SMD5962-9459901MXX [SIMTEK]

Non-Volatile SRAM, 8KX8, 55ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28;
SMD5962-9459901MXX
型号: SMD5962-9459901MXX
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

Non-Volatile SRAM, 8KX8, 55ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28

CD 静态存储器
文件: 总21页 (文件大小:834K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK12C68, STK12C68-5 (SMD5962-94599)  
8Kx8 AutoStore nvSRAM  
DESCRIPTION  
FEATURES  
• 25, 35, 45, 55 ns Read Access & Write Cycle Time The Simtek STK12C68 is a 64Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
• Unlimited Read/Write Endurance  
• Automatic Non-volatile STORE on Power Loss  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• Non-Volatile STORE Under Hardware or Software  
Control  
• Automatic RECALL to SRAM on Power Up  
Data transfers automatically to the non-volatile stor-  
• Unlimited RECALL Cycles  
age cells when power loss is detected (the STORE  
operation). On power up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• 1 Million STORE Cycles  
• 100-Year Non-volatile Data Retention  
• Single 5V ± 10% Power Supply  
• Commercial, Industrial, Military Temperatures  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest performance, most reliable non-volatile  
memory available.  
• 28-pin 330-mil SOIC, 300-mil PDIP, and 600-mil  
PDIP Packages (RoHS-Compliant)  
• 28-Pin CDIP and LCC Military Packages  
Block Diagram  
VCAP  
Vcc  
POWER  
CONTROL  
QUANTUM TRAP  
128 x 512  
STORE  
RECALL  
A5  
A6  
A7  
A8  
STORE/  
RECALL  
CONTROL  
STATIC RAM  
ARRAY  
128 X 512  
A9  
A11  
A12  
SOFTWARE  
DETECT  
A0 – A12  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 2.0  
Document Control #ML0008  
June, 2008  
1
STK12C68, STK12C68-5 (SMD5962-94599)  
Packages  
V C  
A P  
1
V C  
W
2 8  
2 7  
2 6  
2 5  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
C
A 1 2  
A 7  
2
3
A6  
A5  
H S B  
A 8  
HSB  
A8  
A 6  
A 5  
A 4  
A 3  
4
5
A 9  
A 1 1  
A4  
A9  
6
A11  
A3  
A2  
7
(T O P )  
G
A 1 0  
(TOP)  
A 2  
G
8
A 1  
A 0  
E
A1  
A10  
9
D Q  
1 0  
1 1  
1 2  
1 3  
1 4  
7
A0  
DQ0  
DQ1  
E
D Q  
0
D Q  
D Q  
D Q  
D Q  
6
DQ7  
D Q  
D Q  
1
2
5
4
3
DQ6  
V S S  
28-pin SOIC  
28-pin DIP  
28-pin LCC  
Pin Descriptions  
Pin Name  
I/O  
Description  
A
-A  
Input  
I/O  
Address: The 13 address inputs select one of 8,192 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
12  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
Power Supply  
I/O  
Power: 5.0V, +10%  
CC  
HSB  
Hardware Store Busy: When low this output indicates a Store is in progress. When pulled  
low external to the chip, it will initiate a nonvolatile STORE operation. A weak pull up resistor  
keeps this pin high if not connected. (Connection Optional).  
V
V
Power Supply  
Power Supply  
AutoStore Capacitor: Supplies power to nvSRAM during power loss to store data from  
SRAM to nonvolatile storage elements.  
CAP  
SS  
Ground  
Rev 2.0  
Document Control #ML0008  
June, 2008  
2
STK12C68, STK12C68-5 (SMD5962-94599)  
ABSOLUTE MAXIMUM RATINGSa  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (V + 0.5V)  
CC  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . . –0.5V to (V + 0.5V)  
CC  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . .–55°C to 125°C  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . .15mA  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Package Thermal Characteristics - See Website at http://www.simtek.com  
DC CHARACTERISTICS  
(VCC = 5.0V ± 10%)e  
INDUSTRIAL  
MILITARY  
COMMERCIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
85  
75  
65  
--  
85  
75  
65  
55  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns (commercial and industrial only)  
= 35ns  
= 45ns (commercial and industrial only)  
= 55ns  
CC  
1
CC  
AVAV  
AVAV  
AVAV  
AVAV  
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
3
10  
10  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
c
I
I
Average V  
Cycle  
Current during AutoStore  
CAP  
All Inputs Don’t Care  
CC  
4
2
2
mA  
d
Average V Current  
CC  
(Standby, Cycling TTL Input Levels)  
27  
24  
20  
--  
27  
24  
20  
19  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns, E V (commercial and industrial only)  
SB  
1
AVAV  
AVAV  
AVAV  
AVAV  
IH  
= 35ns, E V  
IH  
= 45ns, E V (commercial and industrial only)  
IH  
= 55ns, E V  
IH  
d
I
I
I
V
Standby Current  
E (V – 0.2V)  
SB  
CC  
CC  
2
1.5  
±1  
±5  
2.5  
±1  
±5  
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN  
CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
V
T
Input Logic “1” Voltage  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
Input Logic “0” Voltage  
V
– .5  
0.8  
V – .5  
SS  
0.8  
IL  
SS  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Logic “0” Voltage on HSB Output  
Operating Temperature  
2.4  
2.4  
V
I
I
I
=–4mA except HSB  
= 8mA except HSB  
= 3mA  
OH  
OL  
BL  
OUT  
OUT  
OUT  
0.4  
0.4  
70  
0.4  
0.4  
V
V
0
–40/-55  
85/125  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
Note e: VCC reference levels throughout this datasheet refer to VCC if that is where the power supply connection is made, or VCAP if VCC is connected to ground.  
5.0V  
AC TEST CONDITIONS  
Input Pulse Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V  
480 Ohms  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
OUTPUT  
30 pF  
255 Ohms  
CAPACITANCEf  
(TA = 25°C, f = 1.0MHz)  
INCLUDING  
SCOPE AND  
FIXTURE  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
C
pF  
OUT  
Figure 1. AC Output Loading  
Note f: These parameters are guaranteed but not tested.  
Rev 2.0  
Document Control #ML0008  
June, 2008  
3
STK12C68, STK12C68-5 (SMD5962-94599)  
SRAM READ CYCLES #1 & #2  
(VCC = 5.0V ± 10%)e  
STK12C68,  
STK12C68,  
STK12C68,  
STK12C68,  
SYMBOLS  
#1, #2  
STK12C68-5-25 STK12C68-5-35 STK12C68-5-45 STK12C68-5-55  
NO.  
PARAMETER  
UNITS  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
g
g
t
, ELEH  
25  
35  
45  
55  
AVAV  
h
Address Access Time  
25  
10  
35  
15  
45  
20  
55  
35  
AVQV  
Output Enable to Data Valid  
Output Hold after Address Change  
GLQV  
AXQX  
ELQX  
OE  
OH  
LZ  
h
5
5
5
5
5
5
5
5
Address Change or Chip Enable to  
Output Active  
ns  
ns  
7
Address Change or  
Chip Disable to Output Inactive  
i
t
t
10  
10  
12  
12  
EHQZ  
GLQX  
HZ  
8
9
t
t
t
t
t
t
t
t
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
OLZ  
OHZ  
PA  
i
10  
25  
10  
35  
12  
45  
12  
55  
GHQZ  
f
f
10  
11  
ELICCH  
EHICCL  
PS  
Note g: W and HSB must be high during SRAM READ cycles.  
Note h: Device is continuously selected with E and G both low.  
Note i: Measured ± 200mV from steady state output voltage.  
,
h
SRAM READ CYCLE #1: Address Controlledg  
2
AVAV  
t
ADDRESS  
3
AVQV  
t
5
AXQX  
t
DQ (DATA OUT)  
DATA VALID  
SRAM READ CYCLE #2: E and G Controlledg  
2
t
AVAV  
ADDRESS  
1
11  
EHICCL  
t
ELQV  
t
6
E
t
ELQX  
7
27  
t
EHQZ  
t
AVEL  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
Rev 2.0  
Document Control #ML0008  
June, 2008  
4
STK12C68, STK12C68-5 (SMD5962-94599)  
SRAM WRITE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)e  
STK12C68,  
STK12C68,  
STK12C68,  
STK12C68,  
SYMBOLS  
STK12C68-5-25 STK12C68-5-35 STK12C68-5-45 STK12C68-5-55  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
45  
45  
25  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
AW  
t
t
t
20  
0
25  
0
30  
0
45  
0
AVWH  
AVEH  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
0
WHAX  
i, j  
EHAX  
WR  
t
t
10  
13  
14  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
Note l: HSB must be high during SRAM WRITE cycles.  
SRAM WRITE CYCLE #1: W Controlledk, l  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
W
t
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledk, l  
12  
t
AVAV  
ADDRESS  
E
14  
ELEH  
18  
AVEL  
19  
EHAX  
t
t
t
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 2.0  
Document Control #ML0008  
June, 2008  
5
STK12C68, STK12C68-5 (SMD5962-94599)  
HARDWARE MODE SELECTION  
E
H
L
W
X
H
L
HSB  
A
- A (hex)  
0
MODE  
Not Selected  
I/O  
POWER  
Standby  
Active  
Active  
l
NOTES  
12  
H
X
X
X
X
Output High Z  
Output Data  
Input Data  
H
Read SRAM  
o
L
H
Write SRAM  
X
X
L
Nonvolatile STORE  
Output High Z  
m
CC  
2
0000  
1555  
0AAA  
1FFF  
10F0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
L
L
H
H
H
H
Active  
n, o  
0F0F  
Nonvolatile STORE  
Output High Z  
l
CC2  
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output DataOutput  
Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
n, o  
Nonvolatile RECALL  
Note m: HSB STORE operation occurs only if an SRAM WRITE has been done since the last nonvolatile cycle. After the STORE (if any) completes, the  
part will go into standby mode, inhibiting all operations until HSB rises.  
Note n: The six consecutive addresses must be in the order listed. W must be high during all six consecutive E controlled cycles to enable a nonvolatile  
cycle.  
Note o: I/O state assumes G < VIL. Activation of nonvolatile cycles does not depend on state of G.  
HARDWARE STORE CYCLE  
(VCC = 5.0V ± 10%)e  
STK12C68,  
STK12C68-5  
SYMBOLS  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
1
MAX  
22  
23  
24  
25  
26  
t
t
t
t
t
t
t
t
STORE Cycle Duration  
10  
ms  
μs  
ns  
ns  
ns  
i, p  
i, q  
p, r  
STORE  
DELAY  
RECOVER  
HLHX  
HLHZ  
HLQZ  
HHQX  
Time Allowed to Complete SRAM Cycle  
Hardware STORE High to Inhibit Off  
Hardware STORE Pulse Width  
700  
300  
15  
Hardware STORE Low to Store Busy  
HLBL  
Note p: E and G low for output behavior.  
Note q: E and G low and W high for output behavior.  
Note r: tRECOVER is only applicable after tSTORE is complete.  
HARDWARE STORE CYCLE  
25  
HLHX  
t
HSB (IN)  
24  
RECOVER  
t
22  
STORE  
t
26  
HLBL  
t
HSB (OUT)  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DATA VALID  
23  
DELAY  
t
DQ (DATA OUT)  
DATA VALID  
Rev 2.0  
Document Control #ML0008  
June, 2008  
6
STK12C68, STK12C68-5 (SMD5962-94599)  
AutoStore™/POWER-UP RECALL  
(VCC = 5.0V ± 10%)e  
STK12C68,  
STK12C68-5  
SYMBOLS  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
550  
10  
27  
28  
29  
30  
31  
32  
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
ns  
μs  
V
s
RESTORE  
t
t
t
t
t
p, q, t  
STORE  
VSBL  
HLHZ  
BLQZ  
Low Voltage Trigger (V  
) to HSB Low  
300  
l
SWITCH  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
1
p
DELAY  
V
V
4.0  
4.5  
3.9  
SWITCH  
RESET  
Low Voltage Reset Level  
V
Note s: tRESTORE starts from the time VCC rises above VSWITCH  
.
Note t: HSB is asserted low for 1μs when VCAP drops through VSWITCH. If an SRAM WRITE has not taken place since the last nonvolatile cycle, HSB  
will be released and no STORE will take place.  
AutoStore™/POWER-UP RECALL  
V
CC  
31  
SWITCH  
V
32  
RESET  
V
TM  
AutoStore  
POWER-UP RECALL  
29  
VSBL  
28  
STORE  
27  
RESTORE  
t
t
t
HSB  
30  
DELAY  
t
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE  
BROWN OUT  
AutoStore  
BROWN OUT  
AutoStore  
(NO SRAM WRITES)  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
Rev 2.0  
Document Control #ML0008  
June, 2008  
7
STK12C68, STK12C68-5 (SMD5962-94599)  
SOFTWARE-CONTROLLED STORE/RECALL CYCLEv  
(VCC = 5.0V ± 10%)e  
STK12C68,  
STK12C68-5-25 STK12C68-5-35 STK12C68-5-45 STK12C68-5-55  
UNITS NOTES  
STK12C68,  
STK12C68,  
STK12C68,  
SYMBOLS  
NO.  
PARAMETER  
Standard Alternate  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
MIN  
55  
0
MAX  
33  
34  
35  
36  
37  
t
t
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
ns  
ns  
ns  
ns  
μs  
p
u
u
u
AVAV  
RC  
AS  
AVEL  
20  
20  
25  
20  
30  
20  
30  
20  
ELEH  
ELAX  
RECALL  
CW  
Address Hold Time  
RECALL Duration  
20  
20  
20  
20  
Note u: The software sequence is clocked on the falling edge of E without involving G (double clocking will abort the sequence). See application note:  
MA0002 http://www.simtek.com/attachments/AppNote02.pdf.  
Note v: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0000, 1555, 0AAA, 1FFF,  
10F0, 0F0F) for a STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0, 0F0E) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledv  
33  
AVAV  
33  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
34  
AVEL  
35  
t
ELEH  
t
E
36  
ELAX  
t
28  
37  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA OUT)  
Rev 2.0  
Document Control #ML0008  
June, 2008  
8
STK12C68, STK12C68-5 (SMD5962-94599)  
DEVICE OPERATION  
The STK12C68, STK12C68-5 has two separate  
POWER-UP RECALL  
modes of operation: SRAM mode and nonvolatile  
mode. In SRAM mode, the memory operates as a  
standard fast static RAM. In nonvolatile mode, data  
is transferred from SRAM to Nonvolatile Elements  
(the STORE operation) or from Nonvolatile Elements  
to SRAM (the RECALL operation). In this mode SRAM  
functions are disabled.  
During power up, or after any low-power condition  
(VCAP < VRESET), an internal RECALL request will be  
latched. When VCAP once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK12C68, STK12C68-5 is in a WRITE state at  
the end of power-up RECALL, the SRAM data will be  
corrupted. To help avoid this situation, a 10K Ohm  
resistor should be connected either between W and  
system VCC or between E and system VCC.  
NOISE CONSIDERATIONS  
The STK12C68, STK12C68-5 is a high-speed mem-  
ory and so must have a high-frequency bypass  
capacitor of approximately 0.1μF connected  
between VCAP and VSS, using leads and traces that  
are as short as possible. As with all high-speed  
CMOS ICs, normal careful routing of power, ground  
and signals will help prevent noise problems.  
SOFTWARE NONVOLATILE STORE  
The STK12C68, STK12C68-5 software STORE cycle  
is initiated by executing sequential E controlled  
READ cycles from six specific address locations.  
During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a pro-  
gram of the nonvolatile elements. The program  
operation copies the SRAM data into nonvolatile  
memory. Once a STORE cycle is initiated, further  
input and output are disabled until the cycle is com-  
pleted.  
SRAM READ  
The STK12C68, STK12C68-5 performs a READ  
cycle whenever E and G are low and W and HSB  
are high. The address specified on pins A0-12 deter-  
mines which of the 8,192 data bytes will be  
accessed. When the READ is initiated by an address  
transition, the outputs will be valid after a delay of  
tAVQV (READ cycle #1). If the READ is initiated by E or  
G, the outputs will be valid at tELQV or at tGLQV, which-  
ever is later (READ cycle #2). The data outputs will  
repeatedly respond to address changes within the  
tAVQV access time without the need for transitions on  
any control input pins, and will remain valid until  
another address change or until E or G is brought  
high, or W or HSB is brought low.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is important  
that no other READ or WRITE accesses intervene in  
the sequence, or the sequence will be aborted and  
no STORE or RECALL will take place.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
Rev 2.0  
Document Control #ML0008  
June, 2008  
9
STK12C68, STK12C68-5 (SMD5962-94599)  
VCAP (Figure 3). This is the AutoStore Inhibit mode, in  
SOFTWARE NONVOLATILE RECALL  
which the AutoStore function is disabled. If the  
STK12C68, STK12C68-5 is operated in this configu-  
ration, references to VCC should be changed to VCAP  
throughout this data sheet. In this mode, STORE  
operations may be triggered through software con-  
trol or the HSB pin. To enable or disable AutoStore  
using an IO port pin, see “PREVENTING STORES”  
on page 11.  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of E controlled READ opera-  
tions must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
In order to prevent unneeded STORE operations,  
automatic STOREs as well as those initiated by  
externally driving HSB low will be ignored unless at  
least one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software initi-  
ated STORE cycles are performed regardless of  
whether a WRITE operation has taken place. An  
optional pull-up resistor is shown connected to HSB.  
This can be used to signal the system that the  
AutoStore cycle is in progress.  
Internally, RECALL is a two-step procedure. First, the  
SRAM data is cleared, and second, the nonvolatile  
information is transferred into the SRAM cells. After  
the tRECALL cycle time the SRAM will once again be  
ready for READ and WRITE operations. The RECALL  
operation in no way alters the data in the Nonvolatile  
Elements. The nonvolatile data can be recalled an  
unlimited number of times.  
If the power supply drops faster than 20 μs/volt  
before VCC reaches VSWITCH, then a 2.2 ohm resistor  
should be inserted between VCC and the system sup-  
ply to avoid momentary excess of current between  
AutoStore MODE  
The STK12C68, STK12C68-5 can be powered in  
one of three modes.  
Vcc and Vcap  
.
During normal AutoStore operation, the STK12C68,  
STK12C68-5 will draw current from VCC to charge a  
capacitor connected to the VCAP pin. This stored  
charge will be used by the chip to perform a single  
STORE operation. After power up, when the voltage  
on the VCAP pin drops below VSWITCH, the part will  
automatically disconnect the VCAP pin from VCC and  
initiate a STORE operation.  
1
28  
27  
26  
+
Figure 2 shows the proper connection of capacitors  
for automatic store operation. A charge storage  
capacitor having a capacity of between 68μF and  
220μF (± 20%) rated at 6V should be provided.  
14  
15  
Figure 2: AutoStore Mode  
*If HSB is not used, it should be left unconnected.  
In system power mode, both VCC and VCAP are con-  
nected to the + 5V power supply without the 68μF  
capacitor. In this mode the AutoStore function of the  
STK12C68, STK12C68-5 will operate on the stored  
system charge as power goes down. The user must,  
however, guarantee that VCC does not drop below  
3.6V during the 10ms STORE cycle.  
1
28  
27  
26  
AutoStore INHIBIT MODE  
14  
15  
If an automatic STORE on power loss is not required,  
then VCC can be tied to ground and + 5V applied to  
Figure 3: AutoStore Inhibit Mode  
Rev 2.0  
Document Control #ML0008  
June, 2008  
10  
STK12C68, STK12C68-5 (SMD5962-94599)  
If HSB is not used, it should be left unconnected.  
HSB OPERATION  
The STK12C68, STK12C68-5 provides the HSB pin  
for controlling and acknowledging the STORE opera-  
tions. The HSB pin is used to request a hardware  
STORE cycle. When the HSB pin is driven low, the  
STK12C68, STK12C68-5 will conditionally initiate a  
STORE operation after tDELAY; an actual STORE cycle  
will only begin if a WRITE to the SRAM took place  
since the last STORE or RECALL cycle. The HSB pin  
has a very resistive pullup and is internally driven  
low to indicate a busy condition while the STORE  
(initiated by any means) is in progress.  
PREVENTING STORES  
The STORE function can be disabled on the fly by  
holding HSB high with a driver capable of sourcing  
30mA at a VOH of at least 2.2V, as it will have to  
overpower the internal pull-down device that drives  
HSB low for 20μs at the onset of a STORE. When  
the STK12C68, STK12C68-5 is connected for  
AutoStore operation (system VCC connected to VCC  
and a 68μF capacitor on VCAP) and VCC crosses  
VSWITCH on the way down, the STK12C68,  
STK12C68-5 will attempt to pull HSB low; if HSB  
doesn’t actually get below VIL, the part will stop try-  
ing to pull HSB low and abort the STORE attempt.  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK12C68,  
STK12C68-5 will continue SRAM operations for tDE-  
HARDWARE PROTECT  
The STK12C68, STK12C68-5 offers hardware pro-  
tection against inadvertent STORE operation and  
SRAM WRITEs during low-voltage conditions. When  
VCAP < VSWITCH, all externally initiated STORE opera-  
tions and SRAM WRITEs are inhibited.  
. During tDELAY, multiple SRAM READ operations  
LAY  
may take place. If a WRITE is in progress when HSB  
is pulled low it will be allowed a time, tDELAY, to com-  
plete. However, any SRAM WRITE cycles requested  
after HSB goes low will be inhibited until HSB  
returns high.  
AutoStore can be completely disabled by tying VCC  
to ground and applying + 5V to VCAP. This is the  
AutoStore Inhibit mode; in this mode, STOREs are  
only initiated by explicit request using either the soft-  
ware sequence or the HSB pin.  
The HSB pin can be used to synchronize multiple  
STK12C68, STK12C68-5s while using a single  
larger capacitor. To operate in this mode the HSB  
pin should be connected together to the HSB pins  
from the other STK12C68, STK12C68-5s. An exter-  
nal pull-up resistor to + 5V is required since HSB  
acts as an open drain pull down. The VCAP pins from  
the other STK12C68, STK12C68-5 parts can be tied  
together and share a single capacitor. The capacitor  
size must be scaled by the number of devices con-  
nected to it. When any one of the STK12C68,  
STK12C68-5s detects a power loss and asserts  
HSB, the common HSB pin will cause all parts to  
request a STORE cycle (a STORE will take place in  
those STK12C68, STK12C68-5s that have been  
written since the last nonvolatile cycle).  
LOW AVERAGE ACTIVE POWER  
The STK12C68, STK12C68-5 draws significantly  
less current when it is cycled at times longer than  
50ns. Figure 4 shows the relationship between ICC  
and READ cycle time. Worst-case current consump-  
tion is shown for both CMOS and TTL input levels  
(commercial temperature range, VCC = 5.5V, 100%  
duty cycle on chip enable). Figure 5 shows the  
same relationship for WRITE cycles. If the chip  
enable duty cycle is less than 100%, only standby  
current is drawn when the chip is disabled. The  
overall average current drawn by the STK12C68,  
STK12C68-5 depends on the following items: 1)  
CMOS vs. TTL input levels; 2) the duty cycle of chip  
enable; 3) the overall cycle rate for accesses; 4) the  
ratio of READs to WRITEs; 5) the operating tempera-  
ture; 6) the Vcc level; and 7) I/O loading.  
During any STORE operation, regardless of how it  
was initiated, the STK12C68, STK12C68-5 will con-  
tinue to drive the HSB pin low, releasing it only when  
the STORE is complete. Upon completion of the  
STORE operation the STK12C68, STK12C68-5 will  
remain disabled until the HSB pin returns high.  
Rev 2.0  
Document Control #ML0008  
June, 2008  
11  
STK12C68, STK12C68-5 (SMD5962-94599)  
100  
80  
100  
80  
60  
60  
TTL  
40  
20  
40  
20  
CMOS  
TTL  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 4: Icc (max) Reads  
Figure 5: Icc (max) Writes  
desired state as a safeguard against events that  
might flip the bit inadvertently (program bugs,  
incoming inspection routines, etc.).  
BEST PRACTICES  
nvSRAM products have been used effectively for  
over 15 years. While ease-of-use is one of the  
product’s main system values, experience gained  
working with hundreds of applications has resulted  
in the following suggestions as best practices:  
• The Vcap value specified in this datasheet  
includes a minimum and a maximum value size.  
Best practice is to meet this requirement and not  
exceed the max Vcap value because the higher  
inrush currents may reduce the reliability of the  
internal pass transistor. Customers that want to  
use a larger Vcap value to make sure there is  
extra store charge should discuss their Vcap size  
selection with Simtek.  
• The non-volatile cells in an nvSRAM are pro-  
grammed on the test floor during final test and  
quality assurance. Incoming inspection routines  
at customer or contract manufacturer’s sites will  
sometimes reprogram these values. Final NV  
patterns are typically repeating patterns of AA,  
55, 00, FF, A5, or 5A. End product’s firmware  
should not assume an NV array is in a set pro-  
grammed state. Routines that check memory  
content values to determine first time system  
configuration, cold or warm boot status, etc.  
should always program a unique NV pattern  
(e.g., complex 4-byte pattern of 46 E6 49 53 hex  
or more random bytes) as part of the final sys-  
tem manufacturing test to ensure these system  
routines work consistently.  
• Power up boot firmware routines should rewrite  
the nvSRAM into the desired state. While the  
nvSRAM is shipped in a preset state, best prac-  
tice is to again rewrite the nvSRAM into the  
Rev 2.0  
Document Control #ML0008  
June, 2008  
12  
STK12C68, STK12C68-5 (SMD5962-94599)  
COMMERCIAL AND INDUSTRIAL ORDERING INFORMATION  
STK12C68 - S F 45 I TR  
Packing Option  
Blank = Tube  
TR = Tape and Reel  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
F = 100% Sn (Matte Tin)  
Package  
S = Plastic 28-pin 330 mil SOIC  
W = Plastic 28-pin 600 mil DIP  
P = Plastic 28-pin 300 mil DIP  
C = Ceramic 28-pin 300 mil DIP  
L = Ceramic 28-pin LLC  
Rev 2.0  
Document Control #ML0008  
June, 2008  
13  
STK12C68, STK12C68-5 (SMD5962-94599)  
MILITARY ORDERING INFORMATION  
STK12C68 - 5 C 35 M  
Temperature Range  
M = Military (–55 to 125°C)  
Access Time  
35 = 35ns  
55 = 55ns  
Package  
C = Ceramic 28-pin 300 mil DIP (gold lead finish)  
K = Ceramic 28-pin 300 mil DIP (solder dip finish)  
L = Ceramic 28 pin LCC  
Retention / Endurance  
5 = Military (10 years or 105cycles)  
5962 - 94599 01 MX X  
Lead Finish  
A = Solder DIP lead finish  
C = Gold lead DIP finish  
X = Lead finish “A” or “C” is acceptable  
Case Outline  
X = Ceramic 28 pin 300-mil DIP  
Y = Ceramic 28 pin LCC  
Device Class Indicator - Class M  
Device Type  
01 = 55ns  
03 = 35ns  
Rev 2.0  
Document Control #ML0008  
June, 2008  
14  
STK12C68, STK12C68-5 (SMD5962-94599)  
ORDERING INFORMATION  
Part Number  
Description  
Access Times  
Temperature  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
STK12C68-C35  
STK12C68-C45  
STK12C68-L35  
STK12C68-L45  
STK12C68-PF25  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
5V 8Kx8 AutoStore nvSRAM LCC28  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
35 ns access time  
45 ns access time  
35 ns access time  
45 ns access time  
25 ns access time  
STK12C68-PF45  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
45 ns access time  
Commercial  
STK12C68-SF25  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
25 ns access time  
25 ns access time  
45 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
35 ns access time  
45 ns access time  
35 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
25 ns access time  
45 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
55 ns access time  
55 ns access time  
55 ns access time  
55 ns access time  
55 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
35 ns access time  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Military  
STK12C68-SF25TR  
STK12C68-SF45  
STK12C68-SF45TR  
STK12C68-WF25  
STK12C68-WF45  
STK12C68-C35I  
STK12C68-C45I  
STK12C68-L35I  
STK12C68-L45I  
5V 8Kx8 AutoStore nvSRAM LCC28  
STK12C68-PF25I  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
STK12C68-PF45I  
STK12C68-SF25I  
STK12C68-SF25ITR  
STK12C68-SF45I  
STK12C68-SF45ITR  
STK12C68-WF25I  
STK12C68-WF45I  
SMD5962-9459901MXA  
SMD5962-9459901MXC  
SMD5962-9459901MXX  
SMD5962-9459901MYA  
SMD5962-9459901MYX  
SMD5962-9459903MXA  
SMD5962-9459903MXC  
SMD5962-9459903MXX  
SMD5962-9459903MYA  
SMD5962-9459903MYX  
STK12C68-5C35M  
STK12C68-5C55M  
STK12C68-5K35M  
STK12C68-5K55M  
STK12C68-5L35M  
STK12C68-5L55M  
Military  
Military  
Military  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
Military  
Military  
Military  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
Military  
Military  
Military  
Military  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
Rev 2.0  
15  
Document Control #ML0008  
June, 2008  
STK12C68, STK12C68-5 (SMD5962-94599)  
Package Diagrams  
28-Lead, 330 mil SOIC Gull Wing  
0.713  
0.733  
18.11  
18.62  
(
)
0.112  
0.004  
(2.845)  
(0.102)  
0.020  
0.014  
0.508  
0.356  
0.050 (1.270)  
(
)
0.103  
0.093  
2.616  
2.362  
(
)
0.336  
0.326  
8.534  
8.280  
0.477  
12.116  
11.506  
(
)
(
)
0.453  
Pin 1  
10°  
0°  
0.014  
0.008  
0.356  
0.203  
(
)
0.044  
1.117  
(
)
0.028  
0.711  
MIN  
MAX  
DIM = INCHES  
DIM = mm  
16  
MIN  
( MAX )  
Rev 2.0  
Document Control #ML0008  
June, 2008  
STK12C68, STK12C68-5 (SMD5962-94599)  
28-Lead 300 mil PDIP  
.275 6.98  
.295(7.49)  
Pin 1  
Index  
.020  
0.51  
.030 (0.76)  
1.345 34.16  
1.385 (35.18 )  
----  
----  
(4.57).180  
.015  
----  
0.38  
----  
)
(
.125 (3.18)  
MIN  
.100  
(2.54)  
BSC  
.030  
0.76  
.014  
0.36  
.045 1.14  
.060 (1.52)  
.045 (1.14)  
.022 (0.56)  
.300 7.62  
.325 (8.26)  
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
DIM = mm  
(
)
0o  
.008 0.20  
.015 (0.38)  
15o  
.300  
(7.62)  
BSC  
----  
.430  
----  
( )  
10.92  
Rev 2.0  
Document Control #ML0008  
June, 2008  
17  
STK12C68, STK12C68-5 (SMD5962-94599)  
28-Lead, 600 mil PDIP  
0.530 13.46  
0.550 13.97  
(
)
Pin 1  
Index  
0.040 1.02  
0.050(1.27 )  
1.440 36.58  
1.460 (37.08)  
---- ----  
(4.57) .180  
0.015 (0.38)  
----  
----  
0.125 (3.18)  
MIN  
0.10  
(2.54)  
BSC  
0.36  
0.014  
0.045 1.14  
)
(
0.060 1.52  
(
)
0.022 0.56  
15.11  
15.88  
0.595  
0.625  
(
)
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
)
DIM = mm  
(
o
o
15  
0.20  
0.38  
0.008  
0.015  
0
(
)
0.600  
0.660  
15.24  
16.76  
)
(
Rev 2.0  
Document Control #ML0008  
June, 2008  
18  
STK12C68, STK12C68-5 (SMD5962-94599)  
28-Lead, 300 mil Side Braze DIL  
1.386  
35.20  
1.414 (35.92)  
7.36  
(7.87)  
.280  
.310  
PIN  
14  
---  
---  
.060 (1.52)  
3.15 .124  
4.14 .162  
)
(
.040 1.02  
.060 ( )  
1.52  
.125 (3.18)  
MIN  
.090 2.29  
)
(
0.41  
.110 2.79  
.016  
1.22  
.048  
.020 (0.51)  
.052 (1.32)  
.290 7.37  
.310 (7.87 )  
MIN  
DIM = INCHES  
MIN  
MAX  
(
DIM = mm  
)
MAX  
.009 0.23  
.012 (0.30)  
.300 7.62  
.320 (8.13)  
Rev 2.0  
Document Control #ML0008  
June, 2008  
19  
STK12C68, STK12C68-5 (SMD5962-94599)  
28-Pad, 350 mil Ceramic LCC  
0.542 13.77  
(
)
0.558 14.17  
ο
(1.02) 0.040 REF X 45  
3 places  
(
0.342 8.69  
0.358 9.09  
)
ο
(0.51) 0.020 REF X 45  
0.075 1.91  
0.095 (2.41 )  
0.055 (1.40 )  
(0.23) 0.009 REF  
28 places  
1.14  
0.045  
Pad 1  
Index  
0.006  
0.022  
0.022  
0.028  
0.56  
0.15  
0.56  
(
)
)
(
0.71  
0.015  
---  
0.045 1.14  
0.381  
)
(
( )  
---  
0.055 1.40  
0.070 1.78  
(
)
0.090  
2.29  
---  
---  
0.062 1.57  
(
( )  
)
0.558 14.17  
0.078 1.98  
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
DIM = mm  
(
)
Rev 2.0  
Document Control #ML0008  
June, 2008  
20  
STK12C68, STK12C68-5 (SMD5962-94599)  
Document Revision History  
Revision  
0.0  
Date  
Summary  
December 2002 Combined commercial, industrial and military data sheets. Removed 20 nsec device.  
0.1  
January 2003  
July 2003  
Added 35ns SMD to order information  
0.2  
Added “28 - SOIC” label to page 1 pinout drawing  
0.3  
September 2003 Added lead-free lead finish  
0.4  
October 2003  
March 2006  
Restored “W” 600 mil DIP package to ordering information  
0.5  
Removed Commercial 35 ns and leaded lead finish, Removed Military 45ns device  
Reformat SMD Ordering Information to SDDC Part Number Format  
0.6  
August 2006  
February 2007  
0.7  
Add Fast Power-Down Slew Rate Information  
Restore Comm/Ind C & L Package Options  
Add Tape Reel Ordering Options  
Add Product Ordering Code Listing  
Add Package Outline Drawings  
Reformat Entire Document  
0.8  
2.0  
July 2007  
June 2008  
extend definition of t (#7)  
HZ  
update fig. SRAM READ CYCLE #2, SRAM WRITE CYCLE #1,  
update notes in tables HARDWARE STORE CYCLE, AutoStore / POWER_UP RECALL,  
update Note s and Note u  
split off SOFTWARE STORE / RECALL MODE SELEKTION table to clarify product usage  
Added STK-12C68-5 part number to header.  
Page 3: in the DC characteristics table, identified access times valid for commercial and industrial appli-  
cations only; referred users to Website for package thermal characteristics.  
Page 4: in SRAM Read Cycles #1 & #2 table, revised description for t  
and t  
, and changed  
ELQX  
ELQX  
t
Symbol #2 to  
for Read Cycle Time; updated SRAM Read Cycle #2 timing diagram and changed  
ELEH  
title to add G controlled.  
Page 11: under HSB Operation, revised first paragraph to read “The HSB pin has a very resistive  
pullup...”  
Page 14: added access time column to table.  
SIMTEK STK12C68, STK12C68-5 Datasheet, June 2008  
Copyright 2008, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including  
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein consti-  
tutes a license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 2.0  
Document Control #ML0008  
June, 2008  
21  

相关型号:

SMD5962-9459901MYA

Non-Volatile SRAM, 8KX8, 55ns, CMOS, CQCC28, 0.350 INCH, CERAMIC, LCC-28
CYPRESS

SMD5962-9459901MYA

Non-Volatile SRAM, 8KX8, 55ns, CMOS, CQCC28, 0.350 INCH, CERAMIC, LCC-28
SIMTEK

SMD5962-9459901MYX

8KX8 NON-VOLATILE SRAM, 55ns, CQCC28, 0.350 INCH, CERAMIC, LCC-28
CYPRESS

SMD5962-9459901MYX

8KX8 NON-VOLATILE SRAM, 55ns, CQCC28, 0.350 INCH, CERAMIC, LCC-28
SIMTEK

SMD5962-9459903MXA

8KX8 NON-VOLATILE SRAM, 35ns, CDIP28, 0.300 INCH, CERAMIC, DIP-28
CYPRESS

SMD5962-9459903MXA

8KX8 NON-VOLATILE SRAM, 35ns, CDIP28, 0.300 INCH, CERAMIC, DIP-28
SIMTEK

SMD5962-9459903MXC

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
CYPRESS

SMD5962-9459903MXC

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
SIMTEK

SMD5962-9459903MXX

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
CYPRESS

SMD5962-9459903MXX

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CDIP28, 0.300 INCH, CERAMIC, DIP-28
SIMTEK

SMD5962-9459903MYA

Non-Volatile SRAM, 8KX8, 35ns, CMOS, CQCC28, 0.350 INCH, CERAMIC, LCC-28
SIMTEK

SMD5962-9459903MYX

8KX8 NON-VOLATILE SRAM, 35ns, CQCC28, 0.350 INCH, CERAMIC, LCC-28
CYPRESS