STK20C04-WF35

更新时间:2024-09-18 06:16:20
品牌:SIMTEK
描述:512 x 8 nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM

STK20C04-WF35 概述

512 x 8 nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM 512 ×8的nvSRAM QuantumTrap⑩ CMOS非易失性静态RAM SRAM

STK20C04-WF35 规格参数

是否Rohs认证: 符合生命周期:Obsolete
包装说明:DIP, DIP28,.6Reach Compliance Code:unknown
ECCN代码:EAR99HTS代码:8542.32.00.41
风险等级:5.79Is Samacsys:N
最长访问时间:35 nsJESD-30 代码:R-PDIP-T28
JESD-609代码:e3长度:36.83 mm
内存密度:4096 bit内存集成电路类型:NON-VOLATILE SRAM
内存宽度:8功能数量:1
端子数量:28字数:512 words
字数代码:512工作模式:ASYNCHRONOUS
最高工作温度:70 °C最低工作温度:
组织:512X8封装主体材料:PLASTIC/EPOXY
封装代码:DIP封装等效代码:DIP28,.6
封装形状:RECTANGULAR封装形式:IN-LINE
并行/串行:PARALLEL峰值回流温度(摄氏度):260
电源:5 V认证状态:Not Qualified
座面最大高度:4.57 mm最大待机电流:0.00075 A
子类别:SRAMs最大压摆率:0.075 mA
最大供电电压 (Vsup):5.5 V最小供电电压 (Vsup):4.5 V
标称供电电压 (Vsup):5 V表面贴装:NO
技术:CMOS温度等级:COMMERCIAL
端子面层:Matte Tin (Sn)端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED宽度:15.24 mm
Base Number Matches:1

STK20C04-WF35 数据手册

通过下载STK20C04-WF35数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
STK20C04  
512 x 8 nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
Obsolete - Not Recommend for new Designs  
FEATURES  
DESCRIPTION  
• 25ns, 35ns and 45ns Access Times  
STORE to Nonvolatile Elements Initiated by  
Hardware  
RECALL to SRAM Initiated by Hardware or  
Power Restore  
• Automatic STORE Timing  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to Nonvolatile Ele-  
ments  
• 100-Year Data Retention over Full Industrial  
Temperature Range  
• Commercial and Industrial Temperatures  
The Simtek STK20C04 is a fast static RAM with a non-  
volatile element incorporated in each static memory  
cell. The SRAM can be read and written an unlimited  
number of times, while independent nonvolatile data  
resides in nonvolatile elements. Data may easily be  
transferred from the SRAM to the Nonvolatile Elements  
(the STORE operation), or from the Nonvolatile Ele-  
ments to the SRAM (the RECALL operation), using the  
NE pin. Transfers from the Nonvolatile Elements to the  
SRAM (the RECALL operation) also take place auto-  
matically on restoration of power. The STK20C04  
combines the high performance and ease of use of a  
fast SRAM with nonvolatile data integrity.  
The STK20C04 features industry-standard pinout for  
nonvolatile RAMs in a 28-pin 600 mil plastic DIP.  
PIN CONFIGURATIONS  
BLOCK DIAGRAM  
1
NE  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
NC  
2
Quantum Trap  
16 x 256  
NC  
3
A
A
A
A
A
7
4
A
6
5
4
3
2
8
5
NC  
NC  
G
NC  
E
6
STORE  
7
A
A
A
A
5
6
7
8
8
A
9
A
STATIC RAM  
ARRAY  
1
0
RECALL  
10  
11  
12  
13  
14  
A
DQ  
DQ  
7
6
5
DQ  
0
16 x 256  
DQ  
DQ  
1
2
DQ  
DQ  
DQ  
4
3
V
SS  
28 - 600 PDIP  
PIN NAMES  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
COLUMN I/O  
STORE/  
RECALL  
CONTROL  
A
- A  
Address Inputs  
Write Enable  
Data In/Out  
0
8
COLUMN DEC  
W
DQ - DQ  
0
7
E
Chip Enable  
Output Enable  
Nonvolatile Enable  
Power (+ 5V)  
Ground  
DQ5  
DQ6  
DQ7  
A3 A4  
A0 A1 A2  
G
NE  
G
NE  
E
V
V
CC  
W
SS  
March 2006  
1
Document Control # ML0001 rev 0.2  
STK20C04  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V  
Current  
85  
75  
65  
90  
75  
65  
mA  
mA  
mA  
t
t
t
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V  
Average V  
Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
CC  
2
3
b
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
All Others Cycling, CMOS Levels  
10  
10  
5V, 25°C, Typical  
d
d
I
Average V Current  
25  
21  
18  
26  
22  
19  
mA  
mA  
mA  
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
SB  
SB  
CC  
(Standby, Cycling TTL Input Levels)  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
2
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
CC  
CC  
750  
1
750  
1
μA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V
V
= max  
CC  
ILK  
= V to V  
IN  
SS CC  
Off-State Output Leakage Current  
V
V
= max  
CC  
OLK  
5
5
= V to V , E or G V  
IN  
SS CC IH  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
– .5  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
– .5  
0.8  
V
0.8  
IL  
SS  
SS  
2.4  
2.4  
V
I
I
=–4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 is the average current required for the duration of the STORE cycle (tSTORE ).  
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
5.0V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
e
480 Ohms  
CAPACITANCE  
(TA = 25°C, f = 1.0MHz)  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
OUTPUT  
30 pF  
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
C
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
March 2006  
2
Document Control # ML0001 rev 0.2  
STK20C04  
SRAM READ CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK20C04-25 STK20C04-35 STK20C04-45  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
Read Cycle Time  
25  
35  
45  
AVAV  
RC  
AA  
g
3
Address Access Time  
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
EHICCL  
d, e  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles. NE must be high during entire cycle.  
Note g: I/O state assumes E, G < VIL, W > VIH , and NE VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
f, g  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
f
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
1
11  
EHICCL  
t
ELQV  
t
6
E
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
March 2006  
3
Document Control # ML0001 rev 0.2  
STK20C04  
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK20C04-25  
STK20C04-35  
STK20C04-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
WHAX  
h, i  
EHAX  
WR  
t
t
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions. NE VIH  
.
j
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
16  
WHDX  
15  
DVWH  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
j
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
19  
t
EHAX  
14  
ELEH  
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
16  
EHDX  
15  
DVEH  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
March 2006  
4
Document Control # ML0001 rev 0.2  
STK20C04  
MODE SELECTION  
E
H
L
L
L
L
W
X
H
L
G
X
L
NE  
X
MODE  
Not Selected  
POWER  
Standby  
Active  
H
H
L
Read SRAM  
X
L
Write SRAM  
Active  
k
H
L
Nonvolatile RECALL  
Nonvolatile STORE  
Active  
H
L
I
CC  
2
L
L
L
H
L
H
L
X
No Operation  
Active  
Note k: An automatic RECALL takes place at power up, starting when VCC exceeds 4.25V and taking tRESTORE  
.
STORE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
PARAMETER  
MIN  
MAX  
UNITS  
#1  
#2  
Alt.  
l
22  
23  
24  
25  
26  
27  
28  
t
t
t
t
t
t
STORE Cycle Time  
10  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
WLQX  
ELQX  
ELNH  
STORE  
WC  
m
STORE Initiation Cycle Time  
Output Disable Set-up to NE Fall  
Output Disable Set-up to E Fall  
NE Set-up  
20  
0
WLNH  
tGHNL  
t
t
0
GHEL  
t
t
0
NLWL  
NLEL  
Chip Enable Set-up  
0
ELWL  
t
Write Enable Set-up  
0
WLEL  
Note l: Measured with W and NE both returned high, and G returned low. STORE cycles are inhibited below 4.0V.  
Note m: Once tWC has been satisfied by NE, G, W and E, the STORE cycle is completed automatically. Any of NE, G, W or E may be used to terminate  
the STORE initiation cycle.  
Note n: If E is low for any period of time in which W is high while G and NE are low, then a RECALL cycle may be initiated.  
n
STORE CYCLE #1: W Controlled  
NE  
24  
GHNL  
26  
NLWL  
23  
WLNH  
G
t
t
t
W
27  
ELWL  
t
E
22  
WLQX  
t
HIGH IMPEDANCE  
DQ (DATA OUT)  
n
STORE CYCLE #2: E Controlled  
26  
t
NLEL  
NE  
25  
GHEL  
t
G
28  
WLEL  
t
W
E
23  
ELNH  
t
22  
ELQX  
t
HIGH IMPEDANCE  
DQ (DATA OUT)  
March 2006  
5
Document Control # ML0001 rev 0.2  
STK20C04  
STORE INHIBIT/POWER-UP RECALL  
(V = 5.0V + 10%)  
CC  
SYMBOLS  
STK20C04  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
29  
30  
31  
32  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
V
o
RESTORE  
STORE  
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
4.5  
SWITCH  
3.6  
V
RESET  
Note o: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE INHIBIT/POWER-UP RECALL  
V
CC  
5V  
31  
V
SWITCH  
32  
RESET  
V
STORE INHIBIT  
POWER-UP RECALL  
29  
RESTORE  
t
DQ (DATA OUT)  
POWER-UP  
BROWN OUT  
BROWN OUT  
BROWN OUT  
RECALL  
STORE INHIBIT  
STORE INHIBIT  
STORE INHIBIT  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
March 2006  
6
Document Control # ML0001 rev 0.2  
STK20C04  
RECALL CYCLES #1, #2 & #3  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
PARAMETER  
MIN  
MAX  
UNITS  
#1  
#2  
#3  
p
33  
34  
35  
36  
37  
38  
39  
40  
t
t
t
t
t
t
t
t
t
t
t
RECALL Cycle Time  
20  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
NLQX  
ELQXR  
ELNHR  
NLEL  
GLQXR  
GLNH  
NLGL  
q
RECALL Initiation Cycle Time  
NE Set-up  
20  
0
NLNH  
tGLNL  
Output Enable Set-up  
Write Enable Set-up  
0
GLEL  
t
t
t
t
t
t
0
WHNL  
ELNL  
NLQZ  
WHEL  
GLEL  
WHGL  
Chip Enable Set-up  
0
ELGL  
NE Fall to Outputs Inactive  
Power-up RECALL Duration  
20  
550  
RESTORE  
Note p: Measured with W and NE both high, and G and E low.  
Note q: Once tNLNH has been satisfied by NE, G, W and E, the RECALL cycle is completed automatically. Any of NE, G or E may be used to terminate  
the RECALL initiation cycle.  
Note r: If W is low at any point in which both E and NE are low and G is high, then a STORE cycle will be initiated instead of a RECALL.  
n
RECALL CYCLE #1: NE Controlled  
34  
NLNH  
t
NE  
G
36  
GLNL  
t
W
E
37  
WHNL  
t
38  
ELNL  
33  
NLQX  
t
t
39  
NLQZ  
t
HIGH IMPEDANCE  
DQ (DATA OUT)  
n
RECALL CYCLE #2: E Controlled  
35  
t
NLEL  
NE  
36  
GLEL  
t
G
W
E
37  
WHEL  
34  
ELNHR  
t
t
33  
ELQXR  
t
HIGH IMPEDANCE  
DQ (DATA OUT)  
n, r  
RECALL CYCLE #3: G Controlled  
35  
t
NLGL  
NE  
G
34  
GLNH  
t
37  
t
WHGL  
W
E
38  
ELGL  
t
33  
GLQXR  
t
HIGH IMPEDANCE  
DQ (DATA OUT)  
March 2006  
7
Document Control # ML0001 rev 0.2  
STK20C04  
March 2006  
8
Document Control # ML0001 rev 0.2  
STK20C04  
DEVICE OPERATION  
The STK20C04 has two modes of operation: SRAM  
NONVOLATILE STORE  
mode and nonvolatile mode, determined by the  
state of the NE pin. When in SRAM mode, the mem-  
ory operates as a standard fast static RAM. While in  
nonvolatile mode, data is transferred in parallel from  
SRAM to Nonvolatile Elements or from Nonvolatile  
Elements to SRAM.  
A STORE cycle is performed when NE, E and W and  
low and G is high. While any sequence that  
achieves this state will initiate a STORE, only W initi-  
ation (STORE cycle #1) and E initiation (STORE cycle  
#2) are practical without risking an unintentional  
SRAM WRITE that would disturb SRAM data. During a  
STORE cycle, previous nonvolatile data is erased  
and the SRAM contents are then programmed into  
nonvolatile elements. Once a STORE cycle is initi-  
ated, further input and output are disabled and the  
DQ0-7 pins are tri-stated until the cycle is complete.  
NOISE CONSIDERATIONS  
Note that the STK20C04 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will  
help prevent noise problems.  
If E and G are low and W and NE are high at the end  
of the cycle, a READ will be performed and the out-  
puts will go active, signaling the end of the STORE.  
NONVOLATILE RECALL  
SRAM READ  
A RECALL cycle is performed when E, G and NE are  
low and W is high. Like the STORE cycle, RECALL is  
initiated when the last of the four clock signals goes  
to the RECALL state. Once initiated, the RECALL  
cycle will take tNLQX to complete, during which all  
inputs are ignored. When the RECALL completes,  
any READ or WRITE state on the input pins will take  
effect.  
The STK20C04 performs a READ cycle whenever E  
and G are low and NE and W are high. The address  
specified on pins A0-8 determines which of the 512  
data bytes will be accessed. When the READ is initi-  
ated by an address transition, the outputs will be  
valid after a delay of tAVQV (READ cycle #1). If the  
READ is initiated by E or G, the outputs will be valid  
at tELQV or at tGLQV, whichever is later (READ cycle #2).  
The data outputs will repeatedly respond to address  
changes within the tAVQV access time without the need  
for transitions on any control input pins, and will  
remain valid until another address change or until E  
or G is brought high or W or NE is brought low.  
Internally, RECALL is a two-step procedure. First, the  
SRAM data is cleared, and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
nonvolatile cells. The nonvolatile data can be  
recalled an unlimited number of times.  
SRAM WRITE  
As with the STORE cycle, a transition must occur on  
any one control pin to cause a RECALL, preventing  
inadvertent multi-triggering. On power up, once VCC  
exceeds 4.25V, a RECALL cycle is automatically ini-  
tiated. Due to this automatic RECALL, SRAM opera-  
tion cannot commence until tRESTORE after VCC  
exceeds 4.25V.  
A WRITE cycle is performed whenever E and W are  
low and NE is high. The address inputs must be sta-  
ble prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
POWER-UP RECALL  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
During power up, or after any low-power condition  
(VCC < 3.0V), an internal RECALL request will be  
latched. When VCC once again exceeds 4.25V, a  
RECALL cycle will automatically be initiated and will  
take tRESTORE to complete.  
March 2006  
9
Document Control # ML0001 rev 0.2  
STK20C04  
If the STK20C04 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
LOW AVERAGE ACTIVE POWER  
The STK20C04 draws significantly less current  
when it is cycled at times longer than 55ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on  
chip enable). Figure 3 shows the same relationship  
for WRITE cycles. If the chip enable duty cycle is  
less than 100%, only standby current is drawn  
when the chip is disabled. The overall average cur-  
rent drawn by the STK20C04 depends on the fol-  
lowing items: 1) CMOS vs. TTL input levels; 2) the  
duty cycle of chip enable; 3) the overall cycle rate  
for accesses; 4) the ratio of READs to WRITEs; 5)  
the operating temperature; 6) the VCC level; and 7) I/  
O loading.  
VCC or between E and system VCC.  
HARDWARE PROTECT  
The STK20C04 offers two levels of protection to  
suppress inadvertent STORE cycles. If the control  
signals (E, G, W and NE) remain in the STORE con-  
dition at the end of a STORE cycle, a second  
STORE cycle will not be started. The STORE (or  
RECALL) will be initiated only after a transition on  
any one of these signals to the required state. In  
addition to multi-trigger protection, STOREs are  
inhibited when VCC is below 4.0V, protecting  
against inadvertent STOREs.  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
200  
0
0
50  
100  
150  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2: ICC (max) Reads  
Figure 3: ICC (max) Writes  
March 2006  
10  
Document Control # ML0001 rev 0.2  
STK20C04  
ORDERING INFORMATION  
- W F 45 I  
STK20C04  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 28-pin 600 mil DIP  
March 2006  
11  
Document Control # ML0001 rev 0.2  
Document Revision History  
Revision  
0.0  
Date  
Summary  
December 2002  
September 2003  
February 2006  
Replaced 30 nsec device with 25 nsec device.  
Added lead-free lead finish  
0.1  
0.2  
Marked as Obsolete, Not recommended for new design.  

STK20C04-WF35 相关器件

型号 制造商 描述 价格 文档
STK20C04-WF35I SIMTEK 512 x 8 nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM 获取价格
STK20C04-WF35I CYPRESS Non-Volatile SRAM, 512X8, 35ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28 获取价格
STK20C04-WF45 SIMTEK 512 x 8 nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM 获取价格
STK20C04-WF45 CYPRESS 512X8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28 获取价格
STK20C04-WF45I SIMTEK 512 x 8 nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM 获取价格
STK20C04-WF45I CYPRESS 512X8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28 获取价格
STK20N06 STMICROELECTRONICS 20A, 60V, 0.07ohm, N-CHANNEL, Si, POWER, MOSFET 获取价格
STK20N06(SOT-194) STMICROELECTRONICS Power Field-Effect Transistor, 20A I(D), 60V, 0.07ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET 获取价格
STK20N06{SOT-194} STMICROELECTRONICS 20A, 60V, 0.07ohm, N-CHANNEL, Si, POWER, MOSFET 获取价格
STK20N3LLH5 STMICROELECTRONICS N-channel 30 V, 0.006 Ω, 20 A, PolarPAK® STripFET™V Power MOSFET 获取价格

STK20C04-WF35 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6