  
0.30  
1.00  
E
P1  
P2  
X1  
Y1  
Notes:  
General  
1. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.  
7. A 2x1 array of 0.95 mm square openings on 1.25 mm pitch should be used for the  
center ground pad to achieve a target solder coverage of 50%.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 0.95  
39  
Si7013  
11. Top Marking  
11.1. Si7013 Top Marking  
11.2. Top Marking Explanation  
Mark Method:  
Laser  
Pin 1 Indicator:  
Circle = 0.30 mm Diameter  
Upper-Left Corner  
Font Size:  
0.30 mm  
Line 1 Marking:  
TTTT = Mfg Code  
40  
Rev. 0.95  
Si7013  
12. Additional Reference Resources  
AN607: Si70xx Humidity Sensor Designer’s Guide  
Rev. 0.95  
41  
Si7013  
Added Section 5.5. Firmware Revision  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.6  
Updated Section 6. Control Registers  
Updated Table 21. Device Ordering Guide  
Updates to Section 1. Electrical Specifications.  
Updated Table 2. General Specifications.  
Updated Figure 1. I2C Interface Timing Diagram.  
Updated Table 6. Voltage Converter Specifications.  
Updated Table 7. Thermal Characteristics.  
Updated Section 2. Typical Applications Circuits.  
Updated Figure 5. Typical Application Circuit for  
Thermistor Interface with AD0 = 1.  
Updated Table 15. I2C Command Table.  
Updated Section 4.4 PCB Assembly.  
Updated Section 5.3 Measuring Relative Humidity.  
Updated Section 5.4 Measuring Temperature.  
Updated Section 5.6 Nonlinear Correction of Voltage  
Inputs.  
Updated Section 5.7 Heater.  
Removed Section 5.8 Device Identification and  
added device identification information to Section  
5.9.  
Updated Section 6. Control Registers.  
Updated Section 9. Package Outline.  
Updated Section 11. Top Marking.  
Revision 0.6 to Revision 0.95  
Updated Table 1. Recommended Operating  
Conditions  
Updated Table 2. General Specifications  
Updated Table 3. I2C Interface Specifications  
Updated Table 4 Humidity Sensor  
Updated Table 5. Temperature Sensor  
Updated Table 8. Absolute Maximum Ratings  
Updated Figure 5. Typical Application Circuit for  
Thermistor Interface with AD0 = 1  
Updated Figure 6. Typical Application Circuit for  
Thermistor Interface with AD0 = 0  
Updated Figure 8. Si7013 Block Diagram  
Updated Section 4.1. Relative Humidity Sensor  
Accuracy  
Updated Section 4.4.1. Soldering  
Updated Table 15. Analog Input Ranges  
Updated Section 5.1. Issuing a Measurement  
Command  
Updated Section 5.2. Reading and Writing User  
Registers  
Updated Section 5.4. Nonlinear Correction of  
Voltage Inputs  
Rev. 0.95  
42  
Si7013  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
Rev. 0.95  
43  

相关型号:

Si7013-A10-GM1

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-GM1R

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-GMR

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-IM

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-IM1

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-IM1R

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-IMR

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-YM

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

SI7013-A10-YM0

Serial Switch/Digital Sensor, 14 Bit(s), 0.40Cel, Square, Surface Mount, 3 X 3 MM, DFN-10
SILICON

SI7013-A10-YM0R

Serial Switch/Digital Sensor, 14 Bit(s), 0.40Cel, Square, Surface Mount, 3 X 3 MM, DFN-10
SILICON

Si7013-A10-YM1

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON

Si7013-A10-YM1R

I2C HUMIDITY AND TWO-ZONE TEMPERATURE SENSOR
SILICON