SP3223EBCA-L [SIPEX]

Intelligent 3.0V to 5.5V RS-232 Transceivers;
SP3223EBCA-L
型号: SP3223EBCA-L
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Intelligent 3.0V to 5.5V RS-232 Transceivers

驱动 光电二极管 接口集成电路 驱动器
文件: 总23页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP3223E/EB/EU  
Intelligent +3.0V to +5.5V RS-232 Transceivers  
FEATURES  
Meets true EIA/TIA-232-F Standards  
from a +3.0V to +5.5V power supply  
Interoperable with EIA/TIA-232 and  
adheres to EIA/TIA-562 down to a +2.7V  
power source  
EN  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
SHUTDOWN  
VCC  
C1+  
V+  
GND  
C1-  
T1OUT  
R1IN  
AUTO ON-LINE® circuitry automatically  
wakes up from a 1µA shutdown  
Minimum 250Kbps data rate under load  
(EB)  
SP3223  
C2+  
C2-  
V-  
R1OUT  
14  
13  
ONLINE  
T1IN  
1 Mbps data rate for high speed RS-232  
T2OUT  
R2IN  
8
9
(EU)  
12 T2IN  
STATUS  
Regulated Charge Pump Yields Stable  
RS-232 Outputs Regardless of VCC  
Variations  
10  
R2OUT  
11  
ESD Specifications:  
+15KV Human Body Model  
Now Available in Lead Free Packaging  
+15KV IEC1000-4-2 Air Discharge  
+8KV IEC1000-4-2 Contact Discharge  
DESCRIPTION  
The SP3223 products are RS-232 transceiver solutions intended for portable applications  
such as notebook and hand held computers. The SP3223 use an internal high-efficiency,  
charge-pumppowersupplythatrequiresonly0.1µFcapacitorsin3.3Voperation. Thischarge  
pump and Sipex's driver architecture allow the SP3223 series to deliver compliant RS-232  
performance from a single power supply ranging from +3.3V to +5.0V. The SP3223 is a 2-  
driver/2-receiver device ideal for laptop/notebook computer and PDA applications.  
The AUTO ON-LINE® feature allows the device to automatically "wake-up" during a shutdown  
statewhenanRS-232cableisconnectedandaconnectedperipheralisturnedon. Otherwise,  
the device automatically shuts itself down drawing less than 1µA.  
SELECTION TABLE  
Device  
Power  
Supplies  
RS-232  
RS-232  
External  
TTL 3-  
State  
# of  
Pins  
Gauranteed  
Data Rate  
ESD  
Rating  
AUTO ON-LINE®  
Drivers Receivers Components  
Circuitry  
SP3223  
SP3223E  
SP3223B  
+3.0V to +5.5V  
+3.0V to +5.5V  
+3.0V to +5.5V  
2
2
2
2
2
2
2
2
2
2
2
2
4 capacitors  
4 capacitors  
4 capacitors  
4 capacitors  
4 capacitors  
4 capacitors  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
20  
20  
20  
20  
20  
20  
120  
120  
2kV  
15kV  
2kV  
250  
SP3223EB +3.0V to +5.5V  
SP3223U +3.0V to +5.5V  
SP3223EU +3.0V to +5.5V  
250  
15kV  
2kV  
1000  
1000  
15kV  
Applicable U.S. Patents - 5,306,954; and other patents pending.  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability and cause permanent damage to the  
device.  
Output Voltages  
TxOUT.............................................................+13.2V  
RxOUT, STATUS.......................-0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT.....................................................Continuous  
Storage Temperature......................-65°C to +150°C  
VCC.......................................................-0.3V to +6.0V  
V+ (NOTE 1).......................................-0.3V to +7.0V  
V- (NOTE 1)........................................+0.3V to -7.0V  
V+ + |V-| (NOTE 1)...........................................+13V  
ICC (DC VCC or GND current).........................+100mA  
Input Voltages  
Power Dissipation per package  
20-pin SSOP (derate 9.25mW/oC above +70oC)....750mW  
20-pin TSSOP (derate 11.1mW/oC above +70oC)..900mW  
TxIN, ONLINE,  
SHUTDOWN, EN (SP3223).................-0.3V to +6.0V  
RxIN...................................................................+15V  
NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
.
Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C (Note 2).  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS CONDITIONS  
DC CHARACTERISTICS  
µA  
Supply Current,  
AUTO ON-LINE®  
1.0  
10  
All RxIN open, ONLINE = GND,  
SHUTDOWN = VCC, TxIN=VCC or  
GND,VCC = +3.3V, TAMB = +25° C  
µA  
Supply Current, Shutdown  
1.0  
0.3  
10  
SHUTDOWN = GND, TxIN=VCC or  
GND, VCC = +3.3V, TAMB = +25° C  
Supply Current,  
1.0  
mA  
ONLINE = SHUTDOWN = VCC,  
no load, VCC = +3.3V, TAMB = +25° C  
AUTO ON-LINE® Disabled  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold  
VCC = +3.3V or +5.0V, TxIN,  
EN (SP3223), ONLINE,  
SHUTDOWN  
LOW  
HIGH  
GND  
2.0  
0.8  
VCC  
V
µA  
µA  
Input Leakage Current  
Output Leakage Current  
±0.01  
±0.05  
±1.0  
±10  
0.4  
TxIN, EN, ONLINE, SHUTDOWN,  
T
AMB = +25° C, VIN = OV to VCC  
Receivers disabled,  
OUT = OV to VCC  
V
Output Voltage LOW  
Output Voltage HIGH  
V
V
IOUT = 1.6mA  
IOUT = -1.0mA  
V
CC - 0.6 VCC - 0.1  
NOTE 2: C1 - C4 0.1µF, tested at 3.3V ±10%.  
C1 = 0.047µF, C2-C4 = 0.33µF, tested at 5V±10%.  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
.
Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C (Note 2).  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
DRIVER OUTPUTS  
Output Voltage Swing  
±5.0  
300  
±5.4  
V
All driver outputs loaded with 3K  
to GND, TAMB = +25° C  
Output Resistance  
VCC = V+ = V- = 0V, VOUT = ±2V  
Output Short-Circuit Current  
±35  
±70  
±60  
±100  
VOUT = 0V  
VOUT = ±15V  
mA  
µA  
Output Leakage Current  
±25  
VCC = 0V or 3.0V to 5.5V,  
VOUT = ±12V, Drivers disabled  
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
Input Threshold LOW  
Input Threshold HIGH  
Input Threshold HIGH  
Input Hysteresis  
-15  
0.6  
0.8  
15  
V
V
1.2  
1.5  
1.5  
1.8  
0.3  
5
VCC = 3.3V  
V
VCC = 5.0V  
VCC = 3.3V  
VCC = 5.0V  
2.4  
2.4  
V
V
V
Input Resistance  
3
7
kΩ  
AUTO ON-LINE® CIRCUITRY CHARACTERISTICS (ONLINE = GND, SHUTDOWN = VCC  
)
STATUS Output Voltage LOW  
STATUS Output Voltage HIGH  
Receiver Threshold to Drivers  
0.4  
V
V
IOUT = 1.6mA  
IOUT = -1.0mA  
Figure 14  
V
CC - 0.6  
µS  
200  
0.5  
Enabled (tONLINE  
)
µS  
µS  
Receiver Positive or Negative  
Threshold to STATUS HIGH  
Figure 14  
Figure 14  
(tSTSH  
)
Receiver Positive or Negative  
Threshold to STATUS LOW  
20  
(tSTSL  
)
NOTE 2: C1 - C4 0.1µF, tested at 3.3V ±10%.  
C1 = 0.047µF, C2-C4 = 0.33µF, tested at 5V±10%.  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
3
TIMING CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX  
.
Typical values apply at VCC = +3.3V or +5.0V and TAMB = 25°C.  
PARAMETER  
Maximum Data Rate  
SP3223E  
MIN. TYP. MAX. UNITS CONDITIONS  
120  
250  
235  
SP3223EB  
RL = 3K, CL = 1000pF, one driver active  
RL = 3K, CL = 250pF, one driver active  
kbps  
SP3223EH  
460  
SP3223EU  
1000  
Receiver Propagation Delay  
tPHL  
0.15  
Receiver input to Receiver output, CL =  
150pF  
µs  
tPLH  
Receiver Output Enable Time  
200  
200  
ns  
ns  
Normal operation  
Normal operation  
Receiver Output Disable Time  
Driver Skew  
E,EB  
100  
50  
500  
100  
ns  
ns  
| tPHL - tPLH |, TAMB = 25ºC  
EH, EU  
Receiver Skew  
200  
1000  
| tPHL - tPLH  
|
Transition-Region Slew Rate  
E,EB  
EH  
30  
V
CC= 3.3V, RL = 3K, TAMB = 25ºC,  
60  
90  
V/µs  
measurements taken from -3.0V to +3.0V  
or +3.0V to -3.0V  
EU  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
4
TYPICAL OPERATING CIRCUIT  
+3V to +5V  
+
+
19  
CC  
0.1µF  
0.1µF  
C5  
C1  
V
2
3
C1+  
V+  
V-  
+
C3  
C4  
0.1µF  
0.1µF  
4
5
C1-  
SP3223  
7
C2+  
+
C2  
0.1µF  
+
6
13  
12  
C2-  
T1OUT  
T2OUT  
T1IN  
17  
8
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
T2IN  
R1OUT  
R1IN  
15  
10  
16  
9
5K  
RS-232  
INPUTS  
TTL/CMOS  
OUTPUTS  
R2OUT  
EN  
R2IN  
5KΩ  
1
V
CC  
20  
SHUTDOWN  
14  
11  
ONLINE  
STATUS  
To µP Supervisor  
Circuit  
GND  
18  
Figure 4. SP3223 Typical Operating Circuit  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
5
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 250Kbps data rate, all drivers  
loaded with 3k, 0.1µF charge pump capacitors, and TAMB = +25°C.  
30  
25  
20  
15  
10  
5
6
4
- Slew  
+ Slew  
TxOUT +  
2
0
-2  
-4  
-6  
1 Transmitter at 250Kbps  
1 Transmitter at 15.6Kbps  
All drivers loaded 3K + Load Cap  
TxOUT -  
0
0
500 1000  
2000 3000 4000 5000  
0
1000  
2000  
3000  
4000  
5000  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 1. Transmitter Output Voltage VS. Load  
Capacitance for the SP3223EB  
Figure 2. Slew Rate VS. Load Capacitance for the  
SP3223EB  
35  
30  
20  
15  
250Kbps  
25  
125Kbps  
20  
10  
15  
20Kbps  
1 Transmitter at 250Kbps  
10  
2 Transmitters at 15.6Kbps  
5
1 Transmitter at 250Kbps  
All drivers loaded with 3K // 1000pF  
1 Transmitter at 15.6Kbps  
5
All drivers loaded 3K + Load Cap  
0
0
0
1000  
2000  
3000  
4000  
5000  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (V  
)
DC  
Figure 4. Supply Current VS. Supply Voltage for  
the SP3243EB  
Figure 3. Supply Current VS. Load Capacitance when  
Transmitting Data for the SP3223EB  
6
TxOUT +  
4
2
0
-2  
-4  
TxOUT -  
-6  
2.7  
3
3.5  
4
4.5  
5
Supply Voltage (V  
)
DC  
Figure 5. Transmitter Output Voltage VS. Supply  
Voltage for the SP3243EB  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
6
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 1000Kbps data rate, all drivers  
loaded with 3k, 0.1µF charge pump capacitors, and TAMB = +25°C.  
6
4
200  
150  
100  
50  
2
1Driver at 1Mbps  
Other Drivers at 62.5Kbps  
All Drivers Loaded with 3K // 250pF  
0
-2  
-4  
-6  
T1 at 500Kbps  
T2 at 31.2Kbps  
All TX loaded 3K // CLoad  
0
0
250  
500  
1000  
1500  
2000  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (V)  
Figure 6. Transmitter Skew VS. Load Capacitance for  
the 3223EU  
Figure 7 Transmitter Output Voltage VS. Supply  
Voltage for the SP3223EU  
35  
30  
25  
20  
6
4
T1 at 1Mbps  
T2 at 62.5Kbps  
2
0
-2  
-4  
-6  
15  
T1 at 1Mbps  
T2 at 62.5Kbps  
10  
5
0
0
250  
500  
1000  
1500  
0
250  
500  
1000  
1500  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 8. Transmitter Output Voltage VS. Load  
Capacitance for the SP3223EU  
Figure 9. Supply Current VS. Load Capacitance for the  
SP3223EU  
6
4
20  
15  
2
T1 at 1Mbps  
0
-2  
-4  
-6  
10  
T2 at 62.5Kbps  
All Drivers loaded  
with 3K//250pF  
T1 at 1Mbps  
T2 at 62.5Kbps  
All Drivers loaded  
5
with 3K//250pF  
0
2.7  
3
3.5  
4
4.5  
5
2.7  
3
3.5  
4
4.5  
5
Supply Voltage (V)  
Supply Voltage (V)  
Figure 10. Supply Current VS. Supply Voltage for the  
SP3223EU  
Figure 11. Transmitter Output Voltage VS. Supply  
Voltage for the SP3223EU  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
7
PIN DESCRIPTION  
NAME  
FUNCTION  
PIN #  
Receiver Enable. Apply logic LOW for normal operation. Apply logic HIGH to  
disable the receiver outputs (high-Z state).  
EN  
1
C1+  
V+  
Positive terminal of the voltage doubler charge-pump capacitor.  
Regulated +5.5V output generated by the charge pump.  
Negative terminal of the voltage doubler charge-pump capacitor.  
Positive terminal of the inverting charge-pump capacitor.  
Negative terminal of the inverting charge-pump capacitor.  
Regulated -5.5V output generated by the charge pump.  
RS-232 driver output.  
2
3
C1-  
4
C2+  
5
C2-  
6
V-  
7
T2OUT  
R2IN  
R2OUT  
STATUS  
T2IN  
8
RS-232 receiver input.  
9
TTL/CMOS receiver output.  
10  
11  
12  
13  
TTL/CMOS Output indicating online and shutdown status.  
TTL/CMOS driver input.  
T1IN  
TTL/CMOS driver input.  
Apply logic HIGH to override AUTO ON-LINE® circuitry keeping drivers active  
(SHUTDOWN must also be logic HIGH, refer to Table 2).  
ONLINE  
R1OUT  
R1IN  
14  
15  
16  
TTL/CMOS receiver output.  
RS-232 receiver input.  
T1OUT  
GND  
VCC  
RS-232 driver output.  
Ground.  
17  
18  
19  
+3.0V to +5.5V supply voltage.  
Apply logic LOW to shut down drivers and charge pump. This overrides all  
AUTO ON-LINE® circuitry and ONLINE (refer to Table 2).  
SHUTDOWN  
20  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
8
DESCRIPTION  
Otherwise, the system automatically comes  
online. This feature allows design engineers to  
address power saving concerns without major  
design changes.  
The SP3223 is a 2-driver/2-receiver device  
ideal for portable or handheld applications.  
The SP3223 transceivers meet theEIA/TIA-232  
and ITU-T V.28/V.24 communication protocols  
and can be implemented in battery-powered,  
portable, or handheld applications such as note-  
book or handheld computers. The SP3223 de-  
vices feature Sipex's proprietary and patented  
(U.S.-- 5,306,954) on-board charge pump cir-  
cuitry that generates ±5.5V RS-232 voltage lev-  
els from a single +3.0V to +5.5V power supply.  
The SP3223 devices operate at this typical data  
rate when fully loaded.  
THEORY OF OPERATION  
The SP3223 series is made up of four basic  
circuit blocks:  
1.Drivers, 2.Receivers, 3.theSipexproprietary  
charge pump, and 4. AUTO ON-LINE® cir-  
cuitry.  
Drivers  
The drivers are inverting level transmitters that  
convert TTL or CMOS logic levels to 5.0V EIA/  
TIA-232 levels with an inverted sense relative to  
the input logic levels. Typically, the RS-232  
output voltage swing is +5.4V with no load and  
+5V minimum fully loaded. The driver outputs  
are protected against infinite short-circuits to  
ground without degradation in reliability. These  
drivers comply with the EIA-TIA-232F and all  
previous RS-232 versions. Unused driver inputs  
should be connected to GND or VCC.  
The SP3223 series is an ideal choice for power  
sensitive designs. Featuring AUTO ON-LINE®  
circuitry, the SP3223 reduces the power supply  
drain to a 1µA supply current. In many portable  
or handheld applications, an RS-232 cable can  
bedisconnectedoraconnectedperipheralcanbe  
turned off. Under these conditions, the internal  
charge pump and the drivers will be shut down.  
The drivers can guarantee output data rates fully  
loaded with 3Kin parallel with 1000pF,  
(SP3223EU, CL=250pF)ensuringcompatibility  
with PC-to-PC communication software.  
+3V to +5V  
+
19  
0.1µF  
C5  
V
CC  
2
3
7
C1+  
V+  
V-  
+
+
+
+
C1  
C2  
0.1µF  
0.1µF  
C3  
C4  
0.1µF  
0.1µF  
4
5
C1-  
C2+  
SP3223  
TheslewrateofthedriveroutputontheEandEB  
versions is internally limited to a maximum of  
30V/µs in order to meet the EIA standards (EIA  
RS-232D 2.1.7, Paragraph 5). The Slew Rate of  
H and U versions is not limited to enable higher  
speed data tranfers. The transition of the loaded  
outputfromHIGHtoLOWalsomeetsthemono-  
tonicity requirements of the standard.  
6
13  
12  
C2-  
T
1OUT  
T1IN  
17  
8
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
T2IN  
T2OUT  
R1OUT  
R1IN  
15  
16  
9
UART  
or  
Serial µC  
5K  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
R2OUT  
R2IN  
10  
5KΩ  
1
EN  
V
CC  
20  
SHUTDOWN  
14  
11  
ONLINE  
STATUS  
Figure 12 shows a loopback test circuit used to  
test the RS-232 Drivers. Figure13 shows the test  
results where one driver was active at 235Kbps  
and all drivers are loaded with an RS-232 re-  
ceiver in parallel with a 1000pF capacitor. RS-  
232datatransmissionrateof120Kbpsto1Mbps.  
provide compatibility with designs in personal  
computer peripherals and LAN applications.  
GND  
18  
µP  
Supervisor  
IC  
V
RESET  
IN  
Figure 11. Interface Circuitry Controlled by Micropro-  
cessor Supervisory Circuit  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
9
+3V to +5V  
19  
+
+
0.1µF  
0.1µF  
C5  
C1  
V
CC  
2
3
7
C1+  
DEVICE: SP3223  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
4
5
C1-  
C2+  
SP3223  
SHUTDOWN  
EN  
0
TXOUT  
RXOUT  
Active  
High Z  
Active  
High Z  
+
C2  
0.1µF  
6
C2-  
0
0
1
1
High Z  
High Z  
Active  
Active  
T
1OUT  
T
1IN  
TTL/CMOS  
INPUTS  
TXIN  
T
XOUT  
1
R
1OUT  
R1IN  
0
TTL/CMOS  
OUTPUTS  
5K  
R
XOUT  
RXIN  
1
5KΩ  
1
1000pF  
1000pF  
EN  
V
CC  
20  
SHUTDOWN  
Table 2. SHUTDOWN and EN Truth Tables  
14  
11  
Note: In AUTO ON-LINE® Mode where ONLINE =  
GND and SHUTDOWN = VCC, the device will shut down  
if there is no activity present at the Receiver inputs.  
ONLINE  
STATUS  
To µP Supervisor  
Circuit  
GND  
18  
Receivers  
Figure 12. Loopback Test Circuit for RS-232 Driver  
Data Transmission Rates  
The receivers convert ±5.0V EIA/TIA-232  
levels to TTL or CMOS logic output levels.  
Receivers have an inverting output that can be  
disabled by using the EN pin.  
Charge Pump  
Receivers are active when the AUTO ON-LINE®  
circuitry is enabled or when in shutdown.  
Duringtheshutdown, thereceiverswillcontinue  
to be active. If there is no activity present at the  
receivers for a period longer than 100µs or when  
SHUTDOWN is enabled, the device goes into a  
standby mode where the circuit draws 1µA.  
DrivingENtoalogicHIGHforcestheoutputsof  
the receivers into high-impedance. The truth  
table logic of the SP3223 driver and receiver  
outputs can be found in Table 2.  
The charge pump is a Sipex–patented design  
(U.S. 5,306,954) and uses a unique approach  
compared to older less–efficient designs. The  
charge pump still requires four external  
capacitors, but uses a four–phase voltage  
shifting technique to attain symmetrical 5.5V  
power supplies. The internal power supply  
Since receiver input is usually from a transmis-  
sion line where long cable lengths and system  
interference can degrade the signal, the inputs  
haveatypicalhysteresismarginof300mV. This  
ensures that the receiver is virtually immune to  
noisy transmission lines. Should an input be left  
unconnected, aninternal 5Kpulldownresistor  
to ground will commit the output of the receiver  
to a HIGH state.  
T1 IN  
T1 OUT  
R1 OUT  
Figure 13. Loopback Test Circuit result at 235Kbps  
(All Drivers Fully Loaded)  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
10  
voltage is regulated to +5.5V. At this voltage,  
the internal oscillator is disabled. Simultaneous  
with the transfer of the voltage to C4, the  
positive side of capacitor C1 is switched to VCC  
and the negative side is connected to GND,  
allowing the charge pump cycle to begin again.  
The charge pump cycle will continue as long as  
the operational conditions for the internal  
oscillator are present.  
consists of a regulated dual charge pump that  
provides output voltages 5.5V regardless of the  
input voltage (VCC) over the +3.0V to +5.5V  
range. This is important to maintain compliant  
RS-232 levels regardless of power supply  
fluctuations.  
The charge pump operates in a discontinuous  
mode using an internal oscillator. If the output  
voltages are less than a magnitude of 5.5V, the  
charge pump is enabled. If the output voltages  
exceed a magnitude of 5.5V, the charge pump is  
disabled. Thisoscillatorcontrolsthefourphases  
of the voltage shifting. A description of each  
phase follows.  
Since both V+ and Vare separately generated  
from VCC, in a no–load condition V+ and Vwill  
besymmetrical. Olderchargepumpapproaches  
that generate Vfrom V+ will show a decrease in  
the magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
Phase 1  
— VSS charge storage — During this phase of  
the clock cycle, the positive side of capacitors  
C1 and C2 are initially charged to VCC. Cl+ is  
then switched to GND and the charge in C1is  
transferred to C2 . Since C2 is connected to  
VCC, the voltage potential across capacitor C2 is  
AUTO ON-LINE® Circuitry  
The SP3223 devices have a patent pending  
AUTO ON-LINE® circuitry on board that saves  
power in applications such as laptop computers,  
PDA's, and other portable systems.  
+
now 2 times VCC  
.
Phase 2  
The SP3223 devices incorporate an AUTO  
ON-LINE® circuit that automatically enables  
itself when the external transmitters are enabled  
and the cable is connected. Conversely, the  
AUTO ON-LINE® circuit also disables most of  
theinternalcircuitrywhenthedeviceisnotbeing  
used and goes into a standby mode where the  
device typically draws 1µA. This function can  
also be externally controlled by the ONLINE  
pin. When this pin is tied to a logic LOW, the  
AUTO ON-LINE® function is active. Once  
active, the device is enabled until there is no  
activity on the receiver inputs. The receiver  
input typically sees at least ±3V, which are  
generated from the transmitters at the other end  
of the cable with a ±5V minimum. When the  
external transmitters are disabled or the cable is  
disconnected, the receiver inputs will be pulled  
down by their internal 5kresistors to ground.  
When this occurs over a period of time, the  
internal transmitters will be disabled and the  
device goes into a shutdown or standby mode.  
When ONLINE is HIGH, the AUTO ON-LINE®  
mode is disabled.  
— VSS transfer — Phase two of the clock  
connects the negative terminal of C2 to the VSS  
storage capacitor and the positive terminal of C2  
to GND. This transfers a negative generated  
voltage to C3. This generated voltage is  
regulated to a minimum voltage of -5.5V.  
Simultaneous with the transfer of the voltage to  
C3, the positive side of capacitor C1 is switched  
to VCC and the negative side is connected to  
GND.  
Phase 3  
— VDD charge storage — The third phase of the  
clock is identical to the first phase — the charge  
transferred in C1 produces –VCC in the negative  
terminal of C1, which is applied to the negative  
side of capacitor C2. Since C2 is at VCC, the  
voltage potential across C2 is 2 times VCC  
+
.
Phase 4  
— VDD transfer — The fourth phase of the clock  
connects the negative terminal of C2 to GND,  
and transfers this positive generated voltage  
across C2 to C4, the VDD storage capacitor. This  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
11  
or portable applications where the RS-232 cable  
is disconnected or the RS-232 drivers of the  
connected peripheral are turned off.  
The AUTO ON-LINE® circuit has two stages:  
1) Inactive Detection  
2) Accumulated Delay  
The AUTO ON-LINE® mode can be disabled  
by the SHUTDOWN pin. If this pin is a logic  
LOW, the AUTO ON-LINE® function will not  
operate regardless of the logic state of the  
ONLINE pin. Table 3 summarizes the logic of the  
AUTO ON-LINE® operating modes. The truth  
table logic of the SP3223 driver and receiver  
outputs can be found in Table 2.  
The first stage, shown in Figure 20, detects an  
inactive input. A logic HIGH is asserted on  
RXINACT if the cable is disconnected or the  
external transmitters are disabled. Otherwise,  
RXINACT will be at a logic LOW. This circuit  
is duplicated for each of the other receivers.  
The STATUS pin outputs a logic LOW signal if  
the device is shutdown. This pin goes to a logic  
HIGH when the external transmitters are en-  
abled and the cable is connected.  
The clock rate for the charge pump typically  
operates at above 250kHz. The external capaci-  
tors can be as low as 0.1µF with a 16V break-  
down voltage rating.  
The second stage of the AUTO ON-LINE®  
circuitry, shown in Figure 21, processes all the  
receiver's RXINACT signals with an accumu-  
lated delay that disables the device to a 1µA  
supply current.  
The STATUS pin goes to a logic LOW when the  
cable is disconnected, the external transmitters  
are disabled, or the SHUTDOWN pin is  
invoked. Thetypicalaccumulateddelayisaround  
20µs.  
When the SP3223 devices are shut down, the  
charge pumps are turned off. V+ charge pump  
output decays to VCC,the V- output decays to  
GND. The decay time will depend on the size of  
capacitors used for the charge pump. Once in  
shutdown, the time required to exit the shut  
down state and have valid V+ and V- levels is  
typically 200µs.  
For easy programming, the STATUS can be  
used to indicate DTR or a Ring Indicator signal.  
Tying ONLINE and SHUTDOWN  
together will bypass the AUTO ON-LINE®  
circuitry so this connection acts like a shutdown  
input pin  
When the SP3223 drivers or internal charge  
pump are disabled, the supply current is reduced  
to 1µA. This can commonly occur in handheld  
S
H
U
T
+2.7V  
0V  
-2.7V  
RECEIVER  
RS-232 INPUT  
VOLTAGES  
D
O
W
N
V
CC  
0V  
STATUS  
t
STSL  
t
STSH  
tONLINE  
+5V  
DRIVER  
RS-232 OUTPUT  
VOLTAGES  
0V  
-5V  
Figure 14. AUTO ON-LINE® Timing Waveforms  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
12  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
C
–5V  
–5V  
3
Figure 15. Charge Pump — Phase 1  
V
= +5V  
CC  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–10V  
3
Figure 16. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
0V  
0V  
1
2
2
b) C2-  
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 1.96V  
Figure 17. Charge Pump Waveforms  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
C
–5V  
–5V  
3
Figure 18. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+10V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
3
Figure 19. Charge Pump — Phase 4  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
13  
RS-232 SIGNAL  
AT RECEIVER  
INPUT  
SHUTDOWN  
INPUT  
TRANSCEIVER  
STATUS  
ONLINE INPUT  
STATUS OUTPUT  
Normal Operation  
(AUTO ON-LINE® )  
YES  
NO  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
Normal Operation  
Shutdown  
(AUTO ON-LINE® )  
NO  
LOW  
Shutdown  
Shutdown  
YES  
NO  
HIGH/LOW  
HIGH/LOW  
Table 3. AUTO ON-LINE® Logic  
R INACT  
X
Inactive Detection Block  
RS-232  
Receiver Block  
R OUT  
X
R IN  
X
Figure 20. Stage I of AUTO ON-LINE® Circuitry  
Delay  
Buffer  
Delay  
Buffer  
STATUS  
R1ON  
R2ON  
SHUTDOWN  
Figure 21. Stage II of AUTO ON-LINE® Circuitry  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
14  
The Sipex-patented charge pumps are designed  
to operate reliably with a range of low cost  
capacitors.Either polarized or non polarized  
capacitors may be used. If polarized capacitors  
are used they should be oriented as shown in the  
Typical Operating Circuit. The V+ capacitor  
may be connected to either ground or Vcc  
(polarity reversed.)  
rippleonthetransmitteroutputsandmayslightly  
reduce power consumption. C2, C3, and C4 can  
be increased without changing C1’s value  
Forbestchargepumpefficiencylocatethecharge  
pump and bypass capacitors as close as possible  
to the IC. Surface mount capacitors are best for  
this purpose. Using capacitors with lower  
equivalent series resistance (ESR) and self-  
inductance,alongwithminimizingparasiticPCB  
trace inductance will optimize charge pump  
operation. Designersarealsoadvisedtoconsider  
that capacitor values may shift over time and  
operating temperature.  
Thechargepumpoperateswith0.1µFcapacitors  
for 3.3V operation. For other supply voltages,  
see the table for required capacitor values. Do  
not use values smaller than those listed.  
Increasing the capacitor  
values (e.g., by doubling in value) reduces  
Minimum recommended charge pump capacitor value  
Input Voltage VCC  
Charge pump capacitor value for SP32XX  
C1 – C4 = 0.1uF  
3.0V to 3.6V  
4.5V to 5.5V  
3.0V to 5.5V  
C1 = 0.047uF, C2-C4 = 0.33uF  
C1 – C4 = 0.22uF  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
15  
normal usage. The transceiver IC receives most  
of the ESD current when the ESD source is  
applied to the connector pins. The test circuit for  
IEC1000-4-2 is shown on Figure 23. There are  
two methods within IEC1000-4-2, the Air  
Discharge method and the Contact Discharge  
method.  
ESD TOLERANCE  
The SP3223E  
series  
incorporates  
ruggedized ESD cells on all driver output and  
receiver input pins. The ESD structure is  
improved over our previous family for more  
rugged applications and environments sensitive  
to electro-static discharges and associated  
transients. The improved ESD tolerance is at  
least +15kV without damage nor latch-up.  
With the Air Discharge Method, an ESD voltage  
is applied to the equipment under test (EUT)  
throughair. Thissimulatesanelectricallycharged  
person ready to connect a cable onto the rear of  
the system only to find an unpleasant zap just  
before the person touches the back panel. The  
high energy potential on the person discharges  
through an arcing path to the rear panel of the  
system before he or she even touches the system.  
This energy, whether discharged directly or  
through air, is predominantly a function of the  
discharge current rather than the discharge  
voltage. Variables with an air discharge such as  
approach speed of the object carrying the ESD  
potential to the system and humidity will tend to  
change the discharge current. For example, the  
rise time of the discharge current varies with the  
approach speed.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the generally  
acceptedESDtestingmethodforsemiconductors.  
This method is also specified in MIL-STD-883,  
Method 3015.7 for ESD testing. The premise of  
this ESD test is to simulate the human body’s  
potential to store electro-static energy and  
discharge it to an integrated circuit. The  
simulation is performed by using a test model as  
shown in Figure 22. This method will test the  
IC’s capability to withstand an ESD transient  
duringnormalhandlingsuchasinmanufacturing  
areaswheretheICstendtobehandledfrequently.  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
devised to reduce the unpredictability of the  
ESD arc. The discharge current rise time is  
constant since the energy is directly transferred  
without the air-gap arc. In situations such as  
handheldsystems,theESDchargecanbedirectly  
dischargedtotheequipmentfromapersonalready  
holdingtheequipment. Thecurrentistransferred  
ontothekeypadortheserialportoftheequipment  
directly andthentravelsthroughthePCBandfinally  
to the IC.  
The IEC-1000-4-2, formerly IEC801-2, is  
generallyusedfortestingESDonequipmentand  
systems. For system manufacturers, they must  
guarantee a certain amount of ESD protection  
since the system itself is exposed to the outside  
environment and human presence. The premise  
with IEC1000-4-2 is that the system is required  
to withstand an amount of static electricity when  
ESD is applied to points and surfaces of the  
equipmentthatareaccessibletopersonnelduring  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 22. ESD Test Circuit for Human Body Model  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
16  
CCoonnttaacctt--DDiisscchhaarrggee MMoodduullee  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 23. ESD Test Circuit for IEC1000-4-2  
The circuit model in Figures 22and 23 represent  
the typical ESD testing circuit used for all three  
methods. TheCS isinitiallychargedwiththeDC  
power supply when the first switch (SW1) is on.  
Now that the capacitor is charged, the second  
switch(SW2)isonwhileSW1switchesoff. The  
voltage stored in the capacitor is then applied  
throughRS, thecurrentlimitingresistor, ontothe  
device under test (DUT). In ESD tests, the SW2  
switch is pulsed so that the device under test  
receives a duration of voltage.  
30A  
15A  
0A  
FortheHumanBodyModel, thecurrentlimiting  
resistor (R ) and the source capacitor (C ) are  
1.5kan 1S00pF, respectively. For IEC-10S00-4-  
2,thecurrentlimitingresistor(RS)andthesource  
capacitor (CS) are 330an 150pF, respectively.  
t=0ns  
t=30ns  
t  
Figure 24. ESD Test Waveform for IEC1000-4-2  
The higher C value and lower RS value in the  
IEC1000-4-2Smodel are more stringent than the  
HumanBodyModel. Thelargerstoragecapacitor  
injects a higher voltage to the test point when  
SW2 is switched on. The lower current limiting  
resistor increases the current charge onto the test  
point.  
DEVICE PIN  
TESTED  
HUMAN BODY  
MODEL  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 4. Transceiver ESD Tolerance Levels  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
17  
PACKAGE: 20 Pin PDIP  
A1  
D
A
N
A2  
INDEX  
AREA  
D1  
E
L
E1  
b2  
e
b3  
b
1
2
3
N/2  
E
c
eA  
eB  
20 PIN PDIP JEDEC MS-001 (AD) Variation  
SYMBOL  
MIN  
-
NOM  
-
-
MAX  
0.21  
-
0.195  
0.022  
0.07  
0.045  
0.014  
1.06  
-
A
A1  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
0.15  
0.115  
0.014  
0.045  
0.3  
0.008  
0.98  
0.005  
0.3  
0.13  
0.018  
0.06  
0.039  
0.01  
1.03  
-
0.31  
0.25  
.100 BSC  
.300 BSC  
-
b
0.325  
0.28  
0.24  
C
-
0.43  
0.15  
0.115  
0.13  
Note: Dimensions in (mm)  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
18  
PACKAGE: 20 Pin TSSOP  
D
e
Ø
E
E1  
Seaing Plane  
Ø
L
Ø
L1  
DETAIL A  
1
2
INDEX AREA  
D
2
E1  
2
x
SEE DETAIL “A”  
A2  
A
Seating Plane  
A1  
b
B
B
20 Pin TSSOP JEDEC MO-153 (AC)  
Variation  
MIN  
NOM  
MAX  
SYMBOL  
A
A1  
A2  
b
c
D
-
-
-
1
-
-
1.2  
0.05  
0.8  
0.19  
0.09  
6.4  
0.15  
1.05  
0.3  
0.2  
6.6  
b
6.5  
E
E1  
e
Ø1  
ø2  
ø3  
L
6.40 BSC  
4.4  
0.65 BSC  
-
12º REF  
12º REF  
0.6  
C
4.3  
0º  
4.5  
8º  
Section B-B  
0.45  
0.75  
L1  
1.00 REF  
Note: Dimensions in (mm)  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
19  
PACKAGE: 20 Pin SSOP  
D
N
SEE DETAIL “A”  
E
E1  
1
INDEX AREA  
2
D
2
E1  
x
2
2 NX R R1  
A
Gauge Plane  
Seaing Plane  
A
L
Ø
L1  
DETAIL A  
A2  
A
20 Pin SSOP JEDEC MO-153 (AE) Variation  
Seating Plane  
MIN  
NOM  
MAX  
SYMBOL  
A
A1  
A2  
b
c
D
E
E1  
L
L1  
ø
-
-
2
-
A1  
b
0.05  
1.65  
0.22  
0.09  
6.9  
7.4  
5
-
1.75  
-
-
7.2  
7.8  
5.3  
0.75  
1.25 REF  
4º  
1.85  
0.38  
0.25  
7.5  
8.2  
5.6  
0.95  
WITH LEAD FINISH  
0.55  
0º  
8º  
c
Note: Dimensions in (mm)  
BASE METAL  
b
Section A-A  
20 PIN SSOP  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
20  
PRODUCT NOMENCLATURE  
SP 3223 E U EY L /TR  
Tape and Reel options  
Sipex  
“L” suffix indicates Lead Free packaging  
Package Type A= SSOP  
P=PDIP  
Y=TSSOP  
Part Number  
Temperature Range C= Commercial Range 0ºc to 70ºC  
E= Extended Range -40ºc to 85ºC  
Speed Indicator Blank= 120Kbps  
B= 250Kbps  
H= 450Kbps  
U= 1Mbps  
ESD Rating E= 15kV HBM and IEC 1000-4  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
21  
ORDERING INFORMATION  
Part Number  
Temperature Range  
Package Types  
SP3223EBCP .................................................... 0°C to +70°C -------------------------------------------- 20-pin PDIP  
SP3223EBCA .................................................... 0°C to +70°C -------------------------------------------20-pin SSOP  
SP3223EBCA/TR .............................................. 0°C to +70°C -------------------------------------------20-pin SSOP  
SP3223EBCY .................................................... 0°C to +70°C ----------------------------------------- 20-pin TSSOP  
SP3223EBCY/TR .............................................. 0°C to +70°C ----------------------------------------- 20-pin TSSOP  
SP3223EBEP .................................................. -40°C to +85°C ------------------------------------------- 20-pin PDIP  
SP3223EBEA .................................................. -40°C to +85°C ------------------------------------------20-pin SSOP  
SP3223EBEA/TR ............................................ -40°C to +85°C ------------------------------------------20-pin SSOP  
SP3223EBEY .................................................. -40°C to +85°C ---------------------------------------- 20-pin TSSOP  
SP3223EBEY/TR ............................................ -40°C to +85°C ---------------------------------------- 20-pin TSSOP  
SP3223ECA ...................................................... 0°C to +70°C.................................................... 20-pin SSOP  
SP3223ECA/TR ................................................ 0°C to +70°C.................................................... 20-pin SSOP  
SP3223ECP ...................................................... 0°C to +70°C...................................................... 20-pin PDIP  
SP3223ECY ...................................................... 0°C to +70°C.................................................. 20-pin TSSOP  
SP3223ECY/TR ................................................ 0°C to +70°C.................................................. 20-pin TSSOP  
SP3223EEA..................................................... -40°C to +85°C .................................................. 20-pin SSOP  
SP3223EEA/TR............................................... -40°C to +85°C .................................................. 20-pin SSOP  
SP3223EEP..................................................... -40°C to +85°C .................................................... 20-pin PDIP  
SP3223EEY..................................................... -40°C to +85°C ................................................ 20-pin TSSOP  
SP3223EEY/TR............................................... -40°C to +85°C ................................................ 20-pin TSSOP  
SP3223EUCP .................................................... 0°C to +70°C...................................................... 20-pin PDIP  
SP3223EUCA .................................................... 0°C to +70°C.................................................... 20-pin SSOP  
SP3223EUCA/TR .............................................. 0°C to +70°C.................................................... 20-pin SSOP  
SP3223EUCY .................................................... 0°C to +70°C.................................................. 20-pin TSSOP  
SP3223EUCY/TR .............................................. 0°C to +70°C.................................................. 20-pin TSSOP  
SP3223EUEP .................................................. -40°C to +85°C .................................................... 20-pin PDIP  
SP3223EUEA .................................................. -40°C to +85°C .................................................. 20-pin SSOP  
SP3223EUEA/TR ............................................ -40°C to +85°C .................................................. 20-pin SSOP  
SP3223EUEY .................................................. -40°C to +85°C ................................................ 20-pin TSSOP  
SP3223EUEY/TR ............................................ -40°C to +85°C ................................................ 20-pin TSSOP  
Available in lead free packaging. To order add "-L" suffix to part number.  
Example: SP3223EUEY/TR = standard; SP3223EUEY-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 1,500 for SSOP, TSSOP and WSOIC.  
CLICK HERE TO ORDER SAMPLES  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
22  
ORDERING INFORMATION  
Contact factory for availability of the following legacy part numbers. For long term availability  
Sipexrecommendsupgradesaslistedbelow. Allupgradepartnumbersshownarefullypinout  
and function compatible with legacy part numbers. Upgrade part numbers may contain  
feature and/or performance enhancements or other changes to datasheet parameters.  
Legacy Part Number  
SP3223BCA  
Recommended Upgrade  
SP3223EBCA  
Legacy Part Number Recommended Upgrade  
SP3223EHCY  
SP3223EUCY  
SP3223BCA/TR  
SP3223BCA-L  
SP3223BCA-L/TR  
SP3223BCP  
SP3223EBCA/TR  
SP3223EBCA-L  
SP3223EBCA-L/TR  
SP3223EBCP  
SP3223EHCY/TR  
SP3223EHCY-L  
SP3223EHCY-L/TR SP3223EUCY-L/TR  
SP3223EUCY/TR  
SP3223EUCY-L  
SP3223EP  
SP3223EEP  
SP3223BCY  
SP3223EBCY  
SP3223EY  
SP3223EEY  
SP3223BCY/TR  
SP3223BCY-L  
SP3223BCY-L/TR  
SP3223BEA  
SP3223EBCY/TR  
SP3223EBCY-L  
SP3223EBCY-L/TR  
SP3223EBEA  
SP3223EY/TR  
SP3223EY-L  
SP3223EY-L/TR  
SP3223HCA  
SP3223EEY/TR  
SP3223EEY-L  
SP3223EEY-L/TR  
SP3223EUCA  
SP3223BEA/TR  
SP3223BEA-L  
SP3223BEA-L/TR  
SP3223BEP  
SP3223EBEA/TR  
SP3223EBEA-L  
SP3223EBEA-L/TR  
SP3223EBEP  
SP3223HCA/TR  
SP3223HCA-L  
SP3223HCA-L/TR  
SP3223HCP  
SP3223EUCA/TR  
SP3223EUCA-L  
SP3223EUCA-L/TR  
SP3223EUCP  
SP3223BEY  
SP3223EBEY  
SP3223HCY  
SP3223EUCY  
SP3223BEY/TR  
SP3223BEY-L  
SP3223BEY-L/TR  
SP3223CA  
SP3223EBEY/TR  
SP3223EBEY-L  
SP3223EBEY-L/TR  
SP3223ECA  
SP3223HCY/TR  
SP3223HCY-L  
SP3223HCY-L/TR  
SP3223UCA  
SP3223EUCY/TR  
SP3223EUCY-L  
SP3223EUCY-L/TR  
SP3223EUCA  
SP3223CA/TR  
SP3223CA-L  
SP3223CA-L/TR  
SP3223CP  
SP3223ECA/TR  
SP3223ECA-L  
SP3223ECA-L/TR  
SP3223ECP  
SP3223UCA/TR  
SP3223UCA-L  
SP3223UCA-L/TR  
SP3223UCP  
SP3223EUCA/TR  
SP3223EUCA-L  
SP3223EUCA-L/TR  
SP3223EUCP  
SP3223CY  
SP3223ECY  
SP3223UCY  
SP3223EUCY  
SP3223CY/TR  
SP3223CY-L  
SP3223CY-L/TR  
SP3223EA  
SP3223ECY/TR  
SP3223ECY-L  
SP3223ECY-L/TR  
SP3223EEA  
SP3223UCY/TR  
SP3223UCY-L  
SP3223UCY-L/TR  
SP3223UEA  
SP3223EUCY/TR  
SP3223EUCY-L  
SP3223EUCY-L/TR  
SP3223EUEA  
SP3223EA/TR  
SP3223EA-L  
SP3223EEA/TR  
SP3223EEA-L  
SP3223EEA-L/TR  
SP3223EUCA  
SP3223EUCA/TR  
SP3223EUCA-L  
SP3223EUCA-L/TR  
SP3223EUCP  
SP3223UEA/TR  
SP3223UEA-L  
SP3223UEA-L/TR  
SP3223UEP  
SP3223EUEA/TR  
SP3223EUEA-L  
SP3223EUEA-L/TR  
SP3223EUEP  
SP3223EA-L/TR  
SP3223EHCA  
SP3223EHCA/TR  
SP3223EHCA-L  
SP3223EHCA-L/TR  
SP3223EHCP  
SP3223UEY  
SP3223EUEY  
SP3223UEY/TR  
SP3223UEY-L  
SP3223UEY-L/TR  
SP3223EUEY/TR  
SP3223EUEY-L  
SP3223EUEY-L/TR  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
Date: 12/16/04  
SP3223 +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2004 Sipex Corporation  
23  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX