UL631H256SC35 [SIMTEK]

SimtekLow Voltage SoftStore 32K x 8 nvSRAM; SimtekLow电压SoftStore 32K ×8的nvSRAM
UL631H256SC35
型号: UL631H256SC35
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SimtekLow电压SoftStore 32K ×8的nvSRAM

静态存储器
文件: 总13页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Obsolete - Not Recommended for New Designs  
UL631H256  
SimtekLow Voltage SoftStore 32K x 8 nvSRAM  
Features  
Description  
High-performance CMOS non-  
The UL631H256 has two separate of a fast SRAM with nonvolatile  
volatile static RAM 32768 x 8 bits modes of operation: SRAM mode data integrity.  
35 and 45 ns Access Times  
15 and 20 ns Output Enable  
Access Times  
Software STORE Initiation  
Automatic STORE Timing  
106 STORE cycles to EEPROM  
100 years data retention in  
EEPROM  
and nonvolatile mode. In SRAM Once a STORE cycle is initiated,  
mode, the memory operates as an further input or output are disabled  
ordinary static RAM. In nonvolatile until the cycle is completed.  
operation, data is transferred in Because a sequence of addresses  
parallel from SRAM to EEPROM or is used for STORE initiation, it is  
from EEPROM to SRAM. In this important that no other read or  
mode SRAM functions are disab- write accesses intervene in the  
led.  
sequence or the sequence will be  
Automatic RECALL on Power Up The UL631H256 is a fast static aborted.  
Software RECALL Initiation  
Unlimited RECALL cycles from  
EEPROM  
RAM (35 and 45 ns), with a nonvo- Internally, RECALL is a two step  
latile electrically erasable PROM procedure. First, the SRAM data is  
(EEPROM) element incorporated cleared and second, the nonvola-  
in each static memory cell. The tile information is transferred into  
SRAM can be read and written an the SRAM cells.  
Unlimited Read and Write to  
SRAM  
Wide voltage range: 2.7 ... 3.6 V  
(3.0 ... 3.6 V for 35 ns type)  
Operating temperature range:  
0 to 70 °C  
unlimited number of times, while The RECALL operation in no way  
independent nonvolatile data resi- alters the data in the EEPROM  
des in EEPROM. Data transfers cells. The nonvolatile data can be  
from the SRAM to the EEPROM recalled an unlimited number of  
(the STORE operation), or from the times.  
-40 to 85 °C  
QS 9000 Quality Standard  
RoHS compliance and Pb- free  
ESD protection > 2000 V  
(MIL STD 883C M3015.7-HBM)  
Package: SOP28 (330 mil)  
EEPROM to the SRAM (the The UL631H256 is pin compatible  
RECALL operation) are initiated with standard SRAMs.  
through software sequences.  
The UL631H256 combines the  
high performance and ease of use  
Pin Configuration  
Pin Description  
G
A11  
A9  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
n.c.  
A10  
E
Signal Name Signal Description  
VCC  
W
A13  
A8  
A9  
A11  
G
A10  
E
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A14  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 10  
DQ0  
DQ1  
DQ2  
VSS  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
3
A0 - A14  
Address Inputs  
Data In/Out  
A8  
4
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
VSS  
DQ2  
DQ1  
DQ0  
A0  
A13  
W
n. c.  
VCC  
n. c.  
A14  
A12  
A7 12  
A6 13  
A5  
A4  
A3  
5
DQ0 - DQ7  
6
7
Chip Enable  
E
8
TSOP  
SOP  
9
Output Enable  
Write Enable  
Power Supply Voltage  
Ground  
G
10  
11  
W
11  
12  
13  
14  
VCC  
VSS  
14  
15  
16  
A1  
A2  
n.c.  
Top View  
Top View  
March 31, 2006  
STK Control #ML0057  
1
Rev 1.0  
UL631H256  
Block Diagram  
EEPROM Array  
512 x (64 x 8)  
A5  
A6  
STORE  
A7  
A8  
A9  
RECALL  
VCC  
VSS  
SRAM  
Array  
A11  
A12  
A13  
A14  
512 Rows x  
64 x 8 Columns  
Store/  
Recall  
Control  
VCC  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
Column I/O  
Software  
Detect  
Column Decoder  
A0 - A13  
G
A0 A1 A2 A3 A4A10  
DQ7  
E
W
Truth Table for SRAM Operations  
Operating Mode  
E
W
G
DQ0 - DQ7  
Standby/not selected  
Internal Read  
Read  
H
L
L
L
High-Z  
High-Z  
*
*
H
H
L
H
L
Data Outputs Low-Z  
Data Inputs High-Z  
Write  
*
* H or L  
Characteristics  
All voltages are referenced to VSS = 0 V (ground).  
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.  
Dynamic measurements are based on a rise and fall time of 5 ns, measured between 10 % and 90 % of VI, as well as  
input levels of VIL = 0 V and VIH = 3 V. The timing reference level of all input and output signals is 1.5 V,  
with the exception of the tdis-times and ten-times, in which cases transition is measured ± ±200 mV from steady-state voltage.  
Absolute Maximum Ratingsa  
Symbol  
Min.  
Max.  
Unit  
Power Supply Voltage  
Input Voltage  
VCC  
VI  
-0.5  
-0.3  
-0.3  
4.6  
VCC+0.5  
VCC+0.5  
1
V
V
Output Voltage  
VO  
PD  
V
Power Dissipation  
W
Operating Temperature  
C-Type  
K-Type  
0
-40  
70  
85  
°C  
°C  
Ta  
Storage Temperature  
Tstg  
-65  
150  
°C  
a: Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Rev 1.0  
March 31, 2006  
STK Control #ML0057  
2
UL631H256  
Recommended  
Operating Conditions  
Symbol  
Conditions  
tc = 35 ns  
Min.  
Max.  
Unit  
Power Supply Voltage  
VCC  
3.0  
2.7  
3.6  
3.6  
V
V
tc = 45 ns  
-2 V at Pulse Width  
10 ns permitted  
Input Low Voltage  
Input High Voltage  
VIL  
-0.3  
2.2  
0.8  
V
V
VIH  
VCC+0.3  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
Operating Supply Currentb  
ICC1  
VCC  
VIL  
VIH  
= 3.6 V  
= 0.8 V  
= 2.2 V  
tc  
tc  
= 35 ns  
= 45 ns  
45  
35  
47  
37  
mA  
mA  
Average Supply Current during  
STOREc  
ICC2  
VCC  
E
W
VIL  
VIH  
= 3.6 V  
3
4
mA  
VCC-0.2 V  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Average Supply Current  
at tcR = 200 nsb  
(Cycling CMOS Input Levels)  
ICC3  
VCC  
W
VIL  
VIH  
= 3.6V  
10  
11  
mA  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
Standby Supply Currentd  
(Cycling TTL Input Levels)  
ICC(SB)1  
VCC  
E
= 3.6 V  
≥±VIH  
tc  
tc  
= 35ns  
= 45 ns  
11  
9
12  
10  
mA  
mA  
Standby Supply Curentd  
(Stable CMOS Input Levels)  
ICC(SB)  
VCC  
E
VIL  
VIH  
= 3.6 V  
0.7  
0.7  
mA  
VCC-0.2 V  
0.2 V  
VCC-0.2 V  
b: ICC1 and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded  
The current ICC1 is measured for WRITE/READ - ratio of 1/2.  
c: ICC2 is the average current required for the duration of the STORE cycle (tSTORE).  
d: Bringing E±≥±VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
The current ICC(SB)1 is measured for WRITE/READ - ratio of 1/2.  
March 31, 2006  
STK Control #ML0057  
3
Rev 1.0  
UL631H256  
C-Type  
K-Type  
DC Characteristics  
Symbol  
Conditions  
Unit  
Min. Max. Min. Max.  
VCC  
IOH  
IOL  
= VCC  
min  
=-2 mA  
= 2 mA  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
2.4  
2
2.4  
2
V
V
0.4  
-2  
0.4  
-2  
VCC  
VOH  
VOL  
= VCC  
min  
= 2.4 V  
= 0.4 V  
Output High Current  
Output Low Current  
IOH  
IOL  
mA  
mA  
Input Leakage Current  
VCC  
= 3.6 V  
High  
Low  
IIH  
IIL  
VIH  
VIL  
= 3.6 V  
1
1
μA  
μA  
=
0 V  
-1  
-1  
-1  
-1  
Output Leakage Current  
VCC  
E or G VIH  
VOH  
VOL  
= 3.6 V  
High at Three-State- Output  
Low at Three-State- Output  
IOHZ  
IOLZ  
= 3.6 V  
0 V  
1
1
μA  
μA  
=
SRAM Memory Operations  
Symbol  
35  
45  
Switching Characteristics  
No.  
Unit  
Read Cycle  
Alt.  
IEC  
Min.  
Max.  
1
2
3
4
Read Cycle Timef  
tAVAV  
tAVQV  
tELQV  
tcR  
35  
45  
ns  
ns  
ns  
Address Access Time to Data Validg  
Chip Enable Access Time to Data Valid  
ta(A)  
ta(E)  
35  
35  
45  
45  
Output Enable Access Time to Data  
Valid  
tGLQV  
ta(G)  
15  
20  
ns  
5
6
7
8
9
E HIGH to Output in High-Zh  
G HIGH to Output in High-Zh  
E LOW to Output in Low-Z  
tEHQZ  
tGHQZ  
tELQX  
tdis(E)  
tdis(G)  
ten(E)  
ten(G)  
tv(A)  
13  
13  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
0
3
0
5
0
3
G LOW to Output in Low-Z  
tGLQX  
Output Hold Time after Addr. Changeg  
tAXQX  
10 Chip Enable to Power Activee  
tELICCH  
tEHICCL  
tPU  
11 Chip Disable to Power Standbyd, e  
tPD  
35  
45  
e: Parameter guaranteed but not tested.  
f: Device is continuously selected with E and G both Low.  
g: Address valid prior to or coincident with E transition LOW.  
h: Measured ± ±200 mV from steady state output voltage.  
Rev 1.0  
March 31, 2006  
STK Control #ML0057  
4
UL631H256  
f
=
=
Read Cycle 1: Ai-controlled (during Read cycle: E  
G
VIL, W = VIH)  
tcR  
(1)  
Ai  
Address Valid  
ta(A)  
(2)  
DQi  
Previous Data Valid  
Output  
Output Data Valid  
tv(A)  
(9)  
Read Cycle 2: G-, E-controlled (during Read cycle: W = VIH)g  
tcR  
(1)  
Ai  
E
Address Valid  
ta(A) (2)  
ta(E) (3)  
tPD  
(11)  
tdis(E)  
(5)  
ten(E)  
(7)  
G
ta(G)  
(4)  
tdis(G) (6)  
ten(G)  
(8)  
DQi  
Output  
High Impedance  
Output Data Valid  
tPU  
(10)  
ACTIVE  
ICC  
STANDBY  
Symbol  
Alt. #1 Alt. #2  
35  
45  
Switching Characteristics  
Write Cycle  
No.  
Unit  
IEC  
Min.  
Max.  
Min.  
Max.  
12 Write Cycle Time  
tAVAV  
tAVAV  
tcW  
35  
25  
25  
0
45  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13 Write Pulse Width  
tWLWH  
tw(W)  
tsu(W)  
tsu(A)  
14 Write Pulse Width Setup Time  
15 Address Setup Time  
tWLEH  
tAVEL  
tAVEH  
tAVWL  
tAVWH  
tELWH  
tsu(A-WH)  
tsu(E)  
tw(E)  
16 Address Valid to End of Write  
17 Chip Enable Setup Time  
18 Chip Enable to End of Write  
19 Data Setup Time to End of Write  
25  
25  
25  
12  
0
30  
30  
30  
15  
0
tELEH  
tDVEH  
tEHDX  
tEHAX  
tDVWH  
tsu(D)  
th(D)  
20 Data Hold Time after End of Write tWHDX  
21 Address Hold after End of Write  
22 W LOW to Output in High-Zh, i  
23 W HIGH to Output in Low-Z  
tWHAX  
tWLQZ  
tWHQX  
th(A)  
0
0
tdis(W)  
ten(W)  
13  
15  
5
5
March 31, 2006  
STK Control #ML0057  
5
Rev 1.0  
UL631H256  
Write Cycle #1: W-controlledj  
tcW  
(12)  
Ai  
Address Valid  
tsu(E)  
th(A)  
(17)  
(21)  
E
tsu(A-WH)  
(16)  
tw(W) (13)  
W
tsu(A)  
(15)  
tsu(D)  
th(D)  
(20)  
(19)  
Input Data Valid  
ten(W)  
DQi  
Input  
tdis(W)  
(12)  
(23)  
DQi  
Output  
High Impedance  
Previous Data  
Write Cycle #2: E-controlledj  
tcW  
(12)  
Ai  
E
Address Valid  
tw(E)  
tsu(A)  
(15)  
th(A)  
(21)  
(18)  
tsu(W) (14)  
W
tsu(D)  
th(D) (20)  
Input Data Valid  
(19)  
DQi  
Input  
High Impedance  
DQi  
Output  
undefined  
L- to H-level  
H- to L-level  
i: If W is low and when E goes low, the outputs remain in the high impedance state.  
>
j: E or W must be VIH during address transitions.  
Rev 1.0  
March 31, 2006  
STK Control #ML0057  
6
UL631H256  
Nonvolatile Memory Operations  
Symbol  
Alt. IEC  
STORE Cycle Inhibit and  
No.  
Min.  
Max.  
Unit  
Automatic Power Up RECALL  
24 Power Up RECALL Durationk  
Low Voltage Trigger Level  
tRESTORE  
VSWITCH  
650  
2.7  
μs  
2.4  
V
k: tRESTORE starts from the time VCC rises above VSWITCH  
.
STORE Cycle Inhibit and Automatic Power Up RECALL  
VCC  
3.0 V  
VSWITCH  
t
STORE inhibit  
(24)  
Power Up  
RECALL  
tRESTORE  
Software Mode Selection  
A13 - A0  
E
W
Mode  
I/O  
Power  
Notes  
(hex)  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l, m  
Nonvolatile STORE  
ICC2  
L
H
0E38  
31C7  
03E0  
3C1F  
303F  
0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
l, m  
l, m  
l, m  
l, m  
l, m  
l, m  
Nonvolatile RECALL  
l: The six consecutive addresses must be in order listed. W must be high during all six consecutive cycles. See STORE cycle and RECALL  
cycle tables and diagrams for further details.  
The following six-address sequence is used for testing purposes and should not be used: 0E38, 31C7, 03E0, 3C1F, 303F, 339C.  
m: While there are 15 addresses on the UL631H256, only the lower 14 are used to control software modes.  
March 31, 2006  
STK Control #ML0057  
7
Rev 1.0  
UL631H256  
35  
45  
Symbol  
Alt.  
tAVAV  
tELQZ  
No. Software Controlled STORE/RECALL  
Cyclel, n  
Unit  
Min.  
Max.  
IEC  
tcR  
Min.  
Max.  
25 STORE/RECALL Initiation Time  
26 Chip Enable to Output Inactiveo  
27 STORE Cycle Timep  
35  
45  
ns  
ns  
ms  
ms  
ns  
ns  
ns  
tdis(E)SR  
td(E)S  
600  
10  
600  
10  
tELQXS  
tELQXR  
tAVELN  
tELEHN  
tEHAXN  
28 RECALL Cycle Timeq  
td(E)R  
20  
20  
29 Address Setup to Chip Enabler  
30 Chip Enable Pulse Widthr, s  
31 Chip Disable to Address Changer  
tsu(A)SR  
tw(E)SR  
th(A)SR  
0
25  
0
0
30  
0
n: The software sequence is clocked with E controlled READs  
o: Once the software controlled STORE or RECALL cycle is initiated, it completes automatically, ignoring all inputs.  
p: Note that STORE cycles (but not RECALL) are aborted by VCC < VSWITCH (STORE inhibit).  
q: An automatic RECALL also takes place at power up, starting when VCC exceeds VSWITCH and takes tRESTORE. VCC must not drop below  
VSWITCH once it has been exceeded for the RECALL to function properly.  
r: Noise on the E pin may trigger multiple READ cycles from the same address and abort the address sequence.  
s: If the Chip Enable Pulse Width is less than ta(E) (see Read Cycle) but greater than or equal tw(E)SR, than the data may not be valid at  
the end of the low pulse, however the STORE or RECALL will still be initiated.  
Software Controlled STORE/RECALL Cyclet, u (E = HIGH after STORE initiation)  
tcR  
tcR  
(25)  
(25)  
Ai  
E
ADDRESS 1  
ADDRESS 6  
tw(E)SR  
(30)  
th(A)SR  
(31)  
tsu(A)SR  
(29)  
td(E)S (27)  
VALID  
t
d(E)R (28)  
DQi  
Output  
High Impedance  
VALID  
tdis(E)SR  
(26)  
Software Controlled STORE/RECALL Cycler, s, t, u (E = LOW after STORE initiation)  
tcR  
(25)  
ADDRESS 1  
Ai  
E
ADDRESS 6  
th(A)SR (31)  
tw(E)SR  
(30)  
tsu(A)SR  
(29)  
(29)  
tsu(A)SR  
(31) th(A)SR  
td(E)S  
td(E)R  
(28)  
(27)  
DQi  
Output  
High Impedance  
VALID  
VALID  
tdis(E)SR  
(26)  
t: W must be HIGH when E is LOW during the address sequence in order to initiate a nonvolatile cycle. G may be either HIGH or LOW  
throughout. Addresses 1 through 6 are found in the mode selection table. Address 6 determines wheter the UL631H256 performs a  
STORE or RECALL.  
u: E must be used to clock in the address sequence for the Software controlled STORE and RECALL cycles.  
Rev 1.0  
March 31, 2006  
STK Control #ML0057  
8
UL631H256  
Test Configuration for Functional Check  
3 V  
w
A0  
A1  
VCC  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
1.1 k  
VIH  
VIL  
VO  
v
30 pF  
E
W
G
950  
VSS  
v: In measurement of tdis-times and ten-times the capacitance is 5 pF.  
w: Between VCC and VSS must be connected a high frequency bypass capacitor 0.1 μF to avoid disturbances.  
Capacitancee  
Conditions  
Symbol  
Min.  
Max.  
Unit  
VCC  
VI  
f
= 3.0 V  
= VSS  
= 1MHz  
= 25 °C  
Input Capacitance  
CI  
8
pF  
Output Capacitance  
CO  
7
pF  
Ta  
All pins not under test must be connected with ground by capacitors.  
Ordering Code  
Example  
Type  
UL631H256 S2  
C
45 G1  
Leadfree Option  
blank= Standard Package  
Package  
G1 = Leadfree Green Package x  
S = SOP28 (330mil) Type 1  
S2 = SOP28 (330mil) Type 2  
Access Time  
35 = 35 ns (VCC = 3.0 ... 3.6 V)  
45 = 45 ns (VCC = 2.7 ... 3.6 V)  
Operating Temperature Range  
C = 0 to 70 °C  
K = -40 to 85 °C  
x: on special request  
Device Marking (example)  
ZMD  
Product specification  
Date of manufacture  
UL631H256S2C  
(The first 2 digits indicating  
the year, and the last 2  
digits the calendar week.)  
45  
Z 0425  
G1  
Internal Code  
Leadfree Green Package  
March 31, 2006  
STK Control #ML0057  
9
Rev 1.0  
UL631H256  
Device Operation  
vious nonvolatile data is first performed, followed by a  
program of the nonvolatile elements. Once a STORE  
cycle is initiated, further inputs and outputs are disabled  
until the cycle is completed.  
Because a sequence of addresses is used for STORE  
initiation, it is important that no other READ or WRITE  
accesses intervene in the sequence or the sequence  
will be aborted and no STORE or RECALL will take  
place.  
The UL631H256 has two separate modes of operation:  
SRAM mode and nonvolatile mode. The memory ope-  
rates in SRAM mode as a standard fast static RAM.  
Data is transferred In nonvolatile mode from SRAM to  
EEPROM shadow (the STORE operation) or from  
EEPROM to SRAM (the RECALL operation). In this  
mode SRAM functions are disabled.  
To initiate the STORE cycle the following READ  
sequence must be performed:  
SRAM READ  
The UL631H256 performs a READ cycle whenever E  
and G are LOW while W is HIGH. The address speci-  
fied on pins A0 - A14 determines which of the 32768  
data bytes will be accessed. When the READ is initia-  
ted by an address transition, the outputs will be valid  
after a delay of tcR. If the READ is initiated by E or G,  
the outputs will be valid at ta(E) or at ta(G), whichever is  
later. The data outputs will repeatedly respond to  
address changes within the tcR access time without the  
need for transition on any control input pins, and will  
remain valid until another address change or until E or  
G is brought HIGH or W is brought LOW.  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0FC0 (hex) Initiate STORE  
Cycle  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the chip  
will be disabled. It is important that READ cycles and  
not WRITE cycles be used in the sequence, although it  
is not necessary that G be LOW for the sequence to be  
valid. After the tSTORE cycle time has been fulfilled, the  
SRAM will again be activated for READ and WRITE  
operation.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
LOW. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable until  
either E or W goes HIGH at the end of the cycle. The  
data on pins DQ0 - 7 will be written into the memory if it  
is valid tsu(D) before the end of a W controlled WRITE  
or tsu(D) before the end of an E controlled WRITE.  
It is recommended that G is kept HIGH during the  
entire WRITE cycle to avoid data bus contention on the  
common I/O lines. If G is left LOW, internal circuitry will  
turn off the output buffers tdis(W) after W goes LOW.  
Software Nonvolatile RECALL  
A RECALL cycle of the EEPROM data into the SRAM  
is initiated with a sequence of READ operations in a  
manner similar to the STORE initiation. To initiate the  
RECALL cycle the following sequence of READ opera-  
tions must be performed:  
1.  
2.  
3.  
4.  
5.  
6.  
Read addresses 0E38 (hex) Valid READ  
Read addresses 31C7 (hex) Valid READ  
Read addresses 03E0 (hex) Valid READ  
Read addresses 3C1F (hex) Valid READ  
Read addresses 303F (hex) Valid READ  
Read addresses 0C63 (hex) Initiate RECALL  
Cycle  
Noise Consideration  
The UL631H256 is a high speed memory and therefore  
must have a high frequency bypass capacitor of appro-  
ximately 0.1 μF connected between VCC and VSS using  
leads and traces that are as short as possible. As with  
all high speed CMOS ICs, normal carefull routing of  
power, ground and signals will help prevent noise pro-  
blems.  
Internally, RECALL is a two step procedure. First, the  
SRAM data is cleared and second, the nonvolatile  
information is transferred into the SRAM cells. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled an  
unlimited number of times.  
Software Nonvolatile STORE  
The UL631H256 software controlled STORE cycle is  
initiated by executing sequential READ cycles from six  
specific address locations. By relying on READ cycles  
only, the UL631H256 implements nonvolatile operation  
while remaining compatible with standard 32K x 8  
SRAMs. During the STORE cycle, an erase of the pre-  
Automatic Power Up RECALL  
On power up, once VCC exceeds the sense voltage of  
V
SWITCH, a RECALL cycle is automatically initiated.  
The voltage on the VCC pin must not drop below  
VSWITCH once it has risen above it in order for the  
Rev 1.0  
March 31, 2006  
STK Control #ML0057  
10  
UL631H256  
RECALL,SRAM operation cannot commence until  
RESTORE after VCC exceeds VSWITCH  
Low Average Active Power  
t
.
If the UL631H256 is in a WRITE state at the end of  
power up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10 kΩ resistor should be  
connected between W and VCC.  
The UL631H256 has been designed to draw signifi-  
cantly less power when E is LOW (chip enabled) but  
the cycle time is longer than 45 ns.  
When E is HIGH the chip consumes only standby cur-  
rent.  
Hardware Protection  
The overall average current drawn by the part depends  
on the following items:  
The UL631H256 offers hardware protection against  
inadvertent STORE operation through VCC sense.  
For VCC < VSWITCH the software initiated STORE ope-  
ration will be inhibited.  
1. CMOS or TTL input levels  
2. the time during which the chip is disabled (E HIGH)  
3. the cycle time for accesses (E LOW)  
4. the ratio of READs to WRITEs  
5. the operating temperature  
6. the VCC level  
The information describes the type of component and shall not be considered as assured characteristics. Terms of  
delivery and rights to change design reserved.  
March 31, 2006  
STK Control #ML0057  
11  
Rev 1.0  
UL631H256  
LIFE SUPPORT POLICY  
Simtek products are not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Simtek product could create a situation where personal injury or death may occur.  
Components used in life-support devices or systems must be expressly authorized by Simtek for such purpose.  
LIMITED WARRANTY  
The information in this document has been carefully checked and is believed to be reliable. However, Simtek  
makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any  
loss or damage of whatever nature resulting from the use of, or reliance upon it. The information in this document  
describes the type of component and shall not be considered as assured characteristics.  
Simtek does not guarantee that the use of any information contained herein will not infringe upon the patent, trade-  
mark, copyright, mask work right or other rights of third parties, and no patent or licence is implied hereby. This  
document does not in any way extent Simtek’s warranty on any product beyond that set forth in its standard terms  
and conditions of sale.  
Simtek reserves terms of delivery and reserves the right to make changes in the products or specifications, or both,  
presented in this publication at any time and without notice.  
March 31, 2006  
Change record  
Date/Rev  
Name  
Change  
01.11.2001 Ivonne Steffens  
format revision and release for „Memory CD 2002“  
adding 35 ns type with VCC = 3.0 ... 3.6 V  
Adding „Type 1“ to SOP28 (330mil)  
03.07.2002 Matthias Schniebel  
25.09.2002 Matthias Schniebel  
09.01.2003 Matthias Schniebel  
20.10.2003 Matthias Schniebel  
05.12.2003 Matthias Schniebel  
21.04.2004 Matthias Schniebel  
Removing 55 ns type  
Low Voltage Trigger Level VSWITCH = 2.4 ... 2.7 V (old: 2.5 ... 2.7 V)  
adding K-Type with 35 ns: ICC1 = 47 mA, ICC(SB)1 = 12mA  
adding „Leadfree Green Package“ to ordering information  
adding „Device Marking“  
7.4.2005  
Stefan Günther  
adding RoHS compliance and Pb- free, 106 endurance cycles, 100a  
data retention, S2 package for chippack  
31.3.2006  
1.0  
Troy Meester  
Simtek  
changed to obsolete status  
Assigned Simtek Document Control Number  

相关型号:

UL631H256SC35G1

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SC45

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SC45G1

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SC55

NVRAM (EEPROM Based)
ETC

UL631H256SC55G1

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO28, 0.330 INCH, SOP1-28
SIMTEK

UL631H256SK35

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SK35G1

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SK45

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SK45G1

SimtekLow Voltage SoftStore 32K x 8 nvSRAM
SIMTEK

UL631H256SK55

NVRAM (EEPROM Based)
ETC

UL631H256SK55G1

Non-Volatile SRAM, 32KX8, 55ns, CMOS, PDSO28, 0.330 INCH, SOP1-28
SIMTEK

UL634H256

Low Voltage PowerStore 32K x 8 nvSRAM
SIMTEK