WT41-E-HCI [SILICON]

Telecom Circuit, 1-Func, MODULE-59/57;
WT41-E-HCI
型号: WT41-E-HCI
厂家: SILICON    SILICON
描述:

Telecom Circuit, 1-Func, MODULE-59/57

电信 电信集成电路
文件: 总42页 (文件大小:1196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WT41-E  
DATA SHEET  
Thursday, 02 October 2014  
Version 1.4  
VERSION HISTORY  
Version  
1.0  
Comment  
Release  
1.1  
Power vs supply voltage figure added  
Typo corrections  
1.2  
1.3  
Certification information updated  
Absolute maximum supply voltage 3.7V  
1.31  
NCC certification info added. HCI30 removed from the ordering information  
list.  
1.32  
1.33  
1.34  
1.4  
NCC labeling info added in Chinese  
Duplicate spurious emissions table removed  
MSL information added  
Silicon Labs  
TABLE OF CONTENTS  
1
2
3
Ordering Information......................................................................................................................................7  
Pinout and Terminal Description ...................................................................................................................8  
Electrical Characteristics ............................................................................................................................ 11  
3.1  
Absolute Maximum Ratings ................................................................................................................ 11  
Recommended Operating Conditions................................................................................................. 11  
PIO Current Sink and Source Capability............................................................................................. 11  
Transmitter Performance For BDR ..................................................................................................... 12  
3.2  
3.3  
3.4  
3.4.1  
Radiated Spurious Emissions...................................................................................................... 13  
Receiver Performance ........................................................................................................................ 13  
Current Consumption .......................................................................................................................... 14  
Antenna Specification ......................................................................................................................... 15  
3.5  
3.6  
3.7  
4
5
6
Physical Dimensions .................................................................................................................................. 16  
Layout Guidelines....................................................................................................................................... 18  
UART Interface........................................................................................................................................... 19  
6.1  
UART Bypass...................................................................................................................................... 21  
UART Configuration While Reset is Active ......................................................................................... 21  
UART Bypass Mode............................................................................................................................ 21  
6.2  
6.3  
7
USB Interface ............................................................................................................................................. 22  
7.1  
USB Data Connections ....................................................................................................................... 22  
USB Pull-Up resistor ........................................................................................................................... 22  
USB Power Supply.............................................................................................................................. 22  
Self-Powered Mode............................................................................................................................. 22  
Bus-Powered Mode............................................................................................................................. 23  
USB Suspend Current......................................................................................................................... 24  
USB Detach and Wake-Up Signaling.................................................................................................. 24  
USB Driver .......................................................................................................................................... 25  
USB v2.0 Compliance and Compatibility ............................................................................................ 25  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
8
9
Serial Peripheral Interface (SPI)................................................................................................................. 26  
PCM Codec Interface ................................................................................................................................. 27  
9.1  
PCM Interface Master/Slave ............................................................................................................... 27  
Long Frame Sync................................................................................................................................ 28  
Short Frame Sync ............................................................................................................................... 28  
Multi-slot Operation ............................................................................................................................. 29  
GCI Interface....................................................................................................................................... 29  
Slots and Sample Formats.................................................................................................................. 30  
Additional Features ............................................................................................................................. 31  
PCM_CLK and PCM_SYNC Generation ............................................................................................ 31  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
Silicon Labs  
9.9  
10  
10.1  
11  
11.1  
12  
PCM Configuration.............................................................................................................................. 32  
I/O Parallel Ports..................................................................................................................................... 34  
PIO Defaults................................................................................................................................. 34  
Reset....................................................................................................................................................... 35  
Pin States on Reset ..................................................................................................................... 36  
Certifications ........................................................................................................................................... 37  
Bluetooth...................................................................................................................................... 37  
FCC and IC .................................................................................................................................. 37  
12.1  
12.2  
12.2.1 FCC et IC ..................................................................................................................................... 39  
12.3  
CE ................................................................................................................................................ 41  
MIC Japan.................................................................................................................................... 41  
KCC (Korea)................................................................................................................................. 41  
NCC Taiwan................................................................................................................................. 42  
12.4  
12.5  
12.6  
12.6.1 NCC Taiwan labeling requirements............................................................................................. 42  
12.7  
12.8  
Qualified Antenna Types for WT41-E.......................................................................................... 42  
Moisture Sensitivity Level (MSL).................................................................................................. 43  
Contact Information ........................................................................................................................................... 44  
Silicon Labs  
WT41 Bluetooth® Module  
DESCRIPTION  
FEATURES:  
WT41-E is a long range class 1, Bluetooth® 2.1 +  
EDR module. WT41-E is a highly integrated and  
sophisticated Bluetooth® module, containing all the  
necessary elements from Bluetooth® radio and a  
fully implemented protocol stack. Therefore WT41-E  
provides an ideal solution for developers who want  
to integrate Bluetooth® wireless technology into  
their design with limited knowledge of Bluetooth®  
and RF technologies. WT41-E is optimized for long  
range applications and since it contains a RF power  
amplifier, low noise amplifier and a u.fi connector for  
an external 2 dBi dipole antenna. With 115 dB radio  
budget WT41-E can reach over 1 km range in line  
off sight.  
Fully Qualified Bluetooth v2.1 + EDR end  
product  
CE qualified  
Modular certification for FCC, IC and KCC  
MIC Japan compatibility fully tested with ARIB  
STD-T66  
TX power : 19 dBm  
RX sensitivity : -92 dBm  
Higly efficient chip antenna, U.FL connector or  
RF pin  
Class 1, range up to 800 meters  
Industrial temperature range from -40oC to  
+85oC  
By default WT41-E module is equipped with  
powerful and easy-to-use iWRAP firmware. iWRAP  
enables users to access Bluetooth® functionality  
with simple ASCII commands delivered to the  
module over serial interface - it's just like a  
Bluetooth® modem.  
RoHS Compliant  
USB interface (USB 2.0 compatible)  
UART with bypass mode  
6 x GPIO  
1 x 8-bit AIO  
Support for 802.11 Coexistence  
Integrated iWRAPTM Bluetooth stack or HCI  
firmware  
APPLICATIONS:  
Hand held terminals  
Industrial devices  
Point-of-Sale systems  
PCs  
Personal Digital Assistants (PDAs)  
Computer Accessories  
Access Points  
Automotive Diagnostics Units  
Silicon Labs  
1 Ordering Information  
WT41-E-HCI  
Firmware  
HCI  
HCI21= HCI firmware (Bluetooth 2.1 + EDR)  
=
HCI firmware (Bluetooth 2.0 + EDR)  
AI  
=
=
=
=
iWRAP 2.2.0  
iWRAP 3.0.0  
iWRAP 4.0.0  
Custom*  
AI3  
AI4  
C
HW version  
E
=
u.fl connector  
Product series  
Silicon Labs  
Page 7 of 44  
2 Pinout and Terminal Description  
Pins 1 and 52 (GND)  
are not connected  
and have been  
removed  
51  
RF  
RFGND  
2
3
4
5
6
7
50  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
49  
48  
GND  
GND  
GND  
GND  
GND  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
GND  
VDD_PA  
PIO2  
GND  
AIO  
UART_TX  
PIO3  
PIO5  
UART_RTS  
UART_RX  
GND  
USB+  
USB-  
UART_CTS  
PCM_IN  
PCM_CLK  
PCM_SYNC  
GND  
SPI_MOSI  
SPI_MISO  
SPI_CLK  
SPI_CSB  
GND  
PIO7  
PIO6  
RESET  
VDD  
GND  
Figure 1: WT41-E pin out  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
Pins 1 and 52 (GND) have been removed  
from the module.  
NC  
1, 52  
Not connected  
Input, weak internal pull- Active low reset. Keep low for >5 ms  
RESET  
33  
up  
to cause a reset  
2-10, 16,  
23,24,26-  
28, 30,  
31,36,44-  
49, 53-59  
GND  
RF  
GND  
GND  
RF output for WT41-N. For WT41-A  
and WT41-E this pin is not connected  
51  
RF output  
RF ground. Connected to GND internally to  
the module.  
Supply voltage for the RF power amplifier  
and the low noise amplifier of the module  
Supply voltage for BC4 and the flash  
memory  
RFGND  
VDD_PA  
VDD  
50  
11  
32  
GND  
Supply voltage  
Supply voltage  
Table 1: Supply and RF Terminal Descriptions  
Silicon Labs  
Page 8 of 44  
PIN  
NUMBER  
PIO PORT  
PAD TYPE  
DESCRIPTION  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
PIO[2]  
PIO[3]  
PIO[4]  
PIO[5]  
PIO[6]  
12  
13  
29  
41  
34  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
PIO[7]  
AIO[1]  
35  
43  
Programmamble analog  
input/output line  
Table 2: GPIO Terminal Descriptions  
Bi-directional  
PCM  
INTERFACE  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
CMOS output, tri-state,  
weak internal pull-down  
PCM_OUT  
25  
20  
22  
21  
Synchronous data output  
Synchronous data input  
Synchronous data sync  
Synchronous data clock  
CMOS input, weak  
internal pull-down  
PCM_IN  
Bi-directional, weak  
internal pull-down  
PCM_SYNC  
PCM_CLK  
Bi-directional, weak  
internal pull-down  
Table 3: PCM Terminal Descriptions  
UART  
Interfaces  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
CMOS output, tri-  
UART_TX  
42  
state, with weak UART data output, active high  
internal pull-up  
CMOS output, tri-  
UART_RTS#  
UART_RX  
14  
15  
19  
state, with weak UART request to send, active low  
internal pull-up  
CMOS input, tri-  
state, with weak UART data input, active high  
internal pull-down  
CMOS input, tri-  
state, with weak UART clear to send, active low  
internal pull-down  
UART_CTS#  
Table 4: UART Terminal Descriptions  
Silicon Labs  
Page 9 of 44  
PIN  
NUMBER  
USB Interfaces  
PAD TYPE  
DESCRIPTION  
USB data plus with selectable internal 1.5k  
pull-up resistor  
USB data minus  
USB+  
USB-  
17  
18  
Bidirectional  
Bidirectional  
Table 5: USB Terminal Descriptions  
SPI  
INTERFACE  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
SPI data input  
CMOS input with weak  
internal pull-down  
SPI_MOSI  
40  
CMOS input with weak Chip select for Serial Peripheral  
SPI_CS#  
37  
internal pull-up  
Interface, active low  
CMOS input with weak  
internal pull-down  
CMOS output, tristate,  
with weak internal pull SPI data output  
down  
SPI_CLK  
38  
39  
SPI clock  
SPI_MISO  
Table 6: Terminal Descriptions  
Silicon Labs  
Page 10 of 44  
3 Electrical Characteristics  
3.1 Absolute Maximum Ratings  
Rating  
Min  
Max  
Unit  
Storage Temperature  
-40  
85  
°C  
VDD_PA, VDD  
-0.4  
3.7  
V
V
Other Terminal Voltages  
VSS-0.4  
VDD+0.4  
Table 7: Absolute Maximum Ratings  
3.2 Recommended Operating Conditions  
Rating  
Min  
-40  
3.0  
Max  
85  
3.6  
Unit  
°C  
V
Operating Temperature Range  
VDD_PA, VDD *)  
*) VDD_PA has an effect on the RF output power.  
Table 8: Recommended Operating Conditions  
3.3 PIO Current Sink and Source Capability  
Figure 2: WT41-E PIO Current Drive Capability  
Silicon Labs  
Page 11 of 44  
3.4 Transmitter Performance For BDR  
Antenna gain 2.3dBi taken into account  
RF Characetristics, VDD = 3.3V @ room  
Bluetooth  
Min  
Typ  
Max  
Unit  
dBm  
temperature unless otherwise specified  
Specification  
maximum RF Transmit Power  
17  
19  
20  
20  
RF power variation over temperature range  
RF power variation over supply voltage range (*  
1
2
-
-
-
dB  
dB  
dB  
RF power variation over BT band  
RF power control range (*  
0.1  
-10  
0.5  
2
19  
20dB band width for modulated carrier  
F = F0 ± 2MHz  
942  
1000  
-20  
kHz  
-20  
-40  
-40  
ACP (1  
F = F0 ± 3MHz  
F = F0 > 3MHz  
-40  
-40  
Drift rate  
ΔF1avg  
7
169  
+/-25  
140<175  
kHz  
kHz  
161  
1.1  
140<175  
>=0.8  
kHz  
ΔF1max  
ΔF2avg / ΔF1avg  
Table 9: Transmitter performance for BDR  
Figure 3: Typical TX power as a function of VDD_PA  
Silicon Labs  
Page 12 of 44  
3.4.1 Radiated Spurious Emissions  
Measured from WT41-E evaluation board  
Min  
Typ  
Max  
Limit by the Standard  
(AVG / PEAK)  
Standard  
Band / Frequency  
Unit  
(AVG / (AVG / (AVG /  
PEAK) PEAK) PEAK)  
2nd harmonic  
3rd harmonic  
Band edge  
2390MHz  
Band edge  
52  
51  
54/58  
54/58  
54 / 74  
54 / 74  
dBuV/m  
dBuV/m  
50/60  
52/63  
54 / 74  
54 / 74  
dBuV/m  
dBuV/m  
FCC part 15  
transmitter  
spurious  
52/65  
54/67  
2483.5MHz  
Band edge  
2400MHz  
emissions  
-50  
-20  
dBc  
(conducted)  
Band edge  
2483.5MHz  
(conducted)  
Band edge  
2400MHz  
2nd harmonic  
3rd harmonic  
-58  
-39  
-20  
-30  
dBc  
ETSI EN 300 328  
transmitter  
spurious  
-36  
dBm  
-41  
-41  
-
-30  
-30  
-47  
-47  
dBm  
dBm  
dBm  
dBm  
emissions  
ETSI EN 300 328 (2400 - 2479) MHz  
receiver spurious  
(1600 - 1653) MHz  
-52  
Table 10: Radiated spurious emission for WT41-E  
3.5 Receiver Performance  
Antenna gain not taken into account  
RF characteristis, VDD = 3.3V,  
Bluetooth  
Spefication  
Packet type Min  
Typ  
Max  
Unit  
room temperature (**  
DH1  
DH3  
DH5  
2-DH1  
2-DH3  
2-DH5  
3-DH1  
3-DH3  
3-DH5  
-92  
-92  
-91  
-94  
-93  
-93  
-88  
-85  
-84  
-70  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Sensitivity for 0.1% BER  
Sensitivity variation over  
temperature range  
TBD  
Table 11: Receiver sensitivity  
Silicon Labs  
Page 13 of 44  
3.6 Current Consumption  
Opearation mode  
Peak (mA)  
-
AVG (mA)  
2.1  
Stand-by, page mode 0  
TX 3DH5  
TX 2DH5  
TX 3DH3  
TX 2DH3  
TX 2DH1  
TX DH5  
100.5  
99.3  
98.1  
98.1  
98.7  
164  
77.6  
77.6  
71.1  
71.2  
51.6  
120  
TX DH1  
166  
56.8  
67.3  
52.6  
0.36  
58.7  
RX  
Deep sleep  
Inquiry  
169.3  
Table 12: Current consumption  
Silicon Labs  
Page 14 of 44  
3.7 Antenna Specification  
WT41-E is designed and qualified to be used with a 2.14 dBi dipole antenna. Any dipole antenna with the  
same or less gain can be used with WT41-E as far as the technical information of the antenna is provided for  
Bluegiga for approval. Any antenna approved by Bluegiga can be used with WT41-E without additional  
applications to FCC or IC. Table 19 on page 42 lists the antennas pre-approved by Bluegiga. Using an  
antenna of a different type (i.e. different radiation pattern) or higher gain will require a permissive change for  
the certifications. Please contact support@bluegiga.com for details  
Silicon Labs  
Page 15 of 44  
4 Physical Dimensions  
Figure 4: Physical dimensions (top view)  
Figure 5: Dimensions for the RF pin (top view)  
Silicon Labs  
Page 16 of 44  
25.3 mm  
3.35 mm  
35.3 mm  
11.4 mm  
14.0 mm  
32.6 mm  
Figure 6: Dimensions of WT41-E  
Figure 7: Recommended land pattern  
Silicon Labs  
Page 17 of 44  
path for the return current is cut  
MIC input  
Place LC filtering and DC coupling capacitors symmetrically as close to  
pins as possible  
Place MIC biasing resistors symmetrically as close to microhone as pos  
Make sure that the bias trace does not cross separated GND regions (D  
AGND) so that the path for the return current is cut. If this is not possibl  
notseparateGNDregionsbutkeeponesolidGNDplane.
Keep the trace as short as possible  
Recommended PCB layer configuration  
Overlapping GND layers without  
GND stitching vias  
Overlapping GND layers with  
GND stitching vias shielding the  
RF energy  
Figure 9: Use of stitching vias to avoid emissions from the edges of the PCB  
Silicon Labs  
Page 18 of 44  
6 UART Interface  
This is a standard UART interface for communicating with other serial devices.WT41-E UART interface  
provides a simple mechanism for communicating with other serial devices using the RS232 protocol.  
Four signals are used to implement the UART function. When WT41-E is connected to another digital device,  
UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and  
UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All  
UART connections are implemented using CMOS technology and have signalling levels of 0V and VDD.  
UART configuration parameters, such as data rate and packet format, are set using WT41-E software.  
Note:  
In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial  
port adapter card is required for the PC.  
Table 13: Possible UART Settings  
The UART interface is capable of resetting WT41-E upon reception of a break signal. A break is identified by a  
continuous logic low (0V) on the UART_RX terminal, as shown in Figure 10. If tBRK is longer than the value,  
defined by PSKEY_HOST_IO_UART_RESET_TIMEOUT, (0x1a4), a reset will occur. This feature allows a  
host to initialise the system to a known state. Also, WT41-E can emit a break character that may be used to  
wake the host.  
Figure 10: Break Signal  
Table 17 shows  
a
list of commonly used data rates and their associated values for  
PSKEY_UART_BAUD_RATE (0x204). There is no requirement to use these standard values. Any data rate  
within the supported range can be set in the PS Key according to the formula in Equation 1.  
Silicon Labs  
Page 19 of 44  
Equation 1: Data Rate  
Table 14: Standard Data Rates  
Silicon Labs  
Page 20 of 44  
6.1 UART Bypass  
Figure 11: UART Bypass Architecture  
6.2 UART Configuration While Reset is Active  
The UART interface for WT41-E while the chip is being held in reset is tristate. This will allow the user to daisy  
chain devices onto the physical UART bus. The constraint on this method is that any devices connected to  
this bus must tristate when WT41-E reset is de-asserted and the firmware begins to run.  
6.3 UART Bypass Mode  
Alternatively, for devices that do not tristate the UART bus, the UART bypass mode on BlueCore4-External  
can be used. The default state of BlueCore4-External after reset is de-asserted; this is for the host UART bus  
to be connected to the BlueCore4-External UART, thereby allowing communication to BlueCore4-External via  
the UART. All UART bypass mode connections are implemented using CMOS technology and have signalling  
levels of 0V and VDD.  
In order to apply the UART bypass mode, a BCCMD command will be issued to BlueCore4-External. Upon  
this issue, it will switch the bypass to PIO[7:4] as Figure 11 indicates. Once the bypass mode has been  
invoked, WT41-E will enter the Deep Sleep state indefinitely.  
In order to re-establish communication with WT41-E, the chip must be reset so that the default configuration  
takes effect.  
It is important for the host to ensure a clean Bluetooth disconnection of any active links before the bypass  
mode is invoked. Therefore, it is not possible to have active Bluetooth links while operating the bypass mode.  
The current consumption for a device in UART bypass mode is equal to the values quoted for a device in  
standby mode.  
Silicon Labs  
Page 21 of 44  
7 USB Interface  
This is a full speed (12Mbits/s) USB interface for communicating with other compatible digital devices. WT41-  
E acts as a USB peripheral, responding to requests from a master host controller such as a PC.  
The USB interface is capable of driving a USB cable directly. No external USB transceiver is required. The  
device operates as a USB peripheral, responding to requests from a master host controller such as a PC.  
Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented can behave as  
specified in the USB section of the Bluetooth v2.1 + EDR specification or alternatively can appear as a set of  
endpoints appropriate to USB audio devices such as speakers.  
As USB is a master/slave oriented system (in common with other USB peripherals), WT41-E only supports  
USB Slave operation.  
7.1 USB Data Connections  
The USB data lines emerge as pins USB_DP and USB_DN. These terminals are connected to the internal  
USB I/O buffers of the BlueCore4-External, therefore, have a low output impedance. To match the connection  
to the characteristic impedance of the USB cable, resistors must be placed in series with USB_DP/USB_DN  
and the cable.  
7.2 USB Pull-Up resistor  
WT41-E features an internal USB pull-up resistor. This pulls the USB_DP pin weakly high when WT41-E is  
ready to enumerate. It signals to the PC that it is a full speed (12Mbits/s) USB device.  
The USB internal pull-up is implemented as a current source, and is compliant with section 7.1.5 of the USB  
specification v1.2. The internal pull-up pulls USB_DP high to at least 2.8V when loaded with a 15k 5% pull-  
down resistor (in the hub/host) when VDD_PADS = 3.1V. This presents a Thevenin resistance to the host of  
at least 900. Alternatively, an external 1.5k pull-up resistor can be placed between a PIO line and D+ on the  
USB cable. The firmware must be alerted to which mode is used by setting PSKEY_USB_PIO_PULLUP  
appropriately. The default setting uses the internal pull-up resistor.  
7.3 USB Power Supply  
The USB specification dictates that the minimum output high voltage for USB data lines is 2.8V. To safely  
meet the USB specification, the voltage on the VDD supply terminal must be an absolute minimum of 3.1V.  
Bluegiga recommends 3.3V for optimal USB signal quality.  
7.4 Self-Powered Mode  
In self-powered mode, the circuit is powered from its own power supply and not from the VBUS (5V) line of the  
USB cable. It draws only a small leakage current (below 0.5mA) from VBUS on the USB cable. This is the  
easier mode for which to design, as the design is not limited by the power that can be drawn from the USB  
hub or root port. However, it requires that VBUS be connected to WT41-E via a resistor network (Rvb1 and  
Rvb2), so WT41-E can detect when VBUS is powered up. BlueCore4-External will not pull USB_DP high  
when VBUS is off.  
Self-powered USB designs (powered from a battery or PSU) must ensure that a PIO line is allocated for USB  
pullup purposes. A 1.5k 5% pull-up resistor between USB_DP and the selected PIO line should be fitted to the  
design. Failure to fit this resistor may result in the design failing to be USB compliant in self-powered mode.  
The internal pull-up in BlueCore is only suitable for bus-powered USB devices, e.g., dongles.  
Silicon Labs  
Page 22 of 44  
Figure 12: USB Connections for Self-Powered Mode  
The terminal marked USB_ON can be any free PIO pin. The PIO pin selected must be registered by setting  
PSKEY_USB_PIO_VBUS to the corresponding pin number.  
Figure 13: USB Interface Component Values  
7.5 Bus-Powered Mode  
In bus-powered mode, the application circuit draws its current from the 5V VBUS supply on the USB cable.  
WT41-E negotiates with the PC during the USB enumeration stage about how much current it is allowed to  
consume. On power-up the device must not draw more than 100 mA but after being configured it can draw up  
to 500 mA.  
For WT41-E, the USB power descriptor should be altered to reflect the amount of power required. This is  
accomplished by setting PSKEY_USB_MAX_POWER (0x2c6). This is higher than for a Class 2 application  
due to the extra current drawn by the Transmit RF PA. By default for WT41-E the setting is 300 mA.  
When selecting a regulator, be aware that VBUS may go as low as 4.4V. The inrush current (when charging  
reservoir and supply decoupling capacitors) is limited by the USB specification. See the USB Specification.  
Some applications may require soft start circuitry to limit inrush current if more than 10uF is present between  
VBUS and GND. The 5V VBUS line emerging from a PC is often electrically noisy. As well as regulation down  
to 3.3V and 1.8V, applications should include careful filtering of the 5V line to attenuate noise that is above the  
voltage regulator bandwidth. Excessive noise on WT41-E supply pins will result in reduced receiver sensitivity  
and a distorted RF transmit signal.  
Silicon Labs  
Page 23 of 44  
Figure 14: USB Connections for Bus-Powered Mode  
7.6 USB Suspend Current  
All USB devices must permit the USB controller to place them in a USB suspend mode. While in USB  
Suspend, bus-powered devices must not draw more than 2.5mA from USB VBUS (self-powered devices may  
draw more than 2.5mA from their own supply). This current draw requirement prevents operation of the radio  
by bus-powered devices during USB Suspend.  
When computing suspend current, the current from VBUS through the bus pull-up and pull-down resistors  
must be included. The pull-up resistor at the device is 1.5 k. (nominal). The pull-down resistor at the hub is  
14.25k. to 24.80k. The pull-up voltage is nominally 3.3V, which means that holding one of the signal lines high  
takes approximately 200uA, leaving only 2.3mA available from a 2.5mA budget. Ensure that external LEDs  
and/or amplifiers can be turned off by BlueCore4-External. The entire circuit must be able to enter the  
suspend mode.  
7.7 USB Detach and Wake-Up Signaling  
WT41-E can provide out-of-band signaling to a host controller by using the control lines called USB_DETACH  
and USB_WAKE_UP. These are outside the USB specification (no wires exist for them inside the USB cable),  
but can be useful when embedding WT41-E into a circuit where no external USB is visible to the user. Both  
control lines are shared with PIO pins and can be assigned to any PIO pin by setting  
PSKEY_USB_PIO_DETACH and PSKEY_USB_PIO_WAKEUP to the selected PIO number.  
USB_DETACH is an input which, when asserted high, causes WT41-E to put USB_DN and USB_DP in high  
impedance state and turns off the pull-up resistor on DP. This detaches the device from the bus and is  
logically equivalent to unplugging the device. When USB_DETACH is taken low, WT41-E will connect back to  
USB and await enumeration by the USB host.  
USB_WAKE_UP is an active high output (used only when USB_DETACH is active) to wake up the host and  
allow USB communication to recommence. It replaces the function of the software USB WAKE_UP message  
(which runs over the USB cable) and cannot be sent while BlueCore4-External is effectively disconnected  
from the bus.  
Silicon Labs  
Page 24 of 44  
Figure 15: USB_Detach and USB_Wake_Up Signals  
7.8 USB Driver  
A USB Bluetooth device driver is required to provide a software interface between BlueCore4-External and  
Bluetooth software running on the host computer. Please, contact support@bluegiga.com for suitable drivers.  
7.9 USB v2.0 Compliance and Compatibility  
Although WT41-E meets the USB specification, CSR cannot guarantee that an application circuit designed  
around the module is USB compliant. The choice of application circuit, component choice and PCB layout all  
affect USB signal quality and electrical characteristics. The information in this document is intended as a guide  
and should be read in association with the USB specification, with particular attention being given to Chapter  
7. Independent USB qualification must be sought before an application is deemed USB compliant and can  
bear the USB logo. Such qualification can be obtained from a USB plugfest or from an independent USB test  
house.  
Terminals USB_DP and USB_DN adhere to the USB Specification v2.0 (Chapter 7) electrical requirements.  
BlueCore4-External is compatible with USB v2.0 host controllers; under these circumstances the two ends  
agree the mutually acceptable rate of 12Mbits/s according to the USB v2.0 specification.  
Silicon Labs  
Page 25 of 44  
8 Serial Peripheral Interface (SPI)  
The SPI port can be used for system debugging. It can also be used for programming the Flash memory and  
setting the PSKEY configurations. WT41-E uses 16-bit data and 16-bit address serial peripheral interface,  
where transactions may occur when the internal processor is running or is stopped. SPI interface is connected  
using the MOSI, MISO, CSB and CLK pins. Please, contact support@bluegiga.com for detailed information  
about the instruction cycle.  
Silicon Labs  
Page 26 of 44  
9 PCM Codec Interface  
PCM is a standard method used to digitize audio (particularly voice) for transmission over digital  
communication channels. Through its PCM interface, WT41-E has hardware support for continual  
transmission and reception of PCM data, thus reducing processor overhead for wireless headset applications.  
WT41-E offers a bidirectional digital audio interface that routes directly into the baseband layer of the on-chip  
firmware. It does not pass through the HCI protocol layer.  
Hardware on WT41-E allows the data to be sent to and received from a SCO connection. Up to three SCO  
connections can be supported by the PCM interface at any one time.  
WT41-E can operate as the PCM interface master generating an output clock of 128, 256 or 512kHz. When  
configured as PCM interface slave, it can operate with an input clock up to 2048kHz. WT41-E is compatible  
with a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing environments.  
It supports 13-bit or 16-bit linear, 8-bit µ-law or A-law companded sample formats at 8ksamples/s and can  
receive and transmit on any selection of three of the first four slots following PCM_SYNC. The PCM  
configuration options are enabled by setting PSKEY_PCM_CONFIG32.  
WT41-E interfaces directly to PCM audio devices.  
NOTE: Analog audio lines are very sensitive to RF disturbance. Use good layout practices to ensure noise  
less audio. Make sure that the return path for the audio signals follows the forward current all the way as close  
as possible and use fully differential signals when possible. Do not compromise audio routing.  
9.1 PCM Interface Master/Slave  
When configured as the master of the PCM interface, WT41-E generates PCM_CLK and PCM_SYNC.  
Figure 16: PCM Interface Master  
When configured as the Slave of the PCM interface, WT41-E accepts PCM_CLK rates up to 2048kHz.  
Silicon Labs  
Page 27 of 44  
Figure 17: PCM Interface Slave  
9.2 Long Frame Sync  
Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or  
samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When  
WT41-E is configured as PCM master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8-bits  
long. When WT41-E is configured as PCM Slave, PCM_SYNC may be from two consecutive falling edges of  
PCM_CLK to half the PCM_SYNC rate, i.e., 62.5s long.  
Figure 18: Long Frame Sync (Shown with 8-bit Companded Sample)  
WT41-E samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge.  
PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or  
on the rising edge.  
9.3 Short Frame Sync  
In Short Frame Sync, the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is  
always one clock cycle long.  
Silicon Labs  
Page 28 of 44  
Figure 19: Short Frame Sync (Shown with 16-bit Sample)  
As with Long Frame Sync, WT41-E samples PCM_IN on the falling edge of PCM_CLK and transmits  
PCM_OUT on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of  
PCM_CLK in the LSB position or on the rising edge.  
9.4 Multi-slot Operation  
More than one SCO connection over the PCM interface is supported using multiple slots. Up to three SCO  
connections can be carried over any of the first four slots.  
Figure 20: Multi-slot Operation with Two Slots and 8-bit Companded Samples  
9.5 GCI Interface  
WT41-E is compatible with the GCI, a standard synchronous 2B+D ISDN timing interface. The two 64kbits/s B  
channels can be accessed when this mode is configured.  
Silicon Labs  
Page 29 of 44  
Figure 21: GCI Interface  
The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8kHz. With WT41-E in Slave  
mode, the frequency of PCM_CLK can be up to 4.096MHz.  
9.6 Slots and Sample Formats  
WT41-E can receive and transmit on any selection of the first four slots following each sync pulse. Slot  
durations can be either 8 or 16 clock cycles. Durations of 8 clock cycles may only be used with 8-bit sample  
formats. Durations of 16 clocks may be used with 8-bit, 13-bit or 16-bit sample formats.  
WT41-E supports 13-bit linear, 16-bit linear and 8-bit -law or A-law sample formats. The sample rate is  
8ksamples/s. The bit order may be little or big endian. When 16-bit slots are used, the 3 or 8 unused bits in  
each slot may be filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation  
compatible with some Motorola codecs.  
Silicon Labs  
Page 30 of 44  
Figure 22: 16-bit Slot Length and Sample Formats  
9.7 Additional Features  
WT41-E has a mute facility that forces PCM_OUT to be 0. In master mode, PCM_SYNC may also be forced  
to 0 while keeping PCM_CLK running which some codecs use to control power down.  
9.8 PCM_CLK and PCM_SYNC Generation  
WT41-E has two methods of generating PCM_CLK and PCM_SYNC in master mode. The first is generating  
these signals by DDS from BlueCore4-External internal 4MHz clock. Using this mode limits PCM_CLK to 128,  
256 or 512kHz and PCM_SYNC to 8kHz. The second is generating PCM_CLK and PCM_SYNC by DDS from  
an internal 48MHz clock (which allows a greater range of frequencies to be generated with low jitter but  
consumes more power). This second method is selected by setting bit 48M_PCM_CLK_GEN_EN in  
PSKEY_PCM_CONFIG32. When in this mode and with long frame sync, the length of PCM_SYNC can be  
either 8 or 16 cycles of PCM_CLK, determined by LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32.  
The Equation 2 describes PCM_CLK frequency when being generated using the internal 48MHz clock:  
Silicon Labs  
Page 31 of 44  
Equation 2: PCM_CLK Frequency When Being Generated Using the Internal 48MHz Clock  
The frequency of PCM_SYNC relative to PCM_CLK can be set using Equation 3:  
Equation 3: PCM_SYNC Frequency Relative to PCM_CLK  
CNT_RATE, CNT_LIMIT and SYNC_LIMIT are set using PSKEY_PCM_LOW_JITTER_CONFIG. As an  
example,  
to  
generate  
PCM_CLK  
at  
512kHz  
with  
PCM_SYNC  
at  
8kHz,  
set  
PSKEY_PCM_LOW_JITTER_CONFIG to 0x08080177.  
9.9 PCM Configuration  
The PCM configuration is set using two PS Keys, PSKEY_PCM_CONFIG32 detailed in Table 18 and  
PSKEY_PCM_LOW_JITTER_CONFIG in Table 19. The default for PSKEY_PCM_CONFIG32 is 0x00800000,  
i.e., first slot following sync is active, 13-bit linear voice format, long frame sync and interface master  
generating 256kHz PCM_CLK from 4MHz internal clock with no tri-state of PCM_OUT.  
Silicon Labs  
Page 32 of 44  
Name  
Bit position  
Description  
0
Set to 0  
-
0 selects Master mode with internal generation of PCM_CLK and  
PCM_SYNC. 1 selects Slave mode requiring externally generated  
PCM_CLK and PCM_SYNC. This should be set to 1 if  
48M_PCM_CLK_GEN_EN (bit 11) is set.  
SLAVE MODE EN  
1
0 selects long frame sync (rising edge indicates start of frame), 1  
selects short frame sync (falling edge indicates start of frame).  
SHORT SYNC EN  
-
2
3
Set to 0  
0 selects padding of 8 or 13-bit voice sample into a 16- bit slot by  
inserting extra LSBs, 1 selects sign extension. When padding is  
selected with 3-bit voice sample, the 3 padding bits are the audio gain  
setting; with 8-bit samples the 8 padding bits are zeroes.  
0 transmits and receives voice samples MSB first, 1 uses LSB first.  
SIGN EXTENDED  
EN  
4
LSB FIRST EN  
5
6
0 drives PCM_OUT continuously, 1 tri-states PCM_OUT immediately  
after the falling edge of PCM_CLK in the last bit of an active slot,  
assuming the next slot is not active.  
TX TRISTATE EN  
0 tristates PCM_OUT immediately after the falling edge of PCM_CLK  
in the last bit of an active slot, assuming the next slot is also not active.  
1 tristates PCM_OUT after the rising edge of PCM_CLK.  
TX TRISTATE  
RISING EDGE EN  
7
8
0 enables PCM_SYNC output when master, 1 suppresses PCM_SYNC  
whilst keeping PCM_CLK running. Some CODECS utilize this to enter  
a low power state.  
SYNC SUPPRESS  
EN  
GCI MODE EN  
MUTE EN  
9
10  
1 enables GCI mode.  
1 forces PCM_OUT to 0.  
0 sets PCM_CLK and PCM_SYNC generation via DDS from internal 4  
MHz clock, as for BlueCore4-External. 1 sets PCM_CLK and  
PCM_SYNC generation via DDS from internal 48 MHz clock.  
48M PCM CLK GEN  
EN  
11  
12  
0 sets PCM_SYNC length to 8 PCM_CLK cycles and 1 sets length to  
16 PCM_CLK cycles. Only applies for long frame sync and with  
48M_PCM_CLK_GEN_EN set to 1.  
LONG LENGTH  
SYNC EN  
-
[20:16]  
[22:21]  
Set to 0b00000.  
Selects 128 (0b01), 256 (0b00), 512 (0b10) kHz PCM_CLK frequency  
when master and 48M_PCM_CLK_GEN_EN (bit 11) is low.  
MASTER CLK RATE  
ACTIVE SLOT  
[26:23]  
[28:27]  
Default is 0001. Ignored by firmaware  
Selects between 13 (0b00), 16 (0b01), 8 (0b10) bit sample with 16  
cycle slot duration 8 (0b11) bit sample 8 cycle slot duration.  
SAMPLE_FORMAT  
Table 15: PSKEY_PCM_CONFIG32 description  
Name  
Bit position  
Description  
CNT LIMIT  
CNT RATE  
SYNC LIMIT  
[12:0]  
[23:16]  
[31:24]  
Sets PCM_CLK counter limit  
Sets PCM_CLK count rate.  
Sets PCM_SYNC division relative to PCM_CLK.  
Table 16: PSKEY_PCM_LOW_JITTER_CONFIG Description  
Silicon Labs  
Page 33 of 44  
10 I/O Parallel Ports  
Six lines of programmable bidirectional input/outputs (I/O) are provided. All the PIO lines are power from VDD.  
PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs. All PIO  
lines are configured as inputs with weak pull-downs at reset. Any of the PIO lines can be configured as  
interrupt request lines or as wake-up lines from sleep modes.  
WT41-E has a general purpose analogue interface pin AIO[1]. This is used to access internal circuitry and  
control signals. It may be configured to provide additional functionality.  
Auxiliary functions available via AIO[1] include an 8-bit ADC and an 8-bit DAC. Typically the ADC is used for  
battery voltage measurement. Signals selectable at this pin include the band gap reference voltage and a  
variety of clock signals: 48, 24, 16, 8MHz and the XTAL clock frequency. When used with analogue signals,  
the voltage range is constrained by the analogue supply voltage internally to the module (1.8V). When  
configured to drive out digital level signals (e.g., clocks), the output voltage level is determined by VDD.  
10.1PIO Defaults  
Bluegiga cannot guarantee that these terminal functions remain the same. Refer to the software release note  
for the implementation of these PIO lines, as they are firmware build-specific.  
Silicon Labs  
Page 34 of 44  
11 Reset  
WT41-E may be reset from several sources: RESET pin, power on reset, a UART break character or via  
software configured watchdog timer. The RESET pin is an active low reset and is internally filtered using the  
internal low frequency clock oscillator. A reset will be performed between 1.5 and 4.0ms following RESETB  
being active. It is recommended that RESET be applied for a period greater than 5ms.  
The power on reset occurs when the VDD_CORE supply internally to the module falls below typically 1.5V  
and is released when VDD_CORE rises above typically 1.6V. At reset the digital I/O pins are set to inputs for  
bidirectional pins and outputs are tri-state.  
The reset should be held active at power up until all the supply voltages have stabilized to ensure correct  
operation of the internal flash memory. Following figure shows an example of a simple power up reset circuit.  
Time constant of the RC circuitry is set so that the supply voltage is safely stabilized before the reset  
deactivates.  
Figure 23: Example of a simple power on reset circuit.  
Silicon Labs  
Page 35 of 44  
11.1Pin States on Reset  
PIN NAME  
PIO[7:2]  
PCM_OUT  
PCM_IN  
PCM_SYNC  
PCM_CLK  
UART_TX  
UART_RX  
UART_RTS  
UART_CTS  
USB+  
STATE  
Input with weak pull-down  
Tri-staed with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Output tristated with weak pull-up  
Input with weak pull-down  
Output tristated with weak pull-up  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Output tristated with weak pull-down  
Output, driving low  
USB-  
SPI_CSB  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
AIO[1]  
Table 17: Pin States on Reset  
Silicon Labs  
Page 36 of 44  
12 Certifications  
WT41-E is compliant to the following specifications.  
12.1Bluetooth  
WT41-E module is Bluetooth qualified and listed as a controller subsystem and it is Bluetooth compliant to the  
following profiles of the core spec version 2.1/2.1+EDR.  
Baseband  
HCI  
Link Manager  
Radio  
The radio has been tested using maximum antenna gain of 2.3 dBi and the Bluetooth qualification is valid for  
any antenna with the same or less gain.  
12.2 FCC and IC  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  
(1) this device may not cause harmful interference, and  
(2) this device must accept any interference received, including interference that may  
cause undesired operation.  
FCC RF Radiation Exposure Statement:  
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End  
users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter  
must not be co-located or operating in conjunction with any other antenna or transmitter. This transmitter is  
considered as mobile device and should not be used closer than 20 cm from a human body. To allow portable  
use in a known host class 2 permissive change is required. Please contact support@bluegiga.com for detailed  
information.  
IC Statements:  
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the  
following two conditions: (1) this device may not cause interference, and (2) this device must accept any  
interference, including interference that may cause undesired operation of the device.  
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and  
maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio  
interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically  
radiated power (e.i.r.p.) is not more than that necessary for successful communication.  
If detachable antennas are used:  
Silicon Labs  
Page 37 of 44  
This radio transmitter (identify the device by certification number, or model number ifCategory II) has been  
approved by Industry Canada to operate with the antenna types listed below with the maximum permissible  
gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list,  
having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this  
device. See table 19 for the approved antennas for WT41-E.  
OEM Responsibilities to comply with FCC and Industry Canada Regulations  
The WT41-E Module has been certified for integration into products only by OEM integrators under the  
following conditions:  
The antenna(s) must be installed such that a minimum separation distance of 20cm is maintained  
between the radiator (antenna) and all persons at all times.  
The transmitter module must not be co-located or operating in conjunction with any other antenna or  
transmitter.  
As long as the two conditions above are met, further transmitter testing will not be required. However, the  
OEM integrator is still responsible for testing their end-product for any additional compliance requirements  
required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).  
IMPORTANT NOTE: In the event that these conditions can not be met (for certain configurations or co-  
location with another transmitter), then the FCC and Industry Canada authorizations are no longer considered  
valid and the FCC ID and IC Certification Number can not be used on the final product. In these  
circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the  
transmitter) and obtaining a separate FCC and Industry Canada authorization.  
End Product Labeling  
The WT41-E Module is labeled with its own FCC ID and IC Certification Number. If the FCC ID and IC  
Certification Number are not visible when the module is installed inside another device, then the outside of the  
device into which the module is installed must also display a label referring to the enclosed module. In that  
case, the final end product must be labeled in a visible area with the following:  
Contains Transmitter Module FCC ID: QOQWT41E”  
Contains Transmitter Module IC: 5123A-BGTWT41E”  
or  
Contains FCC ID: QOQWT41E  
Contains IC: 5123A-BGTWT41E”  
The OEM of the WT41-E Module must only use the approved antenna(s) described in table 19, which have  
been certified with this module.  
The OEM integrator has to be aware not to provide information to the end user regarding how to install or  
remove this RF module or change RF related parameters in the user manual of the end product.  
To comply with FCC and Industry Canada RF radiation exposure limits for general population, the  
antenna(s) used for this transmitter must be installed such that a minimum separation distance of  
20cm is maintained between the radiator (antenna) and all persons at all times and must not be co-  
located or operating in conjunction with any other antenna or transmitter.  
Silicon Labs  
Page 38 of 44  
12.2.1 FCC et IC  
Cet appareil est conforme à l’alinéa 15 des règles de la FCC. Deux conditions sont à respecter lors de  
son utilisation :  
(1) cet appareil ne doit pas créer d’interférence susceptible de causer un quelconque dommage et,  
(2) cet appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences  
susceptibles d’entraîner un fonctionnement non requis.  
Déclaration de conformité FCC d’exposition aux radiofréquences (RF):  
Ce matériel respecte les limites d’exposition aux radiofréquences fixées par la FCC dans un environnement  
non contrôlé. Les utilisateurs finaux doivent se conformer aux instructions d’utilisation spécifiées afin de  
satisfaire aux normes d’exposition en matière de radiofréquence. Ce transmetteur ne doit pas être installé ni  
utilisé en concomitance avec une autre antenne ou un autre transmetteur. Ce transmetteur est assimilé à un  
appareil mobile et ne doit pas être utilisé à moins de 20 cm du corps humain. Afin de permettre un usage  
mobile dans le cadre d’un matériel de catégorie 2, il est nécessaire de procéder à quelques adaptations. Pour  
des informations détaillées, veuillez contacter le support technique Bluegiga : support@bluegiga.com.  
Déclaration de conformité IC :  
Ce matériel respecte les standards RSS exempt de licence d’Industrie Canada. Son utilisation est soumise  
aux deux conditions suivantes :  
(1) l’appareil ne doit causer aucune interférence, et  
(2) l’appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences  
susceptibles d’entraîner un fonctionnement non requis de l’appareil.  
Selon la réglementation d’Industrie Canada, ce radio-transmetteur ne peut utiliser qu’un seul type d’antenne  
et ne doit pas dépasser la limite de gain autorisée par Industrie Canada pour les transmetteurs. Afin de  
réduire les interférences potentielles avec d’autres utilisateurs, le type d’antenne et son gain devront être  
définis de telle façon que la puissance isotrope rayonnante équivalente (EIRP) soit juste suffisante pour  
permettre une bonne communication.  
Lors de l’utilisation d’antennes amovibles :  
Ce radio-transmetteur (identifié par un numéro certifié ou un numéro de modèle dans le cas de la catégorie II)  
a été approuvé par Industrie Canada pour fonctionner avec les antennes référencées ci-dessous dans la  
limite de gain acceptable et l’impédance requise pour chaque type d’antenne cité. Les antennes non  
référencées possédant un gain supérieur au gain maximum autorisé pour le type d’antenne auquel elles  
Silicon Labs  
Page 39 of 44  
appartiennent sont strictement interdites d’utilisation avec ce matériel. Veuillez vous référer au tableau 19  
concernant les antennes approuvées pour les WT41-E.  
Les responsabilités de l’intégrateur afin de satisfaire aux réglementations de la FCC et d’Industrie  
Canada :  
Les modules WT41-E ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par  
des intégrateurs dans les conditions suivantes :  
L’antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance  
minimum de 20cm entre la source de radiation (l’antenne) et toute personne physique.  
Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne  
ou un autre transmetteur.  
Tant que ces deux conditions sont réunies, il n’est pas nécessaire de procéder à des tests supplémentaires  
sur le transmetteur. Cependant, l’intégrateur est responsable des tests effectués sur le produit final afin de se  
mettre en conformité avec d’éventuelles exigences complémentaires lorsque le module est installé (exemple :  
émissions provenant d’appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) ;  
IMPORTANT : Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou  
installation avec un autre transmetteur), les autorisations fournies par la FCC et Industrie Canada ne sont plus  
valables et les numéros d’identification de la FCC et de certification d’Industrie Canada ne peuvent servir pour  
le produit final. Dans ces circonstances, il incombera à l’intégrateur de faire réévaluer le produit final  
(comprenant le transmetteur) et d’obtenir une autorisation séparée de la part de la FCC et d’Industrie Canada.  
Etiquetage du produit final  
Chaque module WT41-E possède sa propre identification FCC et son propre numéro de certification IC. Si  
l’identification FCC et le numéro de certification IC ne sont pas visibles lorsqu’un module est installé à  
l’intérieur d’un autre appareil, alors l’appareil en question devra lui aussi présenter une étiquette faisant  
référence au module inclus. Dans ce cas, le produit final doit comporter une étiquette placée de façon visible  
affichant les mentions suivantes :  
« Contient un module transmetteur certifié FCC QOQWT41E »  
« Contient un module transmetteur certifié IC 5123A-BGTWT41E »  
ou  
« Inclut la certification FCC QOQWT41E »  
Silicon Labs  
Page 40 of 44  
« Inclut la certification IC 5123A-BGTWT41E »  
L’intégrateur du module WT41-E ne doit utiliser que les antennes répertoriées dans le tableau 19 certifiées  
pour ce module.  
L’intégrateur est tenu de ne fournir aucune information à l’utilisateur final autorisant ce dernier à installer ou  
retirer le module RF, ou bien changer les paramètres RF du module, dans le manuel d’utilisation du produit  
final.  
Afin de se conformer aux limites de radiation imposées par la FCC et Industry Canada, l’antenne (ou  
les antennes) utilisée pour ce transmetteur doit être installée de telle sorte à maintenir une distance  
minimum de 20cm à tout instant entre la source de radiation (l’antenne) et les personnes physiques.  
En outre, cette antenne ne devra en aucun cas être installée ou utilisée en concomitance avec une  
autre antenne ou un autre transmetteur.  
12.3CE  
WT41-E meets the requirements of the standards below and hence fulfills the requirements of EMC Directive  
89/336/EEC as amended by Directives 92/31/EEC and 93/68/EEC within CE marking requirement.The official  
DoC is available at www.bluegiga.com  
12.4 MIC Japan  
The compliance for MIC certification is tested with ARIB STD-T66. According to MIC regulations the OEM  
integrator using a surface mountable module, such as WT41-E, will be responsible for re-evaluating the end  
product (including the transmitter) and obtaining a separate authorization for the radio. WT41-E is tested to  
meet the technical requirements of a radio for Japanese market. MIC regulations limit the maximum spectral  
power density to 3mW/MHz. When using AFH the number of active channels can be as low as 20, which will  
effectively increase the spectral power density. Thus when AFH is in use the transmit power must be  
decreased nominally below 17 dBm to meet MIC Japan regulations.  
12.5 KCC (Korea)  
WT41-E is KCC certified with a certification number KCC-CRM-BGT-WT41-E.  
Silicon Labs  
Page 41 of 44  
12.6 NCC Taiwan  
根據 NCC 低功率電波輻射性電機管理辦法 規定:  
第十二條 經型式認證合格之低功率射頻電機,非經許可,公司、商號或使用者均不得擅  
自變更頻率、加大功率或變更原設計之特性及功能。  
第十四條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信;經發現有干擾現象  
時,應立即停用,並改善至無干擾時方得繼續使用。  
前項合法通信,指依電信法規定作業之無線電通信。  
低功率射頻電機須忍受合法通信或工學及醫療用電波輻射性電機設備之干  
擾。  
此模組於取得認證後將依規定於模組本體標示審驗合格標籤,  
並要求平台廠商於平台上標示「本內含射頻模組:ID 編號」字樣  
12.6.1  
NCC Taiwan labeling requirements  
WT41-E is labeled with its own NCC ID number, and, if the NCC ID is not visible when the module is installed  
inside another device, then the outside of the device into which the module is installed must also display a  
label referring to the enclosed module. This exterior label can use wording such as the following: “Contains  
Transmitter Module  
NCC ID: CCAJ12LP2310T7”  
Or  
“Contains NCC ID: CCAJ12LP2310T7”  
Any similar wording that expresses the same meaning may be used.  
此模組於取得認證後將依規定於模組本體標示審驗合格標籤,  
並要求平台廠商於平台上標示「本內含射頻模組: CCAJ12LP2310T7 編號」字樣  
12.7 Qualified Antenna Types for WT41-E  
This device has been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of a different  
type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a  
different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. Please, contact  
support@bluegiga.com for more information. The required antenna impedance is 50 ohms.  
Qualified Antenna Types for WT41-E  
Antenna Type  
Maximum Gain  
Dipole  
2.14 dBi  
Table 18: Qualified Antenna Types for WT41-E  
Silicon Labs  
Page 42 of 44  
To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that  
the equivalent isotropically radiated power (e.i.r.p.) is not more than that permitted for successful  
communication.  
Any standard 2.14 dBi dipole antenna can be used without an additional application to FCC. Table 20 lists  
approved antennas for WT41-E. Any approved antenna listed in table 20 can be used directly with WT41-E  
without any additional approval. Any antenna not listed in table 20 can be used with WT41-E as long as  
detailed information from that particular antenna is provided to Bluegiga for approval. Specification of each  
antenna used with WT41-E will be filed by Bluegiga. Please, contact support@bluegiga.com for more  
information.  
Measure Specifie  
d Gain  
d Gain  
(dBi)  
Measure Total  
Efficiency (%)  
Item  
Manufacturer  
Pulse  
Linx Technologies Inc  
EAD  
Manufacturers part number  
W1030  
(dBi)  
2 dBi  
1
2
3
4
5
1
70 - 80  
77  
60  
76 - 82  
60 - 70  
2 dBi  
2 dBi  
2 dBi  
2 dBi  
ANT-2.4-CW-CT-SMA  
EA-79A  
B4844/B6090  
CAR-ATR-187-001  
1.3  
0.4  
1.4  
0.8  
Antenova  
Litecon  
Table 19: Approved Antennas For WT41-E  
12.8Moisture Sensitivity Level (MSL)  
Moisture sensitivity level (MSL) of this product is 3. For the handling instructions please refer to JEDEC J-  
STD-020 and JEDEC J-STD-033.  
If baking is required, devices may be baked for 12 hours at 125°C +/-5°C for high temperature device  
containers.  
Silicon Labs  
Page 43 of 44  

相关型号:

WT41-E-HCI21

Telecom Circuit, 1-Func, MODULE-59/57
SILICON

WT41-N-C

Telecom Circuit, 1-Func, MODULE-59
SILICON

WT431

Adjustable Accurate Reference Source
WEITRON

WT4311

TRANSISTOR | BJT | NPN | 40V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4312

TRANSISTOR | BJT | NPN | 60V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4313

TRANSISTOR | BJT | NPN | 80V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4314

TRANSISTOR | BJT | NPN | 100V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4315

TRANSISTOR | BJT | NPN | 120V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4316

TRANSISTOR | BJT | NPN | 140V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT431A

Adjustable Accurate Reference Source
WEITRON

WT431B

Adjustable Accurate Reference Source
WEITRON

WT431LA

PROGRAMMABLE PRECISION REFERENCE
WEITRON