STK16C88-3W35I [SIMTEK]

32KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28;
STK16C88-3W35I
型号: STK16C88-3W35I
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

32KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28

静态存储器 光电二极管
文件: 总11页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK16C88-3  
32K x 8 AutoStorePlus™ nvSRAM  
3.3V QuantumTrap™ CMOS  
Nonvolatile Static RAM  
Preliminary  
DESCRIPTION  
FEATURES  
The STK16C88-3 is a fast SRAM with a nonvolatile  
element incorporated in each static memory cell.  
The SRAM can be read and written an unlimited  
number of times, while independent nonvolatile data  
resides in Nonvolatile Elements. Data transfers from  
the SRAM to the Nonvolatile Elements (the STORE  
operation) can take place automatically on power  
down. An internal capacitor guarantees the STORE  
operation regardless of power-down slew rate.  
Transfers from the Nonvolatile Elements to the  
SRAM (the RECALL operation) take place automati-  
cally on restoration of power. Initiation of STORE and  
RECALL cycles can also be controlled by entering  
control sequences on the SRAM inputs. The  
STK16C88-3 is pin-compatible with 32k x 8 SRAMs  
and battery-backed SRAMs, allowing direct substitu-  
tion while providing superior performance. The  
STK14C88-3, which uses an external capacitor, is  
also available.  
• Transparent Data Save on Power Down  
• Internal Capacitor Guarantees AutoStore™  
Regardless of Power-Down Slew Rate  
• Directly Replaces 32K x 8 Static RAM, Battery-  
Backed RAM or EEPROM  
• 35, 45ns and 55ns Access Times  
STORE to Nonvolatile Elements Initiated by  
Software or AutoStorePlus™  
RECALL to SRAM Initiated by Software or  
Power Restore  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to Nonvolatile Ele-  
ments (Commercial/Industrial)  
• 100-Year Data Retention in nonvolatile ele-  
ments (Commercial/Industrial)  
• Single 3.3V + 0.3V Operation  
• Commercial and Industrial Temperatures  
• 28-Pin PDIP Package  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
A14  
A12  
A7  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VCC  
W
QUANTUM TRAP  
V
512 x 512  
CC  
3
4
5
6
7
8
9
A13  
A8  
A5  
A6  
A5  
A9  
A6  
STORE  
STORE/  
RECALL  
A4  
A11  
G
A10  
E
A7  
POWER  
A3  
A8  
STATIC RAM  
ARRAY  
CONTROL  
A2  
CONTROL  
RECALL  
A9  
A1  
A11  
A12  
A13  
A14  
512 x 512  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
VSS  
INTERNAL  
28 - 600 PDIP  
CAPACITOR  
DQ  
DQ  
DQ  
0
1
2
PIN NAMES  
COLUMN I/O  
SOFTWARE  
DETECT  
A
- A  
13  
0
A
- A  
Address Inputs  
COLUMN DEC  
0
14  
DQ  
W
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+ 3.3V)  
Ground  
3
4
DQ  
DQ - DQ  
0
7
DQ  
DQ  
DQ  
5
6
7
A
0
A A A  
A A  
1 4  
2 3  
10  
G
E
G
E
W
V
V
CC  
SS  
September 2003  
1
Document Control # ML0019 rev 0.1  
STK16C88-3  
ABSOLUTE MAXIMUM RATINGSa  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 4.5V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
Note a: Stresses greater than those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at conditions  
above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect reliability.  
DC CHARACTERISTICS  
(VCC = 3.0V-3.6V)  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V Current  
50  
42  
37  
52  
44  
39  
mA  
mA  
mA  
t
t
t
= 35ns  
= 45ns  
= 55ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V Current during STORE  
3
3
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
2
3
b
Average V  
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
3.3V, 25°C, Typical  
CC  
All Others Cycling, CMOS Levels  
8
8
mA  
d
I
Average V Current  
18  
16  
15  
19  
17  
16  
mA  
mA  
mA  
t
t
t
= 35ns, E V  
= 45ns, E V  
= 55ns, E V  
SB  
CC  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
(Standby, Cycling TTL Input Levels)  
d
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
IN  
SB  
CC  
CC  
All Others V 0.2V or (V  
2
1
1
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
– 0.2V)  
CC  
Input Leakage Current  
V
V
= max  
CC  
IN  
ILK  
±1  
±1  
±1  
±1  
= V to V  
SS  
CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
IN  
OLK  
= V to V , E or G V  
SS CC  
IH  
V
V
V
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
0.8  
CC  
0.8  
V
– .5  
V
– .5  
SS  
IL  
SS  
2.4  
2.4  
V
I
I
=– 4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
T
0
40  
°C  
A
Note b: ICC and ICC are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC3 are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
3.3V  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
317 Ohms  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
351 Ohms  
OUTPUT  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
CAPACITANCEe  
(TA = 25°C, f = 1.0MHz)  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
Input Capacitance  
5
7
pF  
IN  
C
Output Capacitance  
pF  
OUT  
Figure 1: AC Output Loading  
Note e: These parameters are guaranteed but not tested.  
September 2003  
2
Document Control # ML0019 rev 0.1  
 
 
 
STK16C88-3  
SRAM READ CYCLES #1 & #2  
(VCC = 3.0V-3.6V)  
SYMBOLS  
STK16C88-3-35  
STK16C88-3-45  
STK16C88-3-55  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
35  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
35  
45  
55  
AVAV  
RC  
AA  
g
3
Address Access Time  
35  
15  
45  
20  
55  
25  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
13  
13  
35  
15  
15  
45  
20  
20  
55  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
d
10  
11  
ELICCH  
EHICCL  
,
e
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
SRAM READ CYCLE #1: Address Controlledf, g  
2
AVAV  
t
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
SRAM READ CYCLE #2: E Controlledf  
2
t
AVAV  
ADDRESS  
1
11  
t
ELQV  
t
6
EHICCL  
t
E
ELQX  
7
t
EHQZ  
G
9
4
t
GHQZ  
t
GLQV  
8
t
GLQX  
DATA VALID  
DQ (DATA OUT)  
10  
t
ELICCH  
ACTIVE  
STANDBY  
I
CC  
September 2003  
3
Document Control # ML0019 rev 0.1  
 
 
 
 
STK16C88-3  
SRAM WRITE CYCLES #1 & #2  
(VCC = 3.0V-3.6V)  
SYMBOLS  
STK16C88-3-35  
STK16C88-3-45  
STK16C88-3-55  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
MIN  
55  
40  
40  
25  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WLEH  
ELEH  
DVEH  
EHDX  
AVEH  
AVEL  
EHAX  
t
Write Pulse Width  
WLWH  
ELWH  
DVWH  
WHDX  
AVWH  
AVWL  
WHAX  
WLQZ  
WHQX  
WP  
CW  
DW  
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
t
DH  
t
25  
0
30  
0
40  
0
AW  
t
AS  
t
0
0
0
WR  
h, i  
t
13  
15  
20  
WZ  
t
5
5
5
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
SRAM WRITE CYCLE #1: W Controlledj  
12  
t
AVAV  
ADDRESS  
19  
14  
t
WHAX  
t
ELWH  
E
17  
t
AVWH  
18  
t
AVWL  
13  
W
t
WLWH  
15  
16  
t
t
DVWH  
WHDX  
DATA IN  
DATA VALID  
20  
t
WLQZ  
21  
t
WHQX  
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
SRAM WRITE CYCLE #2: E Controlledj  
12  
t
AVAV  
ADDRESS  
18  
14  
19  
t
t
AVEL  
ELEH  
t
EHAX  
E
17  
t
AVEH  
13  
t
WLEH  
W
15  
16  
t
DVEH  
t
EHDX  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
September 2003  
4
Document Control # ML0019 rev 0.1  
 
 
 
 
 
STK16C88-3  
AutoStorePlus™/POWER-UP RECALL  
(VCC = 3.0V-3.6V)  
SYMBOLS  
STK16C88-3  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
RESTORE  
MIN  
MAX  
22  
23  
24  
25  
t
Power-up RECALL Duration  
550  
µs  
ns  
V
k
t
Minimum V Slew Time to Ground  
CC  
500  
2.7  
e, g  
stg  
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
2.95  
2.4  
SWITCH  
RESET  
V
V
e
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStorePlus™/POWER-UP RECALL  
VCC  
3.3V  
24  
VSWITCH  
25  
VRESET  
23  
t
stg  
AutoStore™  
31  
t
STORE  
POWER-UP RECALL  
22  
t
RESTORE  
W
DQ (DATA OUT)  
BROWN OUT  
AutoStorePlus™  
BROWN OUT  
AutoStorePlus™  
POWER-UP  
RECALL  
BROWN OUT  
NO STORE DUE TO  
NO SRAM WRITES  
NO RECALL  
RECALL WHEN  
NO RECALL  
(VCC DID NOT GO  
V
RETURNS  
CC  
(VCC DID NOT GO  
BELOW VRESET  
)
ABOVE VSWITCH  
BELOW VRESET  
)
September 2003  
5
Document Control # ML0019 rev 0.1  
 
 
STK16C88-3  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
A
- A (hex)  
MODE  
I/O  
NOTES  
13  
0
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
L
H
l, m  
Read SRAM  
Read SRAM  
Nonvolatile STORE  
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Read SRAM  
L
H
l, m  
Read SRAM  
Read SRAM  
Nonvolatile RECALL  
Note l: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
Note m: While there are 15 addresses on the STK16C88-3, only the lower 14 are used to control software modes.  
SOFTWARE STORE/RECALL CYCLEn, o  
(VCC = 3.0V-3.6V)  
STK16C88-3-35  
STK16C88-3-45  
STK16C88-3-55  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
MIN  
55  
0
MAX  
26  
27  
28  
29  
30  
31  
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
ns  
ns  
ns  
ns  
µs  
ms  
AVAV  
n
n
AVEL  
Clock Pulse Width  
25  
20  
30  
20  
45  
45  
ELEH  
ELAX  
g, n  
Address Hold Time  
RECALL Cycle Duration  
STORE Cycle Duration  
20  
10  
20  
10  
20  
10  
RECALL  
STORE  
Note n: The software sequence is clocked with E controlled reads.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0E38, 31C7, 03E0, 3C1F,  
303F, 0FC0) for a STORE cycle or (0E38, 31C7, 03E0, 3C1F, 303F, 0C63) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledo  
26  
AVAV  
26  
AVAV  
t
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
ELEH  
t
t
E
29  
ELAX  
t
31  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
DQ (DATA  
September 2003  
6
Document Control # ML0019 rev 0.1  
 
 
STK16C88-3  
DEVICE OPERATION  
The AutoStorePlus™ STK16C88-3 is a fast 32K x 8  
AutoStorePlus™ OPERATION  
SRAM that does not lose its data on power-down.  
The data is preserved in integral QuantumTrap™  
Nonvolatile Elements while power is unavailable.  
The nonvolatility of the STK16C88-3 does not  
require any system intervention or support:  
AutoStorePlus™ on power-down and automatic  
RECALL on power-up guarantee data integrity with-  
out the use of batteries.  
The STK16C88-3’s automatic STORE on power-  
down is completely transparent to the system. The  
AutoStore™ initiation takes less than 500ns when  
power is lost (VCC < VSWITCH) at which point the part  
depends only on its internal capacitor for STORE  
completion. If the power supply drops faster than  
20µs/volt before Vccx reaches Vswitch, then a 2.2  
ohm resistor should be inserted between Vccx and  
the system supply to avoid a momentary excess of  
current between Vccx and Vcap.  
NOISE CONSIDERATIONS  
Note that the STK16C88-3 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1µF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will help  
prevent noise problems.  
In order to prevent unneeded STORE operations,  
automatic STOREs will be ignored unless at least  
one WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Softwareinitiated  
STORE cycles are performed regardless of whether  
or not a WRITE operation has taken place.  
POWER-UP RECALL  
SRAM READ  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
The STK16C88-3 performs a READ cycle whenever  
E and G are low and W is high. The address speci-  
fied on pins A0-14 determines which of the 32,768  
data bytes will be accessed. When the READ is initi-  
ated by an address transition, the outputs will be  
valid after a delay of tAVQV (READ cycle #1). If the  
READ is initiated by E or G, the outputs will be valid  
at tELQV or at tGLQV, whichever is later (READ cycle #2).  
The data outputs will repeatedly respond to address  
changes within the tAVQV access time without the need  
for transitions on any control input pins, and will  
remain valid until another address change or until E  
or G is brought high.  
If the STK16C88-3 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10kresistor should  
be connected either between W and system VCC or  
between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
The STK16C88-3 software STORE cycle is initiated  
by executing sequential READ cycles from six spe-  
cific address locations. During the STORE cycle an  
erase of the previous nonvolatile data is first per-  
formed, followed by a program of the nonvolatile  
elements. The program operation copies the SRAM  
data into nonvolatile memory. Once a STORE cycle  
is initiated, further input and output are disabled until  
the cycle is completed.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
September 2003  
7
Document Control # ML0019 rev 0.1  
STK16C88-3  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
Nonvolatile Elements. The nonvolatile data can be  
recalled an unlimited number of times.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0FC0 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
HARDWARE PROTECT  
The software sequence must be clocked with E  
controlled READs.  
The STK16C88-3 offers hardware protection  
against inadvertent STORE operation and SRAM  
WRITEs during low-voltage conditions. When VCC  
<
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ  
cycles and not WRITE cycles be used in the  
sequence, although it is not necessary that G be  
low for the sequence to be valid. After the tSTORE  
cycle time has been fulfilled, the SRAM will again be  
activated for READ and WRITE operation.  
VSWITCH, all software STORE operations and SRAM  
WRITEs are inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK16C88-3 draws significantly less current  
when it is cycled at times longer than 55ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 3.6V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK16C88-3 depends on the following  
items: 1) CMOS vs. TTL input levels; 2) the duty  
cycle of chip enable; 3) the overall cycle rate for  
accesses; 4) the ratio of READs to WRITEs; 5) the  
operating temperature; 6) the VCC level; and 7) I/O  
loading.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a  
sequence of READ operations in a manner similar  
to the software STORE initiation. To initiate the  
RECALL cycle, the following sequence of READ  
operations must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
0E38 (hex)  
31C7 (hex)  
03E0 (hex)  
3C1F (hex)  
303F (hex)  
0C63 (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Int6e.rnRaellayd, aRddErCesAsLL is a two-step procedure. First,  
Initiate RECALL cycle  
the SRAM data is cleared, and second, the nonvola-  
50  
40  
30  
50  
40  
30  
20  
TTL  
CMOS  
20  
TTL  
10  
10  
CMOS  
0
0
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 3: ICC (max) Writes  
Figure 2: ICC (max) Reads  
September 2003  
8
Document Control # ML0019 rev 0.1  
STK16C88-3  
ORDERING INFORMATION  
W F 45 I  
STK16C88-3  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
35 = 35ns  
45 = 45ns  
55 = 55ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 28-pin 600 mil DIP  
September 2003  
9
Document Control # ML0019 rev 0.1  
STK16C88-3  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
Summary  
0.1  
Added lead-free lead finish  
September 2003  
10  
Document Control # ML0019 rev 0.1  
STK16C88-3  
September 2003  
11  
Document Control # ML0019 rev 0.1  

相关型号:

STK16C88-3W45

32KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C88-3W45I

32KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C88-3W45I

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

STK16C88-3W55

32KX8 NON-VOLATILE SRAM, 55ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C88-3W55I

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

STK16C88-3WF35

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-3WF35

256 Kbit (32K x 8) AutoStore+ nvSRAM
CYPRESS

STK16C88-3WF35I

32Kx8 AutoStore+ nvSRAM
SIMTEK

STK16C88-3WF35I

256 Kbit (32K x 8) AutoStore+ nvSRAM
CYPRESS

STK16C88-3WF45I

32KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C88-3WF55

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

STK16C88-3WF55I

32KX8 NON-VOLATILE SRAM, 55ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS