TS1109-200IDT833 [SILICON]

Overcurrent and Undercurrent Detection;
TS1109-200IDT833
型号: TS1109-200IDT833
厂家: SILICON    SILICON
描述:

Overcurrent and Undercurrent Detection

文件: 总20页 (文件大小:855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS1109 Data Sheet  
TS1109 Bidirectional Current-Sense Amplifier with Buffered Bipo-  
lar Output  
KEY FEATURES  
• Low Supply Current  
The TS1109 incorporates a bidirectional current-sense amplifier plus a buffered bipolar  
output with an adjustable bias. The internal configuration of the TS1109 high-side cur-  
rent-sense amplifier is a variation of the TS1101 bidirectional current-sense amplifier,  
consuming 0.68 µA(typ) and 1.2 µA(max). The current-sense amplifier’s buffered output  
consumes only 0.76 µ A(typ) and 1.3 µA(max) of supply current. With an input offset volt-  
age of 150 µV(max) and a gain error of 1%(max), the TS1109 is optimized for high preci-  
sion current measurements  
• Current Sense Amplifier: 0.68 µA  
• I  
: 0.76 µA  
VDD  
• High Side Bidirectional Current Sense  
Amplifier  
• Wide CSA Input Common Mode Range: +2  
V to +27 V  
• Low CSA Input Offset Voltage: 150  
µV(max)  
Applications  
• Low Gain Error: 1%(max)  
• Power Management Systems  
• Portable/Battery-Powered Systems  
• Smart Chargers  
• Two Gain Options Available:  
• Gain = 20 V/V : TS1109-20  
• Gain = 200 V/V : TS1109-200  
• Battery Monitoring  
• 8-Pin TDFN Packaging (3 mm x 3 mm)  
• Overcurrent and Undercurrent Detection  
• Remote Sensing  
• Industrial Controls  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0  
TS1109 Data Sheet  
Ordering Information  
1. Ordering Information  
Table 1.1. Ordering Part Numbers  
Ordering Part Number  
TS1109-20IDT833  
Description  
Gain V/V  
20  
Bidirectional current sense amplifier with buffered bipolar output  
Bidirectional current sense amplifier with buffered bipolar output  
TS1109-200 IDT833  
200  
Note: Adding the suffix “T” to the part number (e.g. TS1109-200IDT833T) denotes tape and reel.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 1  
TS1109 Data Sheet  
System Overview  
2. System Overview  
2.1 Functional Block Diagram  
Figure 2.1. TS1109 Bidirectional Bipolar Buffered Current Sense Amplifier Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 2  
TS1109 Data Sheet  
System Overview  
2.2 Current Sense Amplifier + Output Buffer  
The internal configuration of the TS1109 bidirectional current-sense amplifier is a variation of the TS1101 bidirectional current-sense  
amplifier. The TS1109 current-sense amplifier is configured for fully differential input/output operation.  
Referring to the block diagram, the inputs of the TS1109’s differential input/output amplifier are connected to RS+ and RS– across an  
external RSENSE resistor that is used to measure current. At the non-inverting input of the current-sense amplifier, the applied voltage  
difference in voltage between RS+ and RS– is ILOAD x RSENSE. Since the RS– terminal is the non-inverting input of the internal op-amp,  
the current-sense op-amp action drives PMOS[1/2] to drive current across RGAIN[A/B] to equalize voltage at its inputs.  
Thus, since the M1 PMOS source is connected to the inverting input of the internal op-amp and since the voltage drop across RGAINA is  
the same as the external VSENSE, the M1 PMOS’ drain-source current is equal to:  
V
SENSE  
I
I
=
=
DS(M 1)  
R
GAINA  
I
× R  
LOAD  
SENSE  
GAINA  
DS(M 1)  
R
The drain terminal of the M1 PMOS is connected to the transimpedance amplifier’s gain resistor, ROUT, via the inverting terminal. The  
non-inverting terminal of the transimpedance amplifier is internally connected to VBIAS, therefore the output voltage of the TS1109 at  
the OUT terminal is:  
R
OUT  
V
= V  
I  
× R  
×
OUT  
BIAS  
LOAD  
SENSE  
R
GAINA  
When the voltage at the RS– terminal is greater than the voltage at the RS+ terminal, the external VSENSE voltage drop is impressed  
upon RGAINB. The voltage drop across RGAINB is then converted into a current by the M2 PMOS. The M2 PMOS drain-source current is  
the input current for the NMOS current mirror which is matched with a 1-to-1 ratio. The transimpedance amplifier sources the M2 PMOS  
drain-source current for the NMOS current mirror. Therefore, the output voltage of the TS1109 at the OUT terminal is:  
R
OUT  
V
= V  
+ I  
× R  
×
OUT  
BIAS  
LOAD  
SENSE  
R
GAINB  
When M1 is conducting current (VRS+ > VRS–), the TS1109’s internal amplifier holds M2 OFF. When M2 is conducting current (VRS–  
VRS+), the internal amplifier holds M1 OFF. In either case, the disabled PMOS does not contribute to the resultant output voltage.  
>
The current-sense amplifier’s gain accuracy is therefore the ratio match of ROUT to RGAIN[A/B]. For each of the two gain options availa-  
ble, The following table lists the values for RGAIN[A/B]  
.
Table 2.1. Internal Gain Setting Resistors (Typical Values)  
GAIN (V/V)  
RGAIN[A/B] (Ω)  
ROUT (Ω)  
40 k  
Part Number  
TS1109-20  
20  
2 k  
200  
200  
40 k  
TS1109-200  
The TS1109 allows access to the inverting terminal of the transimpedance amplifier by the FILT pin, whereby a series RC filter may be  
connected to reduce noise at the OUT terminal. The recommended RC filter is 4 kΩ and 0.47 µF connected in series from FILT to GND  
to suppress the noise. Any capacitance at the OUT terminal should be minimized for stable operation of the buffer.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 3  
TS1109 Data Sheet  
System Overview  
2.3 Sign Output  
The TS1109 SIGN output indicates the load current’s direction. The SIGN output is a logic HIGH when M1 is conducting current (VRS+  
> VRS–). Alternatively, the SIGN output is a logic LOW when M2 is conducting current (VRS– > VRS+). The SIGN comparator’s transfer  
characteristic is illustrated in the figure below. Unlike other current-sense amplifiers that implement an OUT/SIGN arrangement, the  
TS1109 exhibits no “dead zone” at ILOAD switchover.  
Figure 2.2. TS1109 Sign Output Transfer Characteristic  
2.4 Selecting a Sense Resistor  
Selecting the optimal value for the external RSENSE is based on the following criteria and for each commentary follows:  
1. RSENSE Voltage Loss  
2. VOUT Swing vs. Desired VSENSE and Applied Supply Voltage at VDD  
3. Total ILOAD Accuracy  
4. Circuit Efficiency and Power Dissipation  
5. RSENSE Kelvin Connections  
2.4.1 RSENSE Voltage Loss  
For lowest IR power dissipation in RSENSE, the smallest usable resistor value for RSENSE should be selected.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 4  
TS1109 Data Sheet  
System Overview  
2.4.2 VOUT Swing vs. Desired VSENSE and Applied Supply Voltage at VDD  
Although the Current Sense Amplifier draws its power from the voltage at its RS+ and RS– terminals, the signal voltage at the OUT  
terminal is provided by a buffer, and is therefore bounded by the buffer’s output range. As shown in the Electrical Characteristics table,  
the CSA Buffer has a maximum and minimum output voltage of:  
V
V
= VDD  
= 0.2V  
0.2V  
(min )  
OUT (max )  
OUT (min )  
Therefore, the full-scale sense voltage should be chosen so that the OUT voltage is neither greater nor less than the maximum and  
minimum output voltage defined above. To satisfy this requirement, the positive full-scale sense voltage, VSENSE(pos_max), should be  
chosen so that:  
VBIAS V  
OUT (min )  
V
<
SENSE(pos_max )  
GAIN  
Likewise, the negative full-scale sense voltage, VSENSE(neg_min), should be chosen so that:  
V
VBIAS  
OUT (max )  
V
<
SENSE(neg_min )  
GAIN  
For best performance, RSENSE should be chosen so that the full-scale VSENSE is less than ±75 mV.  
2.4.3 Total Load Current Accuracy  
In the TS1109’s linear region where VOUT(min) < VOUT < VOUT(max), there are two specifications related to the circuit’s accuracy: a) the  
TS1109 CSA’s input offset voltage (VOS(max) = 150 µV), b) the TS1109 CSA’s gain error (GE(max) = 1%). An expression for the  
TS1109’s total error is given by:  
V
= VBIAS GAIN × 1 ± GE × V  
± GAIN × V  
SENSE OS  
(
)
(
)
OUT  
A large value for RSENSE permits the use of smaller load currents to be measured more accurately because the effects of offset voltag-  
es are less significant when compared to larger VSENSE voltages. Due care though should be exercised as previously mentioned with  
large values of RSENSE  
.
2.4.4 Circuit Efficiency and Power Dissipation  
IR loses in RSENSE can be large especially at high load currents. It is important to select the smallest, usable RSENSE value to minimize  
power dissipation and to keep the physical size of RSENSE small. If the external RSENSE is allowed to dissipate significant power, then  
its inherent temperature coefficient may alter its design center value, thereby reducing load current measurement accuracy. Precisely  
because the TS1109 CSA’s input stage was designed to exhibit a very low input offset voltage, small RSENSE values can be used to  
reduce power dissipation and minimize local hot spots on the pcb.  
2.4.5 RSENSE Kelvin Connections  
For optimal VSENSE accuracy in the presence of large load currents, parasitic pcb track resistance should be minimized. Kelvin-sense  
pcb connections between RSENSE and the TS1109’s RS+ and RS– terminals are strongly recommended. The drawing below illustrates  
the connections between the current-sense amplifier and the current-sense resistor. The pcb layout should be balanced and symmetri-  
cal to minimize wiring-induced errors. In addition, the pcb layout for RSENSE should include good thermal management techniques for  
optimal RSENSE power dissipation.  
Figure 2.3. Making PCB Connections to RSENSE  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 5  
TS1109 Data Sheet  
System Overview  
2.4.6 RSENSE Composition  
Current-shunt resistors are available in metal film, metal strip, and wire-wound constructions. Wire-wound current-shunt resistors are  
constructed with wire spirally wound onto a core. As a result, these types of current shunt resistors exhibit the largest self-inductance. In  
applications where the load current contains high-frequency transients, metal film or metal strip current sense resistors are recommen-  
ded.  
2.4.7 Internal Noise Filter  
In power management and motor control applications, current-sense amplifier are required to measure load currents accurately in the  
presence of both externally-generated differential and common-mode noise. An example of differential-mode noise that can appear at  
the inputs of a current-sense amplifier is high-frequency ripple. High-frequency ripple (whether injected into the circuit inductively or ca-  
pacitively) can produce a differential-mode voltage drop across the external current-shunt resistor, RSENSE. An example of externally-  
generated, common-mode noise is the high-frequency output ripple of a switching regulator that can result in common-mode noise in-  
jection into both inputs of a current-sense amplifier.  
Even though the load current signal bandwidth is dc, the input stage of any current-sense amplifier can rectify unwanted, out-of-band  
noise that can result in an apparent error voltage at its output. Against common-mode injection noise, the current-sense amplifier’s in-  
ternal common-mode rejection ratio is 130 dB (typ).  
To counter the effects of externally-injected noise, the TS1109 incorporates a 50 kHz (typ), 2nd-order differential low-pass filter as  
shown in the TS1109’s block diagram, thereby eliminating the need for an external low-pass filter, which can generate errors in the  
offset voltage and the gain error.  
2.4.8 PC Board Layout and Power-Supply Bypassing  
For optimal circuit performance, the TS1109 should be in very close proximity to the external current-sense resistor, and the pcb tracks  
from RSENSE to the RS+ and the RS– input terminals of the TS1109 should be short and symmetric. Also recommended are surface  
mount resistors and capacitors, as well as a ground plane.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 6  
TS1109 Data Sheet  
Electrical Characteristics  
3. Electrical Characteristics  
Table 3.1. Recommended Operating Conditions1  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
System Specifications  
Operating Voltage Range  
Common-Mode Input Range  
Note:  
VDD  
VCM  
1.7  
2
5.25  
27  
V
V
VRS+, Guaranteed by CMRR  
1. All devices 100% production tested at TA = +25 °C. Limits over Temperature are guaranteed by design and characterization.  
Table 3.2. DC Characteristics1  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
System Specifications  
No Load Input Supply Current  
IRS+ + IRS–  
IVDD  
See Note 2  
0.68  
0.76  
1.2  
1.3  
µA  
µA  
Current Sense Amplifier  
Common Mode Rejection Ratio  
Input Offset Voltage (See Note 3)  
CMRR  
VOS  
2 V < VRS+ < 27 V  
TA = +25 °C  
120  
28  
130  
±100  
±150  
±200  
dB  
µV  
µV  
µV  
V/V  
–40 °C < TA < +85 °C  
TA = +25 °C  
VOS Hysteresis (See Note 4)  
Gain  
VHYS  
G
10  
TS1109-20  
20  
TS1109-200  
200  
±0.1  
Positive Gain Error (See Note 5)  
Negative Gain Error (See Note 5)  
Gain Match (See Note 5)  
GE+  
GE–  
GM  
TA = +25 °C  
±0.6  
±1  
%
%
%
%
%
%
kΩ  
–40 °C < TA < +85 °C  
TA = +25 °C  
±0.6  
±1  
–40 °C < TA < +85 °C  
TA = +25 °C  
±1.4  
±1  
±0.6  
–40 °C < TA < +85 °C  
From FILT to OUT  
±1.4  
52.8  
Transfer Resistance  
CSA Buffer  
ROUT  
40  
Input Bias Current  
Input referred DC Offset  
Offset Drift  
IBuffer_BIAS  
VBuffer_OS  
TCVBuffer_OS  
VBuffer_CM  
–40 °C < TA < +85 °C  
0.3  
±2.5  
nA  
mV  
µV/°C  
V
–40 °C < TA < +85 °C  
–40C < TA < +85 °C  
IOUT = ±150 µA  
0.6  
Input Common Mode Range  
Output Range  
0.2  
0.2  
VDD – 0.2  
VDD – 0.2  
VOUT(min,max)  
V
Sign Comparator Parameters  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 7  
TS1109 Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
VSIGN_OL  
VSIGN_OH  
Conditions  
Min  
Typ  
Max  
0.2  
Units  
Output Low Voltage  
Output High Voltage  
Note:  
VDD = 1.8 V, ISINK = 35 µA  
V
V
VDD = 1.8 V, ISOURCE = 35 µA VDD – 0.2  
1. RS+ = RS– = 3.6 V, VSENSE = (VRS+ – VRS–) = 0 V, VDD = 3 V, VBIAS = 1.5 V, FILT connected to 4 kW and 470 nF in series to  
GND. TA = TJ = –40 °C to +85 °C unless otherwise noted. Typical values are at TA = +25 °C.  
2. Extrapolated to VOUT = VFILT. IRS+ + IRS– is the total current into the RS+ and the RS– pins.  
3. Input offset voltage VOS is extrapolated from a VOUT(+) measurement with VSENSE set to +1 mV and a VOUT(–) measurement with  
VSENSE set to –1 mV; Average VOS = (VOUT(–) – VOUT(+))/(2 x GAIN).  
4. Amplitude of VSENSE lower or higher than VOS required to cause the comparator to switch output states.  
5. Gain error is calculated by applying two values for VSENSE and then calculating the error of the actual slope vs. the ideal transfer  
characteristic: For GAIN = 20 V/V, the applied VSENSE for GE± is ±25 mV and ±60 mV. For GAIN = 200 V/V, the applied VSENSE  
for GE± is ±2.5 mV and ±6 mV.  
Table 3.3. AC Characteristics  
Parameter  
Symbol  
tOUT_s  
Conditions  
Min  
Typ  
Max  
Units  
msec  
msec  
CSA Buffer  
Output Settling time  
Sign Comparator  
Propagation Delay  
1% Final value, VOUT = 1.3 V  
Gain = 20 V/V  
1.35  
tSIGN_PD  
VSENSE = ±1 mV  
VSENSE = ±10 mV  
3
0.4  
msec  
Table 3.4. Thermal Conditions  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
+85  
Units  
Operating Temperature Range  
TOP  
–40  
°C  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 8  
TS1109 Data Sheet  
Electrical Characteristics  
Table 3.5. Absolute Maximum Limits  
Parameter  
Symbol  
VRS+  
Conditions  
Min  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
Typ  
Max  
Units  
RS+ Voltage  
27  
V
V
V
V
V
V
V
V
RS– Voltage  
VRS–  
27  
Supply Voltage  
VDD  
6
OUT Voltage  
VOUT  
6
SIGN Voltage  
VSIGN  
VFILT  
VVBIAS  
RS+ – VRS–  
6
FILT Voltage  
6
VDD + 0.3  
27  
VBIAS Voltage  
RS+ to RS– Voltage  
Short Circuit Duration: OUT to GND  
Continuous Input Current (Any Pin)  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10 s)  
Soldering Temperature (Reflow)  
ESD Tolerance  
V
Continuous  
20  
–20  
mA  
°C  
°C  
°C  
°C  
150  
–65  
150  
300  
260  
Human Body Model  
Machine Model  
2000  
200  
V
V
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 9  
TS1109 Data Sheet  
Electrical Characteristics  
For the following graphs, VRS+ = VRS– = 3.6 V; VDD = 3 V; VBIAS = 1.5 V, and TA = +25 C unless otherwise noted.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 10  
TS1109 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 11  
TS1109 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 12  
TS1109 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 13  
TS1109 Data Sheet  
Typical Application Circuit  
4. Typical Application Circuit  
Figure 4.1. TS1109 Typical Application Circuit  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 14  
TS1109 Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
TS1109  
Table 5.1. Pin Descriptions  
Pin  
Label  
SIGN  
VDD  
Function  
1
Sign output. SIGN is HIGH for VRS+ >VRS– and LOW for VRS– >VRS+  
External power supply pin. Connect this to the system’s VDD supply.  
.
2
3
VBIAS Bias voltage for CSA output. When VREF is activated, leave open.  
4
GND  
OUT  
FILT  
RS+  
Ground. Connect to analog ground.  
5
CSA buffered output. Connect to CIN–.  
6
Inverting terminal of CSA Buffer. Connect a series RC Filter of 4 kΩ and 0.47 µF, otherwise leave open.  
External Sense Resistor Power-Side Connection.  
7
8
RS–  
External Sense Resistor Load-Side Connection.  
Exposed Pad  
EPAD  
Exposed backside paddle. For best electrical and thermal performance, solder to analog ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 15  
TS1109 Data Sheet  
Packaging  
6. Packaging  
Figure 6.1. TS1109 3x3 mm 8-TDFN Package Diagram  
Table 6.1. Package Dimensions  
Dimension  
Min  
0.70  
0.00  
Nom  
0.75  
Max  
A
A1  
A2  
b
0.80  
0.05  
0.02  
0.20 REF  
0.30  
0.25  
1.49  
0.35  
1.51  
D
3.00 BSC  
1.50  
D2  
e
0.65 BSC  
3.00 BSC  
1.75  
E
E2  
L
1.65  
0.30  
0.20  
1.85  
0.50  
0.30  
0.40  
K
0.25  
J
0.65 REF  
0.10  
aaa  
bbb  
ccc  
0.05  
0.05  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
4. This drawing conforms to the JEDEC Solid State Outline MO-229.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 16  
TS1109 Data Sheet  
Top Marking  
7. Top Marking  
Figure 7.1. Top Marking  
Table 7.1. Top Marking Explanation  
Mark Method  
Laser  
Circle = 0.50 mm Diameter (lower left corner)  
0.50 mm (20 mils)  
Pin 1 Mark:  
Font Size:  
Line 1 Mark Format:  
Line 2 Mark Format:  
Line 3 Mark Format:  
Product ID  
Note: A = 20 gain, B = 200 gain  
Manufacturing code  
TTTT – Mfg Code  
YY = Year; WW = Work Week  
Year and week of assembly  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 17  
Table of Contents  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.2 Current Sense Amplifier + Output Buffer . . . . . . . . . . . . . . . . . . . . . 3  
2.3 Sign Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4 Selecting a Sense Resistor . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4.1 RSENSE Voltage Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4.2 VOUT Swing vs. Desired VSENSE and Applied Supply Voltage at VDD. . . . . . . . . . 5  
2.4.3 Total Load Current Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.4.4 Circuit Efficiency and Power Dissipation . . . . . . . . . . . . . . . . . . . . 5  
2.4.5 RSENSE Kelvin Connections . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.4.6 RSENSE Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.4.7 Internal Noise Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.4.8 PC Board Layout and Power-Supply Bypassing . . . . . . . . . . . . . . . . . . 6  
3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7. Top Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table of Contents 18  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

TS1109-20IDT833

Overcurrent and Undercurrent Detection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS110F11IDT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F11IET

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F11IST

Series - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F12IHT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F13CCT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F1XCKT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F1YCAT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F21IBT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F21IKT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F22ILT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS110F23CCT

Parallel - Fundamental Quartz Crystal, 11MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS