STK12C68-SF25 [SIMTEK]

8Kx8 AutoStore nvSRAM; 8Kx8自动存储的nvSRAM
STK12C68-SF25
型号: STK12C68-SF25
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

8Kx8 AutoStore nvSRAM
8Kx8自动存储的nvSRAM

存储 静态存储器
文件: 总20页 (文件大小:526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK12C68 (SMD5962-94599)  
8Kx8 AutoStore nvSRAM  
DESCRIPTION  
FEATURES  
• 25, 35, 45, 55 ns Read Access & Write Cycle Time  
The Simtek STK12C68 is a 64Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
• Unlimited Read/Write Endurance  
• Automatic Non-volatile STORE on Power Loss  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• Non-Volatile STORE Under Hardware or Software  
Control  
• Automatic RECALL to SRAM on Power Up  
• Unlimited RECALL Cycles  
Data transfers automatically to the non-volatile stor-  
age cells when power loss is detected (the STORE  
operation). On power up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• 1 Million STORE Cycles  
• 100-Year Non-volatile Data Retention  
• Single 5V ± 10% Power Supply  
• Commercial, Industrial, Military Temperatures  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest performance, most reliable non-volatile  
memory available.  
• 28-pin 330-mil SOIC, 300-mil PDIP, and 600-mil  
PDIP Packages (RoHS-Compliant)  
• 28-Pin CDIP and LCC Military Packages  
Block Diagram  
VCAP  
VCCX  
POWER  
CONTROL  
QUANTUM TRAP  
128 x 512  
STORE  
RECALL  
A5  
A6  
A7  
A8  
STORE/  
RECALL  
CONTROL  
STATIC RAM  
ARRAY  
128 X 512  
A9  
A11  
A12  
SOFTWARE  
DETECT  
A0 – A12  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 0.7  
Document Control #ML0008  
February 2007  
1
STK12C68 (SMD5962-94599)  
Packages  
VCCX  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
VCAP 1  
2
3
4
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
W
HSB  
A8  
5
6
7
8
A9  
A11  
G
A10  
9
E
10  
DQ7  
DQ0 11  
18 DQ6  
12  
DQ5  
17  
DQ1  
DQ2  
VSS  
16  
15  
13  
14  
DQ4  
DQ3  
28-pin SOIC  
28-pin DIP  
28-pin LCC  
Pin Descriptions  
Pin Name  
I/O  
Description  
A
-A  
Input  
I/O  
Address: The 13 address inputs select one of 8,192 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
12  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
Power Supply  
I/O  
Power: 5.0V, +10%, -10%  
CCX  
HSB  
Hardware Store Busy: When low this output indicates a Store is in progress. When pulled  
low external to the chip, it will initiate a nonvolatile STORE operation. A weak pull up resistor  
keeps this pin high if not connected. (Connection Optional).  
V
V
Power Supply  
Power Supply  
AutoStore Capacitor: Supplies power to nvSRAM during power loss to store data from  
SRAM to nonvolatile storage elements.  
CAP  
Ground  
SS  
Rev 0.7  
Document Control #ML0008  
February 2007  
2
STK12C68 (SMD5962-94599)  
a
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
ABSOLUTE MAXIMUM RATINGS  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (V + 0.5V)  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . . –0.5V to (V + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . .55°C to 125°C  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . .15mA  
CC  
CC  
e
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
INDUSTRIAL  
MILITARY  
COMMERCIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
85  
75  
65  
--  
85  
75  
65  
55  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns  
= 35ns  
= 45ns  
= 55ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
10  
10  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
c
I
I
Average V  
Cycle  
Current during AutoStore  
CAP  
All Inputs Don’t Care  
CC  
4
2
2
mA  
d
d
Average V Current  
CC  
(Standby, Cycling TTL Input Levels)  
27  
24  
20  
--  
27  
24  
20  
19  
mA  
mA  
mA  
mA  
t
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
= 55ns, E V  
SB  
1
AVAV  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
IH  
I
I
I
V
Standby Current  
E (V – 0.2V)  
CC  
SB  
2
CC  
1.5  
1
2.5  
1
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V = max  
CC  
ILK  
V
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V = max  
CC  
OLK  
5
5
V
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
V
T
Input Logic “1” Voltage  
2.2  
V
+ .5  
2.2  
– .5  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
Input Logic “0” Voltage  
V
– .5  
0.8  
V
0.8  
IL  
SS  
SS  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Logic “0” Voltage on HSB Output  
Operating Temperature  
2.4  
2.4  
V
I
I
I
=– 4mA except HSB  
= 8mA except HSB  
= 3mA  
OH  
OL  
BL  
OUT  
OUT  
OUT  
0.4  
0.4  
70  
0.4  
0.4  
V
V
0
40/-55  
85/125  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
Note e: VCC reference levels throughout this datasheet refer to VCCX if that is where the power supply connection is made, or VCAP if VCCX is connected to ground.  
AC TEST CONDITIONS  
5.0V  
Input Pulse Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
480 Ohms  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
OUTPUT  
f
30 pF  
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
A
255 Ohms  
INCLUDING  
SCOPE AND  
FIXTURE  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
C
pF  
OUT  
Note f: These parameters are guaranteed but not tested.  
Figure 1. AC Output Loading  
Rev 0.7  
Document Control #ML0008  
February 2007  
3
STK12C68 (SMD5962-94599)  
e
SRAM READ CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK12C68-25  
STK12C68-35  
STK12C68-45  
STK12C68-55  
NO.  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
g
25  
35  
45  
55  
AVAV  
h
3
Address Access Time  
25  
10  
35  
15  
45  
20  
55  
35  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
h
5
5
5
5
5
5
5
5
5
AXQX  
6
ELQX  
i
7
10  
10  
25  
10  
10  
35  
12  
12  
45  
12  
12  
55  
EHQZ  
HZ  
8
0
0
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
i
9
GHQZ  
f
f
10  
11  
ELICCH  
EHICCL  
PS  
Note g: W and HSB must be high during SRAM READ cycles.  
Note h: Device is continuously selected with E and G both low.  
Note i: Measured 200mV from steady state output voltage.  
,
SRAM READ CYCLE #1: Address Controlledg h  
2
AVAV  
t
ADDRESS  
3
AVQV  
t
5
AXQX  
t
DQ (DATA OUT)  
DATA VALID  
g
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
1
11  
EHICCL  
t
ELQV  
t
6
E
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
Rev 0.7  
Document Control #ML0008  
February 2007  
4
STK12C68 (SMD5962-94599)  
e
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK12C68-25 STK12C68-35 STK12C68-45 STK12C68-55  
UNITS  
NO.  
PARAMETER  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
45  
45  
25  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WC  
WP  
CW  
DW  
t
t
Write Pulse Width  
WLWH  
WLEH  
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
45  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
0
WHAX  
i, j  
EHAX  
WR  
t
t
10  
13  
14  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
Note l: HSB must be high during SRAM WRITE cycles.  
k, l  
SRAM WRITE CYCLE #1: W Controlled  
12  
t
AVAV  
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
k, l  
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
14  
ELEH  
18  
AVEL  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 0.7  
Document Control #ML0008  
February 2007  
5
STK12C68 (SMD5962-94599)  
HARDWARE MODE SELECTION  
E
H
L
W
X
H
L
HSB  
A
- A (hex)  
0
MODE  
Not Selected  
I/O  
POWER  
Standby  
Active  
Active  
l
NOTES  
12  
H
X
X
X
X
Output High Z  
Output Data  
Input Data  
H
Read SRAM  
o
L
H
Write SRAM  
X
X
L
Nonvolatile STORE  
Output High Z  
m
CC  
2
0000  
1555  
0AAA  
1FFF  
10F0  
0F0F  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l
L
L
H
H
H
H
n, o  
n, o  
Nonvolatile STORE  
CC  
2
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
Nonvolatile RECALL  
Note m: HSB STORE operation occurs only if an SRAM WRITE has been done since the last nonvolatile cycle. After the STORE (if any) completes, the  
part will go into standby mode, inhibiting all operations until HSB rises.  
Note n: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note o: I/O state assumes G < VIL. Activation of nonvolatile cycles does not depend on state of G.  
e
HARDWARE STORE CYCLE  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK12C68  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
1
MAX  
22  
23  
24  
25  
26  
t
t
t
t
t
t
t
t
STORE Cycle Duration  
10  
ms  
μs  
ns  
ns  
ns  
i, p  
i, q  
p, r  
STORE  
DELAY  
RECOVER  
HLHX  
HLHZ  
HLQZ  
HHQX  
Time Allowed to Complete SRAM Cycle  
Hardware STORE High to Inhibit Off  
Hardware STORE Pulse Width  
700  
300  
15  
Hardware STORE Low to Store Busy  
HLBL  
Note p: E and G low for output behavior.  
Note q: E and G low and W high for output behavior.  
Note r: tRECOVER is only applicable after tSTORE is complete.  
HARDWARE STORE CYCLE  
25  
HLHX  
t
HSB (IN)  
24  
RECOVER  
t
22  
STORE  
t
26  
HLBL  
t
HSB (OUT)  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DATA VALID  
23  
DELAY  
t
DQ (DATA OUT)  
DATA VALID  
Rev 0.7  
Document Control #ML0008  
February 2007  
6
STK12C68 (SMD5962-94599)  
e
AutoStore / POWER-UP RECALL  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK12C68  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
550  
10  
27  
28  
29  
30  
31  
32  
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
ns  
μs  
V
s
RESTORE  
t
t
t
t
t
p, q, t  
STORE  
VSBL  
HLHZ  
BLQZ  
Low Voltage Trigger (V  
) to HSB Low  
300  
l
SWITCH  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
1
p
DELAY  
V
V
4.0  
4.5  
3.9  
SWITCH  
RESET  
Low Voltage Reset Level  
V
Note s: tRESTORE starts from the time VCC rises above VSWITCH  
.
Note t: HSB is asserted low for 1μs when VCAP drops through VSWITCH. If an SRAM WRITE has not taken place since the last nonvolatile cycle, HSB  
will be released and no STORE will take place.  
AutoStore / POWER-UP RECALL  
V
CC  
31  
SWITCH  
V
32  
V
RESET  
TM  
AutoStore  
POWER-UP RECALL  
29  
VSBL  
28  
STORE  
27  
RESTORE  
t
t
t
HSB  
30  
DELAY  
t
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE  
BROWN OUT  
AutoStore  
BROWN OUT  
AutoStore  
(NO SRAM WRITES)  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
Rev 0.7  
Document Control #ML0008  
February 2007  
7
STK12C68 (SMD5962-94599)  
v
e
SOFTWARE-CONTROLLED STORE/RECALL CYCLE  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK12C68-25 STK12C68-35 STK12C68-45 STK12C68-55  
NO.  
PARAMETER  
UNITS NOTES  
Standard Alternate  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
33  
t
t
STORE/RECALL Initiation Cycle  
Time  
AVAV  
RC  
25  
35  
45  
55  
ns  
p
34  
35  
36  
37  
t
t
t
t
t
t
Address Set-up Time  
Clock Pulse Width  
Address Hold Time  
RECALL Duration  
0
0
0
0
ns  
ns  
ns  
μs  
u
u
u
AVEL  
AS  
20  
20  
25  
20  
30  
20  
30  
20  
ELEH  
CW  
ELAX  
20  
20  
20  
20  
RECALL  
Note u: The software sequence is clocked with E controlled READs.  
Note v: The six consecutive addresses must be in the order listed in the Hardware Mode Selection Table: (0000, 1555, 0AAA, 1FFF, 10F0, 0F0F) for a  
STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0, 0F0E) for a RECALL cycle. W must be high during all six consecutive cycles.  
v
SOFTWARE STORE/RECALL CYCLE: E Controlled  
33  
AVAV  
33  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
34  
AVEL  
35  
t
ELEH  
t
E
36  
ELAX  
t
28  
37  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA OUT)  
Rev 0.7  
Document Control #ML0008  
February 2007  
8
STK12C68 (SMD5962-94599)  
DEVICE OPERATION  
The STK12C68 has two separate modes of opera-  
POWER-UP RECALL  
tion: SRAM mode and nonvolatile mode. In SRAM  
mode, the memory operates as a standard fast static  
RAM. In nonvolatile mode, data is transferred from  
SRAM to Nonvolatile Elements (the STORE opera-  
tion) or from Nonvolatile Elements to SRAM (the  
RECALL operation). In this mode SRAM functions are  
disabled.  
During power up, or after any low-power condition  
(VCAP < VRESET), an internal RECALL request will be  
latched. When VCAP once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK12C68 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
NOISE CONSIDERATIONS  
The STK12C68 is a high-speed memory and so  
must have a high-frequency bypass capacitor of  
approximately 0.1μF connected between VCAP and  
VSS, using leads and traces that are as short as pos-  
sible. As with all high-speed CMOS ICs, normal care-  
ful routing of power, ground and signals will help  
prevent noise problems.  
VCC or between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
The STK12C68 software STORE cycle is initiated by  
executing sequential E controlled READ cycles from  
six specific address locations. During the STORE  
cycle an erase of the previous nonvolatile data is  
first performed, followed by a program of the nonvol-  
atile elements. The program operation copies the  
SRAM data into nonvolatile memory. Once a STORE  
cycle is initiated, further input and output are dis-  
abled until the cycle is completed.  
SRAM READ  
The STK12C68 performs a READ cycle whenever E  
and G are low and W and HSB are high. The  
address specified on pins A0-12 determines which of  
the 8,192 data bytes will be accessed. When the  
READ is initiated by an address transition, the out-  
puts will be valid after a delay of tAVQV (READ cycle  
#1). If the READ is initiated by E or G, the outputs will  
be valid at tELQV or at tGLQV, whichever is later (READ  
cycle #2). The data outputs will repeatedly respond to  
address changes within the tAVQV access time without  
the need for transitions on any control input pins, and  
will remain valid until another address change or until  
E or G is brought high, or W or HSB is brought low.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is important  
that no other READ or WRITE accesses intervene in  
the sequence, or the sequence will be aborted and  
no STORE or RECALL will take place.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
Rev 0.7  
Document Control #ML0008  
February 2007  
9
STK12C68 (SMD5962-94599)  
capacitor having a capacity of between 68μF and  
220μF ( 20%) rated at 6V should be provided.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of E controlled READ opera-  
tions must be performed:  
In system power mode (Figure 3), both VCCX and VCAP  
are connected to the + 5V power supply without the  
68μF capacitor. In this mode the AutoStore function  
of the STK12C68 will operate on the stored system  
charge as power goes down. The user must, how-  
ever, guarantee that VCCX does not drop below 3.6V  
during the 10ms STORE cycle.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
If an automatic STORE on power loss is not required,  
then VCCX can be tied to ground and + 5V applied to  
VCAP (Figure 4). This is the AutoStore Inhibit mode, in  
which the AutoStore function is disabled. If the  
STK12C68 is operated in this configuration, refer-  
ences to VCCX should be changed to VCAP throughout  
this data sheet. In this mode, STORE operations may  
be triggered through software control or the HSB pin.  
It is not permissible to change between these three  
options “on the fly.”  
Internally, RECALL is a two-step procedure. First, the  
SRAM data is cleared, and second, the nonvolatile  
information is transferred into the SRAM cells. After  
the tRECALL cycle time the SRAM will once again be  
ready for READ and WRITE operations. The RECALL  
operation in no way alters the data in the Nonvolatile  
Elements. The nonvolatile data can be recalled an  
unlimited number of times.  
In order to prevent unneeded STORE operations,  
automatic STOREs as well as those initiated by  
externally driving HSB low will be ignored unless at  
least one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software initi-  
ated STORE cycles are performed regardless of  
whether a WRITE operation has taken place. An  
optional pull-up resistor is shown connected to HSB.  
This can be used to signal the system that the  
AutoStore cycle is in progress.  
AutoStore OPERATION  
The STK12C68 can be powered in one of three  
modes.  
During normal AutoStore operation, the STK12C68  
will draw current from VCCX to charge a capacitor  
connected to the VCAP pin. This stored charge will be  
used by the chip to perform a single STORE opera-  
tion. After power up, when the voltage on the VCAP  
pin drops below VSWITCH, the part will automatically  
disconnect the VCAP pin from VCCX and initiate a  
STORE operation.  
If the power supply drops faster than 20 μs/volt  
before VCCX reaches VSWITCH, then a 2.2 ohm resistor  
should be inserted between VCCX and the system  
supply to avoid momentary excess of current  
between Vccx and Vcap.  
Figure 2 shows the proper connection of capacitors  
for automatic store operation. A charge storage  
28  
27  
26  
1
1
28  
27  
26  
1
28  
27  
26  
+
14  
15  
14  
15  
14  
15  
Figure 4. AutoStore Inhibit Mode  
Figure 3. System Power Mode  
Figure 2. AutoStore Mode  
Rev 0.7  
Document Control #ML0008  
February 2007  
10  
STK12C68 (SMD5962-94599)  
If HSB is not used, it should be left unconnected.  
HSB OPERATION  
The STK12C68 provides the HSB pin for controlling  
and acknowledging the STORE operations. The HSB  
pin is used to request a hardware STORE cycle.  
When the HSB pin is driven low, the STK12C68 will  
PREVENTING STORES  
The STORE function can be disabled on the fly by  
holding HSB high with a driver capable of sourcing  
30mA at a VOH of at least 2.2V, as it will have to  
overpower the internal pull-down device that drives  
HSB low for 20μs at the onset of a STORE. When  
the STK12C68 is connected for AutoStore operation  
(system VCC connected to VCCX and a 68μF capacitor  
on VCAP) and VCC crosses VSWITCH on the way down,  
the STK12C68 will attempt to pull HSB low; if HSB  
doesn’t actually get below VIL, the part will stop try-  
ing to pull HSB low and abort the STORE attempt.  
conditionally initiate a STORE operation after tDELAY  
;
an actual STORE cycle will only begin if a WRITE to  
the SRAM took place since the last STORE or  
RECALL cycle. The HSB pin acts as an open drain  
driver that is internally driven low to indicate a busy  
condition while the STORE (initiated by any means)  
is in progress.  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK12C68 will  
HARDWARE PROTECT  
The STK12C68 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs dur-  
ing low-voltage conditions. When VCAP < VSWITCH, all  
externally initiated STORE operations and SRAM  
WRITEs are inhibited.  
continue SRAM operations for tDELAY. During tDELAY  
,
multiple SRAM READ operations may take place. If a  
WRITE is in progress when HSB is pulled low it will  
be allowed a time, tDELAY, to complete. However, any  
SRAM WRITE cycles requested after HSB goes low  
will be inhibited until HSB returns high.  
AutoStore can be completely disabled by tying VCCX  
to ground and applying + 5V to VCAP . This is the  
The HSB pin can be used to synchronize multiple  
STK12C68s while using a single larger capacitor. To  
operate in this mode the HSB pin should be con-  
nected together to the HSB pins from the other  
STK12C68s. An external pull-up resistor to + 5V is  
required since HSB acts as an open drain pull down.  
The VCAP pins from the other STK12C68 parts can  
be tied together and share a single capacitor. The  
capacitor size must be scaled by the number of  
devices connected to it. When any one of the  
STK12C68s detects a power loss and asserts HSB,  
the common HSB pin will cause all parts to request  
a STORE cycle (a STORE will take place in those  
STK12C68s that have been written since the last  
nonvolatile cycle).  
AutoStore  
Inhibit mode; in this mode, STOREs are only  
initiated by explicit request using either the software  
sequence or the HSB pin.  
LOW AVERAGE ACTIVE POWER  
The STK12C68 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 5  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 6 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK12C68 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
During any STORE operation, regardless of how it  
was initiated, the STK12C68 will continue to drive  
the HSB pin low, releasing it only when the STORE is  
complete. Upon completion of the STORE operation  
the STK12C68 will remain disabled until the HSB  
pin returns high.  
temperature; 6) the V level; and 7) I/O loading.  
cc  
Rev 0.7  
Document Control #ML0008  
February 2007  
11  
STK12C68 (SMD5962-94599)  
100  
100  
80  
80  
60  
60  
TTL  
40  
40  
20  
CMOS  
TTL  
20  
CMOS  
200  
0
0
50  
100  
150  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 5: Icc (max) Reads  
Figure 6: Icc (max) Writes  
Commercial and Industrial Ordering Information  
STK12C68 - S F 45 I TR  
Packing Option  
Blank = Tube  
TR = Tape and Reel  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
F = 100% Sn (Matte Tin)  
Package  
S = Plastic 28-pin 330 mil SOIC  
W = Plastic 28-pin 600 mil DIP  
P = Plastic 28-pin 300 mil DIP  
C = Ceramic 28-pin 300 mil DIP  
L = Ceramic 28-pin LLC  
Rev 0.7  
Document Control #ML0008  
February 2007  
12  
STK12C68 (SMD5962-94599)  
Military Ordering Information  
STK12C68 - 5 C 35 M  
Temperature Range  
M = Military (–55 to 125°C)  
Access Time  
35 = 35ns  
55 = 55ns  
Package  
C = Ceramic 28-pin 300 mil DIP (gold lead finish)  
K = Ceramic 28-pin 300 mil DIP (solder dip finish)  
L = Ceramic 28 pin LCC  
Retention / Endurance  
5
5 = Military (10 years or 10 cycles)  
5962 - 94599 01 MX X  
Lead Finish  
A = Solder DIP lead finish  
C = Gold lead DIP finish  
X = Lead finish “A” or “C” is acceptable  
Case Outline  
X = Ceramic 28 pin 300-mil DIP  
Y = Ceramic 28 pin LCC  
Device Class Indicator - Class M  
Device Type  
01 = 55ns  
03 = 35ns  
Rev 0.7  
Document Control #ML0008  
February 2007  
13  
STK12C68 (SMD5962-94599)  
Ordering Information  
Part Number  
Description  
Temperature  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
STK12C68-C35  
STK12C68-C45  
STK12C68-L35  
STK12C68-L45  
STK12C68-PF25  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
5V 8Kx8 AutoStore nvSRAM LCC28  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
STK12C68-PF45  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
Commercial  
STK12C68-SF25  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Military  
STK12C68-SF25TR  
STK12C68-SF45  
STK12C68-SF45TR  
STK12C68-WF25  
STK12C68-WF45  
STK12C68-C35I  
STK12C68-C45I  
STK12C68-L35I  
STK12C68-L45I  
5V 8Kx8 AutoStore nvSRAM LCC28  
STK12C68-PF25I  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM SOP28-330  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM PDIP28-600  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
STK12C68-PF45I  
STK12C68-SF25I  
STK12C68-SF25ITR  
STK12C68-SF45I  
STK12C68-SF45ITR  
STK12C68-WF25I  
STK12C68-WF45I  
SMD5962-9459901MXA  
SMD5962-9459901MXC  
SMD5962-9459901MXX  
SMD5962-9459901MYA  
SMD5962-9459901MYX  
SMD5962-9459903MXA  
SMD5962-9459903MXC  
SMD5962-9459903MXX  
SMD5962-9459903MYA  
SMD5962-9459903MYX  
STK12C68-5C35M  
STK12C68-5C55M  
STK12C68-5K35M  
STK12C68-5K55M  
STK12C68-5L35M  
STK12C68-5L55M  
Military  
Military  
Military  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
Military  
Military  
Military  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM CDIP28-300  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
Military  
Military  
Military  
Military  
5V 8Kx8 AutoStore nvSRAM LCC28  
Military  
Rev 0.7  
Document Control #ML0008  
February 2007  
14  
STK12C68 (SMD5962-94599)  
Package Diagrams  
28-Lead, 330 mil SOIC Gull Wing  
0.713  
0.733  
18.11  
18.62  
(
)
0.112  
0.004  
(2.845)  
(0.102)  
0.020  
0.014  
0.508  
0.356  
0.050 (1.270)  
(
)
0.103  
0.093  
2.616  
2.362  
(
)
0.336  
0.326  
8.534  
8.280  
0.477  
12.116  
11.506  
(
)
(
)
0.453  
Pin 1  
10°  
0°  
0.014  
0.008  
0.356  
0.203  
(
)
0.044  
1.117  
(
)
0.028  
0.711  
MIN  
MAX  
DIM = INCHES  
DIM = mm  
15  
MIN  
( MAX )  
Rev 0.7  
Document Control #ML0008  
February 2007  
STK12C68 (SMD5962-94599)  
28-Lead 300 mil PDIP  
.275 6.98  
.295(7.49)  
Pin 1  
Index  
.020  
0.51  
.030 (0.76)  
1.345 34.16  
1.385 (35.18 )  
----  
----  
(4.57).180  
.015  
----  
0.38  
----  
)
(
.125 (3.18)  
MIN  
.100  
(2.54)  
BSC  
.030  
0.76  
.014  
0.36  
.045 1.14  
.060 (1.52)  
.045 (1.14)  
.022 (0.56)  
.300 7.62  
.325 (8.26)  
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
DIM = mm  
(
)
0o  
.008 0.20  
.015 (0.38)  
15o  
.300  
(7.62)  
BSC  
----  
.430  
----  
( )  
10.92  
Rev 0.7  
Document Control #ML0008  
February 2007  
16  
STK12C68 (SMD5962-94599)  
28-Lead, 600 mil PDIP  
0.530 13.46  
0.550 13.97  
(
)
Pin 1  
Index  
0.040 1.02  
0.050(1.27 )  
1.440 36.58  
1.460 (37.08)  
---- ----  
(4.57) .180  
0.015 (0.38)  
----  
----  
0.125 (3.18)  
MIN  
0.10  
(2.54)  
BSC  
0.36  
0.014  
0.022  
0.045 1.14  
( )  
)
(
0.56  
0.060 1.52  
15.11  
15.88  
0.595  
0.625  
(
)
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
)
DIM = mm  
(
o
o
15  
0.20  
0.38  
0.008  
0.015  
0
(
)
0.600  
0.660  
15.24  
16.76  
)
(
Rev 0.7  
Document Control #ML0008  
February 2007  
17  
STK12C68 (SMD5962-94599)  
28-Lead, 300 mil Side Braze DIL  
1.386  
35.20  
1.414 (35.92)  
7.36  
(7.87)  
.280  
.310  
PIN  
14  
---  
---  
1.52  
.060 ( )  
3.15 .124  
4.14 .162  
)
(
.040 1.02  
.060 (1.52)  
.125 (3.18)  
MIN  
.090 2.29  
)
(
0.41  
.110 2.79  
.016  
.048 1.22  
.020 (0.51)  
.052 (1.32)  
.290 7.37  
.310 (7.87 )  
MIN  
DIM = INCHES  
MIN  
MAX  
(
)
DIM = mm  
MAX  
.009 0.23  
.012 (0.30)  
.300 7.62  
.320 (8.13)  
Rev 0.7  
Document Control #ML0008  
February 2007  
18  
STK12C68 (SMD5962-94599)  
28-Pad, 350 mil Ceramic LCC  
0.542 13.77  
( )  
0.558 14.17  
ο
(1.02) 0.040 REF X 45  
3 places  
(
0.342 8.69  
0.358 9.09  
)
ο
(0.51) 0.020 REF X 45  
0.075 1.91  
0.095 (2.41 )  
0.055 (1.40 )  
(0.23) 0.009 REF  
28 places  
1.14  
0.045  
Pad 1  
Index  
0.006  
0.022  
0.15  
0.022  
0.028  
0.56  
(
)
)
(
0.56  
0.71  
0.015  
---  
0.045 1.14  
0.381  
)
(
( )  
---  
0.055 1.40  
0.070 1.78  
(
)
0.090  
2.29  
---  
---  
0.062 1.57  
(
( )  
)
0.558 14.17  
0.078 1.98  
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
DIM = mm  
(
)
Rev 0.7  
Document Control #ML0008  
February 2007  
19  
STK12C68 (SMD5962-94599)  
Document Revision History  
Revision  
0.0  
Date  
Summary  
December 2002 Combined commercial, industrial and military data sheets. Removed 20 nsec device.  
0.1  
January 2003  
July 2003  
Added 35ns SMD to order information  
0.2  
Added “28 - SOIC” label to page 1 pinout drawing  
0.3  
September 2003 Added lead-free lead finish  
0.4  
October 2003  
March 2006  
Restored “W” 600 mil DIP package to ordering information  
0.5  
Removed Commercial 35 ns and leaded lead finish, Removed Military 45ns device  
Reformat SMD Ordering Information to SDDC Part Number Format  
Add Fast Power-Down Slew Rate Information  
0.6  
August 2006  
February 2007  
0.7  
Restore Comm/Ind C & L Package Options  
Add Tape Reel Ordering Options  
Add Product Ordering Code Listing  
Add Package Outline Drawings  
Reformat Entire Document  
SIMTEK STK12C68 Datasheet, February 2007  
Copyright 2007, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including MER-  
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein constitutes a  
license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 0.7  
Document Control #ML0008  
February 2007  
20  

相关型号:

STK12C68-SF25I

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-SF25I

64 Kbit (8K x 8) AutoStore nvSRAM
CYPRESS

STK12C68-SF25ITR

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-SF25ITR

64 Kbit (8K x 8) AutoStore nvSRAM
CYPRESS

STK12C68-SF25M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-SF25TR

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-SF25TR

64 Kbit (8K x 8) AutoStore nvSRAM
CYPRESS

STK12C68-SF35

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-SF35I

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-SF35ITR

8Kx8 AutoStore nvSRAM
SIMTEK

STK12C68-SF35M

8K x 8 AutoStore⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
ETC

STK12C68-SF35TR

8Kx8 AutoStore nvSRAM
SIMTEK