SP3222EUCA-L/TR [SIPEX]

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, PLASTIC, SSOP-20;
SP3222EUCA-L/TR
型号: SP3222EUCA-L/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, PLASTIC, SSOP-20

光电二极管
文件: 总20页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP3222EU/3232EU  
3.3V, 1000 Kbps RS-232Transceivers  
FEATURES  
EN  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
SHDN  
Meets true EIA/TIA-232-F Standards  
from a +3.0V to +5.5V power supply  
Interoperable with EIA/TIA - 232 and  
adheres to EIA/TIA - 562 down to a +2.7V  
power source  
VCC  
C1+  
V+  
GND  
C1-  
T1OUT  
R1IN  
SP3222EU  
C2+  
C2-  
V-  
1µA Low-Power Shutdown with Receivers  
Active (SP3222EU)  
R1OUT  
12  
11  
10  
T1IN  
Enhanced ESD Specifications:  
±15kV Human Body Model  
T2OUT  
R2IN  
8
9
T2IN  
R2OUT  
±15kV IEC1000-4-2 Air Discharge  
±8kV IEC1000-4-2 Contact Discharge  
1000 kbps Minimum Transmission Rate  
Ideal for Handheld, Battery Operated  
Applications  
DIP/SO  
Now Available in Lead Free Packaging  
DESCRIPTION  
The SP3222EU and the SP3232EU are 2 driver, 2 receiver RS-232 transceiver solutions  
intended for portable or hand-held applications such as notebook or palmtop computers.  
Their data transmission rate of 1000 kbps meets the demands of high speed RS-232  
applications. Both ICs have a high-efficiency, charge-pump power supply that requires only  
0.1µFcapacitorsin3.3Voperation. ThischargepumpallowstheSP3222EUandthe3232EU  
to deliver true RS-232 performance from a single power supply ranging from +3.0V to +5.5V.  
The ESD tolerance of the SP3222EU/3232EU devices are over ±15kV for both Human Body  
Model and IEC1000-4-2 Air discharge test methods.  
The SP3222EU device has a low-power shutdown mode where the devices' driver outputs  
and charge pumps are disabled. During shutdown, the supply current falls to less than 1uA.  
SELECTION TABLE  
RS-232  
Drivers  
RS-232  
External  
TTL  
No. of  
Pins  
MODEL  
Power Supplies  
Shutdown  
Receivers Components  
3-State  
+3.0V to +5.5V  
+3.0V to +5.5V  
2
2
2
2
4
4
Yes  
No  
Yes  
No  
18, 20  
16  
SP3222EU  
SP3232EU  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional  
operation of the device at these ratings or any other  
above those indicated in the operation sections of  
the specifications below is not implied. Exposure to  
absolute maximum rating conditions for extended  
periods of time may affect reliability and cause  
permanent damage to the device.  
Output Voltages  
TxOUT.......................................................±13.2V  
RxOUT............. ..................-0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT.................................................Continuous  
Storage Temperature.................-65°C to +150°C  
Power Dissipation Per Package  
VCC ...................................................... -0.3V to +6.0V  
V+ (NOTE 1) ...................................... -0.3V to +7.0V  
V- (NOTE 1) ....................................... +0.3V to -7.0V  
V+ + |V-| (NOTE 1)........................................... +13V  
20-pin SSOP (derate 9.25mW/oC above +70oC) ........ 750mW  
18-pin PDIP (derate 15.2mW/oC above +70oC) ....... 1220mW  
18-pin SOIC (derate 15.7mW/oC above +70oC) ....... 1260mW  
20-pin TSSOP (derate 11.1mW/oC above +70oC)...... 890mW  
16-pin SSOP (derate 9.69mW/oC above +70oC) ........ 775mW  
16-pin PDIP (derate 14.3mW/oC above +70oC) ....... 1150mW  
16-pin Wide SOIC (derate 11.2mW/oC above +70oC) .... 900mW  
16-pin TSSOP (derate 10.5mW/oC above +70oC)...... 850mW  
16-pin nSOIC (derate 13.57mW/°C above +70°C) ...... 1086mW  
ICC (DC VCC or GND current)......................... ±100mA  
Input Voltages  
TxIN, EN SHDN ...................... -0.3V to + VCC +0.3V  
RxIN .................................................................. ±25V  
NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX, C1 to  
C4=0.1µF  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
DC CHARACTERISTICS  
Supply Current  
0.3  
1.0  
1.0  
10  
mA no load, TAMB = +25°C, VCC = 3.3V,  
TxIN = GND or VCC  
Shutdown Supply Current  
µA  
SHDN = GND,TAMB = +25°C,  
VCC= +3.3V, TxIN = GND or VCC  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold LOW  
Input Logic Threshold HIGH  
GND  
0.8  
V
V
TxIN, EN, SHDN, Note 2  
2.0  
VCC = 3.3V, Note2  
2.4  
VCC  
VCC = 5.0V, Note 2  
Input Leakage Current  
±0.01  
±0.05  
±1.0  
µA  
TxIN, EN, SHDN, TAMB = +25°C,  
VIN= 0V to VCC  
Output Leakage Current  
Output Voltage LOW  
Output Voltage HIGH  
DRIVER OUTPUTS  
Output Voltage Swing  
±10  
0.4  
µA  
V
V
receivers disabled, VOUT = 0V to VCC  
IOUT = 1.6mA  
IOUT = -1.0mA  
VCC-0.6  
VCC-0.1  
±5.0  
±5.4  
V
3kload to ground at all driver  
outputs,TAMB = +25°C  
Output Resistance  
300  
Ωꢀ VCC = V+ = V- = 0V, TOUT = +2V  
Output Short-Circuit Current  
Output Leakage Current  
±35  
±60  
±25  
mA  
µA  
VOUT = 0V  
VOUT = +12V,VCC= 0V to 5.5V,drivers  
disabled  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX , C1 to  
C4=0.1µF. Typical Values apply at VCC = +3.3V or +5.5V and TAMB = 25oC.  
PARAMETER  
MIN.  
TYP. MAX. UNITS  
CONDITIONS  
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
-25  
+25  
V
0.6  
1.2  
1.5  
V
VCC=3.3V  
VCC=5.0V  
0.8  
V
Input Threshold HIGH  
1.5  
2.4  
2.4  
V
V
VCC=3.3V  
1.8  
VCC=5.0V  
Input Hysteresis  
Input Resistance  
0.3  
5
V
kΩ  
3
7
TIMING CHARACTERISTICS  
Maximum Data Rate  
1000  
kbps  
RL=3k, CL=250pF, one driver  
switching  
Receiver Propagation Delay  
0.15  
0.15  
µs  
tPHL, RxIN to RxOUT, CL=150pF  
tPLH, RxIN to RxOUT, CL=150pF  
Receiver Output Enable Time  
Receiver Output Disable Time  
Driver Skew  
200  
200  
100  
50  
ns  
ns  
ns  
| tPHL - tPLH |, TAMB = 25°C  
| tPHL - tPLH |  
Receiver Skew  
ns  
Transition-Region Slew Rate  
90  
V/µs  
VCC = 3.3V, RL = 3K, TAMB = 25°C,  
measurements taken from -3.0V to  
+3.0V or +3.0V to -3.0V  
NOTE 2: Driver input hysteresis is typically 250mV.  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
3
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 1000kbps data rates, all drivers  
loaded with 3k, 0.1µF charge pump capacitors, and TAMB = +25°C.  
6
4
120  
100  
T1 at 1Mbps  
T2 at 62.5Kbps  
T1 at 1Mbps  
T2 at 62.5Kbps  
All TX loaded 3K // CLoad  
2
8
0
60  
0
-2  
-4  
-6  
40  
20  
0
0
250  
500  
1000  
1500  
0
250  
500  
1000  
1500  
2000  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 1. Transmitter Output Voltage vs Load  
Capacitance for the SP3222EU and the SP3232EU  
Figure 2. Slew Rate vs Load Capacitance for the  
SP3222EU and the SP3232EU  
35  
30  
20  
15  
20  
15  
T1 at Mbps  
T2 at 62.5Kbps  
10  
5
T1 at 1Mbps  
T2 at 62.5Kbps  
10  
5
0
0
0
250  
500  
1000  
1500  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (V)  
Figure 4. Supply Current vs Supply Voltage for the  
SP3222EU and the SP3232EU  
Figure 3. Supply Current vs Load Capacitance when  
Transmitting Data for the SP3222EU and the SP3232EU  
6
4
200  
150  
100  
2
T1 at 1Mbps  
0
-2  
-4  
-6  
T2 at 62.5Kbps  
T1 at 500Kbps  
50  
T2 at 31.2Kbps  
All TX loaded 3K // CLoad  
0
0
250  
500  
1000  
1500  
2000  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (V)  
Figure 5. Transmitter Output Voltage vs Supply Voltage  
for the SP3222EU and the SP3232EU  
Figure 6. Transmitter Skew vs Load Capacitance for the  
SP3222EU and the SP3232EU  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
4
PIN NUMBER  
SP3222EU  
NAME  
FUNCTION  
SP3232EU  
SSOP  
DIP/SO  
TSSOP  
Receiver Enable. Apply logic LOW for normal operation.  
EN  
1
1
-
Apply logic HIGH to disable the receiver outputs (high-Z state).  
C1+  
V+  
Positive terminal of the voltage doubler charge-pump capacitor.  
+5.5V generated by the charge pump.  
2
3
2
3
1
2
C1-  
C2+  
C2-  
V-  
Negative terminal of the voltage doubler charge-pump capacitor.  
Positive terminal of the inverting charge-pump capacitor.  
Negative terminal of the inverting charge-pump capacitor.  
-5.5V generated by the charge pump.  
4
4
3
5
5
4
6
6
5
7
7
6
T1OUT RS-232 driver output.  
T2OUT RS-232 driver output.  
15  
8
17  
8
14  
7
R1IN  
R2IN  
RS-232 receiver input.  
RS-232 receiver input.  
14  
9
16  
9
13  
8
R1OUT TTL/CMOS reciever output.  
R2OUT TTL/CMOS reciever output.  
13  
10  
12  
11  
16  
17  
15  
10  
13  
12  
18  
19  
12  
9
T1IN  
T2IN  
GND  
VCC  
TTL/CMOS driver input.  
11  
10  
15  
16  
TTL/CMOS driver input.  
Ground.  
+3.0V to +5.5V supply voltage  
Shutdown Control Input. Drive HIGH for normal device operation.  
SHDN Drive LOW to shutdown the drivers (high-Z output) and the on-  
board power supply.  
18  
-
20  
-
-
N.C.  
No Connect.  
11, 14  
Table 1. Device Pin Description  
Date: 04/25/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
5
EN  
1
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
SHDN  
EN  
1
2
3
4
5
6
7
18  
17  
16  
15  
14  
13  
SHDN  
VCC  
C1+  
V+  
VCC  
C1+  
V+  
GND  
GND  
C1-  
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
SP3222EU  
C2+  
C2-  
V-  
SP3222EU  
C2+  
C2-  
V-  
R1OUT  
R1OUT  
14  
13  
N.C.  
12  
11  
10  
T1IN  
T2OUT  
R2IN  
8
9
T1IN  
T2OUT  
R2IN  
8
9
T2IN  
12 T2IN  
N.C.  
R2OUT  
10  
R2OUT  
11  
DIP/SO  
SSOP/TSSOP  
Figure 7. Pinout Configurations for the SP3222EU  
V
16  
CC  
1
2
3
4
5
6
7
C1+  
V+  
GND  
15  
14  
13  
12  
11  
C1-  
T1OUT  
R1IN  
SP3232EU  
C2+  
C2-  
R1OUT  
T1IN  
V-  
10  
9
T2OUT  
R2IN  
T2IN  
8
R2OUT  
Figure 8. Pinout Configuration for the SP3232EU  
Date: 04/25/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
6
VCC  
V
CC  
+
+
19  
+
+
0.1µF  
0.1µF  
C5  
C1  
17  
V
CC  
C5  
C1  
0.1µF  
0.1µF  
V
CC  
2
3
C1+  
2
V+  
V-  
3
C1+  
+
+
V+  
V-  
+
+
0.1µF  
0.1µF  
*C3  
C4  
0.1µF  
0.1µF  
*C3  
C4  
4
5
C1-  
4
5
C1-  
C2+  
7
SP3222EU  
C2+  
7
SP3222EU  
DIP/SO  
+
SSOP  
+
C2  
0.1µF  
C2  
0.1µF  
6
TSSOP  
C2-  
6
C2-  
T1OUT  
T2OUT  
17  
8
13 T1IN  
T1OUT  
T2OUT  
15  
8
12 T1IN  
LOGIC  
RS-232  
LOGIC  
RS-232  
12  
15  
10  
INPUTS  
T2IN  
OUTPUTS  
11  
13  
10  
INPUTS  
T2IN  
OUTPUTS  
16  
R1IN  
R1OUT  
R2OUT  
14  
R1IN  
R1OUT  
R2OUT  
5k  
RS-232  
INPUTS  
LOGIC  
5k  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
OUTPUTS  
R2IN  
9
R2IN  
9
5kΩ  
5kΩ  
1 EN  
20  
1 EN  
18  
SHDN  
SHDN  
GND  
18  
GND  
16  
*can be returned to  
either VCC or GND  
*can be returned to  
either VCC or GND  
Figure 9. SP3222EU Typical Operating Circuits  
V
CC  
+
16  
0.1µF  
0.1µF  
C5  
C1  
V
CC  
2
1
C1+  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
*C3  
C4  
3
4
C1-  
6
C2+  
SP3232EU  
C2  
0.1µF  
5
C2-  
T1OUT  
T2OUT  
14  
11 T1IN  
LOGIC  
RS-232  
10  
12  
9
7
INPUTS  
T2IN  
OUTPUTS  
R1IN 13  
R1OUT  
R2OUT  
5k  
5kΩ  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
8
GND  
15  
*can be returned to  
either VCC or GND  
Figure 10. SP3232EU Typical Operating Circuit  
Date: 04/25/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
7
DESCRIPTION  
Figure 11 shows a loopback test circuit used  
to the RS-232 drivers. Figure 12 shows the  
test results of the loopback circuit with all  
drivers active at 250kbps with RS-232 loads in  
parallel with 1000pF capacitors. Figure 13  
shows the test results where one driver was  
active at 1000kbps and all drivers loaded with  
an RS-232 receiver in parallel with a 250pF  
capacitor.  
The SP3222EU and SP3232EU are 2 driver/  
2receiver devices ideal for portable or hand-  
held applications. The SP3222EU features a  
1µA shutdown mode that reduces power  
consumption and extends battery life in  
portable systems. Its receivers remain active  
in shutdown mode, allowing external devices  
such as modems to be monitored using only 1  
µA supply current.  
The SP3222EU driver's output stages are  
tristated in shutdown mode. When the power  
is off, the SP3222EU device permits the  
outputs to be driven up to ±12V. Because the  
driver's inputs do not have pull-up resistors,  
unused inputs should be connected to VCC or  
GND.  
The SP3222EU/3232EU transceivers meet the  
EIA/TIA-232 and V.28/V.24 communication  
protocols They feature Sipex's proprietary on-  
board charge pump circuitry that generates 2 x  
VCC for RS-232 voltage levels from a single  
+3.0V to +5.5V power supply. The  
SP3222EU/3232EU drivers operate at a  
minimum data rate of 1000kbps.  
In the shutdown mode, the supply current is  
less than 1µA, where SHDN = LOW. When  
the SP3222EU device is shut down, the  
device's driver outputs are disabled (tri-stated)  
and the charge pumps are turned off with V+  
pulled down to VCC and V- pulled to GND.  
The time required to exit shutdown is typically  
100µs. Connect SHDN to VCC if the shutdown  
mode is not used.  
THEORY OF OPERATION  
The SP3222EU/3232EU series are made up of  
three basic circuit blocks: 1. Drivers, 2.  
Receivers, and 3. the Sipex proprietary  
charge pump.  
Drivers  
Receivers  
The drivers are inverting level transmitters that  
convert TTL or CMOS logic levels to ±5.0V  
EIA/TIA-232 levels inverted relative to the  
input logic levels. Typically, the RS-232  
output voltage swing is ±5.5V with no load  
and at least ±5V minimum fully loaded. The  
driver outputs are protected against infinite  
short-circuits to ground without degradation in  
reliability. Driver outputs will meet EIA/TIA-  
562 levels of ±3.7V with supply voltages as  
low as 2.7V.  
The receivers convert EIA/TIA-232 levels to  
TTL or CMOS logic output levels. The  
SP3222EU receivers have an inverting tri-state  
output. Receiver outputs (RxOUT) are tri-  
stated when the enable control EN = HIGH.  
In the shutdown mode, the receivers can be  
active or inactive. EN has no effect on  
TxOUT. The truth table logic of the  
SP3222EU driver and receiver outputs can be  
found in Table 2.  
The drivers have a minimum data rate of  
1000kbps fully loaded with 3Kin  
parallel with 250pF, ensuring compatibility  
with PC-to-PC communication software.  
Date: 04/25/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
8
VCC  
+
+
0.1µF  
0.1µF  
C5  
C1  
V
CC  
C1+  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C1-  
SP3222EU  
SP3232EU  
C2+  
+
C2  
0.1µF  
C2-  
TxOUT  
TxIN  
LOGIC  
INPUTS  
RxIN  
RxOUT  
EN  
LOGIC  
OUTPUTS  
5k  
*SHDN  
VCC  
GND  
250pF or 1000pF  
* SP3222EB only  
Figure 11. SP3222EU/3232EU Driver Loopback Test Circuit  
Figure 12. Driver Loopback Test All Drivers at 250kbps  
Figure 13. Driver Loopback Test One Driver 1Mbps  
Date: 04/25/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
9
Since receiver input is usually from a trans-  
mission line where long cable lengths and  
system interference can degrade the signal and  
inject noise, the inputs have a typical hyster-  
esis margin of 300mV. Should an input be left  
unconnected, a 5kpulldown resistor to  
ground will commit the output of the receiver  
to a HIGH state.  
output voltages are less than a magnitude of  
5.5V, the charge pumps are enabled. If the  
output voltage exceed a magnitude of 5.5V,  
the charge pumps are disabled. This oscillator  
controls the four phases of the voltage  
shifting. A description of each phase follows.  
Phase 1  
— VSS charge storage — During this phase of  
the clock cycle, the positive side of capacitors  
C1 and C2 are initially charged to VCC. Cl+ is  
then switched to GND and the charge in C1is  
Charge Pump  
The charge pump is a Sipex–patented design  
(5,306,954) and uses a unique approach  
compared to older less–efficient designs. The  
charge pump still requires four external  
capacitors, but uses a four–phase voltage  
shifting technique to attain symmetrical 5.5V  
power supplies. The internal power supply  
consists of a regulated dual charge pump that  
provides output voltages 5.5V regardless of  
the input voltage (VCC) over the +3.0V to  
+5.5V range.  
transferred to C2 . Since C2+ is connected to  
VCC, the voltage potential across capacitor C2  
is now 2 times VCC.  
Phase 2  
— VSS transfer — Phase two of the clock  
connects the negative terminal of C2 to the VSS  
storage capacitor and the positive terminal of  
C2 to GND. This transfers a negative gener-  
ated voltage to C3. This generated voltage is  
regulated to a minimum voltage of -5.5V.  
Simultaneous with the transfer of the voltage  
to C3, the positive side of capacitor C1 is  
switched to VCC and the negative side is  
connected to GND.  
In most circumstances, decoupling the power  
supply can be achieved adequately using a  
0.1µF bypass capacitor at C5 (refer to Figures  
9 and 10). In applications that are sensitive to  
power-supply noise, decouple VCC to ground  
with a capacitor of the same value as charge-  
pump capacitor C1. Physically connect  
bypass capacitors as close to the IC as  
possible.  
Phase 3  
— VDD charge storage — The third phase of  
the clock is identical to the first phase — the  
charge transferred in C1 produces –VCC in the  
negative terminal of C1, which is applied to  
+
The charge pumps operate in a discontinuous  
mode using an internal oscillator. If the  
the negative side of capacitor C2. Since C2 is  
at VCC, the voltage potential across C2 is 2  
times VCC.  
Phase 4  
SHDN  
EN  
0
TxOUT  
Tri-state  
Tri-state  
Active  
RxOUT  
Active  
— VDD transfer — The fourth phase of the  
clock connects the negative terminal of C2 to  
GND, and transfers this positive generated  
voltage across C2 to C4, the VDD storage  
capacitor. This voltage is regulated to +5.5V.  
At this voltage, the internal oscillator is  
disabled. Simultaneous with the transfer of  
the voltage to C4, the positive side of capaci-  
tor C1 is switched to VCC and the negative side  
0
0
1
1
1
Tri-state  
Active  
0
1
Active  
Tri-state  
Table 2. SP3222EU Truth Table Logic for Shutdown  
and Enable Control  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
10  
is connected to GND, allowing the charge  
pump cycle to begin again. The charge pump  
cycle will continue as long as the operational  
conditions for the internal oscillator are  
present.  
manufacturing areas where the ICs tend to be  
handled  
frequently.  
The IEC-1000-4-2, formerly IEC801-2, is  
generally used for testing ESD on equipment  
and systems. For system manufacturers, they  
must guarantee a certain amount of ESD  
protection since the system itself is exposed to  
the outside environment and human presence.  
The premise with IEC1000-4-2 is that the  
system is required to withstand an amount of  
static electricity when ESD is applied to  
points and surfaces of the equipment that are  
accessible to personnel during normal usage.  
The transceiver IC receives most of the ESD  
current when the ESD source is applied to the  
connector pins. The test circuit for IEC1000-4-2  
is shown on Figure 21. There are two  
methods within IEC1000-4-2, the Air Dis-  
charge method and the Contact Discharge  
method.  
Since both V+ and Vare separately generated  
from VCC; in a no–load condition V+ and V–  
will be symmetrical. Older charge pump  
approaches that generate Vfrom V+ will  
show a decrease in the magnitude of V–  
compared to V+ due to the inherent inefficien-  
cies in the design.  
The clock rate for the charge pump typically  
operates at 250kHz. The external capacitors  
can be as low as 0.1µF with a 16V breakdown  
voltage rating.  
ESD Tolerance  
The SP3222EU/3232EU series incorporates  
ruggedized ESD cells on all driver output and  
receiver input pins. The ESD structure is  
improved over our previous family for more  
rugged applications and environments  
sensitive to electrostatic discharges and  
associated  
With the Air Discharge Method, an ESD  
voltage is applied to the equipment under  
test (EUT) through air. This simulates an  
electrically charged person ready to connect a  
cable onto the rear of the system only to find  
an unpleasant zap just before the person  
touches the back panel. The high energy  
potential on the person discharges through  
an arcing path to the rear panel of the system  
before he or she even touches the system.  
This energy, whether discharged directly or  
through air, is predominantly a function of the  
discharge current rather than the discharge  
voltage.  
transients. The improved ESD tolerance is at  
least ±15kV without damage nor latch-up.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the  
generally accepted ESD testing method for  
semiconductors. This method is also speci-  
fied in MIL-STD-883, Method 3015.7 for  
ESD testing. The premise of this ESD test is  
to simulate the human body’s potential to  
store electrostatic energy and  
Variables with an air discharge such as  
approach speed of the object carrying the ESD  
potential to the system and humidity will tend  
to change the discharge current. For example,  
the rise time of the discharge current varies  
with the approach speed.  
discharge it to an integrated circuit. The  
simulation is performed by using a test model  
as shown in Figure 20. This method will test  
the IC’s capability to withstand an ESD  
transient during normal handling such as in  
The Contact Discharge Method applies the  
ESD current directly to the DUT.  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
11  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
C
–5V  
–5V  
3
Figure 15. Charge Pump — Phase 1  
V
= +5V  
CC  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–10V  
3
Figure 16. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
GND  
1
2
GND  
b) C -  
2
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 5.48V  
Figure 17. Charge Pump Waveforms  
V
= +5V  
CC  
C
+
+5V  
4
+
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
V
C
–5V  
–5V  
3
Figure 18. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+
+10V  
+
4
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
C
C
2
1
+
3
C
Figure 19. Charge Pump — Phase 4  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
12  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 20. ESD Test Circuit for Human Body Model  
This method was devised to reduce the  
unpredictability of the ESD arc. The dis-  
charge current rise time is constant since the  
energy is directly transferred without the air-  
gap arc. In situations such as hand held  
systems, the ESD charge can be directly  
discharged to the equipment from a person  
already holding the equipment. The current is  
transferred on to the keypad or the serial port  
of the equipment directly and then travels  
through the PCB and finally to the IC.  
represent the typical ESD testing circuits used  
for all three methods. The CS is initially  
charged with the DC power supply when the  
first switch (SW1) is on. Now that the  
capacitor is charged, the second switch (SW2)  
is on while SW1 switches off. The voltage  
stored in the capacitor is then applied through  
RS, the current limiting resistor, onto the  
device under test (DUT). In ESD tests, the  
SW2 switch is pulsed so that the device under  
test receives a duration of voltage.  
The circuit models in Figures 20 and 21  
Contact-Discharge Module  
Contact-Discharge Module  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 21. ESD Test Circuit for IEC1000-4-2  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
13  
For the Human Body Model, the current  
limiting resistor (RS) and the source capacitor  
(CS) are 1.5kan 100pF, respectively. For  
IEC-1000-4-2, the current limiting resistor  
(RS) and the source capacitor (CS) are 330Ωꢀ  
an 150pF, respectively.  
30A  
15A  
0A  
The higher CS value and lower RS value in  
the IEC1000-4-2 model are more stringent  
than the Human Body Model. The larger  
storage capacitor injects a higher voltage to  
the test point when SW2 is switched on. The  
lower current limiting resistor increases the  
t=0ns  
t=30ns  
t  
current charge onto the test point.  
Figure 22. ESD Test Waveform for IEC1000-4-2  
Device Pin  
Tested  
Human Body  
Model  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 3. Transceiver ESD Tolerance Levels  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
14  
PACKAGE: PLASTIC SHRINK  
SMALL OUTLINE  
(SSOP)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
20–PIN  
0.068/0.078  
(1.73/1.99)  
A
A1  
B
D
E
0.068/0.078  
(1.73/1.99)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.239/0.249  
(6.07/6.33)  
0.278/0.289  
(7.07/7.33)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
0.0256 BSC  
(0.65 BSC)  
e
0.0256 BSC  
(0.65 BSC)  
0.301/0.311  
(7.65/7.90)  
H
L
0.301/0.311  
(7.65/7.90)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
0°/8°  
Ø
0°/8°  
(0°/8°)  
(0°/8°)  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
15  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
0.115/0.195  
0.115/0.195  
A2  
(2.921/4.953)  
(2.921/4.953)  
0.014/0.022  
0.014/0.022  
B
(0.356/0.559)  
(0.356/0.559)  
0.045/0.070  
0.045/0.070  
B1  
C
(1.143/1.778)  
(1.143/1.778)  
0.008/0.014  
0.008/0.014  
(0.203/0.356)  
(0.203/0.356)  
0.780/0.800  
0.880/0.920  
D
(19.812/20.320) (22.352/23.368)  
0.300/0.325  
0.300/0.325  
E
(7.620/8.255)  
(7.620/8.255)  
0.240/0.280  
0.240/0.280  
E1  
L
(6.096/7.112)  
(6.096/7.112)  
0.115/0.150  
0.115/0.150  
(2.921/3.810)  
(2.921/3.810)  
0°/ 15°  
0°/ 15°  
Ø
(0°/15°)  
(0°/15°)  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
16  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(WIDE)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
A
A1  
B
D
E
0.090/0.104  
(2.29/2.649)  
0.090/0.104  
(2.29/2.649))  
0.004/0.012  
0.004/0.012  
(0.102/0.300) (0.102/0.300)  
0.013/0.020  
0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.398/0.413 0.447/0.463  
(10.10/10.49) (11.35/11.74)  
0.291/0.299 0.291/0.299  
(7.402/7.600) (7.402/7.600)  
e
0.050 BSC  
0.050 BSC  
(1.270 BSC)  
(1.270 BSC)  
H
L
0.394/0.419  
0.394/0.419  
(10.00/10.64) (10.00/10.64)  
0.016/0.050  
0.016/0.050  
(0.406/1.270) (0.406/1.270)  
Ø
0°/8°  
0°/8°  
(0°/8°)  
(0°/8°)  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
17  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(NARROW)  
E
H
h x 45°  
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
A
A1  
B
D
E
0.053/0.069  
(1.346/1.748)  
0.004/0.010  
(0.102/0.249)  
0.013/0.020  
(0.330/0.508)  
0.386/0.394  
(9.802/10.000)  
0.150/0.157  
(3.802/3.988)  
e
0.050 BSC  
(1.270 BSC)  
H
h
0.228/0.244  
(5.801/6.198)  
0.010/0.020  
(0.254/0.498)  
L
0.016/0.050  
(0.406/1.270)  
Ø
0°/8°  
(0°/8°)  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
18  
PACKAGE: PLASTIC THIN  
SMALL OUTLINE  
(TSSOP)  
DIMENSIONS  
in inches (mm) Minimum/Maximum  
Symbol  
14 Lead  
16 Lead 20 Lead 24 Lead  
28 Lead  
38 Lead  
D
0.193/0.201 0.193/0.201 0.252/0.260 0.303/0.311 0.378/0.386 0.378/0.386  
(4.90/5.10) (4.90/5.10) (6.40/6.60) (7.70/7.90) (9.60/9.80) (9.60/9.80)  
e
0.026 BSC 0.026 BSC 0.026 BSC 0.026 BSC 0.026 BSC 0.020 BSC  
(0.65 BSC) (0.65 BSC) (0.65 BSC) (0.65 BSC) (0.65 BSC) (0.50 BSC)  
e
0.126 BSC (3.2 BSC)  
0.252 BSC (6.4 BSC)  
1.0 OIA  
0.169 (4.30)  
0.177 (4.50)  
0.039 (1.0)  
0’-8’ 12’REF  
e/2  
0.039 (1.0)  
0.043 (1.10) Max  
D
0.033 (0.85)  
0.037 (0.95)  
0.007 (0.19)  
0.012 (0.30)  
0.002 (0.05)  
0.006 (0.15)  
(θ2)  
0.008 (0.20)  
0.004 (0.09) Min  
0.004 (0.09) Min  
Gage  
Plane  
(θ3)  
0.020 (0.50)  
0.026 (0.75)  
(θ1)  
0.010 (0.25)  
1.0 REF  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2006 Sipex Corporation  
19  
ORDERING INFORMATION  
Temperature Range  
Model  
Package Type  
SP3222EUCA .......................................... 0C to +70C .......................................... 20-Pin SSOP  
SP3222EUCA/TR .................................... 0C to +70C .......................................... 20-Pin SSOP  
SP3222EUCP .......................................... 0C to +70C ............................................ 18-Pin PDIP  
SP3222EUCT .......................................... 0C to +70C ........................................ 18-Pin WSOIC  
SP3222EUCT/TR ..................................... 0C to +70C ........................................ 18-Pin WSOIC  
SP3222EUCY .......................................... 0C to +70C ........................................ 20-Pin TSSOP  
SP3222EUCY/TR .................................... 0C to +70C ........................................ 20-Pin TSSOP  
SP3232EUCA .......................................... 0C to +70C .......................................... 16-Pin SSOP  
SP3232EUCA/TR .................................... 0C to +70C .......................................... 16-Pin SSOP  
SP3232EUCP .......................................... 0C to +70C ............................................ 16-Pin PDIP  
SP3232EUCT .......................................... 0C to +70C ........................................ 16-Pin WSOIC  
SP3232EUCT/TR ..................................... 0C to +70C ........................................ 16-Pin WSOIC  
SP3232EUCY .......................................... 0C to +70C ........................................ 16-Pin TSSOP  
SP3232EUCY/TR .................................... 0C to +70C ........................................ 16-Pin TSSOP  
SP3232EUCN........................................... 0C to +70C ......................................... 16-Pin nSOIC  
SP3232EUCN/TR..................................... 0C to +70C .......................................... 16-Pin nSOIC  
SP3222EUEA .......................................... -40°C to +85°C .......................................... 20-Pin SSOP  
SP3222EUEA/TR .................................... -40°C to +85°C .......................................... 20-Pin SSOP  
SP3222EUEY .......................................... -40°C to +85°C ........................................ 20-Pin TSSOP  
SP3222EUEY/TR .................................... -40°C to +85°C ........................................ 20-Pin TSSOP  
SP3232EUEA .......................................... -40°C to +85°C .......................................... 16-Pin SSOP  
SP3232EUEA/TR .................................... -40°C to +85°C .......................................... 16-Pin SSOP  
SP3232EUEY .......................................... -40°C to +85°C ........................................ 16-Pin TSSOP  
SP3232EUEY/TR .................................... -40°C to +85°C ........................................ 16-Pin TSSOP  
Available in lead free packaging. To order add “-L” suffix to part number.  
Example: SP3232EUCN/TR = standard; SP3232EUCN-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 1,500 for SSOP, TSSOP, or WSOIC and 2,500 for NSOIC.  
Corporation  
ANALOG EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Date: 02/31/06  
SP3222EU, SP3232EU 3.3V, 1000Kbps RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
20  

相关型号:

SP3222EUCA/TR

3.3V, 1000 Kbps RS-232 Transceivers
SIPEX

SP3222EUCP

3.3V, 1000 Kbps RS-232 Transceivers
SIPEX

SP3222EUCP-L

DUAL LINE TRANSCEIVER, PDIP18, LEAD FREE, PLASTIC, DIP-18
ROCHESTER

SP3222EUCP-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDIP18, LEAD FREE, PLASTIC, DIP-18
SIPEX

SP3222EUCT

3.3V, 1000 Kbps RS-232 Transceivers
SIPEX

SP3222EUCT-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO18, LEAD FREE, PLASTIC, SOIC-18
EXAR

SP3222EUCT-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO18, LEAD FREE, PLASTIC, SOIC-18
SIPEX

SP3222EUCT-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO18, LEAD FREE, PLASTIC, SOIC-18
SIPEX

SP3222EUCT/TR

3.3V, 1000 Kbps RS-232 Transceivers
SIPEX

SP3222EUCY

3.3V, 1000 Kbps RS-232 Transceivers
SIPEX

SP3222EUCY-L

3.0V to 5.5V RS-232 Driver/Receiver Pair
EXAR

SP3222EUCY-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, PLASTIC, TSSOP-20
EXAR