STK22C48-P45I [SIMTEK]

Non-Volatile SRAM, 2KX8, 45ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28;
STK22C48-P45I
型号: STK22C48-P45I
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

Non-Volatile SRAM, 2KX8, 45ns, CMOS, PDIP28, 0.300 INCH, PLASTIC, DIP-28

静态存储器 光电二极管
文件: 总10页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK22C48  
2K x 8 AutoStore™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
20ns, 25ns, 35ns and 45ns Access Times  
The Simtek STK22C48 is a fast static RAM with a  
nonvolatile, electrically erasable PROM element  
incorporated in each static memory cell. The SRAM  
can be read and written an unlimited number of  
times, while independent, nonvolatile data resides in  
EEPROM. Data transfers from the SRAM to the  
EEPROM (the STORE operation) can take place  
automatically on power down. A 68µF or larger  
capacitor tied from VCAP to ground guarantees the  
STORE operation, regardless of power-down slew  
rate or loss of power from “hot swapping”. Transfers  
from the EEPROM to the SRAM (the RECALL opera-  
tion) take place automatically on restoration of  
power. A hardware STORE may be initiated with the  
HSB pin.  
• “Hands-offAutomatic STORE with External  
68µF Capacitor on Power Down  
STORE to EEPROM Initiated by Hardware or  
AutoStoreon Power Down  
Automatic RECALL on Power Up  
10mA Typical ICC at 200ns Cycle Time  
Unlimited READ, WRITE and RECALL Cycles  
1,000,000 STORE Cycles to EEPROM  
100-Year Data Retention in EEPROM  
Single 5V + 10% Operation  
Not Sensitive to Power On/Off Ramp Rates  
No Data Loss from Undershoot  
Commercial and Industrial Temperatures  
28-Pin DIP and SOIC Packages  
BLOCK DIAGRAM  
PIN CONFIGURATIONS  
V
CCX  
V
CAP  
V
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CAP  
NC  
CCX  
W
2
3
A
A
A
A
A
HSB  
7
6
5
4
3
2
4
A
POWER  
CONTROL  
8
EEPROM ARRAY  
32 x 512  
A
9
NC  
G
5
6
7
8
A
A
E
10  
A5  
A6  
A7  
A8  
A9  
STORE  
STORE/  
RECALL  
CONTROL  
9
A
1
0
HSB  
A
10  
11  
12  
13  
14  
DQ  
DQ  
DQ  
DQ  
DQ  
7
6
5
4
3
STATIC RAM  
28 - 300 PDIP  
28 - 600 PDIP  
28 - 300 SOIC  
28 - 350 SOIC  
DQ  
DQ  
DQ  
V
RECALL  
0
1
2
ARRAY  
32 x 512  
SS  
PIN NAMES  
DQ  
0
COLUMN I/O  
DQ  
A
- A  
Address Inputs  
1
0
10  
COLUMN DEC  
DQ  
2
DQ -DQ  
0
Data In/Out  
7
DQ  
3
E
Chip Enable  
DQ  
4
W
Write Enable  
Output Enable  
Hardware Store Busy (I/O)  
Power (+ 5V)  
Capacitor  
DQ  
5
A
10  
A A A A A  
4
2
3
0
1
DQ  
G
G
6
DQ  
7
HSB  
E
V
V
V
CCX  
CAP  
SS  
W
Ground  
July 1999  
3-21  
STK22C48  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at con-  
ditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to VSS . . . . . . . . . .–0.6V to (V + 0.5V)  
CC  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . .0.5V to (V + 0.5V)  
CC  
Temperature under Bias. . . . . . . . . . . . . . . . . . . . . .55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . 15mA  
b, f  
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
c
I
95  
85  
75  
65  
N/A  
90  
75  
mA  
mA  
mA  
mA  
t
t
t
t
= 20ns  
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
1
65  
d
c
I
I
Average V Current during STORE  
3
3
mA  
mA  
All Inputs Dont Care, V = max  
CC  
CC  
CC  
2
3
Average V Current at t  
CC  
= 200ns  
W (V 0.2V)  
CC  
AVAV  
CC  
10  
10  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
d
4
I
I
Average V  
AutoStoreCycle  
Current during  
All Inputs Dont Care  
CC  
CAP  
2
2
mA  
e
e
Average V Current  
CC  
(Standby, Cycling TTL Input Levels)  
30  
25  
21  
18  
N/A  
26  
22  
mA  
mA  
mA  
mA  
t
t
t
t
= 20ns, E V  
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
SB  
AVAV  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
IH  
1
19  
I
I
I
V
Standby Current  
E (V 0.2V)  
CC  
SB  
CC  
2
1.5  
1
1.5  
1
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V 0.2V)  
IN CC  
Input Leakage Current  
V = max  
CC  
ILK  
V
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V = max  
CC  
OLK  
5
5
V
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
V
T
Input Logic 1Voltage  
2.2  
V
+ .5  
2.2  
.5  
V + .5  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
Input Logic 0Voltage  
V
.5  
0.8  
V
0.8  
IL  
SS  
SS  
Output Logic 1Voltage  
Output Logic 0Voltage  
Logic 0Voltage on HSB Output  
Operating Temperature  
2.4  
2.4  
V
I
I
I
=4mA except HSB  
= 8mA except HSB  
= 3mA  
OH  
OL  
BL  
OUT  
OUT  
OUT  
0.4  
0.4  
70  
0.4  
0.4  
85  
V
V
0
40  
°C  
A
Note b: The STK22C48-20 requires V = 5.0V 5% supply to operate at specified speed.  
CC  
Note c: ICC and ICC are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note d: ICC1 and ICC3 are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
2
4
Note e: E VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
Note f: reference levels throughout this datasheet refer to V if that is where the power supply connection is made, or V  
V
if V  
is con-  
CCX  
CC  
CCX  
CAP  
nected to ground.  
5.0V  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3V  
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Figure 1  
480 Ohms  
OUTPUT  
30 pF  
255 Ohms  
g
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
INCLUDING  
SCOPE AND  
FIXTURE  
A
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
C
IN  
Input Capacitance  
Output Capacitance  
8
7
pF  
C
pF  
OUT  
Figure 1: AC Output Loading  
Note g: These parameters are guaranteed but not tested.  
July 1999  
3-22  
STK22C48  
b, f  
SRAM READ CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK22C48-20  
STK22C48-25  
STK22C48-35  
STK22C48-45  
NO.  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
20  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
h
20  
25  
35  
45  
AVAV  
i
3
Address Access Time  
22  
8
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
i
5
5
5
5
5
5
5
5
5
AXQX  
6
ELQX  
j
7
7
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
j
9
GHQZ  
g
g
10  
11  
ELICCH  
EHICCL  
25  
PS  
Note h: W and HSB must be high during SRAM READ cycles.  
Note i: Device is continuously selected with E and G both low.  
Note j: Measured 200mV from steady state output voltage.  
h, i  
SRAM READ CYCLE #1: Address Controlled  
2
AVAV  
t
ADDRESS  
3
AVQV  
t
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
h
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
t
ELQV  
t
EHICCL  
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
Q (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
July 1999  
3-23  
STK22C48  
b, f  
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
STK22C48-20 STK22C48-25 STK22C48-35 STK22C48-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
20  
15  
15  
8
MAX  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
Write Pulse Width  
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
0
DH  
AW  
t
t
t
15  
0
20  
0
25  
0
30  
0
AVWH  
AVEH  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
0
WHAX  
EHAX  
WR  
j, k  
t
t
7
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note k: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note l: E or W must be VIH during address transitions.  
Note m: HSB must be high during SRAM WRITE cycles.  
l, m  
SRAM WRITE CYCLE #1: W Controlled  
12  
t
AVAV  
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
W
t
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
l, m  
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
14  
ELEH  
18  
AVEL  
19  
EHAX  
t
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
July 1999  
3-24  
STK22C48  
HARDWARE MODE SELECTION  
E
H
L
W
X
H
L
HSB  
A
- A (hex)  
0
MODE  
Not Selected  
I/O  
POWER  
NOTES  
12  
H
X
X
X
X
Output High Z  
Output Data  
Input Data  
Standby  
Active  
H
Read SRAM  
o
n
L
H
Write SRAM  
Active  
X
X
L
Nonvolatile STORE  
Output High Z  
l
CC  
2
Note n: HSB STORE operation occurs only if an SRAM write has been done since the last nonvolatile cycle. After the STORE (if any) completes, the  
part will go into standby mode, inhibiting all operations until HSB rises.  
Note o: I/O state assumes G < V . Activation of nonvolatile cycles does not depend on state of G.  
IL  
b, f  
HARDWARE STORE CYCLE  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK22C48  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
1
MAX  
22  
23  
24  
25  
26  
t
t
t
t
t
t
t
t
STORE Cycle Duration  
10  
ms  
µs  
ns  
ns  
ns  
j, p  
j, q  
p, r  
STORE  
DELAY  
RECOVER  
HLHX  
HLHZ  
HLQZ  
HHQX  
Time Allowed to Complete SRAM Cycle  
Hardware STORE High to Inhibit Off  
Hardware STORE Pulse Width  
700  
300  
15  
Hardware STORE Low to Store Busy  
HLBL  
Note p: E and G low for output behavior.  
Note q: E and G low and W high for output behavior.  
Note r: is only applicable after t is complete.  
t
RECOVER  
STORE  
HARDWARE STORE CYCLE  
25  
HLHX  
t
HSB (IN)  
24  
RECOVER  
t
22  
STORE  
t
26  
HLBL  
t
HSB (OUT)  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DATA VALID  
23  
DELAY  
t
DQ (DATA OUT)  
DATA VALID  
July 1999  
3-25  
STK22C48  
b, f  
AutoStore/ POWER-UP RECALL  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK22C48  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
550  
10  
27  
28  
29  
30  
31  
32  
t
Power-up RECALL Duration  
STORE Cycle Duration  
µs  
ms  
ns  
µs  
V
s
p, q, t  
m
RESTORE  
t
t
t
t
STORE  
VSBL  
HLHZ  
BLQZ  
Low Voltage Trigger (V  
) to HSB Low  
300  
SWITCH  
t
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
1
p
DELAY  
V
V
4.0  
4.5  
3.9  
SWITCH  
Low Voltage Reset Level  
V
RESET  
Note s:  
t
starts from the time V rises above V  
.
RESTORE  
CC  
SWITCH  
Note t: HSB is asserted low for 1µs when V  
drops through V  
. If an SRAM write has not taken place since the last nonvolatile cycle, HSB will  
SWITCH  
CAP  
be released and no STORE will take place.  
AutoStore/ POWER-UP RECALL  
V
CC  
31  
SWITCH  
V
32  
V
RESET  
TM  
AutoStore  
POWER-UP RECALL  
29  
VSBL  
28  
STORE  
27  
RESTORE  
t
t
t
HSB  
30  
DELAY  
t
W
DQ (DATA OUT)  
POWER-UP  
BROWN OUT  
BROWN OUT  
BROWN OUT  
RECALL  
NO STORE  
AutoStore™  
AutoStore™  
(NO SRAM WRITES)  
NO RECALL  
NO RECALL  
RECALL WHEN  
(V DID NOT GO  
(V DID NOT GO  
V
RETURNS  
CC  
CC  
CC  
BELOW V  
)
BELOW V  
)
ABOVE V  
SWITCH  
RESET  
RESET  
July 1999  
3-26  
STK22C48  
DEVICE OPERATION  
The STK22C48 has two separate modes of opera-  
POWER-UP RECALL  
tion: SRAM mode and nonvolatile mode. In SRAM  
mode, the memory operates as a standard fast  
static RAM. In nonvolatile mode, data is transferred  
from SRAM to EEPROM (the STORE operation) or  
from EEPROM to SRAM (the RECALL operation). In  
this mode SRAM functions are disabled.  
During power up, or after any low-power condition  
(VCAP < VRESET), an internal RECALL request will be  
latched. When VCAP once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
If the STK22C48 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
NOISE CONSIDERATIONS  
The STK22C48 is a high-speed memory and so  
must have a high-frequency bypass capacitor of  
approximately 0.1µF connected between VCAP and  
VSS, using leads and traces that are as short as pos-  
sible. As with all high-speed CMOS ICs, normal care-  
ful routing of power, ground and signals will help  
prevent noise problems.  
VCC or between E and system VCC.  
AutoStoreOPERATION  
The STK22C48 can be powered in one of three  
modes.  
SRAM READ  
During normal AutoStoreoperation, the  
STK22C48 will draw current from VCCX to charge a  
capacitor connected to the VCAP pin. This stored  
charge will be used by the chip to perform a single  
STORE operation. After power up, when the voltage  
on the VCAP pin drops below VSWITCH, the part will  
automatically disconnect the VCAP pin from VCCX and  
initiate a STORE operation.  
The STK22C48 performs a READ cycle whenever E  
and G are low and W and HSB are high. The  
address specified on pins A0-10 determines which of  
the 2,048 data bytes will be accessed. When the  
READ is initiated by an address transition, the out-  
puts will be valid after a delay of tAVQV (READ cycle  
#1). If the READ is initiated by E or G, the outputs will  
be valid at tELQV or at tGLQV, whichever is later (READ  
cycle #2). The data outputs will repeatedly respond  
to address changes within the tAVQV access time with-  
out the need for transitions on any control input pins,  
and will remain valid until another address change or  
until E or G is brought high, or W or HSB is brought  
low.  
Figure 2 shows the proper connection of capacitors  
for automatic store operation. A charge storage  
capacitor having a capacity of between 68µF and  
220µF ( 20%) rated at 6V should be provided.  
In system power mode (Figure 3), both VCCX and  
VCAP are connected to the + 5V power supply without  
the 68µF capacitor. In this mode the AutoStore™  
function of the STK22C48 will operate on the stored  
system charge as power goes down. The user must,  
however, guarantee that VCCX does not drop below  
3.6V during the 10ms STORE cycle.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
If an automatic STORE on power loss is not required,  
then VCCX can be tied to ground and + 5V applied to  
VCAP (Figure 4). This is the AutoStoreInhibit  
mode, in which the AutoStorefunction is disabled.  
If the STK22C48 is operated in this configuration,  
references to VCCX should be changed to VCAP  
throughout this data sheet. In this mode, STORE  
operations may be triggered with the HSB pin. It is  
not permissable to change between these three  
options on the fly.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
July 1999  
3-27  
STK22C48  
In order to prevent unneeded STORE operations,  
automatic STOREs as well as those initiated by  
externally driving HSB low will be ignored unless at  
least one WRITE operation has taken place since the  
most recent STORE or RECALL cycle. An optional  
pull-up resistor is shown connected to HSB. This  
can be used to signal the system that the  
AutoStorecycle is in progress.  
operate in this mode the HSB pin should be con-  
nected together to the HSB pins from the other  
STK22C48s. An external pull-up resistor to + 5V is  
required since HSB acts as an open drain pull down.  
The VCAP pins from the other STK22C48 parts can  
be tied together and share a single capacitor. The  
capacitor size must be scaled by the number of  
devices connected to it. When any one of the  
STK22C48s detects a power loss and asserts HSB,  
the common HSB pin will cause all parts to request  
a STORE cycle (a STORE will take place in those  
STK22C48s that have been written since the last  
nonvolatile cycle).  
HSB OPERATION  
The STK22C48 provides the HSB pin for controlling  
and acknowledging the STORE operations. The HSB  
pin is used to request a hardware STORE cycle.  
When the HSB pin is driven low, the STK22C48 will  
During any STORE operation, regardless of how it  
was initiated, the STK22C48 will continue to drive  
the HSB pin low, releasing it only when the STORE is  
complete. Upon completion of the STORE operation  
the STK22C48 will remain disabled until the HSB  
pin returns high.  
conditionally initiate a STORE operation after tDELAY  
;
an actual STORE cycle will only begin if a WRITE to  
the SRAM took place since the last STORE or  
RECALL cycle. The HSB pin acts as an open drain  
driver that is internally driven low to indicate a busy  
condition while the STORE (initiated by any means)  
is in progress.  
If HSB is not used, it should be left unconnected.  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK22C48 will  
PREVENTING STORES  
The STORE function can be disabled on the fly by  
holding HSB high with a driver capable of sourcing  
30mA at a VOH of at least 2.2V, as it will have to  
overpower the internal pull-down device that drives  
HSB low for 20µs at the onset of a STORE. When  
the STK22C48 is connected for AutoStoreopera-  
tion (system VCC connected to VCCX and a 68µF  
capacitor on VCAP) and VCC crosses VSWITCH on the  
way down, the STK22C48 will attempt to pull HSB  
low; if HSB doesnt actually get below VIL, the part  
continue SRAM operations for tDELAY. During tDELAY  
,
multiple SRAM READ operations may take place. If a  
WRITE is in progress when HSB is pulled low it will  
be allowed a time, tDELAY, to complete. However, any  
SRAM WRITE cycles requested after HSB goes low  
will be inhibited until HSB returns high.  
The HSB pin can be used to synchronize multiple  
STK22C48s while using a single larger capacitor. To  
1
28  
27  
26  
1
28  
27  
26  
1
28  
27  
26  
+
15  
14  
14  
15  
15  
14  
Figure 2: AutoStoreMode  
Figure 3: System Power Mode  
Figure 4: AutoStore™  
Inhibit Mode  
*If HSB is not used, it should be left unconnected.  
July 1999  
3-28  
STK22C48  
will stop trying to pull HSB low and abort the STORE  
attempt.  
LOW AVERAGE ACTIVE POWER  
The STK22C48 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 5  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 6 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK22C48 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
HARDWARE PROTECT  
The STK22C48 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs dur-  
ing low-voltage conditions. When VCAP < VSWITCH, all  
externally initiated STORE operations and SRAM  
WRITEs are inhibited.  
AutoStorecan be completely disabled by tying  
VCCX to ground and applying + 5V to VCAP . This is the  
AutoStoreInhibit mode; in this mode STOREs are  
only initiated by explicit request using the HSB pin.  
temperature; 6) the V level; and 7) I/O loading.  
cc  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
150 200  
0
0
50  
100  
Cycle Time (ns)  
50  
100  
150  
200  
Cycle Time (ns)  
Figure 5: Icc (max) Reads  
Figure 6: Icc (max) Writes  
July 1999  
3-29  
STK22C48  
ORDERING INFORMATION  
STK22C48 - P 45 I  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (-40 to 85°C)  
Access Time  
20 = 20ns (Commercial only)  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Package  
P = Plastic 28-pin 300 mil DIP  
W = Plastic 28-pin 600 mil DIP  
N = Plastic 28-pin 300 mil SOIC  
S = Plastic 28-pin 350 mil SIOC  
July 1999  
3-30  

相关型号:

STK22C48-S20

Non-Volatile SRAM, 2KX8, 22ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28
SIMTEK

STK22C48-S25

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S25I

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S25ITR

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S25TR

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S35

Non-Volatile SRAM, 2KX8, 35ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28
SIMTEK

STK22C48-S35I

Non-Volatile SRAM, 2KX8, 35ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28
SIMTEK

STK22C48-S45

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S45I

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S45ITR

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-S45TR

2Kx8 AutoStore nvSRAM
SIMTEK

STK22C48-SF25

2Kx8 AutoStore nvSRAM
SIMTEK