SP3282EBCY/TR [SIPEX]

Intelligent +2.35V to +5.5V RS-232 Transceivers; 智能+ 2.35V至+ 5.5V的RS- 232收发器
SP3282EBCY/TR
型号: SP3282EBCY/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Intelligent +2.35V to +5.5V RS-232 Transceivers
智能+ 2.35V至+ 5.5V的RS- 232收发器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总15页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Preliminary  
SP3282EB  
Intelligent +2.35V to +5.5V RS-232 Transceivers  
FEATURES  
Operates over entire Li+ Battery range  
Interoperable with EIA/TIA-232-F and  
adheres to EIA/TIA-562 down to a  
+2.35V power supply  
AUTO ON-LINE® circuitry automatically  
wakes up from a 1µA shutdown  
1
2
3
4
5
6
7
28  
27  
26  
25  
24  
C2+  
GND  
C2-  
V-  
C1+  
V+  
VCC  
C1-  
T IN  
1
T OUT  
1
SP3282EB  
23 T IN  
2
T OUT  
2
22  
T OUT  
3
T IN  
3
Minimum 250Kbps data rate  
R IN  
1
8
9
21 R OUT  
1
Regulated charge pump yields stable  
RS-232 outputs regardless of VCC  
variations  
R IN  
2
20  
R OUT  
2
10  
T OUT  
4
19 T IN  
4
R3IN 11  
T OUT  
18  
17  
16  
R OUT  
3
Unique V for low logic compatibility  
T IN  
5
12  
5
regardlesLs of VCC  
ONLINE 13  
V
L
Enhanced ESD Specifications for all  
SHUTDOWN 14  
15  
STATUS  
TTL and RS-232 I/O lines.  
+15kV Human Body Model  
Now Available in Lead Free Packaging  
+15kV IEC1000-4-2 Air Discharge  
+8kV IEC1000-4-2 Contact Discharge  
APPLICATIONS  
Cell phone data cables  
PDAs, PDA cradles  
Hand held equipment  
Enhanced battery life as the VCC drops  
below 3.1V  
Peripherals  
DESCRIPTION  
The SP3282EB device is an RS-232 transceiver solution intended for portable or hand-held  
applications such as notebook and palmtop computers, PDAs, cell phones and their data cables  
and cradles.  
The SP3282EB is compatible with low voltage logic down to 1.8V using a logic select pin (VL)  
which conditions the logic inputs and outputs to be compatible with system logic.  
The SP3282EB uses an internal high-efficiency, charge-pump power supply that requires only  
0.1µF capacitors in 3.3V operation. This charge pump and Sipex's driver architecture allow the  
SP3282EB device to deliver compliant RS-232 performance from a single +3.3V to +5.5Vpower  
supply and additionally adhere to EIA/TIA-562 driver outputs levels down to a power supply  
voltage of 2.35V.  
The AUTO ON-LINE® feature allows the device to automatically "wake-up" during a shutdown  
state when an RS-232 cable is connected and a connected peripheral is turned on. Otherwise,  
the device automatically shuts itself down drawing less than 1µA.  
TABLE 1  
Device  
Power  
Supplies  
2.35V to 5.5V  
RS-232  
Drivers Receivers  
RS232  
External  
Components  
4
AUTO ON-LINE®  
Circuitry  
Data  
Rate  
No. of  
Pins  
SP3282EB  
5
3
yes  
250kbps 28  
Applicable U.S. Patents - 5,306,954; and 6,378,026.  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability and cause permanent damage to the  
device.  
TxIN, ONLINE, SHUTDOWN, .............0.3V to +6.0V  
RxIN..................................................................+25V  
Output Voltages  
TxOUT............................................................+13.2V  
RxOUT, STATUS.......................-0.3V to (VL + 0.3V)  
Short-Circuit Duration  
TxOUT.....................................................Continuous  
V
CC......................................................-0.3V to +6.0V  
Storage Temperature......................-65°C to +150°C  
Power Dissipation per package  
28-pin SSOP  
V+ (note 1).........................................-0.3V to +7.0V  
V- (note 1)..........................................+0.3V to -7.0V  
V+ + |V-| (note 1).............................................+13V  
(derate 11.2mW/oC above +70oC)............900mW  
28-pin TSSOP  
ICC (DC VCC or GND current).........................+100mA  
(derate 13.2mW/oC above +70oC).........1100mW  
Input Voltages  
VL........................................................-0.3V to +6.0V  
ELECTRICAL CHARACTERISTICS  
VCC = +2.35 to +5.5V, VL=+1.8 to +5.5V, C1 - C4 = 0.22µF.  
TA=TMIN to TMAX, unless otherwise noted. Typical values are at VCC=VL=+3.3V, and TA = +25°C.)  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS  
CONDITIONS  
SUPPLY CURRENT  
Supply Current,  
AUTO ON-LINE  
1.0  
10  
10  
µA  
µA  
All RxIN open, all TxIN at VLor GND,  
VCC=VL=+3.3V, TA=25°C  
ONLINE = GND, SHUTDOWN = VL,  
®
Supply Current, Shutdown  
1.0  
0.3  
All RxIN open, all TxIN at VL or GND  
VCC=VL=+3.3V, TA=25°C  
ONLINE = VL or GND, SHUTDOWN =  
GND  
Supply Current,  
AUTO ON-LINE Disabled  
1.0  
mA  
All TxIN at VL or GND, ONLINE = VL,  
VCC=VL=+3.3V, TA=25°C  
®
SHUTDOWN = VL,no load  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold LOW  
TxIN, ONLINE, SHUTDOWN  
VL = +3.3V or +5.0V  
VL = +2.5V  
0.8  
0.6  
0.4  
V
V
VL = +1.8V  
Input Logic Threshold HIGH  
TxIN, ONLINE, SHUTDOWN  
VL = +5.0V  
VL = +3.3V  
2.4  
2.0  
1.4  
VL = +2.5V  
0.9  
VL = +1.8V  
Transmitter Input Hysteresis  
Input Leakage Current  
0.3  
V
±0.01  
±1.0  
±10  
µA  
TxIN, ONLINE, SHUTDOWN,  
TA = 25°C  
Output Leakage Current  
Output Voltage LOW  
±0.05  
µA  
RxOUT, Receivers disabled  
0.4  
0.4  
V
IOUT = +1.6mA, VL=2.5V, 3.3V, or 5.0V  
IOUT = +0.8mA, VL=1.8V  
Output Voltage HIGH  
VL - 0.6 VL - 0.1  
VL - 0.6 VL - 0.1  
V
IOUT = -1.0mA, VL=2.5V, 3.3V, 5.0V  
IOUT = -0.5mA, VL=1.8V  
DRIVER OUTPUTS  
VCC Mode Switch Point  
(VCC is Falling)  
2.95  
3.3  
3.1  
3.5  
3.25  
3.7  
V
V
TxOUT=±5.0V to ±3.7V  
TxOUT=±3.7V to ±5.0V  
VCC Mode Switch Point  
(VCC is Rising)  
VCC Mode Switch Point  
Hysteresis  
400  
mV  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
VCC = +2.35 to +5.5V, VL=+1.8 to +5.5V, C1 - C4 = 0.22µF.  
TA=TMIN to TMAX, unless otherwise noted. Typical values are at VCC=VL=+3.3V, and TA = +25°C.)  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS  
CONDITIONS  
Output Voltage Swing  
All driver outputs loaded with 3Kto  
GND, TA=25°C  
±5.0  
+/-3.7  
±5.4  
V
VCC=3.25V to 5.5V,  
VCC=2.35 to 2.95V,  
Output Resistance  
300  
VCC = V+ = V- = 0V, VTXOUT = ±2V  
Output Short-Circuit Current  
Ouput Leakage Current  
±35  
±60  
mA  
VTXOUT = GND  
+/-25  
µA  
VTXOUT=+/-12V, transmitter disabled,  
VCC=0V or 2.35V to 5.5V  
RECEIVER INPUTS  
Input Voltage Range  
-25  
25  
V
V
Input Threshold  
LOW  
0.3  
0.6  
0.8  
0.8  
1.2  
1.5  
VL=1.8V, TA=25°C  
VL=2.5V or 3.3V, TA=25°C  
VL=5.0V, TA=25°C  
HIGH  
1.0  
1.5  
1.8  
1.8  
2.4  
2.4  
V
VL=1.8V, TA=25°C  
VL=2.5V or 3.3V, TA=25°C  
VL=5.0V, TA=25°C  
Input Hysteresis  
0.3  
5
V
Input Resistance  
3
7
kΩ  
TA=25°C  
®
AUTO ON-LINE CIRCUITRY CHARACTERISTICS (ONLINE = GND, SHUTDOWN = VCC  
STATUS Output Voltage  
)
LOW  
0.4  
V
IOUT = 1.6mA, VL=2.5V, 3.3V, 5.0V  
or IOUT = +0.8mA, VL=1.8V  
HIGH  
VL - 0.6 VL-0.1  
200  
IOUT = -1.0mA, VL=2.5V, 3.3V, 5.0V  
or IOUT = -0.5mA, VL=1.8V  
Receiver Threshold to Drivers  
µs  
Enabled (tONLINE  
)
Receiver +/- Threshold  
to Status HIGH (tSTSH  
)
20  
20  
µs  
µs  
to Status LOW (tSTSL  
AC Characteristics  
Maximum Data Rate  
)
250  
kbps  
SP3282EB: RL = 3k, CL = 1000pF,  
one driver switching  
Receiver Propagation Delay  
Receiver input to output, CL = 150pF  
t
t
0.15  
0.15  
µs  
PHL  
PLH  
Receiver Output Enable Time  
Receiver Output Disable Time  
Time to Exit Shutdown  
200  
200  
100  
100  
50  
ns  
ns  
µs  
ns  
ns  
Normal operation  
Normal operation  
|VTXOUT|>3.7V, VCC=3.3V  
Measured at zero crossover  
Measured at zero crossover  
Driver Skew |tPHL-tPLH  
|
Receiver Skew |tPHL-tPLH  
|
Transition-Region Slew Rate  
VCC = 3.3V, RL = 3kto 7k,  
TA = 25°C, measurements taken from  
-3.0V to+3.0V or +3.0V to -3.0V  
CL = 150pF to 1000pF  
30  
V/µs  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
3
PIN DESCRIPTION  
NAME  
C2+  
FUNCTION  
PIN NO.  
Positive terminal of the symmetrical charge-pump capacitor C2.  
Ground.  
1
2
GND  
C2-  
Negative terminal of the symmetrical charge-pump capacitor C2.  
Regulated -4.0V or -5.5V output generated by the charge pump.  
RS-232 driver output.  
3
V-  
4
T1OUT  
T2OUT  
T3OUT  
R1IN  
5
RS-232 driver output.  
6
RS-232 driver output.  
7
RS-232 receiver input.  
8
R2IN  
RS-232 receiver input.  
9
T4OUT  
R3IN  
RS-232 driver output.  
10  
11  
12  
RS-232 receiver input.  
T5OUT  
ONLINE  
RS-232 driver output.  
®
Apply logic HIGH to override AUTO ON-LINE circuitry keeping drivers active  
(SHUTDOWN must also be logic HIGH, refer to Table 2).  
Apply logic LOW to shut down drivers and charge pump.  
13  
SHUTDOWN  
®
This overrides all AUTO ON-LINE circuitry and ONLINE (refer to Table 2).  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
STATUS  
VL  
TTL/CMOS Output indicating if a RS-232 signal is present on any Rx input.  
Logic level supply voltage selection  
TTL/CMOS driver input.  
T5IN  
R3OUT  
T4IN  
TTL/CMOS receiver output.  
TTL/CMOS driver input.  
R2OUT  
R1OUT  
T3IN  
TTL/CMOS receiver output.  
TTL/CMOS receiver output.  
TTL/CMOS driver input.  
T2IN  
TTL/CMOS driver input.  
T1IN  
TTL/CMOS driver input.  
C1-  
Negative terminal of the symmetrical charge-pump capacitor C1.  
+2.35V to +5.5V supply voltage.  
VCC  
V+  
Regulated +4.0V or +5.5V output generated by the charge pump.  
Positive terminal of the symmetrical charge-pump capacitor C1  
C1+  
Table 2. Device Pin Description  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
4
TYPICAL PERFOMANCE CHARACTERISTICS  
Unless otherwise noted, the following perfomance characteristics apply for VCC = +4.2V, 250kbps data rate, all drivers loaded with 3k, 0.22µF charge  
pump capacitors, and TAMB = +25°C.  
VCC  
+
+
26  
CC  
0.1µF  
0.1µF  
C5  
C1  
V
1
2
3
4
5
6
7
28  
27  
26  
25  
24  
23  
C2+  
GND  
C2-  
V-  
C1+  
V+  
28  
27  
4
C1+  
C1-  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
25  
1
VCC  
C2+ SP3282EB  
+
C2  
0.1µF  
C1-  
IN  
3
C2-  
T1IN  
T2IN  
T
1OUT  
T
5
T
T
OUT  
24  
23  
1
1
SP3282EB  
T
2OUT  
6
T
IN  
OUT  
2
2
T
3OUT  
T
3IN  
T4IN  
5IN  
22  
19  
17  
7
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
22  
T
OUT  
T
IN  
3
3
T4OUT  
10  
12  
T
5OUT  
T
R
IN  
IN  
8
9
21  
20  
19  
18  
17  
16  
R OUT  
1
1
R
R
OUT  
2
2
R1IN  
R2IN  
R3IN  
R1OUT  
R2OUT  
R3OUT  
21  
20  
18  
8
9
10  
T
T
OUT  
T
IN  
4
4
5k  
5kΩ  
5kΩ  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
R3IN 11  
OUT  
R
OUT  
3
11  
T
IN  
12  
5
5
VCC  
ONLINE 13  
V
L
14  
13  
SHUTDOWN  
ONLINE  
SHUTDOWN 14  
15  
STATUS  
16  
Logic Level Select  
VL  
GND  
2
Figure 2. SP3282EB Pinout Configuration  
Figure 3. SP3282EB Application Diagram  
VCC  
+
+
26  
CC  
0.1µF  
0.1µF  
C5  
C1  
V
28  
27  
C1+  
C1-  
V+  
+
C3  
C4  
0.1µF  
0.1µF  
25  
1
C2+ SP3282EB  
4
V-  
+
C2  
0.1µF  
+
3
C2-  
T1IN  
T2IN  
T
1OUT  
5
24  
23  
T2OUT  
T3OUT  
T4OUT  
6
T
3IN  
T4IN  
5IN  
22  
19  
17  
7
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
10  
12  
T
5OUT  
T
R
1IN  
R1OUT  
R2OUT  
R3OUT  
21  
20  
18  
8
5k  
5kΩ  
5kΩ  
TTL/CMOS  
OUTPUTS  
R2IN  
R3IN  
9
RS-232  
INPUTS  
11  
V
CC  
14  
13  
SHUTDOWN  
ONLINE  
16  
Logic Level Select  
VL  
GND  
2
Figure 4. Circuit for the connectivity of the SP3282EB with a DB-9 connector  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
5
DESCRIPTION  
THEORY OF OPERATION  
The SP3282EB device meets the EIA/TIA-232  
and ITU-T V.28/V.24 communication protocols  
and can be implemented in battery-powered, por-  
table, or hand-held applications such as notebook  
or palmtop computers. The SP3282EB device  
features Sipex's proprietary and patented (U.S.  
#5,306,954) on-board charge pump circuitry that  
generates ±5.5V RS-232 voltage levels from a  
single +3.3V to +5.5V power supply. The  
SP3282EB will adhere to EIA/TIA-562 voltage  
levels with VCC as low as 2.35V.  
The SP3282EB device is made up of four basic  
circuit blocks: 1. Drivers, 2. Receivers,  
3. The Sipex proprietary charge pump, and  
4. AUTO ON-LINE® circuitry.  
Drivers  
The drivers are inverting level transmitters that ,  
when VCC is between +3.3V and +5.5V, convert  
TTL or CMOS logic levels to 5.0V EIA/TIA-232  
levels with an inverted sense relative to the input  
logiclevels. Typically,theRS-232outputvoltage  
swing is +5.4V with no load and +5V minimum  
fully loaded. The driver outputs are protected  
against infinite short-circuits to ground without  
degradation in reliability. These drivers comply  
with the EIA-TIA-232F and all previous RS-232  
versions. The driver outputs will adhere to EIA/  
TIA-562 when VCC is as low as 2.35V.  
TheSP3282EBdeviceisanidealchoiceforpower  
sensitive designs. The SP3282EB device features  
AUTO ON-LINE® circuitry which reduces the  
power supply drain to a 1µA supply current. In  
many portable or hand-held applications, an RS-  
232 cable can be disconnected or a connected  
peripheral can be turned off. Under these condi-  
tions,theinternalchargepumpandthedriverswill  
be shut down. Otherwise, the system automati-  
cally comes online. This feature allows design  
engineers to address power saving concerns with-  
out major design changes.  
TheSP3282EBdriverscanguaranteeadatarateof  
250 kbps fully loaded with 3kin parallel with  
1000pF, ensuring compatibility with PC-to-PC  
communicationsoftware.Allunuseddriverinputs  
must be connected to VL or GND.  
Figure 6 shows a loopback test circuit used to test  
theSP3282EBRS-232drivers. Figure7showsthe  
test results of the loopback circuit with all five  
drivers active at 120kbps with typical RS-232  
loads in parallel with 1000pF capacitors. Figure 8  
shows the test results where one driver was active  
at 250kbps and all five drivers loaded with an RS-  
232receiverinparallelwitha1000pFcapacitor. A  
solid RS-232 data transmission rate of 120kbps  
provides compatibility with many designs in per-  
sonalcomputerperipheralsandLANapplications.  
V
CC  
+
+
26  
0.1µF  
0.1µF  
C5  
C1  
V
CC  
28  
27  
4
C1+  
V+  
+
+
C3  
C4  
0.1µF  
0.1µF  
25  
1
C1-  
C2+  
SP3282EB  
V-  
+
C2  
0.1µF  
3
24  
23  
22  
19  
C2-  
T
1OUT  
T1IN  
5
RxD  
CTS  
DSR  
T2OUT  
T3OUT  
T4OUT  
T2IN  
6
T
3IN  
7
RS-232  
OUTPUTS  
T4IN  
10  
12  
DCD  
RI  
UART  
or  
Serial µC  
T
5OUT  
T
5IN  
17  
R1IN  
R2IN  
R3IN  
R
1OUT  
TxD  
RTS  
DTR  
21  
20  
18  
8
Receivers  
5k  
5kΩ  
5kΩ  
R
2OUT  
9
The receivers convert ±5.0V EIA/TIA-232  
levels to TTL or CMOS logic output levels.  
RS-232  
INPUTS  
R
3OUT  
11  
V
CC  
14  
13  
SHUTDOWN  
ONLINE  
Receivers are not active when in shutdown. If  
there is no activity present at the receivers for a  
period longer than 100µs during AUTO ON-  
LINE® mode or when SHUTDOWN is enabled,  
the device goes into a standby mode where the  
circuit draws 1µA. The truth table logic of the  
driver and receiver outputs can be found in  
Table 3.  
16  
V
L
15  
STATUS  
GND  
2
µP  
Supervisor  
IC  
V
IN  
RESET  
Figure 5. Interface Circuitry Being Controlled by  
Microprocessor Supervisory Circuit  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
6
Sincereceiverinputisusuallyfromatransmission  
line where long cable lengths and system  
interference can degrade the signal, the inputs  
have a typical hysteresis margin of 300mV. This  
ensures that the receiver is virtually immune to  
noisy transmission lines. Should an input be left  
unconnected,aninternal5kpulldownresistorto  
ground will commit the output of the receiver to a  
HIGH state.  
VCC  
VCC  
+
+
0.1µF  
0.1µF  
C5  
C1  
C1+  
C1-  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C2+ SP3282EB  
+
Charge Pump  
C2  
0.1µF  
C2-  
The charge pump is a Sipex–patented design  
(U.S. #5,306,954) and uses a unique approach  
compared to older less–efficient designs. The  
charge pump uses a four–phase voltage  
shifting technique to attain symmetrical ±5.5V  
power supplies. The internal power supply con-  
sistsofaregulateddualchargepumpthatprovides  
output voltages ±5.5V regardless of the input  
voltage (VCC) over the +3.3V to +5.5V range.  
This is important to maintain compliant RS-232  
levels regardless of power supply  
fluctuations. The charge pump will provide out-  
putvoltagelevelsof±4.0Vwhentheinputvoltage  
(VCC) is from +3.1V to +2.35V.  
TxOUT  
RxIN  
TxIN  
LOGIC  
INPUTS  
1000pF  
RxOUT  
LOGIC  
OUTPUTS  
5k  
VCC  
ONLINE  
SHUTDOWN  
GND  
Figure 6. Loopback Test Circuit for RS-232 Driver Data  
Transmission Rates  
The charge pump operates in a discontinuous  
mode using an internal oscillator. If the output  
voltages are less than a magnitude of 5.5V ( VCC  
> 3.3V ) and 4.0V (VCC < 3.1V), the charge pump  
is enabled. If the output voltages exceed a  
magnitude of 5.5V (VCC > 3.3V) and 4.0V (VCC  
<
3.1V), the charge pump is disabled. This oscilla-  
tor controls the four phases of the voltage shifting  
(Figure 10).  
A description of each phase follows.  
Phase 1 (Figure 11)  
Figure 7. Loopback Test Circuit Result at 120kbps  
(All Drivers Fully Loaded)  
[
T
]
+6V  
a) C2+  
T
T
0V  
0V  
1
2
2
b) C2-  
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 1.96V  
Figure 8. Loopback Test Circuit result at 250kbps  
(All Drivers Fully Loaded)  
Figure 10. Charge Pump Waveforms  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
7
fromVCC,inano–loadconditionV+ andVwillbe  
symmetrical. Older charge pump approaches that  
generate Vfrom V+ will show a decrease in the  
magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
— VSS charge storage — During this phase of the  
clock cycle, the positive side of capacitors C1 and  
C2areinitiallychargedtoVCC. Cl+isthenswitched  
to GND and the charge in C1 is transferred to C2  
+
. Since C2 is connected to VCC, the voltage poten-  
tial across capacitor C2 is now 2 times VCC.  
The clock rate for the charge pump typically  
operatesat500kHz. Theexternalcapacitors should  
be 0.22µF with a 16V working voltage rating for  
a VCC input range of +2.35V to +5.5V.  
Phase 2 (Figure 12)  
— VSS transfer — Phase two of the clock  
connects the negative terminal of C2 to the VSS  
storagecapacitorandthepositiveterminalofC2 to  
GND. This transfers a negative generated voltage  
to C3. This generated voltage is  
regulated to a minimum voltage of -5.5V (VCC  
3.3V) and -4.0V (VCC < 3.1V).  
>
Charge Pump Capacitor Selection  
SimultaneouswiththetransferofthevoltagetoC3,  
thepositivesideofcapacitorC1 isswitchedtoVCC  
and the negative side is connected to GND.  
The charge pump capacitors C1-C4 and bypass  
C5 can be of any type including ceramic. If  
polarized capacitors are used, refer to figure 3  
application diagram for proper orientation. The  
following chart illustrates the minimum capaci-  
tor valve for a given input voltage range.  
Phase 3 (Figure 13)  
— VDD charge storage — The third phase of the  
clock is identical to the first phase — the charge  
transferred in C1 produces –VCC in the negative  
terminalofC1,whichisappliedtothenegativeside  
of capacitor C2. Since C2+ is at VCC, the voltage  
potential across C2 is 2 times VCC.  
VCC (V)  
3.0 to 3.6  
4.5 to 5.5  
2.35 to 5.5  
C1 and C5 (µF) C2,C3,C4 (µF)  
0.1  
0.047  
0.22  
0.1  
0.33  
0.22  
Phase 4 (Figure 14)  
— VDD transfer — The fourth phase of the clock  
connects the negative terminal of C2 to GND, and  
transfers this positive generated voltage across C2  
to C4, the VDD storage capacitor. This voltage is  
regulated to +5.5V (VCC > 3.3V) and +4.0V  
(VCC<3.1V). Atthisvoltage,theinternaloscillator  
is disabled. Simultaneous with the transfer of the  
voltage to C4, the positive side of capacitor C1 is  
switchedtoVCC andthenegativesideisconnected  
to GND, allowing the charge pump cycle to begin  
again. The charge pump cycle will continue as  
long as the operational conditions for theinternal  
oscillator are present.  
Since both V+ and Vare separately generated  
V
CC  
+V  
+
CC  
C
4
+
-
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
-
C
2
C
1
-
-
+
SS  
C
3
-V  
CC  
-V  
CC  
Figure 11. Charge Pump — Phase 1  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
8
V
CC  
C
4
+
-
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
-
+
-
C
2
C
1
-
+
SS  
C
3
-5.5V or -4.0V  
Figure 12. Charge Pump — Phase 2  
V
CC  
+V  
CC  
C
4
+
-
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
-
C
2
C
1
-
-
+
V
SS  
C
3
-V  
CC  
-V  
CC  
Figure 13. Charge Pump — Phase 3  
V
CC  
+5.5V or +4.0V  
+
C
4
+
-
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
C
2
C
1
-
-
-
+
SS  
C
3
Figure 14. Charge Pump — Phase 4  
S
H
U
T
+2.7V  
0V  
-2.7V  
R
INACT  
RECEIVER  
RS-232 INPUT  
VOLTAGES  
Inactive Detection Block  
X
D
O
W
N
V
CC  
0V  
STATUS  
RS-232  
Receiver Block  
R
IN  
X
R OUT  
X
t
STSL  
t
STSH  
t
ONLINE  
+5V  
DRIVER  
RS-232 OUTPUT  
VOLTAGES  
0V  
Figure 15. Stage I of AUTO ON-LINE® Circuitry  
-5V  
Figure 17. AUTO ON-LINE® Timing Waveforms  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
9
Delay  
Stage  
Delay  
Stage  
Delay  
Stage  
STATUS  
R
1
INACT  
R
INACT  
R INACT  
3
2
Figure 16. Stage II of AUTO ON-LINE® Circuitry  
SHUTDOWN ONLINE  
RS-232 SIGNAL AT  
RECEIVER INPUT  
STATUS  
OUTPUT  
TRANSCEIVER  
STATUS  
TXOUT RXOUT  
INPUT  
INPUT  
Normal  
Operation  
HIGH  
-
YES  
NO  
HIGH  
Active  
Active  
Active  
Active  
Normal  
Operation  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
AUTO ON-LINE®  
NO  
High-Z Active  
Mode  
LOW  
LOW  
-
-
YES  
NO  
HIGH  
LOW  
High-Z High-Z  
High-Z High-Z  
Shutdown  
Shutdown  
Table 3. AUTO ON-LINE® Logic  
AUTO ON-LINE® Circuitry  
The SP3282EB device has a patent pending  
AUTO ON-LINE® circuitry on board that saves  
power in applications such as laptop computers,  
palmtop (PDA) computers, and other portable  
systems.  
receiver input typically sees at least +3V, which  
aregeneratedfromthetransmittersattheotherend  
of the cable with a +5V minimum. When the  
external transmitters are disabled or the cable is  
disconnected, the receiver inputs will be pulled  
down by their internal 5kresistors to ground.  
Whenthisoccursoveraperiodoftime,theinternal  
transmitters will be disabled and the device goes  
intoashutdownorstandbymode. WhenONLINE  
isHIGH,theAUTO ON-LINE®modeisdisabled.  
The SP3282EB device incorporates an  
AUTO ON-LINE® circuit that automatically  
enables itself when the external transmitters are  
enabled and the cable is connected. Conversely,  
the AUTO ON-LINE® circuit also disables most  
of the internal circuitry when the device is not  
beingusedandgoesintoastandbymodewherethe  
device typically draws 1µA. This function is  
controlled by the ONLINE pin. When this pin is  
tied to a logic LOW, the AUTO ON-LINE® func-  
tion is active. Once active, the device is enabled  
untilthereisnoactivityonthereceiverinputs. The  
The AUTO ON-LINE® circuit has two stages:  
1) Inactive Detection  
2) Accumulated Delay  
The first stage, shown in Figure 15, detects an  
inactive input. A logic HIGH is asserted on  
RXINACT if the cable is disconnected or the  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
10  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
external transmitters are disabled. Otherwise,  
RXINACT will be at a logic LOW. This circuit is  
duplicated for each of the other receivers.  
The Human Body Model has been the generally  
acceptedESDtestingmethodforsemiconductors.  
This method is also specified in MIL-STD-883,  
Method 3015.7 for ESD testing. The premise of  
this ESD test is to simulate the human body’s  
potential to store electro-static energy and  
dischargeittoanintegratedcircuit.Thesimulation  
is performed by using a test model as shown in  
Figure18. ThismethodwilltesttheIC’scapability  
to withstand an ESD transient during normal  
handlingsuchasinmanufacturingareaswherethe  
ICs tend to be handled frequently.  
The second stage of the AUTO ON-LINE® cir-  
cuitry, shown in Figure 16, processes all the  
receiver's RXINACT signals with an accumulated  
delay that disables the device to a 1µA supply  
current. The STATUS pin goes to a logic LOW  
when the cable is disconnected, or when the exter-  
nal transmitters are disabled.  
When the drivers or internal charge pump are  
disabled, the supply current is reduced to 1µA.  
This can commonly occur in hand-held or  
portable applications where the RS-232 cable is  
disconnected or the RS-232 drivers of the  
connected peripheral are turned off.  
TheIEC-1000-4-2,formerlyIEC801-2,isgenerally  
used for testing ESD on equipment and systems.  
For system manufacturers, they must guarantee a  
certainamountofESDprotectionsincethesystem  
itself is exposed to the outside environment and  
human presence. The premise with IEC1000-4-2  
is that the system is required to withstand an  
amountofstaticelectricitywhenESDisappliedto  
points and surfaces of the equipment that are  
accessible to personnel during  
The AUTO ON-LINE® mode can be disabled by  
the SHUTDOWN pin. If this pin is a logic LOW,  
the AUTO ON-LINE® function will not operate  
regardless of the logic state of the ONLINE pin.  
Table 3 summarizes the logic of the AUTO ON-  
LINE® operatingmodesandthetruthtablelogicof  
the driver and receiver outputs.  
normalusage. ThetransceiverICreceivesmostof  
theESDcurrentwhentheESDsourceisappliedto  
the connector pins. The test circuit for IEC1000-  
4-2 is shown on Figure 19. There are two methods  
within IEC1000-4-2, the Air Discharge method  
and the Contact Discharge method.  
When the SP3282EB device is shut down, the  
chargepumpisturnedoff. V+chargepumpoutput  
decays to VCC, the V- output decays to GND. The  
decay time will depend on the size of capacitors  
used for the charge pump. Once in shutdown, the  
time required to exit the shut down state and have  
valid V+ and V- levels is typically 200µs.  
WiththeAirDischargeMethod,anESDvoltageis  
appliedtotheequipmentundertest(EUT)through  
air. This simulates an electrically charged person  
readytoconnectacableontotherearofthesystem  
only to find an unpleasant zap just before the  
person touches the back panel. The high energy  
potential on the person discharges through an  
arcingpathtotherearpanelofthesystembeforehe  
or she even touches the system. This energy,  
whether discharged directly or through air, is  
predominantly a function of the discharge current  
rather than the discharge voltage. Variables with  
an air discharge such as approach speed of the  
object carrying the ESD potential to the system  
and humidity will tend to change the discharge  
current. Forexample,therisetimeofthedischarge  
current varies with the approach speed.  
For easy programming, the STATUS pin can be  
used to indicate DTR or a Ring Indicator signal.  
Tying ONLINE and SHUTDOWN together  
willbypasstheAUTOON-LINE® circuitrysothis  
connection acts like a shutdown input pin.  
ESD TOLERANCE  
The SP3282EB device incorporates ruggedized  
ESD cells on all driver output and receiver input  
pins. The ESD structure is improved over our  
previous family for more rugged applications and  
environmentssensitivetoelectro-staticdischarges  
and associated transients. The improved ESD tol-  
eranceisatleast+15kVwithoutdamagenorlatch-  
up.  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
There are different methods of ESD testing ap-  
plied:  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
11  
devised to reduce the unpredictability of the ESD  
arc. The discharge current rise time is constant  
since the energy is directly transferred without the  
air-gaparc. Insituationssuchashandheldsystems,  
the ESD charge can be directly discharged to the  
equipment from a person already holding the  
equipment. The current is transferred on to the  
keypadortheserialportoftheequipmentdirectlyand  
then travels through the PCB and finally to the IC.  
The higher C value and lower RS value in the  
IEC1000-4-2 Smodel are more stringent than the  
HumanBodyModel. Thelargerstoragecapacitor  
injectsahighervoltagetothetestpointwhenSW2  
is switched on. The lower current limiting resistor  
increases the current charge onto the test point.  
30A  
15A  
0A  
The circuit model in Figures 18 and 19 represent  
the typical ESD testing circuit used for all three  
methods. The CS is initially charged with the DC  
power supply when the first switch (SW1) is on.  
Now that the capacitor is charged, the second  
switch (SW2) is on while SW1 switches off. The  
voltage stored in the capacitor is then applied  
through RS, the current limiting resistor, onto the  
device under test (DUT). In ESD tests, the SW2  
switch is pulsed so that the device under test  
receives a duration of voltage.  
t=0ns  
t=30ns  
For the Human Body Model, the current limiting  
resistor (RS) and the source capacitor (CS) are  
1.5kan100pF, respectively. ForIEC-1000-4-2,  
the current limiting resistor (RS) and the source  
capacitor (CS) are 330an 150pF, respectively.  
t ■  
Figure 20. ESD Test Waveform for IEC1000-4-2  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 18. ESD Test Circuit for Human Body Model  
CCoonnttaacctt--DDiisscchhaarrggee MMoodduullee  
R
R
S
S
R
R
V
V
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 19. ESD Test Circuit for IEC1000-4-2  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
12  
DEVICE PIN  
TESTED  
HUMAN BODY  
MODEL  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 4. Transceiver ESD Tolerance Levels  
PACKAGE: 28 PIN TSSOP  
D
e
Ø2  
E
E1  
Seaing Plane  
L
Ø3  
Ø1  
L1  
DETAIL A  
1
2
INDEX AREA  
D
2
E1  
2
x
SEE DETAIL “A”  
A2  
A
Seating Plane  
A1  
b
B
B
28 Pin TSSOP JEDEC MO-153 (AE)  
Variation  
MIN  
NOM  
MAX  
SYMBOL  
A
A1  
A2  
b
c
D
-
-
-
1
-
-
1.2  
0.05  
0.8  
0.19  
0.09  
9.6  
0.15  
1.05  
0.3  
0.2  
9.8  
b
9.7  
e
E
E1  
L
0.65 BSC  
6.40 BSC  
4.4  
C
4.3  
0.45  
4.5  
0.75  
0.6  
L1  
Ø1  
Ø2  
Ø3  
1.00 REF  
-
12º REF  
12º REF  
Section B-B  
0º  
8º  
Note: Dimensions in (mm)  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
13  
PACKAGE: 28 PIN SSOP  
D
N
SEE DETAIL “A”  
E
E1  
1
INDEX AREA  
2
D
2
E1  
x
2
2 NX R R1  
A
A
Gauge Plane  
Seaing Plane  
L
Ø
L1  
DETAIL A  
28 Pin SSOP JEDEC MO-150 (AH) Variation  
MIN  
NOM  
MAX  
SYMBOL  
A
A1  
A2  
b
c
D
E
E1  
L
L1  
ø
-
-
-
2
-
A2  
A
0.05  
1.65  
0.22  
0.09  
9.9  
7.4  
5
Seating Plane  
1.75  
-
-
10.2  
7.8  
5.3  
0.75  
1.25 REF  
4º  
1.85  
0.38  
0.25  
10.5  
8.2  
5.6  
0.95  
A1  
b
0.55  
WITH LEAD FINISH  
0º  
8º  
Note: Dimensions in (mm)  
c
BASE METAL  
b
Section A-A  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
14  
ORDERING INFORMATION  
Model  
Temperature Range  
Package Types  
SP3282EBCA ................................................. 0°C to +70°C ..................................................... 28-pin SSOP  
SP3282EBCA/TR............................................ 0°C to +70°C ..................................................... 28-pin SSOP  
SP3282EBCY .................................................. 0°C to +70°C ................................................... 28-pin TSSOP  
SP3282EBCY/TR ............................................ 0°C to +70°C ................................................... 28-pin TSSOP  
SP3282EBEA ................................................. 40°C to +85°C .................................................... 28-pin SSOP  
SP3282EBEA/TR ........................................... 40°C to +85°C .................................................... 28-pin SSOP  
SP3282EBEY ................................................. 40°C to +85°C .................................................. 28-pin TSSOP  
SP3282EBEY/TR ........................................... 40°C to +85°C .................................................. 28-pin TSSOP  
Available in lead free packaging. To order add "-L" suffix to part number.  
Example: SP3282EBEYTR = standard; SP3282EBEY-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 1,500 for SSOP or TSSOP.  
CLICK HERE TO ORDER SAMPLES  
Corporation  
ANALOGEXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Date: 02/24/05  
SP3282EB Intelligent +2.35V to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
15  

相关型号:

SP3282EBEA

Intelligent +2.35V to +5.5V RS-232 Transceivers
SIPEX

SP3282EBEA-L

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO28, LEAD FREE, MO-150AH, SSOP-28
SIPEX

SP3282EBEA/TR

Intelligent +2.35V to +5.5V RS-232 Transceivers
SIPEX

SP3282EBEY

Intelligent +2.35V to +5.5V RS-232 Transceivers
SIPEX

SP3282EBEY-L

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO28, LEAD FREE, MO-153AE, TSSOP-28
SIPEX

SP3282EBEY/TR

Intelligent +2.35V to +5.5V RS-232 Transceivers
SIPEX

SP33-1001

STEPPING MOTORS
NIDEC

SP3304N

The SP3304N integrates 4 channels of low capacitance diodes with an additional zener diode to protect sensitive I/O pins against lightning induced surge events and ESD.
LITTELFUSE

SP3304NUTG

The SP3304N integrates 4 channels of low capacitance diodes with an additional zener diode to protect sensitive I/O pins against lightning induced surge events and ESD.
LITTELFUSE

SP330E

RS-232/RS-485/RS-422 TRANSCEIVER WITH 1.65V-5.5V INTERFACE
EXAR

SP330EEY-0A-EB

RS-232/RS-485/RS-422 TRANSCEIVER WITH 1.65V-5.5V INTERFACE
EXAR

SP330EEY-L

RS-232/RS-485/RS-422 TRANSCEIVER WITH 1.65V-5.5V INTERFACE
EXAR