STK15C88-SF25 [SIMTEK]

32Kx8 PowerStore nvSRAM; 32Kx8 PowerStore的nvSRAM
STK15C88-SF25
型号: STK15C88-SF25
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

32Kx8 PowerStore nvSRAM
32Kx8 PowerStore的nvSRAM

存储 内存集成电路 静态存储器 光电二极管
文件: 总15页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK15C88  
32Kx8 PowerStore nvSRAM  
FEATURES  
DESCRIPTION  
• 25, 45 ns Read Access & R/W Cycle Time  
The Simtek STK15C88 is a 256Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
• Unlimited Read/Write Endurance  
• Pin compatible with industry standard SRAMs  
• Automatic Non-volatile STORE on Power Loss  
• Automatic RECALL to SRAM on Power Up  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• Non-Volatile STORE or RECALL under  
Software Control  
Data transfers automatically to the non-volatile stor-  
age cells when power loss is detected (the STORE  
operation). On power up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• Unlimited RECALL Cycles  
• 1 Million Store Cycles  
• 100-Year Non-volatile Data Retention  
• Single 5V +10% Power Supply  
• Commercial and Industrial Temperatures  
PowerStore nvSRAM products depend on the intrin-  
sic system capacitance to maintain system power  
long enough for an automatic store on power loss. If  
the power ramp from 5 volts to 3.6 volts is faster  
than 10 ms, consider our 14C88 or 16C88 for more  
reliable operation.  
• 28-pin 300-mil and 330 mil SOIC Packages  
(RoHS-Compliant)  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest performance, most reliable non-volatile  
memory available.  
BLOCK DIAGRAM  
QUANTUM TRAP  
512 x 512  
STORE/  
RECALL  
CONTROL  
A5  
A6  
A7  
A8  
STORE  
RECALL  
STATIC RAM  
ARRAY  
512 X 512  
A9  
A11  
A12  
A13  
A14  
SOFTWARE  
DETECT  
A13 – A0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
1
STK15C88  
PIN CONFIGURATIONS  
A14  
1
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A12  
A7  
2
W
A13  
A8  
3
A6  
A5  
A4  
A3  
4
5
A9  
A11  
6
(TOP)  
7
G
A10  
A2  
8
A1  
A0  
E
9
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
10  
11  
12  
13  
14  
DQ0  
DQ1  
DQ2  
VSS  
28 Pin 300 mil SOIC  
28 Pin 330 mil SOIC  
PIN DESCRIPTIONS  
Pin Name  
I/O  
Description  
A
-A  
Input  
I/O  
Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
14  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
V
Power Supply  
Power Supply  
Power: 5.0V, +10%  
Ground  
CC  
SS  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
2
STK15C88  
ABSOLUTE MAXIMUM RATINGSa  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect reliability.  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7 . . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . .15mA  
DC CHARACTERISTICS  
(VCC = 5.0V ± 10%)  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
97  
70  
100  
70  
mA  
mA  
t
t
= 25ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V  
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
CC  
5V, 25°C, Typical  
10  
10  
All Others Cycling, CMOS Levels  
c
I
I
I
I
I
Average V Current during  
AutoStore Cycle  
All Inputs Don’t Care  
CC  
CAP  
4
2
2
mA  
d
d
Average V Current  
30  
22  
31  
23  
mA  
mA  
t
t
= 25ns, E V  
= 45ns, E V  
SB  
1
SB  
2
CC  
AVAV  
AVAV  
IH  
IH  
(Standby, Cycling TTL Input Levels)  
V
Standby Current  
E (V  
– 0.2V)  
CC  
CC  
All Others V 0.2V or (V  
1.5  
±1  
±5  
1.5  
±1  
±5  
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
IN  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
IN  
SS  
CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
= V to V , E or G V  
IN  
SS CC  
IH  
V
V
V
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
– .5  
0.8  
V
– .5  
SS  
0.8  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
T
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
5.0V  
CAPACITANCEe  
(TA = 25°C, f = 1.0MHz)  
480 Ohms  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
OUTPUT  
C
Input Capacitance  
5
7
pF  
IN  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
C
Output Capacitance  
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
3
STK15C88  
SRAM READ CYCLES #1 & #2 (VCC = 5.0V ± 10%)  
SYMBOLS  
STK15C88-25 STK15C88-45  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
AVAVf, t  
Read Cycle Time  
25  
45  
f
ELEH  
RC  
AA  
g
3
Address Access Time  
25  
10  
45  
20  
AVQV  
4
Output Enable to Data Valid  
GLQV  
OE  
OH  
LZ  
g
5
Output Hold after Address Change  
Address Change or Chip Enable to Output Active  
Address Change or Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
,
d
e
Chip Disable to Power Standby  
EHICCL  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledf, g  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
SRAM READ CYCLE #2: E and G Controlledf  
ADDRESS  
2
29  
tE LE H  
tEHAX  
1
11  
tEHI CC L  
tEL Q V  
6
E
tELQ X  
27  
7
tEHQ Z  
3
tAV QV  
G
9
4
tG L QV  
tGH Q Z  
8
tG L Q X  
DQ (D ATA OUT)  
DATA VAL ID  
10  
tELI CC H  
AC TIVE  
STAND BY  
ICC  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
4
STK15C88  
SRAM WRITE CYCLES #1 & #2  
(VCC = 5.0V ± 10%)  
SYMBOLS  
NO.  
STK15C88-25  
STK15C88-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
20  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
WHAX  
AVEL  
EHAX  
t
t
t
0
0
WR  
h, i  
t
t
10  
15  
WLQZ  
WZ  
t
t
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
SRAM WRITE CYCLE #1: W Controlledj  
12  
tAVAV  
ADDRESS  
19  
tWHAX  
14  
tELWH  
E
17  
tAVWH  
18  
tAVWL  
13  
tWLWH  
W
15  
tDVWH  
16  
tWHDX  
DATA IN  
DATA VALID  
20  
tWLQZ  
21  
tWHQX  
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledj  
12  
tAVAV  
ADDRESS  
18  
tAVEL  
14  
tELEH  
19  
tEHAX  
E
17  
tAVEH  
13  
tWLEH  
W
15  
tDVEH  
16  
tEHDX  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
5
STK15C88  
AutoStore™/POWER-UP RECALL  
(VCC = 5.0V ± 10%)  
SYMBOLS  
STK15C88  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
k
RESTORE  
STORE  
g
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
V
V
SWITCH  
RESET  
3.6  
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStore™/POWER-UP RECALL  
VCC  
5V  
24  
VSWITCH  
25  
VRESET  
AutoStore™  
23  
tSTORE  
POWER-UP RECALL  
22  
tRESTORE  
W
DQ (DATA OUT)  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE DUE TO  
NO SRAM WRITES  
BROWN OUT  
AutoStore  
BROWN OUT  
AutoStore  
NO RECALL  
NO RECALL  
RECALL WHEN  
(VCC DID NOT GO  
(VCC DID NOT GO  
V
RETURNS  
CC  
BELOW VRESET  
)
BELOW VRESET  
)
ABOVE VSWITCH  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
6
STK15C88  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
H
l, m  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive E controlled cycles to enable a nonvola-  
tile cycle.  
Note m: While there are 15 addresses on the STK15C88, only the lower 14 are used to control software modes.  
SOFTWARE STORE/RECALL CYCLEn, o  
(VCC = 5.0V ± 10%)  
STK15C88-25  
STK15C88-45  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
25  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
ns  
ns  
ns  
ns  
μs  
AVAV  
AVEL  
n
n
Address Set-up Time  
Clock Pulse Width  
Address Hold Time  
RECALL Duration  
20  
20  
30  
20  
ELEH  
g, n  
ELAX  
20  
20  
RECALL  
Note n: The software sequence is clocked on the falling edge of E controlled READs without involving G (double clocking will abort the sequence).  
See application note: MA0002 http://www.simtek.com/attachments/AppNote02.pdf.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledo  
26  
tAVAV  
26  
tAVAV  
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
tAVEL  
28  
tELEH  
E
29  
tELAX  
23  
30  
tSTORE / tRECALL  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
7
STK15C88  
nvSRAM OPERATION  
The STK15C88 is a versatile memory chip that pro-  
SOFTWARE NONVOLATILE STORE  
vides several modes of operation. The STK15C88  
can operate as a standard 32K x 8 SRAM. It has a  
32K x 8 nonvolatile element shadow to which the  
SRAM information can be copied, or from which the  
SRAM can be updated in nonvolatile mode.  
The STK15C88 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
NOISE CONSIDERATIONS  
Note that the STK15C88 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
SRAM READ  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
The STK15C88 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-14 determines which of the 32,768 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
The software sequence must be clocked with E con-  
trolled READs.  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL cycle,  
the following sequence of READ operations must be  
performed:  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal cir-  
cuitry will turn off the output buffers tWLQZ after W  
goes low.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
8
STK15C88  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
nonvolatile elements. The nonvolatile data can be  
recalled an unlimited number of times.  
HARDWARE PROTECT  
The STK15C88 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs  
during low-voltage conditions. When VCC < VSWITCH  
,
all software STORE operations and SRAM WRITEs  
are inhibited.  
AutoStoreTM OPERATION  
The STK15C88 uses the intrinsic system capaci-  
tance to perform an automatic STORE on power  
down. As long as the system power supply takes at  
least tSTORE to decay from VSWITCH down to 3.6V, the  
STK15C88 will safely and automatically store the  
SRAM data in nonvolatile elements on power down.  
LOW AVERAGE ACTIVE POWER  
The STK15C88 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK15C88 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
temperature; 6) the VCC level; and 7) I/O loading.  
In order to prevent unneeded STORE operations,  
automatic STOREs will be ignored unless at least  
one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. Software-  
initiated STORE cycles are performed regardless of  
whether a WRITE operation has taken place. Addi-  
tional information may be found in applications note  
“Applying the STK11C88, STK15C88 and  
STK16C88 32K nvSRAM.”  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK15C88 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
150  
200  
Cycle Time (ns)  
Figure 3: ICC (max) Writes  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
9
STK15C88  
cold or warm boot status, etc. should always pro-  
gram a unique NV pattern (e.g., complex 4-byte  
pattern of 46 E6 49 53 hex or more random  
bytes) as part of the final system manufacturing  
test to ensure these system routines work consis-  
tently.  
BEST PRACTICES  
nvSRAM products have been used effectively for  
over 15 years. While ease-of-use is one of the prod-  
uct’s main system values, experience gained work-  
ing with hundreds of applications has resulted in the  
following suggestions as best practices:  
• Power up boot firmware routines should rewrite  
the nvSRAM into the desired state. While the  
nvSRAM is shipped in a preset state, best prac-  
tice is to again rewrite the nvSRAM into the  
desired state as a safeguard against events that  
might flip the bit inadvertently (program bugs,  
incoming inspection routines, etc.).  
• The non-volatile cells in an nvSRAM are pro-  
grammed on the test floor during final test and  
quality assurance. Incoming inspection routines  
at customer or contract manufacturer’s sites will  
sometimes reprogram these values. Final NV pat-  
terns are typically repeating patterns of AA, 55,  
00, FF, A5, or 5A. End product’s firmware should  
not assume an NV array is in a set programmed  
state. Routines that check memory content val-  
ues to determine first time system configuration,  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
10  
STK15C88  
ORDERING INFORMATION  
STK15C88 - N F 45 I TR  
Packaging Options  
Blank = Tube  
TR = Tape and Reel  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
45 = 45ns  
Lead Finish  
F = 100% Sn (Matte Tin)  
Package  
S
= Plastic 28-pin 330 mil SOIC  
N = Plastic 28-pin 300 mil SOIC  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
11  
STK15C88  
ORDERING CODES  
Part Number  
Description  
Temperature  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Access Times  
STK15C88-SF25  
STK15C88-SF45  
STK15C88-NF25  
STK15C88-NF45  
STK15C88-SF25TR  
STK15C88-SF45TR  
STK15C88-NF25TR  
STK15C88-NF45TR  
STK15C88-SF25I  
STK15C88-SF45I  
STK15C88-NF25I  
STK15C88-NF45I  
STK15C88-SF25ITR  
STK15C88-SF45ITR  
STK15C88-NF25ITR  
STK15C88-NF45ITR  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-330  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
5V 32Kx8 PowerStore nvSRAM SOP28-300  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
25 ns access time  
45 ns access time  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Rev 2.0  
12  
Document Control #ML0016  
Jan, 2008  
STK15C88  
PACKAGE DRAWINGS  
28 Pin 300 mil SOIC  
0.292 7.42  
0.300 7.59  
(
)
0.400 10.16  
0.410 10.41  
(
)
Pin 1  
Index  
.050 (1.27)  
BSC  
0.701 17.81  
0.711 18.06  
(
)
0.097 2.46  
( )  
0.104 2.64  
0.090 2.29  
0.094 2.39  
)
(
0.005 0.12  
0.012 0.29  
(
)
0.014 0.35  
0.019 0.48  
)
(
MIN  
MAX  
DIM = INCHES  
0°  
8°  
0.009 0.23  
0.013 0.32  
(
)
MIN  
MAX  
DIM = mm  
)
(
0.024 0.61  
(
)
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
13  
STK15C88  
28 Pin 330 mil SOIC  
0.713  
0.733  
18.11  
18.62  
(
)
0.112  
0.004  
(2.845)  
(0.102)  
0.020  
0.014  
0.508  
0.356  
0.050 (1.270)  
(
)
0.103  
0.093  
2.616  
2.362  
(
)
0.336  
0.326  
8.534  
8.280  
0.477  
12.116  
11.506  
(
)
(
)
0.453  
Pin 1  
10°  
0°  
0.014  
0.008  
0.356  
0.203  
(
)
0.044  
1.117  
(
)
0.028  
0.711  
MIN  
MAX  
DIM = INCHES  
MIN  
MAX  
)
(
DIM = mm  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
14  
STK15C88  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
0.1  
Added lead-free lead finish  
0.2  
Removed DIP packages, Removed 35ns Speed Grade, Remove leaded lead finish  
0.3  
February 2007  
Add fast power-down slew rate information  
Add Tape Reel Ordering Options  
Add Product Ordering Code Listing  
Add Package Drawings  
Reformat Entire Document  
0.4  
2.0  
July 2007  
extend definition of t (#7)  
HZ  
update fig. SRAM READ CYCLE #2, SRAM WRITE CYCLE #1, Note l and Note n to clarify  
product usage  
January 2008  
Page 4: in SRAM Read Cycles #1 & #2 table, revised description for t  
and t  
and  
ELQX  
EHQZ  
t
changed Symbol #2 to  
for Read Cycle Time; updated SRAM Read Cycle #2 timing  
ELEH  
diagram and changed title to add G controlled.  
Page 10: added best practices section.  
Page 12: added access times column to the Ordering codes.  
SIMTEK STK15C88 Datasheet, January 2008  
Copyright 2008, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including  
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein consti-  
tutes a license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 2.0  
Document Control #ML0016  
Jan, 2008  
15  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX