SP6640CN [SIPEX]

Switching Regulator, 1A, PDSO8, SOIC-8;
SP6640CN
型号: SP6640CN
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Switching Regulator, 1A, PDSO8, SOIC-8

开关 光电二极管
文件: 总14页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP6639/40/53  
5V/ 3.3V/ 3V Adjustable, High Efficiency, Low IQ,  
Step-Down DC-DC Converter  
FEATURES  
High, 94% Efficiency  
100mA Output Current  
10µA Quiescent Current  
Low Current Shutdown Mode  
Low Battery Detector  
Preset 5.0V, 3.3V, 3.0V or Adjustable  
Output Voltage  
Low EMI Inductor Damping  
3.2V-11.5V Wide Input Range  
Only 4 External Components  
V
OUT  
1
2
3
4
8
7
6
5
SHDN  
VFB  
V+  
LBO  
LBI  
SP6639  
SP6640  
SP6653  
LX  
GND  
APPLICATIONS  
Cellular Phones  
Laptop Computers  
Distributed Power Systems  
5V to 3.3V Conversion  
DESCRIPTION  
The SP6639/40/53 step-down switching regulators provide high efficiency over a wide range  
of input voltage, output voltage and output current. Duty cycle modulation is used to achieve  
efficiencies over 90% for input voltages from 3.2V to 11.5V. It features a no load quiescent  
current of only 10µA. The circuit contains an internal power MOSFET reducing the external  
component count to only one inductor, a schottky diode and the usual input and output  
capacitors. Theinternaloscillatorisshutdownwhenthecircuitisinregulationtoreducepower  
consumption. Internal inductor damping significantly reduces EMI. This product is offered in  
an 8 lead nSOIC package.  
INPUT  
+4.0V to +11.5V  
L = 100µF  
OUTPUT  
5
LX  
6
8
+
V+  
1N5817  
C
OUT  
100µF  
SHDN  
1
7
R3  
+
VOUT  
C
IN  
100µF  
SP6639  
SP6640  
SP6653  
VFB  
GND  
4
LBI  
R4  
3
Adjustable Output Operation  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
1
Operating Temperature Ranges  
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability and cause permanent damage to the  
device.  
SP6639.................................................0°C to +70°C  
Storage Temperature......................-65°C to +160°C  
Lead Temperature (soldering sec)................+300°C  
V+............................................................................12V  
LX..........................................(V+ - 12V) to (V+ +0.3V)  
LBI,LBO,VFB,SHDN,VOUT...............-0.3Vto(V++0.3V)  
LXOutput Current (Note 1).......................................1A  
LBO Output Current...........................................10mA  
Continuous Power Dissipation (TA = +70°C)  
Plastic DIP  
(derate 9.09mW/°C above +70°C....................727mW  
SO (derate 5.88mW/°C above +70°C .............471mW  
ELECTRICAL SPECIFICATIONS  
(V+ = 6V for the SP6639, V+ = 5V for the SP6640/6653, ILOAD = 0mA, TA = TMIN to TMAX, typical values are at TA = 25°C, circuit of figure 3 unless  
otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNITS  
DC CHARACTERISTICS  
Supply Voltage  
3.2  
4.0  
10  
11.5  
20  
V
µA  
Supply Current  
SHDN = V+, no load  
Output Voltage (Note 2)  
SP6639, V+ = 5.2V to 11.5V, 0mA < IOUT < 100mA  
SP6640, V+ = 3.5V to 11.5V, 0mA < IOUT < 100mA  
SP6653, V+ = 3.2V to 11.5V, 0mA < IOUT < 100mA  
IOUT = 100mA, L = 100µH  
4.80  
3.17  
2.88  
5.00  
3.30  
3.00  
0.1  
5.20  
3.43  
3.12  
0.2  
V
V
Dropout Voltage  
IOUT = 100mA, L = 100µH  
91  
SP6639  
IOUT = 25mA, L = 470µH  
94  
IOUT = 100mA, L = 100µH  
87  
SP6640  
Efficiency  
%
IOUT = 25mA, L = 470µH  
91  
IOUT = 100mA, L = 100µH  
85  
SP6653  
IOUT = 25mA, L = 470µH  
89  
SP6639  
SP6640  
SP6653  
V+ = 6V, VOUT = 5V  
V+ = 4V, VOUT = 3.3V  
V+ = 4V, VOUT = 3V  
40.5  
57.0  
40.5  
40.5  
9.0  
47.0  
62.9  
45.4  
47.0  
11.0  
16.7  
18.3  
55.0  
52.0  
72.0  
50.0  
52.0  
13.6  
20.5  
22.0  
68.0  
µs  
µsV  
µs  
Switch On-Time  
Switch Off-Time  
SP66XX KON Note 3  
SP6639  
SP6640  
SP6653  
V+ = 6V, VOUT = 5V  
V+ = 4V, VOUT = 3.3V  
V+ = 4V, VOUT = 3V  
13.5  
15.0  
45.0  
µsV  
SP66XX KOFF Note 4  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
2
SPECIFICATIONS (continued)  
(V+ = 6V for the SP6639, V+ = 5V for the SP6640/6653, ILOAD = 0mA, TA = TMIN to TMAX, typical values are at TA=25°C,  
circuit of figure 3 unless otherwise noted.)  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
1.5  
UNITS  
V+ 6V, TA = +25OC, SP6639/40/53  
V+ 6V, TA = TMIN to TMAX, SP6639  
V+ 4V, TA = TMIN to TMAX, SP6640/53  
0.8  
2.5  
LX Switch On-Resistance  
LX Switch Leakage  
2.8  
TA = +25OC  
0.003  
1.0  
V+ = 7.5V, VLX = 0V  
µA  
TA = TMIN to TMAX  
30.0  
15.0  
VFB Bias Current  
VFB Dual-Mode Trip Point  
VFB Threshold  
VFB = 2V  
4.0  
50  
nA  
mV  
V
1.26  
1.28  
2
1.30  
10  
LBI Bias Current  
LBI Threshold  
VLBI = 2V  
nA  
V
1.26  
0.8  
1.28  
2.5  
1.30  
SP6639  
LBO Sink Current  
VLBO = 0.4V  
mA  
SP6640/SP6653  
0.4  
1.2  
µA  
µs  
LBO Leakage Current  
LBO Delay  
VLBO = 7.5V  
0.001  
25  
0.1  
50mV overdrive  
SHDN Threshold  
SHDN Pull-Up Current  
0.80  
0.10  
1.15  
0.20  
2.00  
0.40  
V
µA  
SHDN = 0V  
Note 1: Peak Inductor current must be limited to 600mA by using an inductor of 100µH or greater.  
Note 2: Output guaranteed by correlation to measurements of device parameters (i.e. switch on-resistance, on-times, off-times,  
and output voltage trip points).  
Note 3: KON = tON* (V+ -Vout). For the SP6639 V+ = 6V to 7.5V, Vout = 3V to 5V; for the SP6640 V+ = 4V to 7.5V, Vout = 3.3V;  
for the SP6653 V+ = 4V to 7.5V, Vout = 3V.  
Note 4: KOFF = TOFF * Vout. For the SP6639 V+ = 6V to 7.5V, Vout = 3V to 5V; for the SP6640 V+ = 4V to 7.5V, Vout = 3.3V;  
for the SP6653 V+ = 4V to 7.5V, Vout = 3V.  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
3
TYPICAL PERFORMANCE CHARACTERISTICS  
(Circuit of Figure 3. Internal Feedback, L = 100µH, TA = +25°C, unless otherwise noted)  
SP6639 Efficiency vs. Load and Supply  
SP6639 Efficiency vs. Load and Supply  
L = 100µH  
L = 470µH  
100.0  
95.0  
90.0  
85.0  
80.0  
100.0  
95.0  
90.0  
85.0  
80.0  
Vi = 5.2V  
Vi = 6.0V  
Vi = 5.2V  
Vi = 6.0V  
75.0  
70.0  
65.0  
75.0  
70.0  
65.0  
Vi = 8.0V  
Vi = 10.0V  
Vi = 11.5V  
Vi = 8.0V  
Vi = 10.0V  
Vi = 11.5V  
1.0  
10.0  
100.0  
1000.0  
1.0  
10.0  
100.0  
Output Current (mA)  
Output Current (mA)  
SP6640 Efficiency vs. Load and Supply  
SP6640 Efficiency vs. Load and Supply  
L = 100µH  
L = 470µH  
100.0  
95.0  
90.0  
85.0  
80.0  
100.0  
95.0  
90.0  
85.0  
80.0  
Vi = 3.6V  
Vi = 6.0V  
Vi = 3.6V  
Vi = 6.0V  
75.0  
70.0  
65.0  
75.0  
70.0  
65.0  
Vi = 8.0V  
Vi = 10.0V  
Vi = 11.5V  
Vi = 8.0V  
Vi = 10.0V  
Vi = 11.5V  
1.0  
10.0  
100.0  
1000.0  
1.0  
10.0  
100.0  
Output Current (mA)  
Output Current (mA)  
SP6653 Efficiency vs. Load and Supply  
SP6653 Efficiency vs. Load and Supply  
L = 470µH  
L = 100µH  
100.0  
95.0  
90.0  
85.0  
80.0  
100.0  
95.0  
90.0  
85.0  
80.0  
Vi = 3.6V  
Vi = 6.0V  
Vi = 3.6V  
Vi = 6.0V  
75.0  
70.0  
65.0  
75.0  
70.0  
65.0  
Vi = 8.0V  
Vi = 10.0V  
Vi = 11.5V  
Vi = 8.0V  
Vi = 10.0V  
Vi = 11.5V  
1.0  
10.0  
100.0  
1000.0  
1.0  
10.0  
100.0  
Output Current (mA)  
Output Current (mA)  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
4
TYPICAL PERFORMANCE CHARACTERISTICS  
(Circuit of Figure 3. Internal Feedback, L = 100µH, TA = +25°C, unless otherwise noted)  
Maximum Output Current vs. Input Voltage  
Maximum Output Current vs. Input Voltage  
L = 470µH  
L = 100µH  
250  
200  
150  
70  
60  
50  
40  
30  
20  
100  
50  
0
SP6639  
SP6640  
SP6653  
SP6639  
SP6640  
SP6653  
10  
0
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
9.0  
10.0  
11.0  
Supply Voltage (V)  
Supply Voltage (V)  
SP6653 Output Voltage Ripple  
40  
35  
30  
25  
20  
15  
10  
L = 100µH, I  
L = 220µH, I  
L = 470µH, I  
= 100mA  
= 60mA  
= 30mA  
OUT  
OUT  
OUT  
5
0
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0 11.0  
Supply Voltage (V)  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
5
PIN DESCRIPTION  
NAME  
FUNCTION  
PIN  
Sense input for regulated-output operation. Internally connected to an on-  
chip voltage divider and to the variable duty-cycle, on demand oscillator. It  
must be connected to the external regulated output.  
VOUT  
LBO  
1
Low-Battery Output. An open-drain N-channel MOSFET sinks current when  
the voltage at LBI drops below 1.28V.  
2
Low Battery Input. When the voltage at LBI drops below 1.28V, LBO sinks  
current.  
LBI  
GND  
LX  
3
4
5
6
Ground  
Drain of a PMOS power switch that has its source connected to V+. LX  
drives the external inductor, which provides current to the load.  
V+  
Positive Supply-Voltage Input. Should not exceed 12V  
Dual-Mode Feedback Pin. When VFB is grounded, the internal voltage  
divider sets the output to 5V (SP6639), 3.3v (SP6640), or 3V (SP6653).  
For adjustable operation, connect VFB to an external voltage divider.  
VFB  
7
8
Shutdown Input- active low. When pulled below 0.8V, the LX power switch  
stays off, shutting down the regulator. When the shutdown input is above  
2V, the regulator stays on. Tie SHDN to V+ if shutdown mode is not used.  
SHDN  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
6
cycle and switching frequency keeps the peak  
current constant as input voltage varies. The  
GETTING STARTED  
Designing power supplies with the SP6639/40/  
53 is easy. The few required external compo-  
nents are readily available. The most general  
applications use the following components:  
1. Capacitors: For the input and output filter  
capacitors,tryusingelectrolyticsinthe100µF  
range, or use low-ESF capacitors to minimize  
output ripple. Capacitor values are not critical.  
2. Diode: Use the popular 1N5817 equivalent  
Schottky diode.  
3. Inductor: For the highest output current,  
choose a 100µH inductor with an incremental  
saturation current rating of at least 600mA.  
To obtain the highest efficiencies and smallest  
size, refer to the Inductor Selection section.  
SP6639/40/53 control the switch ( tON and tOFF  
according to the following equations:  
)
47µsV  
(V+ – VOUT  
tON  
=
(1)  
)
55µsV  
VOUT  
tOFF  
=
(2)  
(3)  
50µsV  
L
IPEAK  
=
These three equations ensure constant peak cur-  
rents for a given inductor value, across all output  
voltages (ignoring the voltage drop across the  
diode (D1) and the resistive losses in the switch  
and inductor.) The off-time constant (KOFF) be-  
ing slightly greater than the on-time constant  
(KON)ensuresthatthecurrentthroughtheinduc-  
tor discharges to zero at the end of each pulse.  
Full-cycle logic ensures that once a charge/  
discharge cycle has started it will finish. This  
again makes sure that the inductor current is  
discharged to zero. At this point (as detected by  
an internal inductor damping comparator) the  
coil is shunted by an internal FET, effectively  
reducing the ringing on the LX node (and it’s  
associated EMI) to near zero.  
DETAILED DESCRIPTION  
Figure 1 shows a simplified, step-down DC-DC  
converter. When the switch is closed, a voltage  
equal to (V+ - VOUT) is applied to the inductor.  
The current through the inductor ramps up, stor-  
ing energy in the inductor's magnetic field. The  
same current also flows into the output filter  
capacitor and load. When the switch opens, the  
current continues to flow through the inductor in  
the same direction, but must also flow through  
the diode. The inductor alone supplies current to  
the load when the switch is open. The current  
decaystozeroastheenergystoredintheinductor's  
magnetic field is transferred to the output filter  
capacitor and the load.  
Figure 3 shows the SP6639/40/53 block dia-  
gram and a typical connection in which 7V is  
converted to 5V (SP6639), 3.3V (SP6640), or  
3.0V (SP6653). The sequence of events in this  
application is as follows:  
Figure 2 shows what happens to the ideal circuit  
ofFigure1iftheswitchturnsonwitha66%duty  
cycle and V+ = 3/2 VOUT. The inductor current  
rises more slowly than it falls because the mag-  
nitude of the voltage applied during tON is less  
than that applied during tOFF. Varying the duty  
I AT 200mA/DIV  
L
0A  
0V  
IL  
L
V AT5V/DIV  
L
VL  
+
V
OUT  
V
+
+
C
OUT  
SWITCH ON  
SWITCH ON  
SWITCH OFF  
SWITCH OFF  
Figure 1. Simplified Step-Down Converter  
Figure 2. Simplified Step-Down Converter Operation  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
7
When the output dips:  
Low-Battery Detector  
1) The error comparator switches high.  
2) The internal oscillator starts and connects  
to the gate of the LX output driver.  
3) LX turns on and off according to tON and  
The low battery detector compares the voltage  
on the LBI input with the 1.28V reference. LBO  
goes low whenever the input voltage at LBI is  
less than 1.28V. Set the low-battery detection  
voltage with resistors R1 and R2 (Figure 3) as  
determined by the following formula:  
t
OFF, charging and discharging the induc-  
tor, and supplying current to the output (as  
described above.)  
VLB  
When the output voltage recovers:  
1) The comparator switches low.  
2) After a full charge and discharge cycle, LX  
turns off.  
R1 = R2  
– 1  
(
)
LBI Threshold  
where R2 is any resistance in the 10krange  
(typically 100k), the LBI threshold is typi-  
cally 1.28V and the VLB is the desired low-  
batterydetectionvoltage. Thelow-batterycom-  
parator remains active in shutdown mode.  
3) The oscillator shuts down to save power.  
Fixed or Adjustable Output  
For operation at the present output voltage,  
connect VFB to GND; no external resistors are  
required. For other output voltages, use an  
external voltage divider. Set the output voltage  
using R3 and R4 as determined by the following  
Shutdown Mode  
BringingSHDNbelow0.8VplacestheSP6639/  
40/53 in shutdown mode. LX becomes high  
impedance, andthevoltageatVOUT fallstozero.  
The time required for the output to rise to its  
nominal regulated voltage when brought out of  
shutdown (start-up time) depends on the induc-  
tor value, input voltage, and load current. The  
low-battery comparator remains active in shut-  
down mode.  
formula.  
VOUT  
R3 = R4  
– 1  
(
)
VFB Threshold  
where R4 is any resistance in the 10krange  
(typically 100k), the LBI threshold is typi-  
cally 1.28V.  
Input +5.5V to +11.5V (SP6639),  
+3.5V to 11.5V (SP6640), +3.2V to 11.5V (SP6653)  
SHDN  
8
V+  
6
5V, 3.3V or 3.0V  
LX  
at 100mA  
LX  
+
C
IN  
100µF  
Internal  
MOSFET  
Switch  
5
L = 100µH  
Variable Frequency and  
Duty Cycle Oscillator with  
Full-Cycle Logic  
MBR1530  
+
_
Inductor  
Damping  
Comparator  
50mV  
V
OUT  
1
1.28V  
Bandgap  
Reference  
R1  
+
_
Error  
Comparator  
1.28V  
REF  
Low-Battery  
Comparator  
C
OUT  
+
+
LBI  
100µF  
3
LBO  
2
Mode Select  
Comparator  
50mV  
-
+
R2  
GND  
4
V
FB  
7
Figure 3. Block Diagram  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
8
Step1: Decideonthemaximumrequiredoutput  
INPUT  
+4.0V to +11.5V  
current, in amperes: IOUTMAX  
L = 100µF  
OUTPUT  
+
5
LX  
Step 2: IPEAK = 4 X IOUTMAX  
6
8
V+  
1N5817  
C
OUT  
100µF  
SHDN  
Step 3: L = 50/IPEAK. L will be in mH. Do not  
use an inductor of less than 100mH.  
Step 4: Make sure that IPEAK does not exceed  
0.6A or the inductor’s maximum cur-  
rent rating whichever is lower.  
1
7
R3  
+
VOUT  
C
IN  
100µF  
SP6639  
SP6640  
SP6653  
VFB  
GND  
4
LBI  
R4  
3
Inductorseriesresistanceaffectsbothefficiency  
and dropout voltage. A high series resistance  
severely limits the maximum current available  
at lower input voltages. Output currents up to  
150mA are possible if the inductor has low  
series resistance. Inductor and series switch  
resistance form an LR circuit during tON. If the  
Figure 4. Adjustable-Output Operation  
Inductor Selection  
When selecting an inductor, consider these four  
factors: peak-current rating, inductance value,  
series resistance, and size. It is important not to  
exceed the inductor's peak-current rating. A  
saturated inductor will pull excessive currents  
through SP6639/40/53's switch, and may cause  
damage. Avoid using RF chokes or air-core  
inductors since they have very low peak-current  
ratings. Electromagnetic interference must not  
upset nearby circuitry or the regulator IC. Fer-  
rite-bobbin types work for most digital circuits;  
toroids or pot cores work well for EMI-sensitive  
analog circuits.  
L/R time constant is less than the oscillator tON  
the inductor's peak-current will fall short of the  
desired IPEAK  
,
.
To maximize efficiency, choose the highest-  
value inductor that will provide the required  
output current over the whole range of your  
input voltage (see Typical Operating Character-  
istics).Inductorswithpeakcurrentsinthe600mA  
range do not need to be very large. They are  
about the size of a 1W resistor, with surface  
mount versions less than 5mm in diameter.  
Table 1 lists the suppliers of inductors suitable  
for use with the SP6639/40/53.  
Recall that the inductance value determines  
IPEAK for all input voltages (Equation 3). If  
there are no resistive losses and the diode is  
ideal, the maximum average current that can be  
drawn from the SP6639/40/53 will be one-half  
IPEAK. With the real losses in the switch,  
inductor, and diode taken into account, the real  
maximum output current typically varies from  
90% to 50% of the ideal. The following steps  
describeaconservativewaytopickanappropri-  
ate inductor.  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
9
INDUCTORS - SURFACE MOUNT  
Inductor Specification  
Inductance  
(uH)  
Manufacturer/  
Part No.  
Series R  
()  
Isat  
(A)  
Size LxWxH  
(mm)  
Inductor Type  
Manufacturer  
Website  
100  
220  
100  
220  
470  
100  
220  
470  
Sumida CD54-101  
Sumida CD54-221  
0.63  
1.50  
0.70  
1.80  
4.20  
0.28  
0.61  
1.27  
0.52  
0.35  
0.56  
0.32  
0.24  
1.20  
0.80  
0.50  
5.2x5.8x4.5  
5.2x5.8x4.5  
5.0x5.7x4.7  
5.0x5.7x4.7  
5.0x5.7x4.7  
Unshielded Ferrite Core www.sumida.com  
Unshielded Ferrite Core www.sumida.com  
Unshielded Ferrite Core www.murata.com  
Unshielded Ferrite Core www.murata.com  
Unshielded Ferrite Core www.murata.com  
Murata LQN6C101M04  
Murata LQN6C221M04  
Murata LQN6C471M04  
Coilcraft DO3316P-104  
Coilcraft DO3316P-224  
Coilcraft DO3316P-474  
12.9x9.4x5.0 Unshielded Ferrite Core www.coilcraft.com  
12.9x9.4x5.0 Unshielded Ferrite Core www.coilcraft.com  
12.9x9.4x5.0 Unshielded Ferrite Core www.coilcraft.com  
CAPACITORS - SURFACE MOUNT & THROUGH HOLE  
Capacitor Specification  
Capacitance  
(uF)  
Manufacturer/  
Part No.  
ESR Ripple Current Size LxWxH Voltage  
Capacitor  
Type  
Manufacturer  
Website  
(max) (A) @ 25C  
(mm)  
7343H  
8Dx10L  
(V)  
10  
16  
100  
100  
SANYO 10TPA100M  
SANYO 16SA100M  
0.08  
0.03  
1.2  
2.7  
SMT Tant. www.sanyovideo.com  
OS-CON  
www.sanyovideo.com  
SCHOTTKY DIODE - SURFACE MOUNT & THROUGH HOLE  
Diode Specification  
Manufacturer/  
Part No.  
V
IF(AV)  
(A)  
0.5  
1.0  
Size LxWxH Reverse V Package  
Manufacturer  
Website  
F @ IF  
(V)  
(mm)  
(V)  
30  
20  
Type  
On-Semi MBR0530  
On-Semi 1N5817  
0.43  
0.45  
2.8x1.8x1.3  
3Dx6.5L  
SOD-123  
Axial-Lead  
www.onsemi.com  
www.onsemi.com  
Table 1: Component Selection  
Output Filter Capacitor  
With low-cost aluminum electrolytic capaci-  
tors, the ESR-induced ripple can be larger than  
that caused by the charge variation. Conse-  
quently, high-quality aluminum-electrolytic or  
tantalum filter capacitors should be considered  
to minimize output ripple. Best results at  
reasonable cost are typically achieved with an  
aluminum-electrolytic capacitor in the 100µF  
range, in parallel with a 0.1µF ceramic  
capacitor (see Table 1).  
TheSP6639/40/53outputripplehastwocompo-  
nents. Onecomponentresultsfromthevariation  
in stored charge on the filter capacitor with each  
LX pulse. The other is the product of the current  
into the capacitor and the capacitor’s equivalent  
series resistance (ESR).  
The amount of charge delivered in each oscilla-  
tor pulse is determined by the inductor value and  
input voltage. It decreases with larger induc-  
tance, but increases as the input voltage lessens.  
As a general rule, a smaller amount of charge  
delivered in each pulse results in less output  
ripple.  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
10  
to pull a few extra microamps of current from  
the output capacitor.  
Layout  
External Diode  
In most SP6639/40/53 circuits, the current in the  
external diode (D1, Figure 3) changes abruptly  
fromzerotoitspeakvalueeachtimeLXswitches  
off. To avoid excessive losses, the diode must  
have a fast turn-on time. For low-power circuits  
with peak currents less than 100mA, signal di-  
odes such as the 1N4148 perform well. The  
1N5817 diode works well for high power cir-  
cuits or for maximum efficiency at low power.  
1N5817 equivalent diodes are also available in  
surface mount packages(Table 1). Althoughthe  
1N4001 and other general-purpose rectifiers are  
rated for high currents, they are unacceptable  
because their slow turn-off times result in exces-  
sive losses.  
SeveraloftheexternalcomponentsinaSP6639/  
40/53 circuit experience peak currents up to  
600mA. Whenever one of these components  
connects to ground, there is a potential for  
ground bounce. Ground bounce occurs when  
high currents flow through the parasitic resis-  
tance of PC board traces. What one component  
interprets as ground can differ from the IC’s  
ground by several millivolts. This may increase  
the SP6639/40/53’s output ripple, since the er-  
ror comparator (which is referenced to ground)  
will generate extra switching pulses when they  
are not needed. It is essential that the input filter  
capacitor’s ground lead, the SP6639/40/53’s  
GND pin, the diode’s anode, and the output  
filter capacitor’s ground lead are as close to-  
gether as possible.  
Minimum Load  
Underno-loadconditions,becauseleakagefrom  
the PMOS power switch (see the LX Leakage  
Current vs. Temperature graph in the Typical  
OperatingCharacteristics)andfromtheinternal  
resistor from V+ to VOUT, leakage current may  
be supplied to the output capacitor, even when  
the switch is off. This will usually not be a  
problem for a 5V output at room temperature,  
sincethediode’sreverseleakagecurrentandthe  
feedback resistor’s current typically drain the  
excess. However, if the diode leakage is very  
low (which can occur at low temperatures and/  
or small output voltages), charge may build up  
on the output capacitor, making it rise above its  
set point. If this happens, add a small load  
resistor capacitor (typically 1MW) to the output  
Inverter Configuration  
Figure 5 shows the SP6639/40/53 in a floating  
ground configuration. By tying what would  
normally be the output to the supply-voltage  
ground, the IC’s GND pin is forced to regulated  
–5V (SP6639), –3.3V (SP6640), or –3V  
(SP6653). Avoid exceeding the maximum dif-  
ferential voltage of 11.5V from V+ to VOUT  
.
Other negative voltages can be generated by  
placing a voltage divider across COUT and con-  
necting the tap point to VFB in the same manner  
as the normal step-down configuration.  
Two AA Batteries to 5V, 3.3V or 3V  
Forbattery-poweredapplications,wherethesig-  
nal ground does not have to correspond to the  
power-supply ground, the circuit in Figure 5  
generates 5V (SP6639), 3.3V (SP6640), or 3V  
(SP6653) from a pair of AA batteries. Connect  
the VIN ground point to your system’s input, and  
connect the output to your system’s ground in-  
put. This configuration has the added advantage  
of reduced resistance, since the IC’s internal  
power FET has VIN + VOUT of gate drive.  
6
8
+
-
+
V
IN  
V
+
SHDN  
C
IN  
100µF  
L = 100µF  
5
LX  
1N5817  
SP6639  
SP6640  
SP6653  
1
V
OUT  
C
OUT  
100µF  
+
-
-5V  
-3.3V  
OR -3V  
VFB  
7
GND  
4
Figure 5. Inverting Configuration  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
11  
PACKAGE: 8 LEAD PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
0.115/0.195  
(2.921/4.953)  
A2  
0.014/0.022  
(0.356/0.559)  
B
0.045/0.070  
B1  
C
(1.143/1.778)  
0.008/0.014  
(0.203/0.356)  
0.355/0.400  
(9.017/10.160)  
D
0.300/0.325  
(7.620/8.255)  
E
0.240/0.280  
E1  
L
(6.096/7.112)  
0.115/0.150  
(2.921/3.810)  
0°/ 15°  
(0°/15°)  
Ø
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
12  
PACKAGE: 8 LEAD PLASTIC  
SMALL OUTLINE (SOIC)  
(NARROW)  
E
H
h x 45°  
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
A
A1  
B
D
E
0.053/0.069  
(1.346/1.748)  
0.004/0.010  
(0.102/0.249  
0.014/0.019  
(0.35/0.49)  
0.189/0.197  
(4.80/5.00)  
0.150/0.157  
(3.802/3.988)  
e
0.050 BSC  
(1.270 BSC)  
H
h
0.228/0.244  
(5.801/6.198)  
0.010/0.020  
(0.254/0.498)  
L
0.016/0.050  
(0.406/1.270)  
Ø
0°/8°  
(0°/8°)  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
13  
ORDERING INFORMATION  
Temperature Range  
Model  
Package Type  
SP6639CN ............................................... 0˚C to +70˚C ........................................... 8-Pin NSOIC  
SP6639CN/TR ......................................... 0˚C to +70˚C ................... (Tape & Reel) 8-Pin NSOIC  
SP6640CN ............................................... 0˚C to +70˚C ........................................... 8-Pin NSOIC  
SP6640CN/TR ......................................... 0˚C to +70˚C ................... (Tape & Reel) 8-Pin NSOIC  
SP6653CN ............................................... 0˚C to +70˚C ........................................... 8-Pin NSOIC  
SP6653CN/TR ......................................... 0˚C to +70˚C ................... (Tape & Reel) 8-Pin NSOIC  
Please consult the factory for pricing and availability on a Tape-On-Reel option.  
Co rp o ra tio n  
SIGNAL PROCESSING EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
22 Linnell Circle  
Billerica, MA 01821  
TEL: (978) 667-8700  
FAX: (978) 670-9001  
e-mail: sales@sipex.com  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Rev. 8/1/01  
SP6639/40/53 5V, 3.3V, 3V Adj, High Efficiency, Low IQ Step-Down DC-DC Converter  
© Copyright 2001Sipex Corporation  
14  

相关型号:

SP6640CN-L/TR

Switching Regulator, 1A, PDSO8, PLASTIC, SOIC-8
EXAR

SP6640CN/TR

Switching Regulator, 1A, PDSO8, PLASTIC, SOIC-8
SIPEX

SP6640CN/TR

Switching Regulator, 1A, PDSO8, PLASTIC, SOIC-8
EXAR

SP6640CP

Switching Regulator, 1A, PDIP8, PLASTIC, DIP-8
EXAR

SP6640CP-L

Switching Regulator, 1A, PDIP8, PLASTIC, DIP-8
EXAR

SP6641

500mA Alkaline DC/DC Boost Regulator in SOT-23
SIPEX

SP6641A

500mA Alkaline DC/DC Boost Regulator in SOT-23
SIPEX

SP6641AEK

500mA Alkaline DC/DC Boost Regulator in SOT-23
SIPEX

SP6641AEK-3.3

Low Noise Evaluation Board
SIPEX

SP6641AEK-3.3/TR

500mA Alkaline DC/DC Boost Regulator in SOT-23
SIPEX

SP6641AEK-3.3TR

500mA Alkaline DC/DC Boost Regulator in SOT-23
SIPEX

SP6641AEK-33TR

500mA Alkaline DC/DC Boost Regulator in SOT-23
SIPEX