SP3222EHCA-L [SIPEX]

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO20, LEAD FREE, PLASTIC, SSOP-20;
SP3222EHCA-L
型号: SP3222EHCA-L
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO20, LEAD FREE, PLASTIC, SSOP-20

驱动 光电二极管 接口集成电路 驱动器
文件: 总19页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP3222EH/3232EH  
3.3V, 460 Kbps RS-232Transceivers  
FEATURES  
Meets true EIA/TIA-232-F Standards  
from a +3.0V to +5.5V power supply  
Interoperable with RS-232 down to +2.7V  
power source  
1µA Low-Power Shutdown with Receivers  
Active (SP3222EH)  
V
CC  
1
2
3
4
5
6
7
16  
15  
C1+  
V+  
GND  
C1-  
14 T1OUT  
SP3232EH  
C2+  
C2-  
13  
12  
11  
R1IN  
R1OUT  
T1IN  
Enhanced ESD Specifications:  
+15kV Human Body Model  
V-  
+15kV IEC1000-4-2 Air Discharge  
+8kV IEC1000-4-2 Contact Discharge  
460Kbps Minimum Transmission Rate  
Ideal for Handheld, Battery Operated  
Applications  
10  
9
T2OUT  
R2IN  
T2IN  
8
R2OUT  
Now Available in Lead Free Packaging  
DESCRIPTION  
The SP3222EH and the 3232EH are 2 driver/2 receiver RS-232 transceiver solutions  
intended for portable or hand-held applications such as notebook or palmtop computers.  
Their data transmission rate of 460Kbps meeting the demands of high speed RS-232  
applications. Both ICS have a high-efficiency, charge-pump power supply that requires only  
0.1µFcapacitorsfor3.3Voperation. ThechargepumpallowstheSP3222EHandthe3232EH  
series to deliver true RS-232 performance from a single power supply ranging from +3.3V  
to +5.0V. The ESD tolerance of the SP3222EH/3232EH devices exceeds +15kV for both  
Human Body Model and IEC1000-4-2 Air discharge test methods.  
The SP3222EH device has a low-power shutdown mode where the devices' driver outputs  
and charge pumps are disabled. During shutdown, the supply current is less than 1µA.  
SELECTION TABLE  
RS-232  
Drivers  
RS-232  
Receivers Components  
External  
TTL  
3-State  
No. of  
Pins  
MODEL  
Power Supplies  
Shutdown  
+3.0V to +5.5V  
+3.0V to +5.5V  
2
2
2
2
4
4
Yes  
No  
Yes  
No  
18, 20  
16  
SP3222EH  
SP3232EH  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
Input Voltages  
TxIN, EN .....................................................-0.3V to +6.0V  
RxIN.............................................................................±25V  
These are stress ratings only and functional operation of the  
device at these ratings or any other above those indicated in  
the operation sections of the specifications below is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods of time may affect reliability and cause  
permanent damage to the device.  
Output Voltages  
TxOUT.....................................................................±13.2V  
RxOUT..............................................-0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT...............................................................Continuous  
VCC................................................................-0.3V to +6.0V  
V+ (NOTE 1)................................................-0.3V to +7.0V  
V- (NOTE 1)................................................+0.3V to -7.0V  
V+ + |V-| (NOTE 1)...................................................+13V  
Storage Temperature.................................-65°C to +150°C  
Power Dissipation Per Package  
20-pin SSOP (derate 9.25mW/oC above +70oC).......750mW  
18-pin PDIP (derate 15.2mW/oC above +70oC)......1220mW  
18-pin SOIC (derate 15.7mW/oC above +70oC)......1260mW  
20-pin TSSOP (derate 11.1mW/oC above +70oC).....890mW  
16-pin SSOP (derate 9.69mW/oC above +70oC).......775mW  
16-pin PDIP (derate 14.3mW/oC above +70oC)......1150mW  
16-pin Wide SOIC (derate 11.2mW/oC above +70oC)....900mW  
16-pin TSSOP (derate 10.5mW/oC above +70oC).....850mW  
I
CC (DC VCC or GND current).................................+100mA  
Electrostatic Discharge  
HBM ......................................................................15kV  
IEC1000-4-2-AirDischarge....................................15kV  
IEC1000-4-2 Direct Contact....................................8kV  
NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.0V with TAMB = TMIN to TMAX  
PARAMETER  
MIN  
TYP  
MAX UNITS  
CONDITIONS  
DC CHARACTERISTICS  
Supply Current  
0.3  
1.0  
1.0  
10  
mA  
no load, TAMB = +25°C,  
VCC = +3.3V, TxIN = VCC or GND  
Shutdown Supply Current  
µA  
SHDN=GND, TAMB = +25°C,  
VCC=+3.3V, TxIN=VCC or GND  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold LOW  
0.8  
V
V
TxIN, EN, SHDN, Note 2  
Input Logic Threshold HIGH  
2.0  
2.4  
VCC=3.3V, Note 2  
VCC=5.0V, Note 2  
Input Leakage Current  
Output Leakage Current  
Output Voltage LOW  
Output Voltage HIGH  
DRIVER OUTPUTS  
Output Voltage Swing  
±0.01  
±0.05  
±1.0  
±10  
0.4  
µA  
µA  
V
TxIN, EN, SHDN, TAMB = +25°C  
receivers disabled  
IOUT=1.6mA  
VCC-0.6 VCC-0.1  
V
IOUT=-1.0mA  
±5.0  
±5.4  
±35  
V
3kload to ground at all driver outputs,  
TAMB=+25°C  
Output Resistance  
300  
VCC= V+ = V- = 0V, TOUT = ±2V  
Output Short-Circuit Current  
Output Leakage Current  
±60  
±25  
mA  
µA  
VOUT = 0V  
VOUT = ±12V, VCC = 0V or 3.0V+5.5V,  
drivers disabled  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.0V with TAMB = TMIN to TMAX  
.
PARAMETER  
MIN. TYP. MAX. UNITS CONDITIONS  
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
-15  
+15  
V
V
0.6  
0.8  
1.2  
1.5  
V
V
CC=3.3V  
CC=5.0V  
Input Threshold HIGH  
1.5  
1.8  
2.4  
2.4  
V
V
V
CC=3.3V  
CC=5.0V  
Input Hysteresis  
0.3  
5
V
Input Resistance  
3
7
k  
TIMING CHARACTERISTICS  
Maximum Data Rate  
Driver Propagation Delay  
460  
Kbps  
RL=3k, CL=1000pF, one driver switching  
1.0  
1.0  
µs  
µs  
t
t
PHL, RL = 3K, CL = 1000pF  
PLH, RL = 3K, CL = 1000pF  
Receiver Propagation Delay  
0.3  
0.3  
µs  
t
PHL, RxIN to RxOUT, CL=150pF  
tPLH, RxIN to RxOUT, CL=150pF  
Receiver Output Enable Time  
Receiver Output Disable Time  
Driver Skew  
200  
200  
100  
200  
60  
ns  
ns  
500  
ns  
| tPHL - tPLH  
| tPHL - tPLH  
|
|
Receiver Skew  
1000  
ns  
Transition-Region Slew Rate  
V/µs  
V
CC = 3.3V, RL = 3K, TAMB = 25oC,  
measurements taken from -3.0V to +3.0V  
or +3.0V to -3.0V  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
3
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 460Kbps data rates, all drivers  
loaded with 3k, 0.1µF charge pump capacitors, and TAMB = +25°C.  
14  
12  
6
4
2
10  
Vout+  
Vout-  
8
0
0
500  
1000  
1500  
2000  
6
4
2
0
-2  
-4  
-6  
+Slew  
-Slew  
Load Capacitance [pF]  
0
500  
1000  
1500  
2000  
2330  
Load Capacitance [pF]  
Figure 1. Transmitter Output Voltage VS. Load  
Capacitance for the SP3222EH and the SP3232EH  
Figure 2. Slew Rate VS. Load Capacitance for the  
SP3222EH and the SP3232EH  
40  
460Kbps  
35  
120Kbps  
20Kbps  
30  
25  
20  
15  
10  
5
0
0
500 1000 1500 2000 2500 3000  
Load Capacitance (pF)  
Figure 3. Supply Current VS. Load Capacitance when  
Transmitting Data for the SP3222EH and the SP3232EH  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
4
PIN DESCRIPTION  
PIN NUMBER  
SP3222EH  
NAME  
FUNCTION  
SP3232EH  
SSOP/-  
TSSOP  
DIP/SO  
Receiver Enable. Apply logic LOW for normal operation.  
Apply Logic HIGH to disable the receiver outputs (high-Z state).  
EN  
1
1
-
C1+  
V+  
Positive terminal of the voltage doubler charge-pump capacitor.  
+5.5V generated by the charge pump.  
2
3
2
3
1
2
C1-  
C2+  
C2-  
V-  
Negative terminal of the voltage doubler charge-pump capacitor.  
Positive terminal of the inverting charge-pump capacitor.  
Negative terminal of the inverting charge-pump capacitor.  
-5.5V generated by the charge pump.  
4
4
3
5
5
4
6
6
5
7
7
6
T1OUT RS-232 driver output.  
T2OUT RS-232 driver output.  
15  
8
17  
8
14  
7
R1IN  
R2IN  
RS-232 receiver input.  
RS-232 receiver input.  
14  
9
16  
9
13  
8
R1OUT TTL/CMOS receiver output.  
R2OUT TTL/CMOS receiver output.  
13  
10  
12  
11  
16  
17  
15  
10  
13  
12  
18  
19  
12  
9
T1IN  
T2IN  
GND  
VCC  
TTL/CMOS driver input.  
11  
10  
15  
16  
TTL/CMOS driver input.  
Ground.  
+3.0V to +5.5V supply voltage  
Shutdown Control Input. Drive HIGH for normal device operation.  
SHDN Drive LOW to shutdown the drivers (high-Z output) and the  
on-board power supply.  
18  
-
20  
-
-
NC  
No Connect.  
11, 14  
Table 1. Device Pin Description  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
5
EN  
1
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
SHDN  
EN  
1
2
3
4
5
6
7
18  
17  
16  
15  
14  
13  
SHDN  
V
CC  
C1+  
V+  
VCC  
C1+  
V+  
GND  
GND  
C1-  
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
SP3222EH  
C2+  
C2-  
V-  
SP3222EH  
C2+  
C2-  
V-  
R1OUT  
R1OUT  
14  
13  
NC  
12  
11  
10  
T1IN  
T2OUT  
R2IN  
8
9
T1IN  
T2OUT  
R2IN  
8
9
T2IN  
12 T2IN  
NC  
R2OUT  
10  
R2OUT  
11  
DIP/SO  
SSOP/TSSOP  
Figure 4. Pinout Configurations for the SP3222EH  
V
CC  
1
2
3
4
5
6
7
16  
15  
14  
C1+  
V+  
GND  
C1-  
T1OUT  
R1IN  
SP3232EH  
C2+  
C2-  
13  
12  
11  
R1OUT  
T1IN  
V-  
10  
9
T2OUT  
R2IN  
T2IN  
8
R2OUT  
Figure 5. Pinout Configuration for the SP3232EH  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
6
VCC  
VCC  
+
+
+
+
19  
CC  
17  
CC  
0.1µF  
0.1µF  
C5  
C1  
0.1µF  
0.1µF  
C5  
C1  
V
V
2
3
2
3
C1+  
C1+  
V+  
V-  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
0.1µF  
0.1µF  
*C3  
C4  
*C3  
C4  
4
5
4
5
C1-  
C1-  
7
C2+  
7
C2+  
SP3222EH  
DIP/SO  
SP3222EH  
SSOP  
TSSOP  
+
+
C2  
0.1µF  
C2  
0.1µF  
6
6
C2-  
C2-  
T1OUT  
T2OUT  
15  
8
T1OUT  
T2OUT  
12 T1IN  
11 T2IN  
17  
8
13 T1IN  
12 T2IN  
LOGIC  
INPUTS  
RS-232  
OUTPUTS  
LOGIC  
INPUTS  
RS-232  
OUTPUTS  
14  
13  
10  
R1IN  
R1OUT  
16  
15  
10  
R1IN  
R1OUT  
5k  
5kΩ  
5k  
5kΩ  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
9
R2OUT  
R2IN  
9
R2OUT  
1 EN  
18  
1 EN  
20  
SHDN  
SHDN  
GND  
16  
GND  
18  
*can be returned to  
either VCC or GND  
*can be returned to  
either VCC or GND  
Figure 6. SP3222EH Typical Operating Circuits  
V
CC  
+
16  
CC  
0.1µF  
0.1µF  
C5  
C1  
V
2
1
C1+  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
*C3  
C4  
3
4
C1-  
6
C2+  
SP3232EH  
C2  
0.1µF  
5
C2-  
T1OUT  
T2OUT  
14  
11 T1IN  
LOGIC  
RS-232  
7
10  
12  
9
INPUTS  
T2IN  
OUTPUTS  
R1IN 13  
R1OUT  
R2OUT  
5k  
5kΩ  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
8
GND  
15  
*can be returned to  
either VCC or GND  
Figure 7. SP3232EH Typical Operating Circuit  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
7
DESCRIPTION  
The SP3222EH and SP3232EH are 2-driver/  
2-receiver devices ideal for portable or hand-held  
applications. The SP3222EH features a 1µA  
shutdown mode that reduces power consumption  
and extends battery life in portable systems.  
Its receivers remain active in shutdown mode,  
allowing external devices such as modems to be  
monitored using only 1µA supply current.  
The slew rate of the driver output is internally  
limitedtoamaximumof30V/µsinordertomeet  
the EIA standards (EIA RS-232D 2.1.7,  
Paragraph 5). The transition of the loaded output  
from HIGH to LOW also meets the monotonicity  
requirements of the standard.  
Figure8showsaloopbackcircuitusedtotestthe  
RS-232 drivers. Figure 9 shows the test results  
of the loopback circuit with all drivers active at  
120Kbps and RS-232 loads in parallel with  
1000pF capacitors. Figure 10 shows the test  
resultswhereonedriverisactiveat460Kbpsand  
all drivers are loaded with an RS-232 receiver  
in parallel with a 1000pF capacitor.  
The SP3222EH/3232EH transceivers meet the  
EIA/TIA-232 and V.28/V.24 communication  
protocols. They feature Sipex's proprietary  
on-board charge pump circuitry that generates  
2 x VCC for RS-232 voltage levels from a single  
+3.0V to +5.5V power supply. The SP3222EH/  
3232EH drivers operate at a minimum data  
rate of 460Kbps.  
The SP3222EH driver's output stages are  
tri-stated in shutdown mode. When the power is  
off, the SP3222EH devicepermitstheoutputsto  
be driven up to +12V. Because the driver's  
inputs do not have pull-up resistors, unused  
inputs should be connected to VCC or GND.  
THEORY OF OPERATION  
The SP3222EH/3232EH are made up of three  
basiccircuitblocks: 1. Drivers, 2. Receivers, and 3.  
the Sipex proprietary charge pump.  
In the shutdown mode, the supply current is less  
than 1µA, where SHDN = LOW. When the  
SP3222EH device is shut down, the device's  
driver outputs are disabled (tri-stated) and the  
charge pumps are turned off with V+ pulled  
down to VCC and V- pulled to GND. The time  
required to exit shutdown is typically 100µs.  
SHDNisconnectedtoVCC iftheshutdownmode  
is not used. SHDN has no effect on RxOUT or  
RxOUTB. Astheybecomeactive, thetwodriver  
outputs go to opposite RS-232 levels: one driver  
input is HIGH and the other LOW. Note that the  
drivers are enabled only when the magnitude of  
V- exceeds approximately 3V.  
Drivers  
The drivers are inverting level transmitters that  
convert TTL or CMOS logic levels to +5.0V  
EIA/TIA-232 levels inverted relative to the input  
logic levels. Typically, the RS-232 output voltage  
swing is +5.5V with no load and at least +5V  
minimum fully loaded. The driver outputs are  
protectedagainstinfiniteshort-circuitstoground  
without degradation in reliability. Driver outputs  
will meet EIA/TIA-562 levels of +3.7V with  
supply voltages as low as 2.7V.  
The drivers have a minimum data rate of  
460Kbps fully loaded with 3Kin parallel with  
1000pF, ensuring compatibility with PC-to-PC  
communication software.  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
8
V
CC  
+
+
0.1µF  
0.1µF  
C5  
C1  
V
CC  
C1+  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C1-  
SP3222EH  
SP3232EH  
C2+  
+
C2  
0.1µF  
C2-  
TxOUT  
RxIN  
TxIN  
LOGIC  
INPUTS  
RxOUT  
EN  
LOGIC  
OUTPUTS  
5k  
V
CC  
*SHDN  
GND  
1000pF  
* SP3222 only  
Figure 8. SP3222EH/3232EH Driver Loopback Test Circuit  
T1 IN  
T1 IN  
T1 OUT  
R1 OUT  
T1 OUT  
R1 OUT  
Figure 9. Driver Loopback Test Results at 120Kbps  
Figure 10. Driver Loopback Test Results at 460Kbps  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
9
Receivers  
In most circumstances, decoupling the power  
supply can be achieved adequately using a  
0.1µF bypass capacitor at C5 (refer to Figures 6  
and 7). In applications that are sensitive to  
power-supply noise,VCC and ground can be  
decoupled with a capacitor of the same value  
as charge-pump capacitor C1. It is always  
important to physically locate bypass capacitors  
close to the IC.  
The receivers convert EIA/TIA-232 levels to  
TTL or CMOS logic output levels. The  
SP3222EH receivers have an inverting tri-state  
output.Receiver outputs (RxOUT) are tri-stated  
when the enable control EN = HIGH. In the  
shutdown mode, the receivers can be active or  
inactive. EN has no effect on TxOUT. The truth  
table logic of the SP3222EH driver and receiver  
outputs can be found in Table 2.  
The charge pump operates in a discontinuous  
mode using an internal oscillator. If the output  
voltage is less than 5.5V, the charge pump is  
enabled. If the output voltage exceeds 5.5V,  
the charge pump is disabled. An oscillator  
controls the four phases of the voltage shifting.  
A description of each phase follows.  
Since receiver input is usually from a transmis-  
sion line where long cable lengths and system  
interference can degrade the signal and inject  
noise, the inputs have a typical hysteresis margin  
of 300mV. Should an input be left unconnected,  
a 5kpulldown resistor to ground forces the  
output of the receiver HIGH.  
Phase 1: VSS Charge Storage (Figure 12)  
Duringthisphaseoftheclockcycle, thepositive  
side of capacitors C1 and C2 are charged to VCC.  
Cl+ is then switched to GND and the charge in  
C1is transferred to C2. Since C2+ is connected  
to VCC, the voltage potential across capacitor C2  
is now 2 times VCC.  
Charge Pump  
The Sipex patented charge pump (5,306,954)  
uses a four–phase voltage shifting technique to  
attain symmetrical 5.5V power supplies and  
requires four external capacitors. The internal  
powersupplyconsistsofaregulateddualcharge  
pump that provides an output voltage of 5.5V  
regardless of the input voltage (VCC) over the  
+3.0V to +5.5V range.  
Phase 2: VSS Transfer (Figure 13)  
Phase two of the clock connects the negative  
terminal of C2 to the VSS storage capacitor and  
the positive terminal of C2 to GND. This  
transfers a negative generated voltage to C3.  
This generated voltage is regulated to a  
minimum voltage of -5.5V. Simultaneous with  
the transfer of the voltage to C3, the positive side  
of capacitor C1 is switched to VCC and the  
negative side is connected to GND.  
SHDN  
EN  
0
TxOUT  
Tri-state  
Tri-state  
Active  
RxOUT  
Active  
Phase 3: VDD Charge Storage (Figure 15)  
The third phase of the clock is identical to the  
first phase — the charge transferred in C1  
produces –VCC in the negative terminal of C1,  
whichisappliedtothenegativesideofcapacitor  
C2. Since C2+ is at VCC, the voltage potential  
across C2 is 2 times VCC.  
0
0
1
1
1
Tri-state  
Active  
0
1
Active  
Tri-state  
Table 2. Truth Table Logic for Shutdown and Enable  
Control  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
10  
discharge it to an integrated circuit. The  
simulation is performed by using a test model as  
shown in Figure 17. This method will test the  
IC’s capability to withstand an ESD transient  
during normal handling such as in manufacturing  
areas where the ICs tend to be handled  
frequently.  
Phase 4: VDD Transfer (Figure 16)  
The fourth phase of the clock connects the  
negative terminal of C2 to GND, and transfers  
this positive generated voltage across C2 to C4,  
the VDD storage capacitor. This voltage is  
regulated to +5.5V. At this voltage, the internal  
oscillator is disabled. Simultaneous with the  
transfer of the voltage to C4, the positive side of  
capacitor C1 is switched to VCC and the negative  
side is connected to GND, allowing the charge  
pump cycle to repeat. The charge pump cycle  
will continue as long as the operational  
conditions for the internal oscillator are present.  
The IEC-1000-4-2, formerly IEC801-2, is  
used for testing ESD on equipment and  
systems. For system manufacturers, they must  
guarantee a certain amount of ESD protection  
since the system itself is exposed to the outside  
environment and human presence. The premise  
with IEC1000-4-2 is that the system is required  
towithstandanamountofstaticelectricitywhen  
ESD is applied to points and surfaces of the  
equipment that are accessible to personnel  
during normal usage. In many cases, the RS232  
transceiver IC receives most of the ESD current  
when the ESD source is applied to the connector  
pins. ThetestcircuitforIEC1000-4-2is shownon  
Figure 18. There are two methods within  
IEC1000-4-2, theAirDischargemethodandthe  
Contact Discharge method.  
Since both V+ and Vare separately generated  
from VCC; in a no–load condition V+ and Vwill  
besymmetrical. Olderchargepumpapproaches  
that generate Vfrom V+ will show a decrease in  
the magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
The charge pump clock rate typically operates  
at 250kHz. The external capacitors can be as low  
as 0.1µF with a 16V breakdown voltage rating.  
ESD Tolerance  
With the Air Discharge Method, an ESD  
voltage is applied to the equipment under  
test (EUT) through air. This simulates an  
electrically charged person ready to connect a  
cable onto the rear of the system. The high  
energy potential on the person discharges  
through an arcing path to the rear panel of the  
system before he or she touches the system.  
This energy, whether discharged directly or  
through air, is predominantly a function of the  
discharge current rather than the discharge  
voltage. Variables with an air discharge such  
as approach speed of the object carrying the  
ESD potential to the system and humidity will  
tendtochangethedischargecurrent. Forexample,  
the rise time of the discharge current varies  
with the approach speed.  
The SP3222EH/3232EH series incorporates  
ruggedized ESD cells on all driver output  
and receiver input pins. The improved ESD  
tolerance is at least ±15kV without damage or  
latch-up.  
Three methods of ESD testing are performed:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the generally  
accepted ESD testing method for semiconduc-  
tors. ThismethodisalsospecifiedinMIL-STD-  
883,Method3015.7forESDtesting.Thepremise  
of this ESD test is to simulate the human body’s  
potential to store electro-static energy and  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
11  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 12. Charge Pump — Phase 1  
V
= +5V  
CC  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–10V  
3
Figure 13. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
GND  
1
2
GND  
b) C2-  
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 5.48V  
Figure 14. Charge Pump Waveforms  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 15. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+
+10V  
+
4
+
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
C
C
2
1
V
C
3
Figure 16. Charge Pump — Phase 4  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
12  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 17. ESD Test Circuit for Human Body Model  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
devised to reduce the unpredictability of the  
ESD arc. The discharge current rise time is  
constant since the energy is directly transferred  
without the air-gap arc. In situations such as  
hand held systems, the ESD charge can be  
directly discharged to the equipment from a  
person already holding the equipment. The  
current is transferred on to the keypad or the  
serial port of the equipment directly and then  
travels through the PCB and finally to the IC.  
The circuit models in Figures 17 and 18  
represent the typical ESD testing circuits used  
forallthreemethods. TheCS isinitiallycharged  
with the DC power supply when the first  
switch (SW1) is on. Now that the capacitor is  
charged, the second switch (SW2) is on while  
SW1 switches off. The voltage stored in the  
capacitor is then applied through RS, the current  
limiting resistor, onto the device under test  
(DUT). In ESD tests, the SW2 switch is pulsed  
so that the device under test receives a duration  
of voltage.  
Contact-Discharge Module  
Contact-Discharge Module  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 18. ESD Test Circuit for IEC1000-4-2  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
13  
For the Human Body Model, the current  
limiting resistor (RS) and the source capacitor  
(CS) are 1.5kan 100pF, respectively. For  
IEC-1000-4-2, the current limiting resistor (RS)  
andthesourcecapacitor(CS)are330an150pF,  
respectively.  
30A  
15A  
0A  
The higher CS value and lower RS value in the  
IEC1000-4-2 model are more stringent than the  
Human Body Model. The larger storage  
capacitor injects a higher voltage to the test  
point when SW2 is switched on. The lower  
current limiting resistor increases the current  
t=0ns  
t=30ns  
t  
charge onto the test point.  
Figure 19. ESD Test Waveform for IEC1000-4-2  
Device Pin  
Tested  
Human Body  
Model  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 3. Transceiver ESD Tolerance Levels  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
14  
PACKAGE: PLASTIC SHRINK  
SMALL OUTLINE  
(SSOP)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
24–PIN  
20–PIN  
28–PIN  
0.068/0.078  
(1.73/1.99)  
0.068/0.078  
(1.73/1.99)  
A
A1  
B
D
E
0.068/0.078  
(1.73/1.99)  
0.068/0.078  
(1.73/1.99)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.239/0.249  
(6.07/6.33)  
0.317/0.328  
(8.07/8.33)  
0.278/0.289  
(7.07/7.33)  
0.397/0.407  
(10.07/10.33)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
0.0256 BSC  
(0.65 BSC)  
0.0256 BSC  
(0.65 BSC)  
e
0.0256 BSC  
(0.65 BSC)  
0.0256 BSC  
(0.65 BSC)  
0.301/0.311  
(7.65/7.90)  
0.301/0.311  
(7.65/7.90)  
H
L
0.301/0.311  
(7.65/7.90)  
0.301/0.311  
(7.65/7.90)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
Ø
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
15  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
0.115/0.195  
(2.921/4.953)  
0.115/0.195  
(2.921/4.953)  
A2  
0.014/0.022  
(0.356/0.559)  
0.014/0.022  
(0.356/0.559)  
B
0.045/0.070  
0.045/0.070  
B1  
C
(1.143/1.778)  
(1.143/1.778)  
0.008/0.014  
(0.203/0.356)  
0.008/0.014  
(0.203/0.356)  
0.780/0.800  
0.880/0.920  
D
(19.812/20.320) (22.352/23.368)  
0.300/0.325  
(7.620/8.255)  
0.300/0.325  
(7.620/8.255)  
E
0.240/0.280  
0.240/0.280  
E1  
L
(6.096/7.112)  
(6.096/7.112)  
0.115/0.150  
(2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
Ø
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
16  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
A
A1  
B
D
E
0.090/0.104  
(2.29/2.649)  
0.090/0.104  
(2.29/2.649))  
0.004/0.012  
(0.102/0.300) (0.102/0.300)  
0.004/0.012  
0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.013/0.020  
0.398/0.413  
(10.10/10.49) (11.35/11.74)  
0.447/0.463  
0.291/0.299 0.291/0.299  
(7.402/7.600) (7.402/7.600)  
e
0.050 BSC  
(1.270 BSC)  
0.050 BSC  
(1.270 BSC)  
H
L
0.394/0.419  
0.394/0.419  
(10.00/10.64) (10.00/10.64)  
0.016/0.050  
(0.406/1.270) (0.406/1.270)  
0.016/0.050  
Ø
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
17  
PACKAGE: PLASTIC THIN SMALL  
OUTLINE  
(TSSOP)  
E2  
E
D
A
Ø
A1  
L
e
B
DIMENSIONS  
in inches (mm)  
16–PIN  
20–PIN  
Minimum/Maximum  
- /0.043  
(- /1.10)  
- /0.043  
(- /1.10)  
A
0.002/0.006  
(0.05/0.15)  
0.002/0.006  
(0.05/0.15)  
A1  
B
0.007/0.012  
(0.19/0.30)  
0.007/0.012  
(0.19/0.30)  
0.193/0.201  
(4.90/5.10)  
0.252/0.260  
(6.40/6.60)  
D
0.169/0.177  
(4.30/4.50)  
0.169/0.177  
(4.30/4.50)  
E
0.026 BSC  
(0.65 BSC)  
0.026 BSC  
(0.65 BSC)  
e
0.126 BSC  
(3.20 BSC)  
0.126 BSC  
(3.20 BSC)  
E2  
L
0.020/0.030  
(0.50/0.75)  
0.020/0.030  
(0.50/0.75)  
0°/8°  
0°/8°  
Ø
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
18  
ORDERING INFORMATION  
Package Type  
Part Number  
Temperature Range  
SP3222EHCA .......................................... 0˚C to +70˚C .......................................... 20-Pin SSOP  
SP3222EHCA/TR .................................... 0˚C to +70˚C .......................................... 20-Pin SSOP  
SP3222EHEA ......................................... -40˚C to +85˚C ........................................ 20-Pin SSOP  
SP3222EHEA/TR.................................... -40˚C to +85˚C ........................................ 20-Pin SSOP  
SP3222EHCP .......................................... 0˚C to +70˚C ............................................ 18-Pin PDIP  
SP3222EHEP ......................................... -40˚C to +85˚C .......................................... 18-Pin PDIP  
SP3222EHCT .......................................... 0˚C to +70˚C ........................................ 18-Pin WSOIC  
SP3222EHCT/TR ..................................... 0˚C to +70˚C ........................................ 18-Pin WSOIC  
SP3222EHET.......................................... -40˚C to +85˚C ...................................... 18-Pin WSOIC  
SP3222EHET/TR .................................... -40˚C to +85˚C ...................................... 18-Pin WSOIC  
SP3222EHCY .......................................... 0˚C to +70˚C ........................................ 20-Pin TSSOP  
SP3222EHCY/TR .................................... 0˚C to +70˚C ........................................ 20-Pin TSSOP  
SP3222EHEY ......................................... -40˚C to +85˚C ...................................... 20-Pin TSSOP  
SP3222EHEY/TR.................................... -40˚C to +85˚C ...................................... 20-Pin TSSOP  
SP3232EHCA .......................................... 0˚C to +70˚C .......................................... 16-Pin SSOP  
SP3232EHCA/TR .................................... 0˚C to +70˚C .......................................... 16-Pin SSOP  
SP3232EHEA ......................................... -40˚C to +85˚C ........................................ 16-Pin SSOP  
SP3232EHEA/TR.................................... -40˚C to +85˚C ........................................ 16-Pin SSOP  
SP3232EHCP .......................................... 0˚C to +70˚C ............................................ 16-Pin PDIP  
SP3232EHEP ......................................... -40˚C to +85˚C .......................................... 16-Pin PDIP  
SP3232EHCT .......................................... 0˚C to +70˚C ........................................ 16-Pin WSOIC  
SP3232EHCT/TR ..................................... 0˚C to +70˚C ........................................ 16-Pin WSOIC  
SP3232EHET.......................................... -40˚C to +85˚C ...................................... 16-Pin WSOIC  
SP3232EHET/TR .................................... -40˚C to +85˚C ...................................... 16-Pin WSOIC  
SP3232EHCY .......................................... 0˚C to +70˚C ........................................ 16-Pin TSSOP  
SP3232EHCY/TR .................................... 0˚C to +70˚C ........................................ 16-Pin TSSOP  
SP3232EHEY ......................................... -40˚C to +85˚C ...................................... 16-Pin TSSOP  
SP3232EHEY/TR.................................... -40˚C to +85˚C ...................................... 16-Pin TSSOP  
Available in lead free packaging. To order add "-L" suffix to part number.  
Example: SP3232EHEY/TR = standard; SP3232EHEY-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 1,500 for WSOIC, SSOP and TSSOP.  
Corporation  
ANALOG EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
Date: 06/22/04  
SP3222EH/3232EH 3.3V, 460 Kbps RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
19  

相关型号:

SP3222EHCA-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO20, LEAD FREE, PLASTIC, SSOP-20
SIPEX

SP3222EHCA/TR

3.3V, 460 Kbps RS-232 Transceivers
SIPEX

SP3222EHCP

3.3V, 460 Kbps RS-232 Transceivers
SIPEX

SP3222EHCP-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDIP18, PLASTIC, DIP-18
SIPEX

SP3222EHCT

3.3V, 460 Kbps RS-232 Transceivers
SIPEX

SP3222EHCT-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO18, LEAD FREE, PLASTIC, WSOIC-18
SIPEX

SP3222EHCT/TR

3.3V, 460 Kbps RS-232 Transceivers
SIPEX

SP3222EHCY

3.3V, 460 Kbps RS-232 Transceivers
SIPEX

SP3222EHCY-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO20, LEAD FREE, PLASTIC, TSSOP-20
SIPEX

SP3222EHCY-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO20, LEAD FREE, PLASTIC, TSSOP-20
SIPEX

SP3222EHCY/TR

3.3V, 460 Kbps RS-232 Transceivers
SIPEX

SP3222EHEA

3.3V, 460 Kbps RS-232 Transceivers
SIPEX