STK14C88-3RF55I [SIMTEK]

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO48, 0.300 INCH, PLASTIC, SSOP-48;
STK14C88-3RF55I
型号: STK14C88-3RF55I
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO48, 0.300 INCH, PLASTIC, SSOP-48

静态存储器 光电二极管 内存集成电路
文件: 总13页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK14C88-3  
32K x 8 AutoStore™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
The Simtek STK14C88-3 is a fast static RAM with a  
• 35ns, 45ns and 55ns Access Times  
• “Hands-off” Automatic STORE with External  
nonvolatile element incorporated in each static  
memory cell. The SRAM can be read and written an  
unlimited number of times, while independent, non-  
volatile data resides in nonvolatile elements. Data  
transfers from the SRAM to the nonvolatile elements  
(the STORE operation) can take place automatically  
on power down. A 68µF or larger capacitor tied from  
VCAP to ground guarantees the STORE operation,  
regardless of power-down slew rate or loss of power  
from “hot swapping”. Transfers from the nonvolatile  
elements to the SRAM (the RECALL operation) take  
place automatically on restoration of power. Initia-  
tion of STORE and RECALL cycles can also be soft-  
ware controlled by entering specific read  
sequences. A hardware STORE may be initiated with  
the HSB pin.  
68µF Capacitor on Power Down  
STORE to nonvolatile elements Initiated by  
Hardware, Software or AutoStore™  
RECALL to SRAM Initiated by Software or  
Power Restore  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to nonvolatile ele-  
ments (Commercial/Industrial)  
• 100-Year Data Retention in nonvolatile ele-  
ments (Commercial/Industrial)  
• Single 3.3V + 0.3V Operation  
• Commercial and Industrial Temperatures  
• 32-Pin SOIC and DIP Packages  
PIN CONFIGURATIONS  
BLOCK DIAGRAM  
V
V
CAP  
CCX  
Quantum Trap  
512 x 512  
POWER  
VCCX  
HSB  
W
A13  
A8  
A9  
A11  
G
NC  
A10  
E
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VCAP  
A14  
A12  
A7  
1
2
3
4
5
6
7
8
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CONTROL  
A5  
A6  
STORE  
A7  
STORE/  
RECALL  
A8  
STATIC RAM  
HSB  
RECALL  
A9  
ARRAY  
CONTROL  
A11  
A12  
A13  
A14  
512 x 512  
A6  
A5  
A4  
SOFTWARE  
DETECT  
A
- A  
13  
0
DQ  
0
A3  
COLUMN I/O  
DQ  
1
NC  
A2  
9
COLUMN DEC  
DQ  
2
DQ  
3
10  
11  
12  
13  
14  
15  
16  
DQ  
4
A1  
DQ  
5
A
A A A A A  
1 2 3 4 10  
0
DQ  
G
6
DQ  
A0  
7
DQ0  
DQ1  
DQ2  
VSS  
E
W
32 - DIP  
32 - SOIC  
48 - SSOP  
(not to scale)  
PIN NAMES  
A
- A  
DQ -DQ  
E
W
G
HSB  
V
V
V
0
14  
0
7
CCX  
CAP  
SS  
Address  
Inputs  
Data In/Out  
Chip  
Enable  
Write  
Enable  
Output  
Enable  
Hardware  
Store  
Busy (I/O)  
Power  
(+ 3.3V)  
Capacitor  
Ground  
November 2003  
1
Document Control # ML0015 rev 0.3  
STK14C88-3  
ABSOLUTE MAXIMUM RATINGSa  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at con-  
ditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 4.5V  
Voltage on Input Relative to VSS . . . . . . . . . .0.6V to (V + 0.5V)  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . .0.5V to (V + 0.5V)  
CC  
Temperature under Bias. . . . . . . . . . . . . . . . . . . . . .–55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .–65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . 15mA  
CC  
DC CHARACTERISTICS  
(VCC = 3.0V-3.6V)e  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
50  
42  
37  
52  
44  
39  
mA  
mA  
mA  
t
t
t
= 35ns  
= 45ns  
= 55ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
b
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
3
9
9
mA  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
c
I
I
Average V  
Current during  
CAP  
All Inputs Don’t Care  
CC  
4
2
2
mA  
AutoStore™ Cycle  
d
Average V Current  
(Standby, Cycling TTL Input Levels)  
18  
16  
15  
19  
17  
16  
mA  
mA  
mA  
t
t
t
= 35ns, E V  
= 45ns, E V  
= 55ns, E V  
SB  
CC  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
d
I
I
I
V
Standby Current  
E (V – 0.2V)  
CC  
SB  
CC  
2
1
1
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
±1  
±1  
±1  
±1  
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
V
Input Logic “1” Voltage  
2.2  
V
+ .5  
2.2  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
Input Logic “0” Voltage  
V
– .5  
0.8  
V – .5  
SS  
0.8  
IL  
SS  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Logic “0” Voltage on HSB Output  
Operating Temperature  
2.4  
2.4  
V
I
I
I
=–4mA except HSB  
= 8mA except HSB  
= 3mA  
OH  
OL  
BL  
OUT  
OUT  
OUT  
0.4  
0.4  
70  
0.4  
0.4  
85  
V
V
T
0
40  
°C  
A
Note b: ICC and ICC are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC3 are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
Note e: VCC reference levels throughout this datasheet refer to VCCX  
.
AC TEST CONDITIONS  
3.3V  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V  
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
317 Ohms  
OUTPUT  
CAPACITANCEf  
(TA = 25°C, f = 1.0MHz)  
351 Ohms  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
C
Input Capacitance  
Output Capacitance  
5
7
pF  
IN  
pF  
OUT  
Note f: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
November 2003  
2
Document Control # ML0015 rev 0.3  
 
 
 
 
STK14C88-3  
SRAM READ CYCLES #1 & #2  
(VCC = 3.0V-3.6V)e  
SYMBOLS  
STK14C88-3-35 STK14C88-3-45 STK14C88-3-55  
NO.  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
g
Read Cycle Time  
35  
45  
55  
AVAV  
h
3
Address Access Time  
35  
15  
45  
20  
55  
25  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
h
5
5
5
5
5
5
5
AXQX  
6
ELQX  
i
7
13  
13  
35  
15  
15  
45  
20  
20  
55  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
i
9
GHQZ  
f
f
10  
11  
ELICCH  
EHICCL  
PS  
Note g: W and HSB must be high during SRAM READ cycles.  
Note h: I/O state asumes E and G < V and W > V ; device is continuously selected.  
IL  
IH  
Note i: Measured ± 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledg, h  
2
AVAV  
t
ADDRESS  
3
AVQV  
t
5
AXQX  
t
DQ (DATA OUT)  
DATA VALID  
SRAM READ CYCLE #2: E Controlledg  
2
AVAV  
t
ADDRESS  
E
1
ELQV  
11  
EHICCL  
t
t
6
ELQX  
t
7
EHQZ  
t
G
9
4
GLQV  
t
GHQZ  
t
8
GLQX  
t
DATA VALID  
DQ (DATA OUT)  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
November 2003  
3
Document Control # ML0015 rev 0.3  
 
 
STK14C88-3  
SRAM WRITE CYCLES #1 & #2  
(VCC = 3.0V-3.6V)e  
SYMBOLS  
STK14C88-3-35 STK14C88-3-45  
STK14C88-3-55  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
40  
40  
25  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
AW  
t
t
t
25  
0
30  
0
40  
0
AVWH  
AVEH  
t
t
t
AVWL  
WHAX  
AVEL  
EHAX  
AS  
t
t
t
0
0
0
WR  
i, j  
t
t
13  
15  
20  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
Note l: HSB must be high during SRAM WRITE cycles.  
SRAM WRITE CYCLE #1: W Controlledk, l  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
16  
WHDX  
t
t
DVWH  
DATA VALID  
DATA IN  
DATA IN  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledk, l  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
14  
ELEH  
19  
t
t
t
EHAX  
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
November 2003  
4
Document Control # ML0015 rev 0.3  
 
 
 
 
STK14C88-3  
HARDWARE MODE SELECTION  
E
H
L
W
X
H
L
HSB  
A
- A (hex)  
MODE  
Not Selected  
I/O  
POWER  
NOTES  
13  
0
H
X
X
X
X
Output High Z  
Output Data  
Input Data  
Standby  
Active  
H
Read SRAM  
t
L
H
Write SRAM  
Active  
X
X
L
Nonvolatile STORE  
Output High Z  
l
m
CC  
2
Note m: HSB STORE operation occurs only if an SRAM WRITE has been done since the last nonvolatile cycle. After the STORE (if any) completes,  
the part will go into standby mode, inhibiting all operations until HSB rises.  
HARDWARE STORE CYCLE  
(VCC = 3.0V-3.6V)e  
SYMBOLS  
STK14C88-3  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
22  
23  
24  
25  
26  
t
t
t
t
t
t
t
t
STORE Cycle Duration  
10  
ms  
µs  
ns  
ns  
ns  
i, n  
i, n  
STORE  
DELAY  
RECOVER  
HLHX  
HLHZ  
HLQZ  
HHQX  
Time Allowed to Complete SRAM Cycle  
Hardware STORE High to Inhibit Off  
Hardware STORE Pulse Width  
1
700  
300  
n, o  
15  
Hardware STORE Low to STORE Busy  
HLBL  
Note n: E and G low and W high for output behavior.  
Note o: tRECOVER is only applicable after tSTORE is complete.  
HARDWARE STORE CYCLE  
25  
HLHX  
t
HSB (IN)  
24  
RECOVER  
t
22  
STORE  
t
26  
HLBL  
t
HSB (OUT)  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DATA VALID  
23  
DELAY  
t
DQ (DATA OUT)  
DATA VALID  
November 2003  
5
Document Control # ML0015 rev 0.3  
 
STK14C88-3  
AutoStore™/POWER-UP RECALL  
(VCC = 3.0V-3.6V)e  
SYMBOLS  
STK14C88-3  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
550  
10  
27  
28  
29  
30  
31  
32  
t
t
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
ns  
µs  
V
p
n, q  
l
RESTORE  
STORE  
VSBL  
t
t
HLHZ  
BLQZ  
Low Voltage Trigger (V  
) to HSB Low  
300  
SWITCH  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
1
n
DELAY  
V
V
2.7  
2.95  
2.4  
SWITCH  
RESET  
Low Voltage Reset Level  
V
Note p: tRESTORE starts from the time VCC rises above VSWITCH  
.
Note q: HSB is asserted low for 1µs when VCAP drops through VSWITCH. If an SRAM WRITE has not taken place since the last nonvolatile cycle, HSB  
will be released and no STORE will take place.  
AutoStore™/POWER-UP RECALL  
V
CC  
31  
SWITCH  
V
32  
RESET  
V
AutoStore™  
POWER-UP RECALL  
29  
VSBL  
28  
STORE  
27  
RESTORE  
t
t
t
HSB  
30  
DELAY  
t
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE  
(NO SRAM WRITES)  
BROWN OUT  
AutoStore™  
BROWN OUT  
AutoStore™  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
November 2003  
6
Document Control # ML0015 rev 0.3  
 
 
STK14C88-3  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
POWER  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
Active  
L
H
r, s, t  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
l
CC  
2
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
r, s, t  
L
H
Active  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
SOFTWARE-CONTROLLED STORE/RECALL CYCLEv  
(VCC = 3.0V-3.6V)e  
SYMBOLS  
STK14C88-3-25 STK14C88-3-35 STK14C88-3-45  
NO.  
PARAMETER  
UNITS NOTES  
Standard Alternate  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
MIN  
MAX  
33  
34  
35  
36  
37  
t
t
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
55  
0
ns  
ns  
ns  
ns  
µs  
n
u
u
u
AVAV  
RC  
AS  
AVEL  
25  
20  
30  
20  
45  
20  
ELEH  
ELAX  
RECALL  
CW  
Address Hold Time  
RECALL Duration  
20  
20  
20  
Note r: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note s: While there are 15 addresses on the STK14C88-3, only the lower 14 are used to control software modes.  
Note t: I/O state assumes G < VIL. Activation of nonvolatile cycles does not depend on state of G.  
Note u: The software sequence is clocked with E controlled READs.  
Note v: The six consecutive addresses must be in the order listed in the Hardware Mode Selection Table: (0E38, 31C7, 03E0, 3C1F, 303F, 0FC0) for  
a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive cycles.  
SOFTWARE STORE/RECALL CYCLE: E CONTROLLEDv  
33  
AVAV  
33  
AVAV  
t
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
34  
AVEL  
35  
ELEH  
t
t
E
36  
ELAX  
t
28  
37  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
November 2003  
7
Document Control # ML0015 rev 0.3  
 
 
 
STK14C88-3  
DEVICE OPERATION  
The STK14C88-3 has two separate modes of opera-  
tion: SRAM mode and nonvolatile mode. In SRAM  
mode, the memory operates as a standard fast  
static RAM. In nonvolatile mode, data is transferred  
from SRAM to nonvolatile elements (the STORE  
operation) or from nonvolatile elements to SRAM  
(the RECALL operation). In this mode SRAM func-  
tions are disabled.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCAP < VRESET), an internal RECALL request will be  
latched. When VCAP once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK14C88-3 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
NOISE CONSIDERATIONS  
The STK14C88-3 is a high-speed memory and so  
must have a high-frequency bypass capacitor of  
approximately 0.1µF connected between VCAP and  
VSS, using leads and traces that are as short as pos-  
sible. As with all high-speed CMOS ICs, normal care-  
ful routing of power, ground and signals will help  
prevent noise problems.  
VCC or between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
The STK14C88-3 software STORE cycle is initiated  
by executing sequential E controlled READ cycles  
from six specific address locations. During the  
STORE cycle an erase of the previous nonvolatile  
data is first performed, followed by a program of the  
nonvolatile elements. The program operation copies  
the SRAM data into nonvolatile memory. Once a  
STORE cycle is initiated, further input and output are  
disabled until the cycle is completed.  
SRAM READ  
The STK14C88-3 performs a READ cycle whenever  
E and G are low and W and HSB are high. The  
address specified on pins A0-14 determines which of  
the 32,768 data bytes will be accessed. When the  
READ is initiated by an address transition, the out-  
puts will be valid after a delay of tAVQV (READ cycle  
#1). If the READ is initiated by E or G, the outputs will  
be valid at tELQV or at tGLQV, whichever is later (READ  
cycle #2). The data outputs will repeatedly respond  
to address changes within the tAVQV access time with-  
out the need for transitions on any control input pins,  
and will remain valid until another address change or  
until E or G is brought high, or W or HSB is brought  
low.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence, or the sequence will be  
aborted and no STORE or RECALL will take place.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
SRAM WRITE  
Valid READ  
Valid READ  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
Initiate STORE cycle  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
November 2003  
8
Document Control # ML0015 rev 0.3  
STK14C88-3  
SOFTWARE NONVOLATILE RECALL  
10kΩ∗  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of E controlled READ opera-  
tions must be performed:  
1
32  
31  
30  
+
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
16  
17  
Internally, RECALL is a two-step procedure. First, the  
SRAM data is cleared, and second, the nonvolatile  
information is transferred into the SRAM cells. After  
the tRECALL cycle time the SRAM will once again be  
ready for READ and WRITE operations. The RECALL  
operation in no way alters the data in the nonvolatile  
elements. The nonvolatile data can be recalled an  
unlimited number of times.  
Figure 2: AutoStore™ Mode  
*If HSB is not used, it should be left unconnected.  
If the power supply drops faster than 20 µs/volt  
before VCCX reaches VSWITCH, then a 1 ohm resistor  
should be inserted between VCCX and the system  
supply to avoid a momentary excess of current  
between Vccx and Vcap.  
AutoStore™ OPERATION  
During normal AutoStore™ operation, the  
STK14C88-3 will draw current from VCCX to charge a  
capacitor connected to the VCAP pin. This stored  
charge will be used by the chip to perform a single  
STORE operation. After power up, when the voltage  
on the VCAP pin drops below VSWITCH, the part will  
automatically disconnect the VCAP pin from VCCX and  
initiate a STORE operation.  
HSB OPERATION  
The STK14C88-3 provides the HSB pin for control-  
ling and acknowledging the STORE operations. The  
HSB pin can be used to request a hardware STORE  
cycle. When the HSB pin is driven low, the  
STK14C88-3 will conditionally initiate a STORE oper-  
ation after tDELAY; an actual STORE cycle will only  
begin if a WRITE to the SRAM took place since the  
last STORE or RECALL cycle. The HSB pin also acts  
as an open drain driver that is internally driven low  
to indicate a busy condition while the STORE (initi-  
ated by any means) is in progress.  
Figure 2 shows the proper connection of capacitors  
for automatic store operation. A charge storage  
capacitor having a capacity of between 68µF and  
220µF (± 20%) rated at 4.7V should be provided.  
In order to prevent unneeded STORE operations,  
automatic STOREs as well as those initiated by  
externally driving HSB low, will be ignored unless at  
least one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software-  
initiated STORE cycles are performed regardless of  
whether a WRITE operation has taken place. An  
optional pull-up resistor is shown connected to HSB.  
This can be used to signal the system that the  
AutoStore™ cycle is in progress.  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK14C88-3  
will continue SRAM operations for tDELAY. During tDELAY  
,
multiple SRAM READ operations may take place. If a  
WRITE is in progress when HSB is pulled low it will  
be allowed a time, tDELAY, to complete. However, any  
SRAM WRITE cycles requested after HSB goes low  
will be inhibited until HSB returns high.  
The HSB pin can be used to synchronize multiple  
STK14C88-3s while using a single larger capacitor.  
November 2003  
9
Document Control # ML0015 rev 0.3  
STK14C88-3  
To operate in this mode the HSB pin should be con-  
nected together to the HSB pins from the other  
STK14C88-3s. An external pull-up resistor to + 3.3V  
is required since HSB acts as an open drain pull  
down. The VCAP pins from the other STK14C88-3  
parts can be tied together and share a single capac-  
itor. The capacitor size must be scaled by the num-  
ber of devices connected to it. When any one of the  
STK14C88-3s detects a power loss and asserts  
HSB, the common HSB pin will cause all parts to  
request a STORE cycle (a STORE will take place in  
those STK14C88-3s that have been written since  
the last nonvolatile cycle).  
50  
40  
30  
20  
10  
TTL  
CMOS  
During any STORE operation, regardless of how it  
was initiated, the STK14C88-3 will continue to drive  
the HSB pin low, releasing it only when the STORE is  
complete. Upon completion of the STORE operation  
the STK14C88-3 will remain disabled until the HSB  
pin returns high.  
0
50  
100  
150  
200  
Cycle Time (ns)  
Figure 3: Icc (max) Reads  
50  
If HSB is not used, it should be left unconnected.  
HARDWARE PROTECT  
40  
30  
20  
10  
0
The STK14C88-3 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs dur-  
ing low-voltage conditions. When VCAP < VSWITCH, all  
externally initiated STORE operations and SRAM  
WRITEs will be inhibited.  
TTL  
CMOS  
LOW AVERAGE ACTIVE POWER  
The STK14C88-3 draws significantly less current  
when it is cycled at times longer than 55ns. Figure 3  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 3.6V, 100% duty cycle on chip  
enable). Figure 4 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK14C88-3 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
temperature; 6) the Vcc level; and 7) I/O loading.  
50  
100  
150  
200  
Cycle Time (ns)  
Figure 4: Icc (max) Writes  
November 2003  
10  
Document Control # ML0015 rev 0.3  
STK14C88-3  
ORDERING INFORMATION  
STK14C88-3 N F 45 I  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (-40 to 85°C)  
Access Time  
35 = 35ns  
45 = 45ns  
55 = 55ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
N = Plastic 32-pin 300 mil SOIC  
W = Plastic 32-pin 600 mil DIP  
R = Plastic 48-pin 300 mil SSOP  
November 2003  
11  
Document Control # ML0015 rev 0.3  
STK14C88-3  
Document Revision History  
Revision  
Date  
Summary  
Added 35 nsec device; added HSB operation; current limiting resistor added to Vccx for  
extreme power-off slew rate  
0.0  
January 2003  
0.1  
0.2  
0.3  
February 2003  
September 2003  
November 2003  
Added 48 SSOP package  
Added lead-free lead finish  
Modified pin assignments on 48 SSOP package  
November 2003  
12  
Document Control # ML0015 rev 0.3  
STK14C88-3  
November 2003  
13  
Document Control # ML0015 rev 0.3  

相关型号:

STK14C88-3W35

32K x 8 AutoStore⑩ nvSRAM QuantumTrap CMOS Nonvolatile StaticRAM
ETC

STK14C88-3W35I

32K x 8 AutoStore⑩ nvSRAM QuantumTrap CMOS Nonvolatile StaticRAM
ETC

STK14C88-3W45

32KX8 NON-VOLATILE SRAM, 45ns, PDIP32, 0.600 INCH, PLASTIC, DIP-32
CYPRESS

STK14C88-3W45I

32K x 8 AutoStore⑩ nvSRAM QuantumTrap CMOS Nonvolatile StaticRAM
ETC

STK14C88-3W55

32K x 8 AutoStore⑩ nvSRAM QuantumTrap CMOS Nonvolatile StaticRAM
ETC

STK14C88-3W55I

32K x 8 AutoStore⑩ nvSRAM QuantumTrap CMOS Nonvolatile StaticRAM
ETC

STK14C88-3WF35

32Kx8 AutoStore nvSRAM
SIMTEK

STK14C88-3WF35

256 Kbit (32K x 8) AutoStore nvSRAM
CYPRESS

STK14C88-3WF35I

32Kx8 AutoStore nvSRAM
SIMTEK

STK14C88-3WF35I

256 Kbit (32K x 8) AutoStore nvSRAM
CYPRESS

STK14C88-3WF35ITR

32Kx8 AutoStore nvSRAM
SIMTEK

STK14C88-3WF35TR

32Kx8 AutoStore nvSRAM
SIMTEK