SiM3C156-B-GQ [SILICON]

High-Performance, Low-Power, 32-Bit Precision32™; 高性能,低功耗, 32位Precision32â ?? ¢
SiM3C156-B-GQ
型号: SiM3C156-B-GQ
厂家: SILICON    SILICON
描述:

High-Performance, Low-Power, 32-Bit Precision32™
高性能,低功耗, 32位Precision32â ?? ¢

文件: 总90页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SiM3C1xx  
High-Performance, Low-Power, 32-Bit Precision32™  
MCU Family with up to 256 kB of Flash  
32-bit ARM® Cortex™-M3 CPU  
Low Power Features  
-
-
-
80 MHz maximum frequency  
-
-
-
-
-
-
85 nA current mode with voltage supply monitor enabled  
350 nA current mode with RTC (internal oscillator)  
620 nA current mode with RTC (external oscillator)  
10 µs wakeup (lowest power mode); 1.5 µs analog setting time  
275 µA/MHz active current  
Single-cycle multiplication, hardware division support  
Nested vectored interrupt control (NVIC) with 16 levels of  
interrupt priority  
Memory  
Clocks can be gated off from unused peripherals to save power  
-
-
-
32–256 kB Flash, in-system programmable  
2 x 12-Bit Analog-to-Digital Converters  
8–32 kB SRAM (including 4 kB retention SRAM)  
-
-
-
-
Up to 28 input channels  
External bus interface supports up to 16 MB of external mem-  
ory and a parallel LCD interface with QVGA resolution  
Up to 250 ksps 12-bit mode or 1 Msps 10-bit mode  
Single, simultaneous, and interleaving modes supported  
Power Management  
Channel sequencer enables automatic multiplexing of multiple  
channels without firmware intervention  
-
-
-
Low drop-out (LDO) regulator  
Power-on reset circuit and brownout detectors  
5-to-3.3 V voltage regulator supports up to 150 mA to drive the  
device directly from up to 5 V supply  
-
Internal VREF or external VREF supported  
2 x 10-Bit Digital-to-Analog Converters  
-
-
DMA support for waveform generation  
-
-
Programmable external regulator supports up to 3.6 V,  
1000 mA  
Four-word circular buffer to enable 12-bit mode  
Multiple power modes supported for low power optimization  
16-Channel Capacitance-to-Digital Converter  
Clock Sources  
-
-
Supports buttons, sliders, wheels, and capacitive proximity  
Fast conversion time; <1 µA wake-on-touch average current  
-
Internal oscillator with PLL: Fine frequency resolution up to  
80 MHz; spread-spectrum mode for reduced EMI  
Two Low-Current Comparators  
-
-
-
-
-
-
Low power internal oscillator: 20 MHz and 2.5 MHz modes  
Integrated 6-bit programmable reference voltage  
400 nA current consumption in low power mode  
Low frequency internal oscillator: 16.4 kHz  
External oscillators: Crystal, RC, C, CMOS and RTC Crystal  
Flexible clock divider: Reduce frequency by up to 128x from  
any clock source  
16-Channel DMA Controller  
-
Supports ADC, DAC, I2C, I2S, SPI, USART, AES, EPCA,  
128/192/256-bit Hardware AES Encryption  
capacitive sensing, external triggers, and timers  
-
Hardware-supported Electronic Codebook (ECB), Cipher-Block  
Chaining (CBC) and Counter (CTR) algorithms  
Up to 65 Flexible I/O  
-
Up to 59 contiguous GPIO with two priority crossbars providing  
flexibility in pin assignments; 12 x 5 V tolerant GPIO  
-
All cipher operations can be performed without any firmware  
intervention for a set of 4-word blocks (up to 32 kB)  
-
Up to 6 programmable high drive capable (5–300 mA, 1.8–6 V)  
I/O can drive LEDs, power MOSFETs, buzzers, etc.  
16/32-bit CRC  
-
Hardware support for common 32-bit and 16-bit polynomials  
Communication Interfaces  
Timers/Counters  
-
-
2 x USARTs and 2 x UARTs with IrDA and ISO7816 SmartCard  
3 x SPIs, 2 x I2C, I2S (receive and transmit)  
-
-
-
2 x 32-bit or 4 x 16-bit timers with capture/compare  
2 x 16-bit, 2-channel counters with capture/compare/PWM  
On-Chip Debugging  
-
16-bit, 6-channel counter with capture/compare/PWM and  
dead-time controller with differential outputs  
16-bit low power timer/pulse counter operational in the lowest  
power mode  
Serial wire debug (SWD) and JTAG allow for full-speed, non-  
intrusive debug  
-
-
-
Serial wire viewer (SWV) available in 64 / 80 / 92-pin packages  
Cortex-M3 embedded trace macrocell (ETM) in 80 / 92-pin  
packages  
-
-
32-bit real time clock (RTC) with multiple alarms  
Watchdog timer  
Temperature Range: –40 to +85 °C  
Package Options  
Current-to-Voltage Converter  
-
Supports up to 6 mA input range  
-
-
-
QFN options: 40-pin (6 x 6 mm), 64-pin (9 x 9 mm)  
TQFP options: 64-pin (10 x 10 mm), 80-pin (12 x 12 mm)  
LGA option: 92-pin (7 x 7 mm)  
Supply Voltage  
-
-
2.7 to 5.5 V (regulator enabled)  
1.8 to 3.6 V (regulator disabled)  
Preliminary Rev. 0.8 2/12  
Copyright © 2012 by Silicon Laboratories  
SiM3C1xx  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
SiM3C1xx  
Table of Contents  
1. Related Documents and Conventions ...............................................................................4  
1.1. Related Documents........................................................................................................4  
1.1.1. SiM3U1xx/SiM3C1xx Reference Manual...............................................................4  
1.1.2. Hardware Access Layer (HAL) API Description ....................................................4  
1.1.3. ARM Cortex-M3 Reference Manual.......................................................................4  
1.2. Conventions ...................................................................................................................4  
2. Typical Connection Diagrams ............................................................................................5  
2.1. Power .............................................................................................................................5  
3. Electrical Specifications......................................................................................................6  
3.1. Electrical Characteristics................................................................................................6  
3.2. Thermal Conditions ......................................................................................................28  
3.3. Absolute Maximum Ratings..........................................................................................28  
4. Precision32™ SiM3C1xx System Overview ....................................................................31  
4.1. Power ...........................................................................................................................33  
4.1.1. LDO and Voltage Regulator (VREG0).................................................................33  
4.1.2. Voltage Supply Monitor (VMON0) .......................................................................33  
4.1.3. External Regulator (EXTVREG0) ........................................................................33  
4.1.4. Power Management Unit (PMU)..........................................................................33  
4.1.5. Device Power Modes...........................................................................................34  
4.2. I/O.................................................................................................................................36  
4.2.1. General Features.................................................................................................36  
4.2.2. High Drive Pins (PB4)..........................................................................................36  
4.2.3. 5 V Tolerant Pins (PB3).......................................................................................36  
4.2.4. Crossbars ............................................................................................................36  
4.3. Clocking........................................................................................................................37  
4.3.1. PLL (PLL0)...........................................................................................................38  
4.3.2. Low Power Oscillator (LPOSC0) .........................................................................38  
4.3.3. Low Frequency Oscillator (LFOSC0)...................................................................38  
4.3.4. External Oscillators (EXTOSC0)..........................................................................38  
4.4. Data Peripherals...........................................................................................................39  
4.4.1. 16-Channel DMA Controller.................................................................................39  
4.4.2. 128/192/256-bit Hardware AES Encryption (AES0) ............................................39  
4.4.3. 16/32-bit CRC (CRC0).........................................................................................39  
4.5. Counters/Timers and PWM..........................................................................................40  
4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)........................................40  
4.5.2. 32-bit Timer (TIMER0, TIMER1)..........................................................................40  
4.5.3. Real-Time Clock (RTC0) .....................................................................................41  
4.5.4. Low Power Timer (LPTIMER0)............................................................................41  
4.5.5. Watchdog Timer (WDTIMER0)............................................................................41  
4.6. Communications Peripherals .......................................................................................42  
4.6.1. External Memory Interface (EMIF0).....................................................................42  
4.6.2. USART (USART0, USART1)...............................................................................42  
4.6.3. UART (UART0, UART1)......................................................................................42  
4.6.4. SPI (SPI0, SPI1)..................................................................................................43  
2
Preliminary Rev. 0.8  
SiM3C1xx  
4.6.5. I2C (I2C0, I2C1)...................................................................................................43  
4.6.6. I2S (I2S0).............................................................................................................44  
4.7. Analog ..........................................................................................................................45  
4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)..............................45  
4.7.2. Sample Sync Generator (SSG0) .........................................................................45  
4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1) ............................................45  
4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)............................46  
4.7.5. Low Current Comparators (CMP0, CMP1)..........................................................46  
4.7.6. Current-to-Voltage Converter (IVC0)...................................................................46  
4.8. Reset Sources..............................................................................................................47  
4.9. Security ........................................................................................................................48  
4.10.On-Chip Debugging .....................................................................................................48  
5. Pin Definitions and Packaging Information.....................................................................49  
5.1. SiM3C1x7 Pin Definitions.............................................................................................49  
5.2. SiM3C1x6 Pin Definitions.............................................................................................57  
5.3. SiM3C1x4 Pin Definitions.............................................................................................64  
6. Ordering Information.........................................................................................................68  
6.1. LGA-92 Package Specifications...................................................................................70  
6.1.1. LGA-92 Solder Mask Design ...............................................................................72  
6.1.2. LGA-92 Stencil Design ........................................................................................72  
6.1.3. LGA-92 Card Assembly.......................................................................................72  
6.2. TQFP-80 Package Specifications ................................................................................73  
6.2.1. TQFP-80 Solder Mask Design.............................................................................76  
6.2.2. TQFP-80 Stencil Design......................................................................................76  
6.2.3. TQFP-80 Card Assembly.....................................................................................76  
6.3. QFN-64 Package Specifications ..................................................................................77  
6.3.1. QFN-64 Solder Mask Design...............................................................................79  
6.3.2. QFN-64 Stencil Design........................................................................................79  
6.3.3. QFN-64 Card Assembly.......................................................................................79  
6.4. TQFP-64 Package Specifications ................................................................................80  
6.4.1. TQFP-64 Solder Mask Design.............................................................................83  
6.4.2. TQFP-64 Stencil Design......................................................................................83  
6.4.3. TQFP-64 Card Assembly.....................................................................................83  
6.5. QFN-40 Package Specifications ..................................................................................84  
6.5.1. QFN-40 Solder Mask Design...............................................................................86  
6.5.2. QFN-40 Stencil Design........................................................................................86  
6.5.3. QFN-40 Card Assembly.......................................................................................86  
7. Revision Specific Behavior...............................................................................................87  
7.1. Revision Identification ..................................................................................................87  
7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)......................88  
7.2.1. Problem ...............................................................................................................88  
7.2.2. Impacts ................................................................................................................88  
7.2.3. Workaround .........................................................................................................88  
7.2.4. Resolution............................................................................................................88  
Contact Information ................................................................................................................90  
Preliminary Rev. 0.8  
3
SiM3C1xx  
1. Related Documents and Conventions  
1.1. Related Documents  
This data sheet accompanies several documents to provide the complete description of the SiM3C1xx device  
family.  
1.1.1. SiM3U1xx/SiM3C1xx Reference Manual  
The Silicon Laboratories SiM3U1xx/SiM3C1xx Reference Manual provides detailed functional descriptions for the  
SiM3C1xx devices.  
1.1.2. Hardware Access Layer (HAL) API Description  
The Silicon Laboratories Hardware Access Layer (HAL) API provides C-language functions to modify and read  
each bit in the SiM3C1xx devices. This description can be found in the SiM3xxxx HAL API Reference Manual.  
1.1.3. ARM Cortex-M3 Reference Manual  
The ARM-specific features like the Nested Vector Interrupt Controller are described in the ARM Cortex-M3  
reference documentation. The online reference manual can be found here:  
http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m3/index.html#cortexm3.  
1.2. Conventions  
The block diagrams in this document use the following formatting conventions:  
Internal Module  
Other Internal  
Peripheral Block  
External Memory  
Block  
DMA Block  
Memory Block  
External to MCU  
Block  
Input_Pin  
Output_Pin  
Functional Block  
Internal_Input_Signal  
Internal_Output_Signal  
REGn_NAME / BIT_NAME  
Figure 1.1. Block Diagram Conventions  
4
Preliminary Rev. 0.8  
SiM3C1xx  
2. Typical Connection Diagrams  
This section provides typical connection diagrams for SiM3C1xx devices.  
2.1. Power  
Figure 2.1 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal  
regulator is in use.  
SiM3C1xx Device  
5 V (in)  
VREGn  
VREGIN  
3.3 V (out)  
VIOHD  
VDD  
1 uF and 0.1 uF bypass  
capacitors required for  
each power pin placed  
as close to the pins as  
possible.  
VIO  
VSS  
VSSHD  
Figure 2.1. Connection Diagram with Voltage Regulator Used  
Figure 2.2 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal  
regulator is not used.  
SiM3C1xx Device  
1.8-3.6 V (in)  
VREGn  
VREGIN  
VIOHD  
1 uF and 0.1 uF bypass  
capacitors required for  
VDD  
each power pin placed  
as close to the pins as  
possible.  
VIO  
VSS  
VSSHD  
Figure 2.2. Connection Diagram with Voltage Regulator Not Used  
Preliminary Rev. 0.8  
5
SiM3C1xx  
3. Electrical Specifications  
3.1. Electrical Characteristics  
All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.  
Table 3.1. Recommended Operating Conditions  
Parameter  
Symbol  
Conditions  
Min  
1.8  
4
Typ  
Max  
3.6  
5.5  
3.6  
Units  
Operating Supply Voltage on VDD  
Operating Supply Voltage on VREGIN  
V
V
V
V
V
V
DD  
V
EXTVREG0 Not Used  
EXTVREG0 Used  
REGIN  
3.0  
1.8  
2.7  
1.8  
Operating Supply Voltage on VIO  
Operating Supply Voltage on VIOHD  
V
V
DD  
IO  
V
HV Mode (default)  
LV Mode  
6.0  
3.6  
IOHD  
V
V
Voltage on I/O pins, Port Bank 0, 1  
and 2 I/O  
V
V
V
IN  
SS  
IO  
Voltage on I/O pins, Port Bank 3 I/O  
and RESET  
V
SiM3C1x7  
PB3.0–PB3.7 and  
RESET  
V
V +2.0  
V
V
IN  
SS  
IO  
SiM3C1x7  
PB3.8 - PB3.11  
V
Lowest  
of  
SS  
V +2.0  
IO  
or  
V
REGIN  
SiM3C1x6  
PB3.0–PB3.5 and  
RESET  
V
V +2.0  
V
V
SS  
IO  
V
Lowest  
of  
SiM3C1x6  
PB3.6–PB3.9  
SS  
V +2.0  
IO  
or  
V
REGIN  
SiM3C1x4  
RESET  
V
V +2.0  
V
V
SS  
IO  
SiM3C1x4  
PB3.0–PB3.3  
V
Lowest  
of  
SS  
V +2.0  
IO  
or  
V
REGIN  
Voltage on I/O pins, Port Bank 4 I/O  
V
V
V
V
IN  
SSHD  
0
IOHD  
80  
System Clock Frequency (AHB)  
Peripheral Clock Frequency (APB)  
Operating Ambient Temperature  
Operating Junction Temperature  
f
MHz  
MHz  
°C  
AHB  
f
0
50  
APB  
T
–40  
–40  
85  
A
T
105  
°C  
J
Note: All voltages with respect to V  
.
SS  
6
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.2. Power Consumption  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Digital Core Supply Current  
2,3,4,5  
Normal Mode  
—Full speed  
I
I
I
I
I
I
F
F
= 80 MHz,  
= 40 MHz  
33  
36.5  
mA  
DD  
DD  
DD  
DD  
DD  
DD  
AHB  
with code executing from Flash,  
peripheral clocks ON  
APB  
F
= F  
= 20 MHz  
10.5  
2.0  
22  
13.3  
3.8  
mA  
mA  
mA  
AHB  
APB  
APB  
F
= F  
= 2.5 MHz  
AHB  
2,3,4,5  
Normal Mode  
—Full speed  
F
= 80 MHz,  
= 40 MHz  
24.9  
AHB  
with code executing from Flash,  
peripheral clocks OFF  
F
APB  
F
= F  
= 20 MHz  
7.8  
1.2  
10  
3
mA  
mA  
mA  
AHB  
APB  
APB  
F
= F  
= 2.5 MHz  
AHB  
2,3,4,6  
Power Mode 1  
—Full speed  
F
= 80 MHz,  
= 40 MHz  
30.5  
35.5  
AHB  
with code executing from RAM,  
peripheral clocks ON  
F
APB  
F
= F  
= 20 MHz  
8.5  
1.7  
20  
10  
3.5  
23  
mA  
mA  
mA  
AHB  
APB  
APB  
F
= F  
= 2.5 MHz  
AHB  
2,3,4,6  
Power Mode 1  
—Full speed  
F
= 80 MHz,  
= 40 MHz  
AHB  
with code executing from RAM,  
peripheral clocks OFF  
F
APB  
F
= F  
= 20 MHz  
5.3  
1.0  
19  
7.3  
2.8  
22  
mA  
mA  
mA  
AHB  
APB  
APB  
F
= F  
= 2.5 MHz  
AHB  
2,3,4  
Power Mode 2  
—Core halted  
F
= 80 MHz,  
= 40 MHz  
AHB  
with peripheral clocks ON  
F
APB  
F
= F  
= 20 MHz  
7.8  
1.3  
9.7  
3
mA  
mA  
µA  
AHB  
APB  
APB  
F
V
V
= F  
= 2.5 MHz  
AHB  
2,3  
Power Mode 3  
= 1.8 V, T = 25 °C  
175  
250  
DD  
DD  
A
= 3.0 V, T = 25 °C  
µA  
A
Notes:  
1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.  
2. Currents are additive. For example, where I is specified and the mode is not mutually exclusive, enabling the  
DD  
functions increases supply current by the specified amount.  
3. Includes all peripherals that cannot have clocks gated in the Clock Control module.  
4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).  
5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.  
6. RAM execution numbers use 0 wait states for all frequencies.  
7. IDAC output current and IVC input current not included.  
8. Bias current only. Does not include dynamic current from oscillator running at speed.  
Preliminary Rev. 0.8  
7
SiM3C1xx  
Table 3.2. Power Consumption (Continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
2,3  
Power Mode 9 —Low Power  
I
RTC Disabled,  
85  
nA  
DD  
Shutdown with VREG0 disabled,  
powered through VDD and VIO  
V
= 1.8 V, T = 25 °C  
A
DD  
RTC w/ 16.4 kHz LFO,  
= 1.8 V, T = 25 °C  
350  
620  
145  
500  
800  
300  
650  
950  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
V
DD  
A
RTC w/ 32.768 kHz Crystal,  
V
V
= 1.8 V, T = 25 °C  
DD  
A
RTC Disabled,  
= 3.0 V, T = 25 °C  
DD  
A
RTC w/ 16.4 kHz LFO,  
= 3.0 V, T = 25 °C  
V
DD  
A
RTC w/ 32.768 kHz Crystal,  
V
= 3.0 V, T = 25 °C  
DD  
A
2,3  
Power Mode 9 —Low Power  
I
RTC Disabled,  
VREGIN  
Shutdown with VREG0 in low-  
power mode, VDD and VIO pow-  
ered through VREG0 (Includes  
VREG0 current)  
VREGIN = 5 V, T = 25 °C  
A
RTC w/ 16.4 kHz LFO,  
VREGIN = 5 V, T = 25 °C  
A
RTC w/ 32.768 kHz Crystal,  
VREGIN = 5 V, T = 25 °C  
A
VIOHD Current (High-drive I/O dis-  
abled)  
I
HV Mode (default)  
LV Mode  
2.5  
2
5
µA  
nA  
VIOHD  
Notes:  
1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.  
2. Currents are additive. For example, where I is specified and the mode is not mutually exclusive, enabling the  
DD  
functions increases supply current by the specified amount.  
3. Includes all peripherals that cannot have clocks gated in the Clock Control module.  
4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).  
5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.  
6. RAM execution numbers use 0 wait states for all frequencies.  
7. IDAC output current and IVC input current not included.  
8. Bias current only. Does not include dynamic current from oscillator running at speed.  
8
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.2. Power Consumption (Continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Analog Peripheral Supply Currents  
Voltage Regulator (VREG0)  
I
Normal Mode, T = 25 °C  
BGDIS = 0, SUSEN = 0  
300  
650  
µA  
µA  
µA  
µA  
nA  
nA  
VREGIN  
A
Normal Mode, T = 85 °C  
A
BGDIS = 0, SUSEN = 0  
Suspend Mode, T = 25 °C  
75  
A
BGDIS = 0, SUSEN = 1  
Suspend Mode, T = 85 °C  
115  
A
BGDIS = 0, SUSEN = 1  
Sleep Mode, T = 25 °C  
90  
A
BGDIS = 1, SUSEN = X  
Sleep Mode, T = 85 °C  
500  
A
BGDIS = 1, SUSEN = X  
External Regulator (EXTVREG0)  
I
Regulator  
215  
7
250  
µA  
µA  
mA  
µA  
µA  
nA  
EXTVREG  
Current Sensor  
PLL0 Oscillator (PLL0OSC)  
I
Operating at 80 MHz  
Operating at 20 MHz  
Operating at 2.5 MHz  
Operating at 16.4 kHz,  
1.75  
190  
40  
1.86  
PLLOSC  
Low-Power Oscillator (LPOSC0)  
I
LPOSC  
Low-Frequency Oscillator  
(LFOSC0)  
I
215  
LFOSC  
T = 25 °C  
A
Operating at 16.4 kHz,  
500  
nA  
T = 85 °C  
A
Notes:  
1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.  
2. Currents are additive. For example, where I is specified and the mode is not mutually exclusive, enabling the  
DD  
functions increases supply current by the specified amount.  
3. Includes all peripherals that cannot have clocks gated in the Clock Control module.  
4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).  
5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.  
6. RAM execution numbers use 0 wait states for all frequencies.  
7. IDAC output current and IVC input current not included.  
8. Bias current only. Does not include dynamic current from oscillator running at speed.  
Preliminary Rev. 0.8  
9
SiM3C1xx  
Table 3.2. Power Consumption (Continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
3.8  
840  
185  
65  
Max  
4.7  
950  
220  
80  
Units  
mA  
µA  
8
External Oscillator (EXTOSC0)  
I
FREQCN = 111  
FREQCN = 110  
FREQCN = 101  
FREQCN = 100  
FREQCN = 011  
FREQCN = 010  
FREQCN = 001  
FREQCN = 000  
EXTOSC  
µA  
µA  
25  
30  
µA  
10  
15  
µA  
5
10  
µA  
3
8
µA  
SARADC0,  
SARADC1  
I
Sampling at 1 Msps, highest  
power mode settings.  
1.2  
1.5  
mA  
SARADC  
Sampling at 250 ksps, lowest  
power mode settings.  
390  
510  
µA  
Temperature Sensor  
Internal SAR Reference  
VREF0  
I
75  
680  
160  
75  
0.5  
3
105  
750  
190  
100  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
TSENSE  
I
Normal Power Mode  
Low Power Mode  
REFFS  
I
REFP  
Comparator 0 (CMP0),  
Comparator 1 (CMP1)  
I
CMPMD = 11  
CMPMD = 10  
CMP  
CMPMD = 01  
10  
25  
55  
75  
CMPMD = 00  
Capacitive Sensing (CAPSENSE0)  
I
Continuous Conversions  
80  
CS  
7
IDAC0 ,  
I
90  
IDAC  
7
IDAC1  
7
IVC0  
I
I
= 0  
IN  
1.5  
15  
1.9  
25  
µA  
µA  
IVC  
Voltage Supply Monitor (VMON0)  
I
VMON  
Notes:  
1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.  
2. Currents are additive. For example, where I is specified and the mode is not mutually exclusive, enabling the  
DD  
functions increases supply current by the specified amount.  
3. Includes all peripherals that cannot have clocks gated in the Clock Control module.  
4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).  
5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.  
6. RAM execution numbers use 0 wait states for all frequencies.  
7. IDAC output current and IVC input current not included.  
8. Bias current only. Does not include dynamic current from oscillator running at speed.  
10  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.2. Power Consumption (Continued)  
Parameter  
Flash Current on VDD  
Write Operation  
Erase Operation  
Notes:  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
I
8
mA  
mA  
FLASH-W  
I
15  
FLASH-E  
1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.  
2. Currents are additive. For example, where I is specified and the mode is not mutually exclusive, enabling the  
DD  
functions increases supply current by the specified amount.  
3. Includes all peripherals that cannot have clocks gated in the Clock Control module.  
4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).  
5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.  
6. RAM execution numbers use 0 wait states for all frequencies.  
7. IDAC output current and IVC input current not included.  
8. Bias current only. Does not include dynamic current from oscillator running at speed.  
Table 3.3. Power Mode Wake Up Times  
Parameter  
Symbol  
Conditions  
Min  
Typ  
425  
1.35  
12  
Max  
Units  
µs  
Power Mode 3 Fast Wake Time  
Power Mode 3 Wake Time  
Power Mode 9 Wake Time  
t
PM3FW  
t
t
ms  
PM3  
PM9  
µs  
Preliminary Rev. 0.8  
11  
SiM3C1xx  
Table 3.4. Reset and Supply Monitor  
Parameter  
Symbol  
Conditions  
Early Warning  
Reset  
Min  
2.10  
1.95  
1.81  
1.70  
4.2  
Typ  
2.20  
2.05  
1.85  
1.74  
4.4  
1.4  
1
Max  
2.30  
2.1  
Units  
V
V
High Supply Monitor Threshold  
(VDDHITHEN = 1)  
V
VDDMH  
DD  
V
V
Low Supply Monitor Threshold  
(VDDHITHEN = 0)  
V
Early Warning  
Reset  
1.88  
1.77  
4.6  
V
DD  
VDDML  
V
V
Supply Monitor Threshold  
V
Early Warning  
Rising Voltage on V  
V
REGIN  
VREGM  
Power-On Reset (POR) Threshold  
V
V
POR  
DD  
Falling Voltage on V  
0.8  
10  
1.3  
V
DD  
V
Ramp Time  
t
Time to V > 1.8 V  
3000  
100  
µs  
ms  
DD  
RMP  
DD  
Reset Delay from POR  
t
Relative to V  
>
DD  
3
POR  
V
POR  
Reset Delay from non-POR source  
t
Time between release  
of reset source and  
code execution  
10  
µs  
RST  
RESET Low Time to Generate Reset  
t
50  
1
ns  
RSTL  
Missing Clock Detector Response  
Time (final rising edge to reset)  
t
F
> 1 MHz  
0.4  
ms  
MCD  
AHB  
Missing Clock Detector Trigger   
Frequency  
F
7.5  
2
13  
kHz  
µs  
MCD  
MON  
V
Supply Monitor Turn-On Time  
t
DD  
12  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.5. On-Chip Regulators  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
3.3 V Regulator Characteristics (VREG0, Supplied from VREGIN Pin)  
Output Voltage (at VDD pin) 4 < V < 5.5  
V
3.2  
3.2  
2.3  
3.3  
3.3  
2.8  
3.4  
3.4  
3.6  
V
V
V
DDOUT  
REGIN  
BGDIS = 0, SUSEN = 0  
4 < V < 5.5  
REGIN  
BGDIS = 0, SUSEN = 1  
4 < V < 5.5  
REGIN  
BGDIS = 1, SUSEN = X  
= 500 µA  
I
DDOUT  
4 < V  
< 5.5  
2.1  
2.65  
3.3  
V
REGIN  
BGDIS = 1, SUSEN = X  
= 5 mA  
I
DDOUT  
Output Current (at VDD pin)*  
I
4 < V  
< 5.5  
REGIN  
150  
5
mA  
mA  
DDOUT  
BGDIS = 0, SUSEN = X  
4 < V < 5.5  
REGIN  
BGDIS = 1, SUSEN = X  
Output Load Regulation  
Output Capacitance  
V
BGDIS = 0  
1
0.1  
1
mV/mA  
µF  
DDLR  
C
10  
VDD  
*Note: Total current VREG0 is capable of providing. Any current consumed by the SiM3C1xx reduces the current available to  
external devices powered from VDD.  
Preliminary Rev. 0.8  
13  
SiM3C1xx  
Table 3.6. External Regulator  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Input Voltage Range (at VRE-  
GIN)  
V
3.0  
3.6  
V
REGIN  
Output Voltage (at  
EXREGOUT)  
V
Programmable in  
100 mV steps  
1.8  
3.6  
V
EXREGOUT  
NPN Current Drive  
PNP Current Drive  
I
400 mV Dropout  
12  
6  
mA  
mA  
NPN  
I
V
> V  
-
PNP  
EXREGBD  
REGIN  
1.5 V  
EXREGBD Voltage (PNP  
Mode)  
V
V
>= 3.5 V  
V
V
EXREGBD  
REGIN  
REGIN  
2.0  
V
< 3.5 V  
1.5  
V
REGIN  
Standalone Mode Output  
Current  
I
400mV Dropout  
11.5  
mA  
EXTREGBD  
External Capacitance with  
External BJT  
C
4.7  
1
µF  
BJT  
Standalone Mode Load Reg-  
ulation  
LR  
mV/mA  
STAND-  
ALONE  
Standalone Mode External  
Capacitance  
C
47  
nF  
STAND-  
ALONE  
Current Limit Range  
Current Limit Accuracy  
Foldback Limit Accuracy  
Current Sense Resistor  
Internal Pull-Down  
Internal Pull-Up  
I
1 Sense Resistor  
10  
10  
5
720  
10  
20  
1
mA  
%
LIMIT  
%
R
SENSE  
R
k  
k  
PD  
R
PU  
Current Sensor  
Sensing Pin Voltage  
V
V
Measured at  
EXTREGSP or  
EXTREGSN pin  
2.2  
10  
V
V
EXTREGSP  
EXTREGSN  
REGIN  
Differential Sensing Voltage  
V
(V  
-
8
1600  
mV  
DIFF  
EXTREGSP  
EXTREGSN  
V
)
Current at EXTREGSN Pin  
Current at EXTREGSP Pin  
I
A  
A  
EXTREGSN  
I
V
x 2  
DIFF  
EXTREGSP  
00 + 12  
14  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.7. Flash Memory  
Parameter  
Symbol  
Conditions  
One 16-bit Half Word  
One Page  
Min  
20  
Typ  
21  
Max  
22  
Units  
µs  
1
Write Time  
t
WRITE  
ERASE  
1
Erase Time  
t
20  
21  
22  
ms  
t
Full Device  
20  
21  
22  
ms  
ERALL  
V
Voltage During Programming  
V
1.8  
20k  
TBD  
3.6  
V
DD  
PROG  
Endurance (Write/Erase Cycles)  
N
TBD  
TBD  
Cycles  
Years  
WE  
2
Retention  
t
T = 85 °C, 1k Cycles  
RET  
A
Notes:  
1. Does not include sequencing time before and after the write/erase operation, which may be multiple AHB clock cycles.  
2. Additional Data Retention Information is published in the Quarterly Quality and Reliability Report.  
Table 3.8. Internal Oscillators  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Phase-Locked Loop (PLL0OSC)  
Calibrated Output Frequency*  
f
Full Temperature and  
Supply Range  
77  
79  
430  
95  
80  
MHz  
PLL0OSC  
Power Supply Sensitivity*  
Temperature Sensitivity*  
PSS  
T = 25 °C,  
ppm/V  
ppm/°C  
PLL0OSC  
PLL0OSC  
PLL0OSC  
A
Fout = 79 MHz  
TS  
V
= 3.3 V,  
DD  
Fout = 79 MHz  
Adjustable Output Frequency  
Range  
f
23  
80  
MHz  
µs  
Lock Time  
t
f
= 20 MHz,  
1.7  
PLL0LOCK  
REF  
PLL0OSC  
f
= 80 MHz,  
M=24, N=99,  
LOCKTH = 0  
f
= 32 kHz,  
91  
µs  
REF  
f
= 80 MHz,  
PLL0OSC  
M=0, N=2440,  
LOCKTH = 0  
Preliminary Rev. 0.8  
15  
SiM3C1xx  
Table 3.8. Internal Oscillators  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Low Power Oscillator (LPOSC0)  
Oscillator Frequency  
f
Full Temperature and  
Supply Range  
19  
20  
20  
21  
MHz  
MHz  
MHz  
LPOSC  
T = 25 °C,  
19.6  
2.375  
20.4  
2.625  
A
V
= 3.3 V  
DD  
Divided Oscillator Frequency  
f
Full Temperature and  
Supply Range  
2.5  
LPOSCD  
Power Supply Sensitivity  
Temperature Sensitivity  
PSS  
T = 25 °C  
0.5  
55  
%/V  
LPOSC  
A
TS  
V
= 3.3 V  
ppm/°C  
LPOSC  
DD  
Low Frequency Oscillator (LFOSC0)  
Oscillator Frequency  
f
Full Temperature and  
Supply Range  
13.4  
15.8  
16.4  
16.4  
19.7  
17.3  
kHz  
kHz  
LFOSC  
T = 25 °C,  
A
V
= 3.3 V  
DD  
Power Supply Sensitivity  
Temperature Sensitivity  
PSS  
T = 25 °C  
2.4  
0.2  
%/V  
LFOSC  
A
TS  
V
= 3.3 V  
%/°C  
LFOSC  
DD  
RTC0 Oscillator (RTC0OSC)  
Missing Clock Detector Trigger  
Frequency  
f
8
15  
55  
kHz  
%
RTCMCD  
RTC Robust Duty Cycle Range  
DC  
25  
RTC  
*Note: PLL0OSC in free-running oscillator mode  
Table 3.9. External Oscillator  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
External Input CMOS Clock  
Frequency  
f
0
50  
MHz  
CMOS  
External Input CMOS Clock High Time  
External Input CMOS Clock Low Time  
t
9
9
ns  
ns  
CMOSH  
t
CMOSL  
16  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.10. SAR ADC  
Parameter  
Symbol  
Conditions  
12 Bit Mode  
Min  
Typ  
12  
10  
Max  
Units  
Bits  
Bits  
V
Resolution  
N
bits  
10 Bit Mode  
Supply Voltage Requirements  
(VDD)  
V
High Speed Mode  
Low Power Mode  
12 Bit Mode  
2.2  
1.8  
3.6  
3.6  
250  
1
ADC  
V
Throughput Rate  
(High Speed Mode)  
f
f
ksps  
Msps  
ksps  
ksps  
ns  
S
S
10 Bit Mode  
Throughput Rate  
(Low Power Mode)  
12 Bit Mode  
62.5  
250  
10 Bit Mode  
Tracking Time  
t
High Speed Mode  
Low Power Mode  
High Speed Mode  
Low Power Mode  
230  
450  
TRK  
SAR  
CNV  
ns  
SAR Clock Frequency  
Conversion Time  
f
16.24  
4
MHz  
MHz  
ns  
t
10-Bit Conversion,  
SAR Clock = 16 MHz,  
APB Clock = 40 MHz.  
762.5  
Sample/Hold Capacitor  
Input Pin Capacitance  
Input Mux Impedance  
C
Gain = 1  
Gain = 0.5  
1
5
2.5  
18  
20  
300  
550  
pF  
pF  
pF  
pF  
SAR  
C
High Quality Inputs  
Normal Inputs  
High Quality Inputs  
Normal Inputs  
IN  
R
MUX  
Voltage Reference Range  
Input Voltage Range*  
V
V
V
REF  
DD  
V
Gain = 1  
0
V
V
IN  
REF  
Gain = 0.5  
0
2xV  
V
REF  
Power Supply Rejection Ratio  
DC Performance  
PSRR  
70  
dB  
ADC  
Integral Nonlinearity  
INL  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
–1  
±1  
±1.9  
±0.5  
1.8  
LSB  
LSB  
LSB  
LSB  
±0.2  
±0.7  
±0.2  
Differential Nonlinearity   
(Guaranteed Monotonic)  
DNL  
±0.5  
*Note: Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.  
Preliminary Rev. 0.8  
17  
SiM3C1xx  
Table 3.10. SAR ADC (Continued)  
Parameter  
Symbol  
Conditions  
Min  
–2  
Typ  
0
Max  
2
Units  
LSB  
Offset Error (using AGND)  
E
12 Bit Mode, VREF =2.4 V  
10 Bit Mode, VREF =2.4 V  
OFF  
–1  
0
1
LSB  
Offset Temperatue Coefficient  
Slope Error  
TC  
0.004  
LSB/°C  
%
OFF  
E
12 Bit Mode  
–0.07 –0.02  
0.02  
M
Dynamic Performance with External Reference or Internal Reference in High Speed Mode, 10 kHz Sine  
Wave Input 1dB below full scale, Max throughput  
Signal-to-Noise  
SNR  
SNDR  
THD  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
62  
58  
62  
58  
66  
60  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Plus Distortion  
66  
60  
Total Harmonic Distortion (Up to  
5th Harmonic)  
78  
77  
Spurious-Free Dynamic Range  
SFDR  
–79  
–74  
Dynamic Performance with Internal Reference in Low Power Mode, 10 kHz Sine Wave Input 1dB below full  
scale, Max throughput  
Signal-to-Noise  
SNR  
SNDR  
THD  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
12 Bit Mode  
10 Bit Mode  
TBD  
TBD  
TBD  
TBD  
66  
60  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Plus Distortion  
66  
60  
Total Harmonic Distortion (Up to  
5th Harmonic)  
78  
77  
Spurious-Free Dynamic Range  
SFDR  
–72  
–71  
*Note: Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.  
18  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.11. IDAC  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Static Performance  
Resolution  
N
10  
Bits  
LSB  
LSB  
bits  
Integral Nonlinearity  
INL  
±0.5  
±0.5  
±2  
±1  
Differential Nonlinearity (Guaranteed  
Monotonic)  
DNL  
Output Compliance Range  
Full Scale Output Current  
V
2.0  
1.00  
495  
2.046  
1.023  
511.5  
250  
V
– 1.0  
DD  
V
mA  
OCR  
I
2 mA Range  
1 mA Range  
0.5 mA Range  
2.10  
1.05  
525  
OUT  
mA  
µA  
Offset Error  
E
nA  
OFF  
Full Scale Error Tempco  
VDD Power Supply Rejection Ratio  
TC  
2 mA Range  
2 mA Range  
100  
ppm/°C  
ppm/V  
k  
FS  
-220  
1
Test Load Impedance (to V  
)
R
SS  
TEST  
Dynamic Performance  
Output Settling Time to 1/2 LSB  
min output to max  
output  
1.2  
3
µs  
µs  
Startup Time  
Preliminary Rev. 0.8  
19  
SiM3C1xx  
Table 3.12. Capacitive Sense  
Parameter  
Symbol  
Conditions  
12-bit Mode  
13-bit Mode  
14-bit Mode  
16-bit Mode  
Min  
Typ  
25  
27  
29  
33  
45  
Max  
Units  
µs  
Single Conversion Time  
(Default Configuration)  
t
single  
µs  
µs  
µs  
Maximum External Capacitive Load  
C
C
Highest Gain Setting  
(default)  
pF  
L
L
Lowest Gain Setting  
500  
50  
pF  
Maximum External Series Imped-  
ance  
Highest Gain Setting  
(default)  
k  
Table 3.13. Current-to-Voltage Converter (IVC)  
Parameter  
Supply Voltage (VDD)  
Symbol  
Conditions  
Min  
2.2  
Typ  
Max  
3.6  
Units  
V
V
DDIVC  
Input Pin Voltage  
Minimum Input Current (source)  
Integral Nonlinearity  
Full Scale Output  
Slope  
V
2.2  
VDD  
V
IN  
IN  
I
100  
–0.6  
µA  
%
INL  
0.6  
IVC  
IVCOUT  
V
1.65  
1.66  
V
M
Input Range 1 mA  
(INxRANGE = 101)  
1.62  
1.73  
V/mA  
IVC  
Input Range 2 mA  
(INxRANGE = 100)  
810  
540  
400  
320  
265  
830  
550  
415  
330  
275  
855  
565  
425  
340  
285  
500  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
mV/mA  
ns  
Input Range 3 mA  
(INxRANGE = 011)  
Input Range 4 mA  
(INxRANGE = 010)  
Input Range 5 mA  
(INxRANGE = 001)  
Input Range 6 mA  
(INxRANGE = 000)  
Settling Time to 0.1%  
V
IVCOUT  
20  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.14. Voltage Reference Electrical Characteristics  
V
= 1.8 to 3.6 V, 40 to +85 °C unless otherwise specified.  
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Internal Fast Settling Reference  
Output Voltage  
V
–40 to +85 °C,  
1.62  
1.65  
1.68  
V
REFFS  
V
= 1.8–3.6 V  
DD  
Temperature Coefficient  
Turn-on Time  
TC  
50  
1.5  
ppm/°C  
µs  
REFFS  
t
REFFS  
Power Supply Rejection  
PSRR  
400  
ppm/V  
REFFS  
On-Chip Precision Reference (VREF0)  
Valid Supply Range  
V
VREF2X = 0  
VREF2X = 1  
1.8  
2.7  
3.6  
3.6  
V
V
V
DD  
Output Voltage  
V
25 °C ambient,  
VREF2X = 0  
1.195  
1.2  
1.205  
REFP  
25 °C ambient,  
VREF2X = 1  
2.39  
2.4  
2.41  
V
Short-Circuit Current  
Temperature Coefficient  
Load Regulation  
I
25  
10  
mA  
SC  
TC  
LR  
ppm/°C  
ppm/µA  
VREFP  
VREFP  
Load = 0 to 200 µA to  
VREFGND  
4.5  
Load Capacitor  
Turn-on Time  
C
Load = 0 to 200 µA to  
VREFGND  
0.1  
µF  
VREFP  
t
4.7 µF tantalum, 0.1 µF  
ceramic bypass  
3.8  
ms  
VREFPON  
0.1 µF ceramic bypass  
VREF2X = 0  
200  
320  
560  
µs  
Power Supply Rejection  
PSRR  
ppm/V  
ppm/V  
VREFP  
VREF2X = 1  
External Reference  
Input Current  
I
Sample Rate = 250 ksps;  
VREF = 3.0 V  
5.25  
µA  
EXTREF  
Preliminary Rev. 0.8  
21  
SiM3C1xx  
Table 3.15. Temperature Sensor  
Parameter  
Offset  
Symbol  
Conditions  
T = 0 °C  
Min  
Typ  
760  
±14  
2.8  
TBD  
1
Max  
Units  
mV  
V
E
OFF  
A
Offset Error*  
Slope  
T = 0 °C  
mV  
OFF  
A
M
mV/°C  
µV/°C  
°C  
Slope Error*  
Linearity  
E
M
Turn-on Time  
1.8  
µs  
*Note: Represents one standard deviation from the mean.  
22  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.16. Comparator  
Parameter  
Symbol  
Conditions  
+100 mV Differential  
–100 mV Differential  
+100 mV Differential  
–100 mV Differential  
CMPHYP = 00  
CMPHYP = 01  
CMPHYP = 10  
CMPHYP = 11  
CMPHYN = 00  
CMPHYN = 01  
CMPHYN = 10  
CMPHYN = 11  
CMPHYP = 00  
CMPHYP = 01  
CMPHYP = 10  
CMPHYP = 11  
CMPHYN = 00  
CMPHYN = 01  
CMPHYN = 10  
CMPHYN = 11  
CMPHYP = 00  
CMPHYP = 01  
CMPHYP = 10  
CMPHYP = 11  
CMPHYN = 00  
CMPHYN = 01  
CMPHYN = 10  
CMPHYN = 11  
Min  
Typ  
100  
Max  
Units  
ns  
Response Time, CMPMD = 00  
(Highest Speed)  
t
RESP0  
150  
ns  
Response Time, CMPMD = 11  
(Lowest Power)  
t
1.4  
µs  
RESP3  
3.5  
µs  
Positive Hysterisis  
Mode 0 (CPMD = 00)  
HYS  
0.37  
7.9  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
CP+  
16.7  
32.8  
0.37  
–7.9  
–16.1  
–32.7  
0.47  
5.85  
12  
Negative Hysterisis  
Mode 0 (CPMD = 00)  
HYS  
CP-  
Positive Hysterisis  
Mode 1 (CPMD = 01)  
HYS  
CP+  
24.4  
0.47  
–6.0  
–12.1  
–24.6  
0.66  
4.55  
9.3  
Negative Hysterisis  
Mode 1 (CPMD = 01)  
HYS  
CP-  
Positive Hysterisis  
Mode 2 (CPMD = 10)  
HYS  
CP+  
19  
Negative Hysterisis  
Mode 2 (CPMD = 10)  
HYS  
0.6  
CP-  
–4.5  
–9.5  
–19  
Preliminary Rev. 0.8  
23  
SiM3C1xx  
Table 3.16. Comparator (Continued)  
Parameter  
Positive Hysterisis  
Symbol  
HYS  
Conditions  
CMPHYP = 00  
CMPHYP = 01  
CMPHYP = 10  
CMPHYP = 11  
CMPHYN = 00  
CMPHYN = 01  
CMPHYN = 10  
CMPHYN = 11  
Min  
Typ  
1.37  
3.8  
7.8  
15.6  
1.37  
–3.9  
–7.9  
–16  
Max  
Units  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
CP+  
Mode 3 (CPMD = 11)  
Negative Hysterisis  
Mode 3 (CPMD = 11)  
HYS  
CP-  
Input Range (CP+ or CP–)  
Input Pin Capacitance  
V
–0.25  
V
+0.25  
DD  
IN  
C
PB2 Pins  
PB3 Pins  
7.5  
10.5  
75  
5
pF  
CP  
pF  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Offset Voltage  
CMRR  
dB  
CP  
PSRR  
72  
dB  
CP  
V
T = 25 °C  
–5  
0
mV  
µV/°C  
bits  
OFF  
A
Input Offset Tempco  
TC  
3.5  
6
OFF  
Reference DAC Resolution  
N
Bits  
24  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.17. Port I/O  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Standard I/O (PB0, PB1, and PB2) and 5 V Tolerant I/O (PB3)  
Output High Voltage  
V
Low Drive, I = –2 mA  
V
V
– 0.7  
V
V
V
V
OH  
OH  
IO  
IO  
High Drive, I = –5 mA  
– 0.7  
OH  
Output Low Voltage  
V
Low Drive, I = 3 mA  
0.6  
0.6  
OL  
OL  
High Drive,  
I
= 12.5 mA  
OL  
Output Rise Time  
Output Fall Time  
Input High Voltage  
t
C = TBD  
C = TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
V
R
t
F
V
1.8 <= V <= 2.0  
0.7 x V  
IO  
IH  
IO  
2.0 <= V <= 3.6  
V
– 0.6  
IO  
V
IO  
Input Low Voltage  
Pin Capacitance  
V
0.6  
V
IL  
C
PB0, PB1 and PB2 Pins  
PB3 Pins  
4
pF  
pF  
µA  
µA  
µA  
IO  
7
Weak Pull-Up Current  
(Input Voltage = 0 V)  
I
V
V
= 1.8  
= 3.6  
–6  
–30  
–1  
–3.5  
–20  
–2  
PU  
IO  
IO  
–10  
1
Input Leakage   
I
0 < V < V  
IN IO  
LK  
(Pullups off or Analog)  
Input Leakage Current of Port  
I
V
< V < V +2.0 V  
0
0
5
5
150  
150  
µA  
µA  
L
IO  
IN  
IO  
Bank 3 I/O, V above V  
(pins without EXREG  
functions)  
IN  
IO  
V
< V < V  
IN REGIN  
IO  
(pins with EXREG  
functions)  
High Drive I/O (PB4)  
Output High Voltage  
V
Standard Mode, Low  
V
– 0.7  
– 0.7  
50  
300  
1
V
V
OH  
IOHD  
IOHD  
Drive, I = -3mA  
OH  
Standard Mode, High  
V
Drive, I = -10mA  
OH  
Output Low Voltage  
Output Rise Time  
V
Standard Mode, Low  
0.6  
0.6  
V
OL  
Drive, I = 3mA  
OH  
Standard Mode, High  
V
Drive, I = 12.5mA  
OH  
t
Slew Rate Mode 0,  
ns  
ns  
µs  
µs  
R
V
= 5V  
IOHD  
Slew Rate Mode 1,  
= 5V  
V
IOHD  
Slew Rate Mode 2,  
= 5V  
V
IOHD  
Slew Rate Mode 3,  
= 5V  
3
V
IOHD  
Preliminary Rev. 0.8  
25  
SiM3C1xx  
Table 3.17. Port I/O (Continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Output Fall Time  
t
Slew Rate Mode 0,  
50  
ns  
F
V
= 5V  
IOHD  
Slew Rate Mode 1,  
= 5V  
300  
1
ns  
µs  
µs  
V
IOHD  
Slew Rate Mode 2,  
= 5V  
V
IOHD  
Slew Rate Mode 3,  
= 5V  
3
V
IOHD  
Input High Voltage  
V
1.8 V<= V  
<= 2.0 V 0.7 x V  
IOHD  
V
V
V
IH  
IOHD  
2.0 V<= V  
<= 6 V  
V
– 0.6  
IOHD  
IOHD  
Input Low Voltage  
V
0.6  
IL  
N-Channel Sink Current Limit  
I
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Mode 8  
Mode 9  
Mode 10  
Mode 11  
Mode 12  
Mode 13  
Mode 14  
Mode 15  
1.76  
2.34  
3.52  
4.69  
7.03  
9.38  
14.06  
18.75  
28.13  
37.5  
56.25  
75  
400  
mA  
SINKL  
(2.7 V <= V  
<= 6 V,  
IOHD  
V
= 0.8V)  
OL  
112.5  
150  
225  
300  
Total N-Channel Sink Current on  
P4.0-P4.5 (DC)  
I
mA  
SINKLT  
26  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.17. Port I/O (Continued)  
Parameter  
Symbol  
Conditions  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Mode 8  
Mode 9  
Mode 10  
Mode 11  
Mode 12  
Mode 13  
Mode 14  
Mode 15  
Min  
Typ  
0.88  
1.17  
1.76  
2.34  
3.52  
4.69  
7.03  
9.38  
14.06  
18.75  
28.13  
37.5  
56.25  
75  
Max  
400  
Units  
P-Channel Source Current Limit  
(2.7 V <= VIOHD <= 6 V,  
I
mA  
SRCL  
V
= VIOHD - 0.8V)  
OH  
112.5  
150  
Total P-Channel Source Current on  
P4.0-P4.5 (DC)  
I
mA  
SRCLT  
Pin Capacitance  
C
30  
pF  
µA  
IO  
Weak Pull-Up Current in Low Volt-  
age Mode  
I
V
V
V
= 1.8 V  
= 3.6 V  
= 2.7 V  
–6  
–3.5  
–2  
PU  
IOHD  
IOHD  
IOHD  
–30  
–15  
–30  
–1  
–20  
–10  
–20  
–10  
–5  
µA  
µA  
µA  
µA  
Weak Pull-Up Current in High Volt-  
age Mode  
I
PU  
V
= 6 V  
–10  
1
IOHD  
Input Leakage (Pullups off)  
I
LK  
Preliminary Rev. 0.8  
27  
SiM3C1xx  
3.2. Thermal Conditions  
Table 3.18. Thermal Conditions  
Parameter  
Symbol  
Conditions  
Min  
Typ  
35  
40  
25  
30  
30  
Max  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance*  
LGA-92 Packages  
TQFP-80 Packages  
QFN-64 Packages  
TQFP-64 Packages  
QFN-40 Packages  
JA  
*Note: Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.  
3.3. Absolute Maximum Ratings  
Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating  
only and functional operation of the devices at those or any other conditions above those indicated in the operation  
listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.19. Absolute Maximum Ratings  
Parameter  
Ambient Temperature Under Bias  
Storage Temperature  
Symbol  
Conditions  
Min  
–55  
–65  
Max  
125  
150  
4.2  
Units  
°C  
T
BIAS  
T
°C  
STG  
Voltage on VDD  
V
V
V
V
V
V
V
V
V
–0.3  
V
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
Voltage on VREGIN  
V
EXTVREG0 Not Used  
EXTVREG0 Used  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
6.0  
3.6  
4.2  
6.5  
5.8  
V
V
V
V
V
V
V
V
REGIN  
Voltage on VIO  
V
IO  
Voltage on VIOHD  
V
IOHD  
Voltage on I/O pins, non Port Bank 3 I/  
O
V
RESET, V > 3.3 V  
IN  
IO  
V +2.5  
RESET, V < 3.3 V  
IO  
IO  
Port Bank 0, 1, and 2 I/O  
Port Bank 4 I/O  
V +0.3  
IO  
V
–0.3  
V
+0.3  
IOHD  
SSHD  
*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be  
connected to the same potential on board.  
28  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 3.19. Absolute Maximum Ratings (Continued)  
Parameter  
Symbol  
Conditions  
Min  
Max  
Units  
Voltage on I/O pins, Port Bank 3 I/O  
V
SiM3C1x7, PB3.0–  
V
V
V
–0.3  
5.8  
V
IN  
SS  
SS  
SS  
PB3.7, V > 3.3 V  
IO  
SiM3C1x7, PB3.0–  
–0.3  
–0.3  
V +2.5  
V
V
IO  
PB3.7, V < 3.3 V  
IO  
SiM3C1x7, PB3.8 -  
PB3.11  
Lowest of  
V +2.5,  
IO  
V
+0.3,  
REGIN  
or 5.8  
SiM3C1x6, PB3.0–  
V
V
V
–0.3  
–0.3  
–0.3  
5.8  
V
V
V
SS  
SS  
SS  
PB3.5, V > 3.3 V  
IO  
SiM3C1x6, PB3.0–  
V +2.5  
IO  
PB3.5, V < 3.3 V  
IO  
Lowest of  
SiM3C1x6, PB3.6–  
PB3.9  
V +2.5,  
IO  
V
+0.3,  
REGIN  
or 5.8  
SiM3C1x4, PB3.0–  
PB3.3  
V
–0.3  
Lowest of  
V
SS  
V +2.5,  
IO  
V
+0.3,  
REGIN  
or 5.8  
Total Current Sunk into Supply Pins  
I
V
, V  
, V , V  
IOHD  
400  
mA  
mA  
SUPP  
DD  
REGIN  
IO  
Total Current Sourced out of Ground  
Pins  
I
V
V
400  
VSS  
SS, SSHD  
Current Sourced or Sunk by Any I/O  
Pin  
I
PB0, PB1, PB2, PB3,  
and RESET  
–100  
100  
mA  
PIO  
PB4  
–300  
–100  
300  
100  
mA  
mA  
Current Injected on Any I/O Pin  
Total Injected Current on I/O Pins  
I
PB0, PB1, PB2, PB3,  
and RESET  
INJ  
PB4  
–300  
–400  
300  
400  
mA  
mA  
I  
Sum of all I/O and  
RESET  
INJ  
*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be  
connected to the same potential on board.  
Preliminary Rev. 0.8  
29  
SiM3C1xx  
Table 3.19. Absolute Maximum Ratings (Continued)  
Parameter  
Power Dissipation at T = 85 °C  
Symbol  
Conditions  
Min  
Max  
Units  
P
LGA-92 Package  
570  
mW  
A
D
TQFP-80 Package  
QFN-64 Package  
TQFP-64 Package  
QFN-40 Package  
500  
800  
650  
650  
mW  
mW  
mW  
mW  
*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be  
connected to the same potential on board.  
30  
Preliminary Rev. 0.8  
SiM3C1xx  
4. Precision32™ SiM3C1xx System Overview  
The SiM3C1xx Precision32™ devices are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted  
features are listed below. Refer to Table 6.1 for specific product feature selection and part ordering numbers.  
Core:  
32-bit ARM Cortex-M3 CPU.  
80 MHz maximum operating frequency.  
Branch target cache and prefetch buffers to minimize wait states.  
Memory: 32–256 kB Flash; in-system programmable, 8–32 kB SRAM (including 4 kB retention SRAM,  
which preserves state in PM9 mode).  
Power:  
Low drop-out (LDO) regulator for CPU core voltage.  
Power-on reset circuit and brownout detectors.  
3.3 V output LDO for direct power from 5 V supplies.  
External transistor regulator.  
Power Management Unit (PMU).  
I/O: Up to 65 total multifunction I/O pins:  
Up to six programmable high-power capable (5–300 mA, 1.8–5 V).  
Up to twelve 5 V tolerant general purpose pins.  
Two flexible peripheral crossbars for peripheral routing.  
Clock Sources:  
Internal oscillator with PLL: 2380 MHz with ± 1.5% accuracy in free-running mode.  
Low-power internal oscillator: 20 MHz and 2.5 MHz modes.  
Low-frequency internal oscillator: 16.4 kHz.  
External RTC crystal oscillator: 32.768 kHz.  
External oscillator: Crystal, RC, C, CMOS clock modes.  
Programmable clock divider allows any oscillator source to be divided by binary factor from 1-128.  
Data Peripherals:  
16-Channel DMA Controller.  
128/192/256-bit Hardware AES Encryption.  
16/32-bit CRC.  
Timers/Counters and PWM:  
6-channel Enhanced Programmable Counter Array (EPCAn) supporting advanced PWM and capture/compare.  
2 x 2-channel Standard Programmable Counter Array (PCAn) supporting PWM and capture/compare.  
2 x 32-bit Timers - can be split into 4 x 16-bit Timers, support PWM and capture/compare.  
Real Time Clock (RTCn).  
Low Power Timer.  
Watchdog Timer.  
Communications Peripherals:  
External Memory Interface.  
2 x USARTs and 2 x UARTs with IrDA and ISO7816 SmartCard support.  
3 x SPIs.  
2 x I2C.  
I2S (receive and transmit).  
Analog:  
2 x 12-Bit Analog-to-Digital Converters (SARADC).  
2 x 10-Bit Digital-to-Analog Converter (IDAC).  
16-Channel Capacitance-to-Digital Converter (CAPSENSE).  
2 x Low-Current Comparators (CMP).  
1 x Current-to-Voltage Converter (IVC) module with two channels.  
On-Chip Debugging  
With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the SiM3C1xx devices  
are truly standalone system-on-a-chip solutions. The Flash memory is reprogrammable in-circuit, providing non-  
Preliminary Rev. 0.8  
31  
SiM3C1xx  
volatile data storage and allowing field upgrades of the firmware. User firmware has complete control of all  
peripherals and may individually shut down and gate the clocks of any or all peripherals for power savings.  
The on-chip debugging interface (SWJ-DP) allows non-intrusive (uses no on-chip resources), full speed, in-circuit  
debugging using the production MCU installed in the final application. This debug logic supports inspection and  
modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog  
and digital peripherals are fully functional while debugging.  
Each device is specified for 1.8 to 3.6 V operation over the industrial temperature range (–40 to +85 °C). The Port  
I/O and RESET pins are powered from the IO supply voltage. The SiM3C1xx devices are available in 40-pin or 64-  
pin QFN, 64-pin or 80-pin TQFP, or 92-pin LGA packages. All package options are lead-free and RoHS compliant.  
See Table 6.1 for ordering information. A block diagram is included in Figure 4.1.  
Analog  
SARADC0  
IDAC0  
Watchdog  
Timer  
(WDTIMER0)  
Debug /  
Programming  
Hardware  
Core  
SARADC1  
IDAC1  
ARM Cortex M3  
Power On Reset /  
PMU  
Comparator 0 Comparator 1  
IVC0  
Memory  
Voltage Supply  
32/64/128/256 kB Flash  
4/12/28 kB RAM  
Monitor (VMON0)  
Capacitive Sensing 0  
I/O  
Power  
4 kB retention RAM  
EMIF  
Low Dropout Regulator (LDO0)  
Voltage Regulator (VREG0)  
DMA  
Crossbars  
External Regulator (EXTVREG0)  
Power Management Unit (PMU)  
16-Channel Controller  
Peripheral Crossbar  
Standard I/O pins  
5 V tolerant pins  
High Drive pins  
Clocking  
Digital  
Real-Time Clock (RTC0OSC)  
Low Frequency Oscillator (LFOSC0)  
Low Power Oscillator (LPOSC0)  
External Oscillator Control (EXTOSC0)  
Phase-Locked Loop (PLL0OSC)  
Peripheral Clock Control (CLKCTRL)  
USART0 USART1  
UART0  
UART1  
SPI0  
I2C0  
SPI1  
SPI2  
I2C1  
Clock Control  
I2S0  
EPCA0  
PCA0  
AES0  
CRC0  
PCA1  
Timer 0  
Timer 1  
Low Power Timer (LPTIMER0)  
DMA access available for these peripherals  
Figure 4.1. Precision32™ SiM3C1xx Family Block Diagram  
32  
Preliminary Rev. 0.8  
SiM3C1xx  
4.1. Power  
4.1.1. LDO and Voltage Regulator (VREG0)  
The SiM3C1xx devices include two internal regulators: the core LDO Regulator and the Voltage Regulator  
(VREG0).  
The LDO Regulator converts a 1.8–3.6 V supply to the core operating voltage of 1.8 V. This LDO consumes little  
power and provides flexibility in choosing a power supply for the system.  
The Voltage Regulator regulates from 5.5 to 2.7 V and can serve as an input to the LDO. This allows the device to  
be powered from up to a 5.5 V supply without any external components other than bypass capacitors.  
4.1.2. Voltage Supply Monitor (VMON0)  
The SiM3C1xx devices include a voltage supply monitor which allows devices to function in known, safe operating  
condition without the need for external hardware. The supply monitor includes additional circuitry that can monitor  
the main supply voltage and the VREGIN input voltage divided by 4 (VREGIN / 4).  
The supply monitor module includes the following features:  
Main supply “VDD Low” (VDD below the early warning threshold) notification.  
Holds the device in reset if the main VDD supply drops below the VDD Reset threshold.  
VREGIN divided by 4 (VREGIN / 4) supply “VREGIN Low” notification.  
4.1.3. External Regulator (EXTVREG0)  
The External Regulator provides all the circuitry needed for a high-power regulator except the power transistor  
(NPN or PNP) and current sensing resistor (if current limiting is enabled).  
The External Regulator module has the following features:  
Interfaces with either an NPN or PNP external transistor that serves as the pass device for the high current  
regulator.  
Automatic current limiting.  
Automatic foldback limiting.  
Sources up to 1 A for use by external circuitry.  
Variable output voltage from 1.8–3.6 V in 100 mV steps.  
4.1.4. Power Management Unit (PMU)  
The Power Management Unit on the SiM3C1xx manages the power systems of the device. On power-up, the PMU  
ensures the core voltages are a proper value before core instruction execution begins. It also recognizes and  
manages the various wake sources for low-power modes of the device.  
The PMU module includes the following features:  
Up to 16 pin wake inputs can wake the device from Power Mode 9.  
The Low Power Timer, RTC0 (alarms and oscillator fail), Comparator 0, and the RESET pin can also serve  
as wake sources for Power Mode 9.  
All PM9 wake sources (except for the RESET pin) can also reset the Low Power Timer or RTC0 modules.  
Disables the level shifters to pins and peripherals to further reduce power usage in PM9. These level  
shifters must be re-enabed by firmware after exiting PM9.  
Provides a PMU_Asleep signal to a pin as an indicator that the device is in PM9.  
Preliminary Rev. 0.8  
33  
SiM3C1xx  
4.1.5. Device Power Modes  
The SiM3C1xx devices feature four low power modes in addition to normal operating mode. Several peripherals  
provide wake up sources for these low power modes, including the Low-Power Timer (LPT0), RTC0 (alarms and  
oscillator failure notification), Comparator 0, and PMU Pin Wake. All power modes are detailed in Table 4.1.  
Table 4.1. SiM3C1xx Power Modes  
Mode  
Description  
Mode Entrance  
Mode Exit  
Core operating at full  
speed  
Normal  
Code executing from  
Flash  
Core operating at full  
speed  
Power Mode 1  
(PM1)  
Execute code from RAM  
WFI or WFE instruction  
Jump to code in Flash  
NVIC or WIC wakeup  
Code executing from  
RAM  
Core halted  
Power Mode 2  
(PM2)  
AHB and APB operate  
at full speed for  
peripherals  
All clocks stopped  
except LFOSC0 or  
RTC0OSC  
DMACTRL0  
disabled  
Fast wake mode  
AHB and APB set to  
enabled in PM3CN  
Power Mode 3  
Fast Wake  
(PM3FW)  
Low Power Oscillator  
NVIC or WIC wakeup  
AHB switched to  
Low Power  
Core clock set to  
LFOSC0 or RTC0OSC  
Oscillator  
WFI or WFE  
instruction  
DMACTRL0  
disabled  
Power Mode 3  
(PM3)  
Clocks disabled in  
All clocks stopped  
NVIC or WIC wakeup  
PM3CN  
WFI or WFE  
instruction  
SLEEPDEEP set in  
the ARM System  
Control Register  
Requires a reset defined by  
the PMU as a wake up  
source  
Power Mode 9  
(PM9)  
Low power shutdown  
WFI or WFE  
instruction  
In addition, all peripherals can have their clocks disconnected to reduce power consumption whenever a peripheral  
is not being used using the clock control (CLKCTRL) registers.  
34  
Preliminary Rev. 0.8  
SiM3C1xx  
4.1.5.1. Normal Mode  
Normal mode encompasses the typical full-speed operation. The power consumption of the device in this mode will  
vary depending on AHB/APB clock speeds and the settings of CLKCTRL and the peripherals.  
4.1.5.2. Power Mode 1  
Power Mode 1 occurs when the core executes code from RAM instead of Flash. The power consumption of the  
device is slightly less than normal mode when in PM1.  
4.1.5.3. Power Mode 2  
In Power Mode 2, the core halts and the peripherals run at full speed. To place the device in this mode, the clock  
settings in CLKCTRL should remain the same as Normal or Power Mode 1 and the core should execute a wait-for-  
interrupt (WFI) or wait-for-event (WFE) instruction. If the WFI instruction is called from an interrupt service routine,  
the interrupt that wakes the device from PM2 must be of a sufficient priority to be recognized by the core.  
4.1.5.4. Power Mode 3 Fast Wake  
Power Mode 3 Fast Wake occurs when all the clocks are stopped except for the LFOSC0 or RTC0OSC. The core  
and the peripherals are halted in this mode.  
The following sequence places the device in Power Mode 3 Fast Wake:  
1. All DMA channels must be disabled by using the global enable/disable DMAEN in the DMA Controller  
(DMACTRL0).  
2. Firmware should enable PM3 Fast Wake in the PM3CN register and set the core clock to run off of the  
LFOSC0 or RTC0OSC to achieve the lowest power.  
3. CLKCTRL CONTROL register settings must be modified to set the AHB and APB clocks to the Low Power  
Oscillator.  
4. Firmware should then execute a WFI or WFE instruction.  
If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3FW  
must be of a sufficient priority to be recognized by the core.  
By keeping the core clock running at a slow frequency in PM3 and changing the AHB and APB clocks to the Low  
Power Oscillator, the device can wake up faster than in standard Power Mode 3 at the expense of higher power  
consumption.  
4.1.5.5. Power Mode 3  
Power Mode 3 occurs when all the clocks are stopped, and the core and the peripherals are halted.  
The following sequence places the device in Power Mode 3:  
1. All DMA channels must be disabled by using the global enable/disable DMAEN in the DMA Controller  
(DMACTRL0).  
2. Firmware should disable PM3 Fast Wake in the PM3CN register.  
3. Firmware should then execute a WFI or WFE instruction.  
If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3 must  
be of a sufficient priority to be recognized by the core.  
4.1.5.6. Power Mode 9  
In Power Mode 9, the core and all peripherals are halted, all clocks are stopped, and the pins and peripherals are  
set to a lower power mode. In addition, standard RAM contents are not preserved, though retention RAM contents  
are still available after exiting the power mode. This mode provides the lowest power consumption for the device,  
but requires an appropriate reset to exit. The available reset sources to wake from PM9 are controlled by the  
Power Management Unit (PMU).  
To enter this mode, firmware must write the SLEEPDEEP bit in the ARM System Control Register. Firmware must  
then execute a WFI or WFE instruction. The core will remain in PM9 until an enabled reset source occurs.  
Preliminary Rev. 0.8  
35  
SiM3C1xx  
4.2. I/O  
4.2.1. General Features  
The SiM3C1xx ports have the following features:  
Push-pull or open-drain output modes and analog or digital modes.  
Option for high or low output drive strength.  
Port Match allows the device to recognize a change on a port pin value.  
Internal pull-up resistors are enabled or disabled on a port-by-port basis.  
Two external interrupts with up to 16 inputs provide monitoring capability for external signals.  
Internal Pulse Generator Timer (PB2 only) to generate simple square waves.  
A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive  
Pins.  
4.2.2. High Drive Pins (PB4)  
The High Drive pins have the following additional features:  
Programmable safe state: high, low, or high impedance.  
Programmable drive strength and slew rates.  
Programmable current limiting.  
Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.  
Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.  
4.2.3. 5 V Tolerant Pins (PB3)  
The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without  
needing extra components to shift the voltage level.  
4.2.4. Crossbars  
The SiM3C1xx devices have two Crossbars with the following features:  
Flexible peripheral assignment to port pins.  
Pins can be individually skipped to move peripherals as needed for design or layout considerations.  
The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital  
resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned,  
the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port  
pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a  
system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals  
can be moved around the chip as needed to ease layout constraints.  
36  
Preliminary Rev. 0.8  
SiM3C1xx  
4.3. Clocking  
The SiM3C1xx devices have two system clocks: AHB and APB. The AHB clock services memory peripherals and  
is derived from one of seven sources: the RTC0 Oscillator, the Low Frequency Oscillator, the Low Power Oscillator,  
the divided Low Power Oscillator, the External Oscillator, and the PLL0 Oscillator. In addition, a divider for the AHB  
clock provides flexible clock options for the device. The APB clock services data peripherals and is synchronized  
with the AHB clock. The APB clock can be equal to the AHB clock (if AHB is less than or equal to 50 MHz) or set to  
the AHB clock divided by two.  
Clock Control allows the AHB and APB clocks to be turned off to unused peripherals to save system power. Any  
registers in a peripheral with disabled clocks will be unable to be accessed until the clocks are enabled. Most  
peripherals have clocks off by default after a power-on reset.  
Clock Control  
RTC0  
Oscillator  
RAM  
DMA  
LFOSC0  
AHB clock  
Flash  
LPOSC0  
AHB Clock  
Divider  
EMIF  
PLL0 Registers  
External  
Oscillator  
PBCFG and  
PB0/1/2/3/4  
USART0  
USART1  
UART0  
APB clock  
PLL0  
Oscillator  
APB Clock  
Divider  
Preliminary Rev. 0.8  
37  
SiM3C1xx  
4.3.1. PLL (PLL0)  
The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running  
mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference  
frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources  
(including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL  
module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to  
Free-Running mode to reduce system power and noise.  
The PLL module includes the following features:  
Five output ranges with output frequencies ranging from 23 to 80 MHz.  
Multiple reference frequency inputs.  
Three output modes: free-running DCO, frequency-locked, and phase-locked.  
Ability to sense the rising edge or falling edge of the reference source.  
DCO frequency LSB dithering to provide finer average output frequencies.  
Spectrum spreading to reduce generated system noise.  
Low jitter and fast lock times.  
Ability to suspend all output frequency updates (including dithering and spectrum spreading) using the  
STALL bit during jitter-sensitive operations.  
4.3.2. Low Power Oscillator (LPOSC0)  
The Low Power Oscillator is the default AHB oscillator on SiM3C1xx devices and enables or disables  
automatically, as needed.  
The Low Power Oscillator has the following features:  
20 MHz and divided 2.5 MHz frequencies available for the AHB clock.  
Automatically starts and stops as needed.  
4.3.3. Low Frequency Oscillator (LFOSC0)  
The low frequency oscillator (LFOSC0) provides a low power internal clock source running at approximately  
16.4 kHz for the RTC0 timer and other peripherals on the device. No external components are required to use the  
low frequency oscillator  
4.3.4. External Oscillators (EXTOSC0)  
The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC  
network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB  
clock or used to clock other modules independent of the AHB clock selection.  
The External Oscillator control has the following features:  
Support for external crystal, RC, C, or CMOS oscillators.  
Support external CMOS frequencies from 10 kHz to 50 MHz and external crystal frequencies from 10 kHz  
to 30 MHz.  
Various drive strengths for flexible crystal oscillator support.  
Internal frequency divide-by-two option available.  
38  
Preliminary Rev. 0.8  
SiM3C1xx  
4.4. Data Peripherals  
4.4.1. 16-Channel DMA Controller  
The DMA facilitates autonomous peripheral operation, allowing the core to finish tasks more quickly without  
spending time polling or waiting for peripherals to interrupt. This helps reduce the overall power consumption of the  
system, as the device can spend more time in low-power modes.  
The DMA controller has the following features:  
Utilizes ARM PrimeCell uDMA architecture.  
Implements 16 channels.  
DMA crossbar supports SARADC0, SARADC1, IDAC0, IDAC1, I2C0, I2S0, SPI0, SPI1, USART0,  
USART1, AES0, EPCA0, external pin triggers, and timers.  
Supports primary, alternate, and scatter-gather data structures to implement various types of transfers.  
Access allowed to all AHB and APB memory space.  
4.4.2. 128/192/256-bit Hardware AES Encryption (AES0)  
The basic AES block cipher is implemented in hardware. The integrated hardware support for Cipher Block  
Chaining (CBC) and Counter (CTR) algorithms results in identical performance, memory bandwidth, and memory  
footprint between the most basic Electronic Codebook (ECB) algorithm and these more complex algorithms. This  
hardware accelerator translates to more core bandwidth available for other functions or a power savings for low-  
power applications.  
The AES module includes the following features:  
Operates on 4-word (16-byte) blocks.  
Supports key sizes of 128, 192, and 256 bits for both encryption and decryption.  
Generates the round key for decryption operations.  
All cipher operations can be performed without any firmware intervention for a set of 4-word blocks (up to  
32 kB).  
Support for various chained and stream-ciphering configurations with XOR paths on both the input and  
output.  
Internal 4-word FIFOs to facilitate DMA operations.  
Integrated key storage.  
Hardware acceleration for Cipher-Block Chaining (CBC) and Counter (CTR) algorithms utilizing integrated  
counterblock generation and previous-block caching.  
4.4.3. 16/32-bit CRC (CRC0)  
The CRC module is designed to provide hardware calculations for Flash memory verification and communications  
protocols.  
The CRC module supports four common polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE  
802.3). The three supported 16-bit polynomials are 0x1021 (CCITT-16), 0x3D65 (IEC16-MBus), and 0x8005  
(ZigBee, 802.15.4, and USB).  
The CRC module includes the following features:  
Support for four common polynomials (one 32-bit and three 16-bit options).  
Byte-level bit reversal for the CRC input.  
Byte-order reorientation of words for the CRC input.  
Word or half-word bit reversal of the CRC result.  
Ability to configure and seed an operation in a single register write.  
Support for single-cycle parallel (unrolled) CRC computation for 32- or 8-bit blocks.  
Capability to CRC 32 bits of data per peripheral bus (APB) clock.  
Support for DMA writes using firmware request mode.  
Preliminary Rev. 0.8  
39  
SiM3C1xx  
4.5. Counters/Timers and PWM  
4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)  
The SiM3C1xx devices include two types of PCA module: Enhanced and Standard.  
The Enhanced Programmable Counter Array (EPCA0) and Standard Programmable Counter Array (PCA0, PCA1)  
modules are timer/counter systems allowing for complex timing or waveform generation. Multiple modules run from  
the same main counter, allowing for synchronous output waveforms.  
The Enhanced PCA module is multi-purpose, but is optimized for motor control applications. The EPCA module  
includes the following features:  
Three sets of channel pairs (six channels total) capable of generating complementary waveforms.  
Center- and edge-aligned waveform generation.  
Programmable dead times that ensure channel pairs are never both active at the same time.  
Programmable clock divisor and multiple options for clock source selection.  
Waveform update scheduling.  
Option to function while the core is inactive.  
Multiple synchronization triggers and outputs.  
Pulse-Width Modulation (PWM) waveform generation.  
High-speed square wave generation.  
Input capture mode.  
DMA capability for both input capture and waveform generation.  
PWM generation halt input.  
The Standard PCA module (PCA) includes the following features:  
Two independent channels.  
Center- and edge-aligned waveform generation.  
Programmable clock divisor and multiple options for clock source selection.  
Pulse-Width Modulation waveform generation.  
4.5.2. 32-bit Timer (TIMER0, TIMER1)  
Each timer module is independent, and includes the following features:  
Operation as a single 32-bit or two independent 16-bit timers.  
Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external  
oscillator, or falling edges on an external input pin (synchronized to the APB clock).  
Auto-reload functionality in both 32-bit and 16-bit modes.  
Up/Down count capability, controlled by an external input pin.  
Rising and falling edge capture modes.  
Low or high pulse capture modes.  
Duty cycle capture mode.  
Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.  
32- or 16-bit pulse-width modulation mode.  
40  
Preliminary Rev. 0.8  
SiM3C1xx  
4.5.3. Real-Time Clock (RTC0)  
The RTC0 module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a  
32.768 kHz watch crystal. The RTC0 provides three alarm events in addition to a missing clock event, which can  
also function as interrupt, reset, or wakeup sources on SiM3C1xx devices.  
The RTC0 module includes internal loading capacitors that are programmable to 16 discrete levels, allowing  
compatibility with a wide range of crystals.  
The RTC0 output can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to  
other devices while the core is in its lowest power down mode. The module also includes a low power internal low  
frequency oscillator that reduces low power mode current and is available for other modules to use as a clock  
source.  
The RTC module includes the following features:  
32-bit timer (supports up to 36 hours) with three separate alarms.  
Option for one alarm to automatically reset the RTC timer.  
Missing clock detector.  
Can be used with the internal low frequency oscillator (LFOSC0), an external 32.768 kHz crystal (no  
additional resistors or capacitors necessary), or with an external CMOS clock.  
Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.  
Operates directly from VDD and remains operational even when the device goes into its lowest power  
down mode.  
The output can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other  
devices while the core is in its lowest power down mode.  
4.5.4. Low Power Timer (LPTIMER0)  
The Low Power Timer (LPTIMER0) module runs from the clock selected by the RTC0 module, allowing the  
LPTIMER0 to operate even if the AHB and APB clocks are disabled. The LPTIMER0 counter can increment using  
one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.  
The Low Power Timer includes the following features:  
Runs on a low-frequency clock (RTC0OSC or LFOSC0 selected in RTC0) or an external source (rising or  
falling edge).  
Overflow and threshold-match detection, which can generate an interrupt, reset the timer, or wake some  
devices from low power modes.  
Timer reset on threshold-match allows square-wave generation at a variable output frequency.  
4.5.5. Watchdog Timer (WDTIMER0)  
The WDTIMER0 module includes a 16-bit timer, a programmable early warning interrupt, and a programmable  
reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.  
The watchdog timer runs from the low frequency oscillator (LFOSC0).  
The Watchdog Timer has the following features:  
Programmable timeout interval.  
Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.  
Lock-out feature to prevent any modification until a system reset.  
Preliminary Rev. 0.8  
41  
SiM3C1xx  
4.6. Communications Peripherals  
4.6.1. External Memory Interface (EMIF0)  
The External Memory Interface (EMIF0) allows external parallel asynchronous devices, like SRAMs and LCD  
controllers, to appear as part of the system memory map. The EMIF0 module includes the following features:  
Provides a memory mapped view of multiple external devices.  
Support for byte, half-word and word accesses regardless of external device data-width.  
Error indicator for certain invalid transfers.  
Minimum external timing allows for 3 clocks per write or 4 clocks per read.  
Output bus can be shared between non-muxed and muxed devices.  
Available extended address output allows for up to 24-bit address with 8-bit parallel devices.  
Support for 8-bit and 16-bit (muxed-mode only) devices with up to two chip-select signals.  
Support for internally muxed devices with dynamic address shifting.  
Fully programmable control signal waveforms.  
4.6.2. USART (USART0, USART1)  
The USART uses two signals (TX and RX) and a predetermined fixed baud rate to communicate with a single  
device. In addition to these signals, the USART0 module can optionally use a clock (UCLK) or hardware  
handshaking (RTS and CTS).  
The USART module provides the following features:  
Independent transmitter and receiver configurations with separate 16-bit baud rate generators.  
Synchronous or asynchronous transmissions and receptions.  
Clock master or slave operation with programmable polarity and edge controls.  
Up to 5 Mbaud (synchronous or asynchronous, TX or RX, and master or slave) or 1 Mbaud Smartcard (TX  
or RX).  
Individual enables for generated clocks during start, stop, and idle states.  
Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads  
and writes.  
Data bit lengths from 5 to 9 bits.  
Programmable inter-packet transmit delays.  
Auto-baud detection with support for the LIN SYNC byte.  
Automatic parity generation (with enable).  
Automatic start and stop generation (with separate enables).  
Transmit and receive hardware flow-control.  
Independent inversion correction for TX, RX, RTS, and CTS signals.  
IrDA modulation and demodulation with programmable pulse widths.  
Smartcard ACK/NACK support.  
Parity error, frame error, overrun, and underrun detection.  
Multi-master and half-duplex support.  
Multiple loop-back modes supported.  
Multi-processor communications support.  
4.6.3. UART (UART0, UART1)  
The USART uses two signals (TX and RX) and a predetermined fixed baud rate to communicate with a single  
device.  
The UART module provides the following features:  
Independent transmitter and receiver configurations with separate 16-bit baud-rate generators.  
Asynchronous transmissions and receptions.  
Up to 5 Mbaud (TX or RX) or 1 Mbaud Smartcard (TX or RX).  
42  
Preliminary Rev. 0.8  
SiM3C1xx  
Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads  
and writes.  
Data bit lengths from 5 to 9 bits.  
Programmable inter-packet transmit delays.  
Auto-baud detection with support for the LIN SYNC byte.  
Automatic parity generation (with enable).  
Automatic start and stop generation.  
Transmit and receive hardware flow-control.  
Independent inversion correction for TX, RX, RTS, and CTS signals.  
IrDA modulation and demodulation with programmable pulse widths.  
Smartcard ACK/NACK support.  
Parity error, frame error, overrun, and underrun detection.  
Multi-master and half-duplex support.  
Multiple loop-back modes supported.  
4.6.4. SPI (SPI0, SPI1)  
SPI is a 3- or 4-wire communication interface that includes a clock, input data, output data, and an optional select  
signal.  
The SPI module includes the following features:  
Supports 3- or 4-wire master or slave modes.  
Supports up to 10 MHz clock in master mode and 5 MHz clock in slave mode.  
Support for all clock phase and slave select (NSS) polarity modes.  
16-bit programmable clock rate.  
Programmable MSB-first or LSB-first shifting.  
8-byte FIFO buffers for both transmit and receive data paths to support high speed transfers.  
Programmable FIFO threshold level to request data service for DMA transfers.  
Support for multiple masters on the same data lines.  
4.6.5. I2C (I2C0, I2C1)  
The I2C interface is a two-wire, bi-directional serial bus. The two clock and data signals operate in open-drain  
mode with external pull-ups to support automatic bus arbitration.  
Reads and writes to the interface are byte oriented with the I2C interface autonomously controlling the serial  
transfer of the data. Data can be transferred at up to 1/8th of the APB clock as a master or slave, which can be  
faster than allowed by the I2C specification, depending on the clock source used. A method of extending the clock-  
low duration is available to accommodate devices with different speed capabilities on the same bus.  
The I2C interface may operate as a master and/or slave, and may function on a bus with multiple masters. The I2C  
provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and start/  
stop control and generation.  
The I2C module includes the following features:  
Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.  
Can operate down to APB clock divided by 32768 or up to APB clock divided by 8.  
Support for master, slave, and multi-master modes.  
Hardware synchronization and arbitration for multi-master mode.  
Clock low extending (clock stretching) to interface with faster masters.  
Hardware support for 7-bit slave and general call address recognition.  
Firmware support for 10-bit slave address decoding.  
Ability to disable all slave states.  
Programmable clock high and low period.  
Programmable data setup/hold times.  
Preliminary Rev. 0.8  
43  
SiM3C1xx  
Spike suppression up to 2 times the APB period.  
2
4.6.6. I S (I2S0)  
2
2
The I S module receives digital data from an external source over a data line in the standard I S, left-justified, right-  
justified, or time domain multiplexing format, de-serializes the data, and generates requests to transfer the data  
using the DMA. The module also reads stereo audio samples from the DMA, serializes the data, and sends it out of  
2
the chip on a data line in the same standard serial format for digital audio. The I S receive interface consists of 3  
signals: SCK (bit clock), WS (word select or frame sync), and SD (data input). The block’s transmit interface  
consists of 3 signals: SCK (bit clock), WS (word select or frame sync) and SD (data output).  
2
The I S module includes the following features:  
Master or slave capability.  
Flexible 10-bit clock divider with 8-bit fractional clock divider provides support for various common  
sampling frequencies (16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz) for up to two 32-bit  
channels.  
Support for DMA data transfers.  
Support for various data formats.  
44  
Preliminary Rev. 0.8  
SiM3C1xx  
4.7. Analog  
4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)  
The SARADC0 and SARADC1 modules on SiM3C1xx devices are Successive Approximation Register (SAR)  
Analog to Digital Converters (ADCs). The key features of the SARADC module are:  
Single-ended 12-bit and 10-bit modes.  
Supports an output update rate of 250 k samples per second in 12-bit mode or 1 M samples per second in  
10-bit mode.  
Operation in low power modes at lower conversion speeds.  
Selectable asynchronous hardware conversion trigger with hardware channel select.  
Output data window comparator allows automatic range checking.  
Support for Burst Mode, which produces one set of accumulated data per conversion-start trigger with  
programmable power-on settling and tracking time.  
Conversion complete, multiple conversion complete, and FIFO overflow and underflow flags and interrupts  
supported.  
Flexible output data formatting.  
Sequencer allows up to 8 sources to be automatically scanned using one of four channel characteristic  
profiles without software intervention.  
Eight-word conversion data FIFO for DMA operations.  
Multiple SARADC modules can work together synchronously or by interleaving samples.  
Includes two internal references (1.65 V fast-settling, 1.2/2.4 V precision), support for an external  
reference, and support for an external signal ground.  
4.7.2. Sample Sync Generator (SSG0)  
The SSG module includes a phase counter and a pulse generator. The phase counter is a 4-bit free-running  
counter clocked from the SARADC module clock. Counting-up from zero, the phase counter marks sixteen equally-  
spaced events for any number of SARADC modules. The ADCs can use this phase counter to start a conversion.  
The programmable pulse generator creates a 50% duty cycle pulse with a period of 16 phase counter ticks. Up to  
four programmable outputs available to external devices can be driven by the pulse generator with programmable  
polarity and a defined output setting when the pulse generator is stopped.  
The Sample Sync Generator module has the following features:  
Connects multiple modules together to perform synchronized actions.  
Outputs a clock synchronized to the internal sampling clock used by any number of SARADC modules to  
pins for use by external devices.  
Includes a phase counter, pulse generator, and up to four programmable outputs.  
4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)  
The IDAC takes a digital value as an input and outputs a proportional constant current on a pin. The IDAC module  
includes the following features:  
10-bit current DAC with support for four timer, up to seven external I/O, on demand, and SSG0 output  
update triggers.  
Ability to update on rising, falling, or both edges for any of the external I/O trigger sources (DACnTx).  
Supports an output update rate greater than 600 k samples per second.  
Support for three full-scale output modes: 0.5 mA, 1.0 mA and 2.0 mA.  
Four-word FIFO to aid with high-speed waveform generation or DMA interactions.  
Individual FIFO overrun, underrun, and went-empty interrupt status sources.  
Support for multiple data packing formats, including: single 10-bit sample per word, dual 10-bit samples per  
word, or four 8-bit samples per word.  
Support for left- and right-justified data.  
Preliminary Rev. 0.8  
45  
SiM3C1xx  
4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)  
The Capacitance Sensing module measures capacitance on external pins and converts it to a digital value. The  
CAPSENSE module has the following features:  
Multiple start-of-conversion sources (CSnTx).  
Option to convert to 12, 13, 14, or 16 bits.  
Automatic threshold comparison with programmable polarity (“less than or equal” or “greater than”).  
Four operation modes: single conversion, single scan, continuous single conversion, and continuous scan.  
Auto-accumulate mode that will take and average multiple samples together from a single start of  
conversion signal.  
Single bit retry options available to reduce the effect of noise during a conversion.  
Supports channel bonding to monitor multiple channels connected together with a single conversion.  
Scanning option allows the module to convert a single or series of channels and compare against the  
threshold while the AHB clock is stopped and the core is in a low power mode.  
4.7.5. Low Current Comparators (CMP0, CMP1)  
The Comparators take two analog input voltages and output the relationship between these voltages (less than or  
greater than) as a digital signal. The Low Power Comparator module includes the following features:  
Multiple sources for the positive and negative poles, including VDD, VREF, and 8 I/O pins.  
Two outputs are available: a digital synchronous latched output and a digital asynchronous raw output.  
Programmable hysteresis and response time.  
Falling or rising edge interrupt options on the comparator output.  
4.7.6. Current-to-Voltage Converter (IVC0)  
The IVC module provides inputs to the SARADCn modules so the input current can be measured. The IVC module  
has the following features:  
Two independent channels.  
Programmable input ranges (1–6 mA full-scale).  
46  
Preliminary Rev. 0.8  
SiM3C1xx  
4.8. Reset Sources  
Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset  
state, the following occur:  
The core halts program execution.  
Module registers are initialized to their defined reset values unless the bits reset only with a power-on  
reset.  
External port pins are forced to a known state.  
Interrupts and timers are disabled.  
Clocks to all AHB peripherals are enabled.  
Clocks to all APB peripherals other than Watchdog Timer, EMIF0, and DMAXBAR are disabled.  
All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a  
power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as  
long as power is not lost.  
The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For  
VDD Supply Monitor and power-on resets, the RESET pin is driven low until the device exits the reset state.  
On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal  
oscillator. The Watchdog Timer is enabled with the Low Frequency Oscillator (LFO0) as its clock source. Program  
execution begins at location 0x00000000.  
Reset Sources  
RESET  
VDD Supply  
Monitor  
Missing Clock  
Detector  
Watchdog Timer  
Software Reset  
system reset  
Comparator 0  
Comparator 1  
RTC0 Alarm  
PMU / Wakeup  
Core Reset  
Preliminary Rev. 0.8  
47  
SiM3C1xx  
4.9. Security  
The peripherals on the SiM3C1xx devices have a register lock and key mechanism that prevents any undesired  
accesses of the peripherals from firmware. Each bit in the PERIPHLOCKx registers controls a set of peripherals. A  
key sequence must be written in order to the KEY register to modify any of the bits in PERIPHLOCKx. Any  
subsequent write to KEY will then inhibit any accesses of PERIPHLOCKx until it is unlocked again through KEY.  
Reading the KEY register indicates the current status of the PERIPHLOCKx lock state.  
If a peripheral’s registers are locked, all writes will be ignored. The registers can always be read, regardless of the  
peripheral’s lock state.  
Peripheral Lock and Key  
USART0/1,  
UART0/1  
SPI0/1/2  
I2C0/1  
EPCA0, PCA0/1  
TIMER0/1  
PERIPHLOCK0  
PERIPHLOCK1  
KEY  
SARADC0/1  
SSG0  
4.10. On-Chip Debugging  
The SiM3C1xx devices include JTAG and Serial Wire programming and debugging interfaces and ETM for  
instruction trace. The JTAG interface is supported on SiM3C1x7 and SiM3C1x6 devices, and the ETM interface is  
supported on SiM3C1x7 devices. The JTAG and ETM interfaces can be optionally enabled to provide more  
visibility while debugging at the cost of using several Port I/O pins. Additionally, if the core is configured for Serial  
Wire (SW) mode and not JTAG, then the Serial Wire Viewer (SWV) is available to provide a single pin to send out  
TPIU messages on SiM3C1x7 and SiM3C1x6 devices.  
Most peripherals have the option to halt or continue functioning when the core halts in debug mode.  
48  
Preliminary Rev. 0.8  
SiM3C1xx  
5. Pin Definitions and Packaging Information  
5.1. SiM3C1x7 Pin Definitions  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PB4.5  
PB0.12  
2
PB4.4  
PB0.13  
3
PB4.3  
PB0.14  
4
VSSHD  
PB0.15  
5
VIOHD  
PB1.0  
6
PB4.2  
PB1.1  
7
PB4.1  
PB1.2/TRST  
PB1.3/TDO/SWV  
PB1.4/TDI  
PB1.5/ETM0  
PB1.6/ETM1  
VIO  
8
PB4.0  
9
PB3.11  
10  
PB3.10  
80-Pin TQFP  
11  
PB3.9  
12  
PB3.8  
13  
PB3.7  
PB1.7/ETM2  
PB1.8/ETM3  
PB1.9/TRACECLK  
SWCLK/TCK  
SWDIO/TMS  
PB1.10  
14  
PB3.6  
15  
PB3.5  
16  
PB3.4  
17  
PB3.3  
18  
PB3.2  
19  
PB3.1  
PB1.11  
20  
PB3.0  
PB1.12  
Figure 5.1. SiM3C1x7-GQ Pinout  
Preliminary Rev. 0.8  
49  
SiM3C1xx  
D1  
A48  
D5  
A47  
A46  
A45  
A44  
A43  
A42  
A41  
A40  
A39  
A38  
A37  
D8  
D4  
PB4.5  
PB4.4  
PB4.3  
VIOHD  
PB4.2  
PB4.1  
PB4.0  
PB3.8  
PB3.6  
PB3.4  
PB3.2  
PB3.1  
PB3.0  
A1  
A2  
B36  
B35  
B34  
B33  
B32  
B31  
B30  
B29  
B28  
A36  
A35  
A34  
A33  
A32  
A31  
A30  
A29  
A28  
A27  
A26  
A25  
D3  
PB0.12  
PB0.13  
PB0.15  
PB1.0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B27  
B26  
B25  
B24  
B23  
B22  
B21  
B20  
B19  
PB0.14  
A3  
VSSHD  
PB3.11  
PB3.10  
PB3.9  
PB3.7  
PB3.5  
PB3.3  
A4  
PB1.1  
PB1.3*  
PB1.5*  
PB1.7*  
PB1.8*  
A5  
PB1.2*  
PB1.4*  
A6  
92 pin LGA  
(Top View)  
A7  
PB1.6*  
VIO  
A8  
A9  
PB1.9*  
SWDIO*  
PB1.10  
PB1.11  
PB1.12  
VSS  
SWCLK*  
A10  
A11  
A12  
D2  
D6  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
D7  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
*Noted pins are listed in the pinout table and 80-pin TQFP package figure with additional names.  
These alternate functions are also present on the 92-pin LGA package and are identical to those on the  
80-pin TQFP package.  
Figure 5.2. SiM3C1x7-GM Pinout  
50  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.1. Pin Definitions and alternate functions for SiM3C1x7  
Pin Name  
Type  
VSS  
Ground  
33 B15  
75 B34  
VDD  
VIO  
Power (Core)  
Power (I/O)  
74 A44  
32 A19  
49 A29  
73 A43  
VREGIN  
VSSHD  
VIOHD  
RESET  
Power (Regulator) 76 A45  
Ground (High Drive)  
Power (High Drive)  
Active-low Reset  
4
5
B2  
A3  
80 A48  
SWCLK / TCK Serial Wire / JTAG 45 B20  
SWDIO / TMS Serial Wire / JTAG 44 A27  
PB0.0  
PB0.1  
Standard I/O  
Standard I/O  
72 B33 XBR0  
71 B32 XBR0  
ADC0.0  
ADC0.1  
CS0.0  
PB0.2  
PB0.3  
PB0.4  
PB0.5  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
70 A42 XBR0  
69 B31 XBR0  
68 A41 XBR0  
67 B30 XBR0  
ADC0.2  
CS0.1  
ADC0.3  
CS0.2  
ADC0.4  
CS0.3  
ADC0.5  
CS0.4  
PB0.6  
PB0.7  
Standard I/O  
Standard I/O  
66 A40 XBR0  
65 B29 XBR0  
CS0.5  
ADC0.6  
CS0.6  
IVC0.0  
Preliminary Rev. 0.8  
51  
SiM3C1xx  
Table 5.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)  
Pin Name  
Type  
PB0.8  
Standard I/O  
64 A39 XBR0  
63 A38 XBR0  
ADC0.7  
CS0.7  
IVC0.1  
PB0.9  
Standard I/O  
ADC0.8  
RTC1  
PB0.10  
PB0.11  
Standard I/O  
Standard I/O  
62 A37 XBR0  
61 D4 XBR0  
RTC2  
ADC0.9  
VREFGND  
PB0.12  
Standard I/O  
60 A36 XBR0  
ADC0.10  
VREF  
PB0.13  
PB0.14  
PB0.15  
PB1.0  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
59 A35 XBR0  
58 B27 XBR0  
57 A34 XBR0  
56 A33 XBR0  
55 B25 XBR0  
IDAC0  
IDAC1  
XTAL1  
XTAL2  
ADC0.11  
PB1.1  
PB1.2/TRST Standard I/O /JTAG 54 A32 XBR0  
PB1.3/TDO/ Standard I/O /JTAG/ 53 B24 XBR0  
ADC0.12  
ADC1.12  
SWV  
Serial Wire Viewer  
PB1.4/TDI  
Standard I/O /JTAG 52 A31 XBR0  
ADC0.13  
ADC1.13  
PB1.5/ETM0 Standard I/O /ETM 51 B23 XBR0  
PB1.6/ETM1 Standard I/O /ETM 50 A30 XBR0  
PB1.7/ETM2 Standard I/O /ETM 48 B22 XBR0  
PB1.8/ETM3 Standard I/O /ETM 47 B21 XBR0  
ADC0.14  
ADC1.14  
ADC0.15  
ADC1.15  
ADC1.11  
CS0.8  
ADC1.10  
CS0.9  
52  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)  
Pin Name  
Type  
PB1.9/  
TRACECLK  
Standard I/O /ETM 46 A28 XBR0  
ADC1.9  
ADC1.8  
ADC1.7  
ADC1.6  
PB1.10  
PB1.11  
PB1.12  
PB1.13  
PB1.14  
PB1.15  
PB2.0  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
43 A26 XBR0  
42 A25 XBR0  
41 D3 XBR0  
40 A24 XBR0  
39 A23 XBR0  
38 A22 XBR0  
37 B17 XBR1  
A23m/  
A15  
DMA0T1  
DMA0T0  
A22m/  
A14  
A21m/  
A13  
A20m/  
A12  
ADC0T15  
WAKE.0  
ADC1.5  
CS0.10  
A19m/  
A11  
ADC1T15  
WAKE.1  
ADC1.4  
CS0.11  
A18m/  
A10  
WAKE.2  
ADC1.3  
CS0.12  
A17m/ LSI0 Yes  
A9  
INT0.0  
INT1.0  
ADC1.2  
CS0.13  
WAKE.3  
PB2.1  
PB2.2  
PB2.3  
PB2.4  
PB2.5  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
36 A21 XBR1  
35 B16 XBR1  
34 A20 XBR1  
31 B14 XBR1  
30 A18 XBR1  
A16m/ LSI1 Yes  
A8  
INT0.1  
INT1.1  
WAKE.4  
ADC1.1  
CS0.14  
AD15m/ LSI2 Yes  
A7  
INT0.2  
INT1.2  
WAKE.5  
ADC1.0  
CS0.15  
PMU_Asleep  
AD14m/ LSI3 Yes  
A6  
INT0.3  
INT1.3  
WAKE.6  
AD13m/ LSI4 Yes  
A5  
INT0.4  
INT1.4  
WAKE.7  
AD12m / LSI5 Yes  
A4  
INT0.5  
INT1.5  
Preliminary Rev. 0.8  
53  
SiM3C1xx  
Table 5.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)  
Pin Name  
Type  
PB2.6  
Standard I/O  
29 B13 XBR1  
28 A17 XBR1  
27 B12 XBR1  
26 A16 XBR1  
25 B11 XBR1  
24 A15 XBR1  
23 A14 XBR1  
AD11m/  
A3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
INT0.6  
INT1.6  
PB2.7  
PB2.8  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
AD10m/  
A2  
INT0.7  
INT1.7  
AD9m/  
A1  
PB2.9  
AD8m/  
A0  
PB2.10  
PB2.11  
PB2.12  
AD7m/  
D7  
AD6m/  
D6  
CMP0P.0  
CMP1P.0  
AD5m/  
D5  
CMP0N.0  
CMP1N.0  
RTC0OSC_OUT  
PB2.13  
PB2.14  
PB3.0  
PB3.1  
PB3.2  
Standard I/O  
Standard I/O  
22 A13 XBR1  
21 D2 XBR1  
20 A12 XBR1  
19 A11 XBR1  
18 A10 XBR1  
AD4m/  
D4  
Yes  
Yes  
CMP0P.1  
CMP1P.1  
AD3m/  
D3  
CMP0N.1  
CMP1N.1  
5 V Tolerant I/O  
5 V Tolerant I/O  
5 V Tolerant I/O  
AD2m/  
D2  
CMP0P.2  
CMP1P.2  
AD1m/  
D1  
CMP0N.2  
CMP1N.2  
AD0m/  
D0  
DAC0T0  
DAC1T0  
LPT0T0  
CMP0P.3  
CMP1P.3  
PB3.3  
5 V Tolerant I/O  
17 B8 XBR1  
WR  
DAC0T1  
DAC1T1  
INT0.8  
CMP0N.3  
CMP1N.3  
INT1.8  
54  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)  
Pin Name  
Type  
PB3.4  
5 V Tolerant I/O  
16 A9 XBR1  
15 B7 XBR1  
OE  
INT0.9  
INT1.9  
WAKE.8  
CMP0P.4  
CMP1P.4  
PB3.5  
PB3.6  
PB3.7  
5 V Tolerant I/O  
5 V Tolerant I/O  
5 V Tolerant I/O  
ALEm  
DAC0T2  
DAC1T2  
INT0.10  
INT1.10  
WAKE.9  
CMP0N.4  
CMP1N.4  
14 A8 XBR1  
CS0  
BE1  
DAC0T3  
DAC1T3  
INT0.11  
INT1.11  
WAKE.10  
CMP0P.5  
CMP1P.5  
13 B6 XBR1  
DAC0T4  
DAC1T4  
LPT0T1  
INT0.12  
INT1.12  
WAKE.11  
CMP0N.5  
CMP1N.5  
PB3.8  
PB3.9  
5 V Tolerant I/O  
5 V Tolerant I/O  
12 A7 XBR1  
CS1  
BE0  
DAC0T5  
DAC1T5  
LPT0T2  
INT0.13  
INT1.13  
WAKE.12  
CMP0P.6  
CMP1P.6  
EXREGSP  
11 B5 XBR1  
DAC0T6  
DAC1T6  
INT0.14  
INT1.14  
WAKE.13  
CMP0N.6  
CMP1N.6  
EXREGSN  
PB3.10  
PB3.11  
5 V Tolerant I/O  
5 V Tolerant I/O  
10 B4 XBR1  
INT0.15  
INT1.15  
WAKE.14  
CMP0P.7  
CMP1P.7  
EXREGOUT  
9
B3 XBR1  
WAKE.15  
CMP0N.7  
CMP1N.7  
EXREGBD  
Preliminary Rev. 0.8  
55  
SiM3C1xx  
Table 5.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)  
Pin Name  
Type  
PB4.0  
PB4.1  
PB4.2  
PB4.3  
PB4.4  
PB4.5  
High Drive I/O  
High Drive I/O  
High Drive I/O  
High Drive I/O  
High Drive I/O  
High Drive I/O  
8
7
6
3
2
1
A6  
A5  
A4  
A2  
A1  
D1  
LSO0  
LSO1  
LSO2  
LSO3  
LSO4  
LSO5  
Note: All unnamed pins on the LGA-92 package are no-connect pins. They should be soldered to the PCB for mechanical stabil-  
ity, but have no internal connections to the device.  
56  
Preliminary Rev. 0.8  
SiM3C1xx  
5.2. SiM3C1x6 Pin Definitions  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
PB4.3  
PB0.9  
2
VSSHD  
PB0.10  
3
VIOHD  
PB0.11  
4
PB4.2  
PB0.12  
5
PB4.1  
PB0.13  
6
PB4.0  
PB0.14/TDO/SWV  
PB0.15/TDI  
PB1.0  
7
PB3.9  
8
PB3.8  
64 Pin TQFP  
9
PB3.7  
PB1.1  
10  
PB3.6  
VIO  
11  
PB3.5  
PB1.2  
12  
PB3.4  
PB1.3  
13  
PB3.3  
SWCLK/TCK  
SWDIO/TMS  
PB1.4  
14  
PB3.2  
15  
PB3.1  
16  
PB3.0  
PB1.5  
Figure 5.3. SiM3C1x6-GQ Pinout  
Preliminary Rev. 0.8  
57  
SiM3C1xx  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PB4.3  
PB0.9  
2
3
VSSHD  
VIOHD  
PB4.2  
PB4.1  
PB4.0  
PB3.9  
PB3.8  
PB3.7  
PB3.6  
PB3.5  
PB3.4  
PB3.3  
PB3.2  
PB3.1  
PB3.0  
PB0.10  
PB0.11  
4
PB0.12  
5
PB0.13  
6
PB0.14/TDO/SWV  
PB0.15/TDI  
PB1.0  
7
8
64 pin QFN  
9
(TopView)  
PB1.1  
10  
11  
12  
13  
14  
15  
16  
VIO  
PB1.2  
PB1.3  
SWCLK/TCK  
SWDIO/TMS  
PB1.4  
VSS  
PB1.5  
Figure 5.4. SiM3C1x6-GM Pinout  
58  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.2. Pin Definitions and alternate functions for SiM3C1x6  
Pin Name  
Type  
VSS  
Ground  
25  
59  
VDD  
VIO  
Power (Core)  
Power (I/O)  
58  
24  
39  
VREGIN  
VSSHD  
VIOHD  
RESET  
Power (Regulator)  
Ground (High Drive)  
Power (High Drive)  
Active-low Reset  
60  
2
3
64  
36  
35  
57  
SWCLK/TCK Serial Wire / JTAG  
SWDIO/TMS Serial Wire / JTAG  
PB0.0  
PB0.1  
PB0.2  
PB0.3  
PB0.4  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
XBR0  
XBR0  
XBR0  
XBR0  
XBR0  
ADC0.2  
CS0.1  
56  
55  
54  
53  
ADC0.3  
CS0.2  
ADC0.4  
CS0.3  
ADC0.5  
CS0.4  
ADC0.6  
CS0.5  
IVC0.0  
PB0.5  
PB0.6  
Standard I/O  
Standard I/O  
52  
51  
XBR0  
XBR0  
ADC0.7  
CS0.6  
IVC0.1  
ADC0.8  
CS0.7  
RTC1  
Preliminary Rev. 0.8  
59  
SiM3C1xx  
Table 5.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)  
Pin Name  
Type  
PB0.7  
PB0.8  
Standard I/O  
Standard I/O  
50  
49  
XBR0  
XBR0  
RTC2  
ADC0.9  
VREFGND  
PB0.9  
Standard I/O  
Standard I/O  
48  
47  
XBR0  
XBR0  
ADC0.10  
VREF  
PB0.10  
ADC1.6  
IDAC0  
PB0.11  
PB0.12  
PB0.13  
Standard I/O  
Standard I/O  
Standard I/O  
46  
45  
44  
43  
XBR0  
XBR0  
XBR0  
XBR0  
IDAC1  
XTAL1  
XTAL2  
PB0.14/TDO/ Standard I/O / JTAG  
SWV / Serial Wire Viewer  
ADC0.12  
ADC1.12  
PB0.15/TDI Standard I/O / JTAG  
42  
41  
40  
38  
37  
XBR0  
XBR0  
XBR0  
XBR0  
XBR0  
ADC0.13  
ADC1.13  
PB1.0  
PB1.1  
PB1.2  
PB1.3  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
ADC0.14  
ADC1.14  
ADC0.15  
ADC1.15  
ADC1.11  
CS0.8  
ADC1.10  
CS0.9  
PB1.4  
PB1.5  
PB1.6  
Standard I/O  
Standard I/O  
Standard I/O  
34  
33  
32  
XBR0  
XBR0  
XBR0  
ADC1.8  
ADC1.7  
ADC0T15  
WAKE.0  
ADC1.5  
CS0.10  
PB1.7  
Standard I/O  
31  
XBR0  
AD15m/  
A7  
ADC1T15  
WAKE.1  
ADC1.4  
CS0.11  
60  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)  
Pin Name  
Type  
PB1.8  
Standard I/O  
30  
29  
28  
27  
XBR0  
XBR0  
XBR0  
XBR0  
AD14m/  
A6  
WAKE.2  
WAKE.3  
ADC1.3  
CS0.12  
PB1.9  
PB1.10  
PB1.11  
Standard I/O  
Standard I/O  
Standard I/O  
AD13m/  
A5  
ADC1.2  
CS0.13  
AD12m/  
A4  
DMA0T1  
WAKE.4  
ADC1.1  
CS0.14  
AD11m/  
A3  
DMA0T0  
WAKE.5  
ADC1.0  
CS0.15  
PMU_Asleep  
PB1.12  
PB1.13  
PB1.14  
PB1.15  
PB2.0  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
26  
23  
22  
21  
20  
19  
18  
XBR0  
XBR0  
XBR0  
XBR0  
XBR1  
XBR1  
XBR1  
AD10m/  
A2  
WAKE.6  
AD9m/  
A1  
AD8m/  
A0  
AD7m/  
D7  
AD6m/  
D6  
LSI0 Yes  
LSI1 Yes  
LSI2 Yes  
INT0.0  
INT1.0  
PB2.1  
AD5m/  
D5  
INT0.1  
INT1.1  
PB2.2  
AD4m/  
D4  
INT0.2  
INT1.2  
CMP0N.0  
CMP1N.0  
RTC0OSC_OUT  
PB2.3  
PB3.0  
PB3.1  
Standard I/O  
5 V Tolerant I/O  
5 V Tolerant I/O  
17  
16  
15  
XBR1  
XBR1  
XBR1  
AD3m/  
D3  
LSI3 Yes  
INT0.3  
INT1.3  
CMP0P.0  
CMP1P.0  
AD2m/  
D2  
CMP0P.1  
CMP1P.1  
AD1m/  
D1  
CMP0N.1  
CMP1N.1  
Preliminary Rev. 0.8  
61  
SiM3C1xx  
Table 5.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)  
Pin Name  
Type  
PB3.2  
5 V Tolerant I/O  
14  
13  
XBR1  
XBR1  
AD0m/  
D0  
DAC0T0  
DAC1T0  
LPT0T0  
WAKE.8  
CMP0P.2  
CMP1P.2  
PB3.3  
5 V Tolerant I/O  
WR  
DAC0T1  
DAC1T1  
INT0.4  
CMP0N.2  
CMP1N.2  
INT1.4  
WAKE.9  
PB3.4  
PB3.5  
5 V Tolerant I/O  
5 V Tolerant I/O  
12  
11  
XBR1  
XBR1  
OE  
INT0.5  
INT1.5  
WAKE.10  
CMP0P.3  
CMP1P.3  
ALEm  
DAC0T2  
DAC1T2  
INT0.6  
CMP0N.3  
CMP1N.3  
INT1.6  
WAKE.11  
PB3.6  
PB3.7  
PB3.8  
5 V Tolerant I/O  
5 V Tolerant I/O  
5 V Tolerant I/O  
10  
9
XBR1  
XBR1  
XBR1  
CS0  
BE1  
CS1  
DAC0T3  
DAC1T3  
INT0.7  
INT1.7  
WAKE.12  
CMP0P.4  
CMP1P.4  
EXREGSP  
DAC0T4  
DAC1T4  
INT0.8  
INT1.8  
WAKE.13  
CMP0N.4  
CMP1N.4  
EXREGSN  
8
DAC0T5  
DAC1T5  
LPT0T1  
INT0.9  
CMP0P.5  
CMP1P.5  
EXREGOUT  
INT1.9  
WAKE.14  
62  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)  
Pin Name  
Type  
PB3.9  
5 V Tolerant I/O  
7
XBR1  
BE0  
DAC0T6  
DAC1T6  
LPT0T2  
INT0.10  
INT1.10  
WAKE.15  
CMP0N.5  
CMP1N.5  
EXREGBD  
PB4.0  
PB4.1  
PB4.2  
PB4.3  
High Drive I/O  
High Drive I/O  
High Drive I/O  
High Drive I/O  
6
5
4
1
LSO0  
LSO1  
LSO2  
LSO3  
Preliminary Rev. 0.8  
63  
SiM3C1xx  
5.3. SiM3C1x4 Pin Definitions  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PB4.3  
VSSHD  
VIOHD  
PB4.2  
PB4.1  
PB4.0  
PB3.3  
PB3.2  
PB3.1  
PB3.0  
PB0.4  
PB0.5  
PB0.6  
PB0.7  
PB0.8  
PB0.9  
SWCLK  
SWDIO  
PB0.10  
PB0.11  
3
4
5
40 pin QFN  
(Top View)  
6
7
8
9
VSS  
10  
Figure 5.5. SiM3C1x4-GM Pinout  
64  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.3. Pin Definitions and alternate functions for SiM3C1x4  
Pin Name  
Type  
VSS  
VDD  
Ground  
Power (Core)  
14  
35  
13  
36  
2
VIO  
Power (I/O)  
VREGIN  
VSSHD  
VIOHD  
RESET  
SWCLK  
SWDIO  
PB0.0  
Power (Regulator)  
Ground (High Drive)  
Power (High Drive)  
Active-low Reset  
Serial Wire  
3
40  
24  
23  
34  
Serial Wire  
Standard I/O  
XBR0  
ADC0.8  
CS0.7  
RTC1  
PB0.1  
PB0.2  
Standard I/O  
Standard I/O  
33  
32  
XBR0  
XBR0  
RTC2  
ADC0.9  
CS0.0  
VREFGND  
PB0.3  
PB0.4  
Standard I/O  
Standard I/O  
31  
30  
XBR0  
XBR0  
ADC0.10  
CS0.1  
VREF  
ADC1.6  
CS0.2  
IDAC0  
PB0.5  
PB0.6  
Standard I/O  
Standard I/O  
29  
28  
IDAC1  
XBR0  
XBR0  
ADC0.0  
CS0.3  
XTAL1  
PB0.7  
Standard I/O  
27  
ADC0.1  
CS0.4  
XTAL2  
Preliminary Rev. 0.8  
65  
SiM3C1xx  
Table 5.3. Pin Definitions and alternate functions for SiM3C1x4 (Continued)  
Pin Name  
Type  
PB0.8  
Standard I/O  
26  
25  
XBR0  
XBR0  
ADC0.14  
ADC1.14  
PB0.9  
Standard I/O  
ADC0.15  
ADC1.15  
PB0.10  
PB0.11  
PB0.12  
Standard I/O  
Standard I/O  
Standard I/O  
22  
21  
20  
XBR0  
XBR0  
XBR0  
DMA0T1  
DMA0T0  
ADC1.8  
ADC1.7  
ADC0T15  
WAKE.0  
ADC1.5  
CS0.10  
PB0.13  
PB0.14  
PB0.15  
PB1.0  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
Standard I/O  
19  
18  
17  
16  
15  
XBR0  
XBR0  
XBR0  
XBR0  
XBR0  
ADC1T15  
WAKE.1  
ADC1.4  
CS0.11  
WAKE.2  
WAKE.3  
WAKE.4  
WAKE.5  
ADC1.3  
CS0.12  
ADC1.2  
CS0.13  
ADC1.1  
CS0.14  
PB1.1  
ADC1.0  
CS0.15  
PMU_Asleep  
PB1.2  
Standard I/O  
12  
XBR0  
CMP0N.0  
CMP1N.0  
RTC0OSC_OUT  
PB1.3  
PB3.0  
Standard I/O  
11  
10  
XBR0  
XBR1  
CMP0P.0  
CMP1P.0  
5 V Tolerant I/O  
DAC0T0  
DAC1T0  
LPT0T0  
INT0.0  
CMP0P.1  
CMP1P.1  
EXREGSP  
INT1.0  
WAKE.12  
66  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 5.3. Pin Definitions and alternate functions for SiM3C1x4 (Continued)  
Pin Name  
Type  
PB3.1  
5 V Tolerant I/O  
9
8
7
XBR1  
XBR1  
XBR1  
DAC0T1  
DAC1T1  
LPT0T1  
INT0.1  
INT1.1  
WAKE.13  
CMP0N.1  
CMP1N.1  
EXREGSN  
PB3.2  
PB3.3  
5 V Tolerant I/O  
5 V Tolerant I/O  
DAC0T2  
DAC1T2  
LPT0T2  
INT0.2  
INT1.3  
WAKE.14  
CMP0P.2  
CMP1P.2  
EXREGOUT  
DAC0T3  
DAC1T3  
INT0.3  
CMP0N.2  
CMP1N.2  
EXREGBD  
INT1.3  
WAKE.15  
PB4.0  
PB4.1  
PB4.2  
PB4.3  
High Drive I/O  
High Drive I/O  
High Drive I/O  
High Drive I/O  
6
5
4
1
Preliminary Rev. 0.8  
67  
SiM3C1xx  
6. Ordering Information  
Si M3 C 1 4 4 – B – GM  
Temperature Grade and Package Type  
Revision  
Pin Count – 4 (40 pin), 6 (64 pin), 7 (80 or 92 pin)  
Memory Size – 3 (32 kB), 4 (64 kB), 5 (128 kB), 6 (256 kB)  
Feature Set – varies by family  
Family – U (USB), C (Core)  
Core – M3 (Cortex M3)  
Silicon Labs  
Figure 6.1. SiM3C1xx Part Numbering  
All devices in the SiM3C1xx family have the following features:  
Core: ARM Cortex-M3 with maximum operating frequency of 80 MHz.  
Flash Program Memory: 32-256 kB, in-system programmable.  
RAM: 8–32 kB SRAM, with 4 kB retention SRAM  
I/O: Up to 65 multifunction I/O pins, including high-drive and 5 V-tolerant pins.  
Clock Sources: Internal and external oscillator options.  
16-Channel DMA Controller.  
128/192/256-bit AES.  
16/32-bit CRC.  
Timers: 2 x 32-bit (4 x 16-bit).  
Real-Time Clock.  
Low-Power Timer.  
PCA: 1 x 6 channels (Enhanced), 2 x 2 channels (Standard). PWM, capture, and clock generation  
capabilites.  
ADC: 2 x 12-bit 250 ksps (10-bit 1 Msps) SAR.  
DAC: 2 x 10-bit IDAC.  
Temperature Sensor.  
Internal VREF.  
16-channel Capacitive Sensing (CAPSENSE).  
Comparator: 2 x low current.  
Current to Voltage Converter (IVC).  
Serial Buses: 2 x USART, 2 x UART, 3 x SPI, 2 x I2C, 1 x I2S.  
The inclusion of some features varies across different members of the device family. The differences are detailed in  
Table 6.1.  
68  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 6.1. Product Selection Guide  
SiM3C167-B-GM 256 32  
SiM3C167-B-GQ 256 32  
SiM3C166-B-GM 256 32  
SiM3C166-B-GQ 256 32  
SiM3C164-B-GM 256 32  
SiM3C157-B-GM 128 32  
SiM3C157-B-GQ 128 32  
SiM3C156-B-GM 128 32  
SiM3C156-B-GQ 128 32  
SiM3C154-B-GM 128 32  
SiM3C146-B-GM 64 16  
SiM3C146-B-GQ 64 16  
SiM3C144-B-GM 64 16  
24 65  
24 65  
16 50  
16 50  
28  
6
6
4
4
4
6
6
4
4
4
4
4
4
4
4
4
16 16 16 8/8 16  
16 16 16 8/8 16  
13 15 15 6/6 15  
13 15 15 6/6 15  
LGA-92  
TQFP-80  
QFN-64  
TQFP-64  
QFN-40  
LGA-92  
TQFP-80  
QFN-64  
TQFP-64  
QFN-40  
QFN-64  
TQFP-64  
QFN-40  
QFN-64  
TQFP-64  
QFN-40  
7
11 12 3/3 10  
24 65  
24 65  
16 50  
16 50  
28  
16 16 16 8/8 16  
16 16 16 8/8 16  
13 15 15 6/6 15  
13 15 15 6/6 15  
7
11 12 3/3 10  
16 50  
16 50  
28  
13 15 15 6/6 15  
13 15 15 6/6 15  
7
11 12 3/3 10  
SiM3C136-B-GM 32  
SiM3C136-B-GQ 32  
SiM3C134-B-GM 32  
8
8
8
16 50  
16 50  
28  
13 15 15 6/6 15  
13 15 15 6/6 15  
7
11 12 3/3 10  
Preliminary Rev. 0.8  
69  
SiM3C1xx  
6.1. LGA-92 Package Specifications  
Figure 6.2. LGA-92 Package Drawing  
Table 6.2. LGA-92 Package Dimensions  
Dimension  
Min  
0.74  
0.25  
3.15  
Nominal  
0.84  
Max  
0.94  
0.35  
3.25  
A
b
0.30  
c
3.20  
D
7.00 BSC  
6.50 BSC  
4.00 BSC  
0.50 BSC  
7.00 BSC  
6.50 BSC  
4.00 BSC  
D1  
D2  
e
E
E1  
E2  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
70  
Preliminary Rev. 0.8  
SiM3C1xx  
Figure 6.3. LGA-92 Landing Diagram  
Table 6.3. LGA-92 Landing Diagram Dimensions  
Dimension  
Typical  
6.50  
6.50  
0.50  
Max  
C1  
C2  
e
f
0.35  
3.20  
3.20  
P1  
P2  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. All feature sizes shown are at Maximum Material Condition (MMC)  
and a card fabrication tolerance of 0.05 mm is assumed.  
3. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994  
specification.  
4. This land pattern design is based on the IPC-7351 guidelines.  
Preliminary Rev. 0.8  
71  
SiM3C1xx  
6.1.1. LGA-92 Solder Mask Design  
All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad  
is to be 60 µm minimum, all the way around the pad.  
6.1.2. LGA-92 Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure  
good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.  
4. A 2 x 2 array of 1.25 mm square openings on 1.60 mm pitch should be used for the center ground pad.  
6.1.3. LGA-92 Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
72  
Preliminary Rev. 0.8  
SiM3C1xx  
6.2. TQFP-80 Package Specifications  
Figure 6.4. TQFP-80 Package Drawing  
Table 6.4. TQFP-80 Package Dimensions  
Dimension  
Min  
Nominal  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
0.05  
0.95  
0.17  
0.09  
1.00  
0.20  
c
D
14.00 BSC  
12.00 BSC  
0.50 BSC  
14.00 BSC  
12.00 BSC  
D1  
e
E
E1  
Preliminary Rev. 0.8  
73  
SiM3C1xx  
Table 6.4. TQFP-80 Package Dimensions (Continued)  
Dimension  
Min  
Nominal  
0.60  
Max  
L
0.45  
0.75  
L1  
1.00 Ref  
3.5°  
0°  
7°  
aaa  
bbb  
ccc  
ddd  
eee  
0.20  
0.20  
0.08  
0.08  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MS-026, variant ADD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C  
specification for Small Body Components.  
74  
Preliminary Rev. 0.8  
SiM3C1xx  
Figure 6.5. TQFP-80 Landing Diagram  
Table 6.5. TQFP-80 Landing Diagram Dimensions  
Dimension  
Min  
Max  
13.40  
13.40  
C1  
C2  
E
13.30  
13.30  
0.50 BSC  
X
0.20  
1.40  
0.30  
1.50  
Y
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
Preliminary Rev. 0.8  
75  
SiM3C1xx  
6.2.1. TQFP-80 Solder Mask Design  
All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad  
is to be 60 µm minimum, all the way around the pad.  
6.2.2. TQFP-80 Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure  
good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
6.2.3. TQFP-80 Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
76  
Preliminary Rev. 0.8  
SiM3C1xx  
6.3. QFN-64 Package Specifications  
Figure 6.6. QFN-64 Package Drawing  
Table 6.6. QFN-64 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nominal  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
9.00 BSC  
4.10  
D2  
e
3.95  
4.25  
0.50 BSC  
9.00 BSC  
4.10  
E
E2  
L
3.95  
0.30  
4.25  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Preliminary Rev. 0.8  
77  
SiM3C1xx  
Figure 6.7. QFN-64 Landing Diagram  
Table 6.7. QFN-64 Landing Diagram Dimensions  
Dimension  
mm  
8.90  
8.90  
0.50  
0.30  
0.85  
4.25  
4.25  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC).  
Least Material Condition (LMC) is calculated based on a  
Fabrication Allowance of 0.05 mm.  
78  
Preliminary Rev. 0.8  
SiM3C1xx  
6.3.1. QFN-64 Solder Mask Design  
All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad  
is to be 60 µm minimum, all the way around the pad.  
6.3.2. QFN-64 Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure  
good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
4. A 3x3 array of 1.0 mm square openings on a 1.5 mm pitch should be used for the center ground pad.  
6.3.3. QFN-64 Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
Preliminary Rev. 0.8  
79  
SiM3C1xx  
6.4. TQFP-64 Package Specifications  
Figure 6.8. TQFP-64 Package Drawing  
Table 6.8. TQFP-64 Package Dimensions  
Dimension  
Min  
Nominal  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
0.05  
0.95  
0.17  
0.09  
1.00  
0.22  
c
D
12.00 BSC  
10.00 BSC  
0.50 BSC  
12.00 BSC  
10.00 BSC  
0.60  
D1  
e
E
E1  
L
0.45  
0°  
0.75  
7°  
3.5°  
80  
Preliminary Rev. 0.8  
SiM3C1xx  
Table 6.8. TQFP-64 Package Dimensions (Continued)  
Dimension  
aaa  
Min  
Nominal  
Max  
0.20  
0.20  
0.08  
0.08  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MS-026, variant ACD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Preliminary Rev. 0.8  
81  
SiM3C1xx  
Figure 6.9. TQFP-64 Landing Diagram  
Table 6.9. TQFP-64 Landing Diagram Dimensions  
Dimension  
Min  
Max  
11.40  
11.40  
C1  
C2  
E
11.30  
11.30  
0.50 BSC  
X
0.20  
1.40  
0.30  
1.50  
Y
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
82  
Preliminary Rev. 0.8  
SiM3C1xx  
6.4.1. TQFP-64 Solder Mask Design  
All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad  
is to be 60 µm minimum, all the way around the pad.  
6.4.2. TQFP-64 Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure  
good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
6.4.3. TQFP-64 Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
Preliminary Rev. 0.8  
83  
SiM3C1xx  
6.5. QFN-40 Package Specifications  
Figure 6.10. QFN-40 Package Drawing  
Table 6.10. QFN-40 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nominal  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
6.00 BSC  
4.50  
D2  
e
4.35  
4.65  
0.50 BSC  
6.00 BSC  
4.5  
E
E2  
L
4.35  
0.30  
4.65  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
84  
Preliminary Rev. 0.8  
SiM3C1xx  
Figure 6.11. QFN-40 Landing Diagram  
Table 6.11. QFN-40 Landing Diagram Dimensions  
Dimension  
mm  
5.90  
5.90  
0.50  
0.30  
0.85  
4.65  
4.65  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC).  
Least Material Condition (LMC) is calculated based on a  
Fabrication Allowance of 0.05 mm.  
Preliminary Rev. 0.8  
85  
SiM3C1xx  
6.5.1. QFN-40 Solder Mask Design  
All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad  
is to be 60 µm minimum, all the way around the pad.  
6.5.2. QFN-40 Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure  
good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
4. A 3x3 array of 1.1 mm square openings on a 1.6 mm pitch should be used for the center ground pad.  
6.5.3. QFN-40 Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
86  
Preliminary Rev. 0.8  
SiM3C1xx  
7. Revision Specific Behavior  
This chapter details any known differences from behavior as stated in the device datasheet and reference manual.  
All known errata for the current silicon revision are rolled into this section at the time of publication. Any errata  
found after publication of this document will initially be detailed in a separate errata document until this datasheet is  
revised.  
7.1. Revision Identification  
The Lot ID Code on the top side of the device package can be used for decoding device revision information.  
Figures 7.1, 7.2, 7.3, and 7.4 show how to find the Lot ID Code on the top side of the device package.  
In addition, firmware can determine the revision of the device by checking the DEVICEID registers.  
SiM3C167  
BGNZEB  
1142  
This first character identifies  
the device revision  
Figure 7.1. LGA-92 SiM3C1x7 Revision Information  
SiM3C167  
A-GQ  
1131BCS701  
e3  
TW  
This character identifies the  
device revision  
Figure 7.2. TQFP-80 SiM3C1x7 Revision Information  
Preliminary Rev. 0.8  
87  
SiM3C1xx  
SiM3C166  
BGNZEB  
1142  
SiM3C166  
BGNZEB  
1142  
This first character identifies  
the device revision  
Figure 7.3. SiM3C1x6 Revision Information  
SIL  
M3C164  
BGNZ  
1142+  
This first character identifies  
the device revision  
Figure 7.4. SiM3C1x4 Revision Information  
7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)  
7.2.1. Problem  
On Revision A and Revision B devices, if the comparator output is high, the comparator rising and falling edge  
flags will both be set to 1 upon single-step or exit from debug mode.  
7.2.2. Impacts  
Firmware using the rising and falling edge flags to make decisions may see a false trigger of the comparator if the  
output of the comparator is high during a debug session. This does not impact the non-debug operation of the  
device.  
7.2.3. Workaround  
There is not a system-agnostic workaround for this issue.  
7.2.4. Resolution  
This issue exists on Revision A and Revision B devices. It may be corrected in a future device revision.  
88  
Preliminary Rev. 0.8  
SiM3C1xx  
NOTES:  
Preliminary Rev. 0.8  
89  
SiM3C1xx  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended  
to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and Precision32 are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders  
90  
Preliminary Rev. 0.8  

相关型号:

SIM3C157-B-GM

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SiM3C157-B-GQ

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SIM3C164-B-GM

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SIM3C166-B-GM

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SiM3C166-B-GQ

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SIM3C167-B-GM

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SiM3C167-B-GQ

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SIM3C1XX

High-Performance, Low-Power, 32-Bit Precision32™
SILICON

SiM3L134-C-GM

Version 0.5 of the SiM3L1xx datasheet is now available
SILICON

SiM3L136-C-GM

Version 0.5 of the SiM3L1xx datasheet is now available
SILICON

SiM3L136-C-GQ

Version 0.5 of the SiM3L1xx datasheet is now available
SILICON

SiM3L144-C-GM

Version 0.5 of the SiM3L1xx datasheet is now available
SILICON